zhichang.yuan | 192c4d9 | 2014-04-28 13:11:33 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2013 ARM Ltd. |
| 3 | * Copyright (C) 2013 Linaro. |
| 4 | * |
| 5 | * This code is based on glibc cortex strings work originally authored by Linaro |
| 6 | * and re-licensed under GPLv2 for the Linux kernel. The original code can |
| 7 | * be found @ |
| 8 | * |
| 9 | * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ |
| 10 | * files/head:/src/aarch64/ |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or modify |
| 13 | * it under the terms of the GNU General Public License version 2 as |
| 14 | * published by the Free Software Foundation. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 23 | */ |
| 24 | |
| 25 | #include <linux/linkage.h> |
| 26 | #include <asm/assembler.h> |
| 27 | |
| 28 | /* |
| 29 | * compare two strings |
| 30 | * |
| 31 | * Parameters: |
| 32 | * x0 - const string 1 pointer |
| 33 | * x1 - const string 2 pointer |
| 34 | * x2 - the maximal length to be compared |
| 35 | * Returns: |
| 36 | * x0 - an integer less than, equal to, or greater than zero if s1 is found, |
| 37 | * respectively, to be less than, to match, or be greater than s2. |
| 38 | */ |
| 39 | |
| 40 | #define REP8_01 0x0101010101010101 |
| 41 | #define REP8_7f 0x7f7f7f7f7f7f7f7f |
| 42 | #define REP8_80 0x8080808080808080 |
| 43 | |
| 44 | /* Parameters and result. */ |
| 45 | src1 .req x0 |
| 46 | src2 .req x1 |
| 47 | limit .req x2 |
| 48 | result .req x0 |
| 49 | |
| 50 | /* Internal variables. */ |
| 51 | data1 .req x3 |
| 52 | data1w .req w3 |
| 53 | data2 .req x4 |
| 54 | data2w .req w4 |
| 55 | has_nul .req x5 |
| 56 | diff .req x6 |
| 57 | syndrome .req x7 |
| 58 | tmp1 .req x8 |
| 59 | tmp2 .req x9 |
| 60 | tmp3 .req x10 |
| 61 | zeroones .req x11 |
| 62 | pos .req x12 |
| 63 | limit_wd .req x13 |
| 64 | mask .req x14 |
| 65 | endloop .req x15 |
| 66 | |
| 67 | ENTRY(strncmp) |
| 68 | cbz limit, .Lret0 |
| 69 | eor tmp1, src1, src2 |
| 70 | mov zeroones, #REP8_01 |
| 71 | tst tmp1, #7 |
| 72 | b.ne .Lmisaligned8 |
| 73 | ands tmp1, src1, #7 |
| 74 | b.ne .Lmutual_align |
| 75 | /* Calculate the number of full and partial words -1. */ |
| 76 | /* |
| 77 | * when limit is mulitply of 8, if not sub 1, |
| 78 | * the judgement of last dword will wrong. |
| 79 | */ |
| 80 | sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ |
| 81 | lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */ |
| 82 | |
| 83 | /* |
| 84 | * NUL detection works on the principle that (X - 1) & (~X) & 0x80 |
| 85 | * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and |
| 86 | * can be done in parallel across the entire word. |
| 87 | */ |
| 88 | .Lloop_aligned: |
| 89 | ldr data1, [src1], #8 |
| 90 | ldr data2, [src2], #8 |
| 91 | .Lstart_realigned: |
| 92 | subs limit_wd, limit_wd, #1 |
| 93 | sub tmp1, data1, zeroones |
| 94 | orr tmp2, data1, #REP8_7f |
| 95 | eor diff, data1, data2 /* Non-zero if differences found. */ |
| 96 | csinv endloop, diff, xzr, pl /* Last Dword or differences.*/ |
| 97 | bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ |
| 98 | ccmp endloop, #0, #0, eq |
| 99 | b.eq .Lloop_aligned |
| 100 | |
| 101 | /*Not reached the limit, must have found the end or a diff. */ |
| 102 | tbz limit_wd, #63, .Lnot_limit |
| 103 | |
| 104 | /* Limit % 8 == 0 => all bytes significant. */ |
| 105 | ands limit, limit, #7 |
| 106 | b.eq .Lnot_limit |
| 107 | |
| 108 | lsl limit, limit, #3 /* Bits -> bytes. */ |
| 109 | mov mask, #~0 |
| 110 | CPU_BE( lsr mask, mask, limit ) |
| 111 | CPU_LE( lsl mask, mask, limit ) |
| 112 | bic data1, data1, mask |
| 113 | bic data2, data2, mask |
| 114 | |
| 115 | /* Make sure that the NUL byte is marked in the syndrome. */ |
| 116 | orr has_nul, has_nul, mask |
| 117 | |
| 118 | .Lnot_limit: |
| 119 | orr syndrome, diff, has_nul |
| 120 | b .Lcal_cmpresult |
| 121 | |
| 122 | .Lmutual_align: |
| 123 | /* |
| 124 | * Sources are mutually aligned, but are not currently at an |
| 125 | * alignment boundary. Round down the addresses and then mask off |
| 126 | * the bytes that precede the start point. |
| 127 | * We also need to adjust the limit calculations, but without |
| 128 | * overflowing if the limit is near ULONG_MAX. |
| 129 | */ |
| 130 | bic src1, src1, #7 |
| 131 | bic src2, src2, #7 |
| 132 | ldr data1, [src1], #8 |
| 133 | neg tmp3, tmp1, lsl #3 /* 64 - bits(bytes beyond align). */ |
| 134 | ldr data2, [src2], #8 |
| 135 | mov tmp2, #~0 |
| 136 | sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ |
| 137 | /* Big-endian. Early bytes are at MSB. */ |
| 138 | CPU_BE( lsl tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */ |
| 139 | /* Little-endian. Early bytes are at LSB. */ |
| 140 | CPU_LE( lsr tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */ |
| 141 | |
| 142 | and tmp3, limit_wd, #7 |
| 143 | lsr limit_wd, limit_wd, #3 |
| 144 | /* Adjust the limit. Only low 3 bits used, so overflow irrelevant.*/ |
| 145 | add limit, limit, tmp1 |
| 146 | add tmp3, tmp3, tmp1 |
| 147 | orr data1, data1, tmp2 |
| 148 | orr data2, data2, tmp2 |
| 149 | add limit_wd, limit_wd, tmp3, lsr #3 |
| 150 | b .Lstart_realigned |
| 151 | |
| 152 | /*when src1 offset is not equal to src2 offset...*/ |
| 153 | .Lmisaligned8: |
| 154 | cmp limit, #8 |
| 155 | b.lo .Ltiny8proc /*limit < 8... */ |
| 156 | /* |
| 157 | * Get the align offset length to compare per byte first. |
| 158 | * After this process, one string's address will be aligned.*/ |
| 159 | and tmp1, src1, #7 |
| 160 | neg tmp1, tmp1 |
| 161 | add tmp1, tmp1, #8 |
| 162 | and tmp2, src2, #7 |
| 163 | neg tmp2, tmp2 |
| 164 | add tmp2, tmp2, #8 |
| 165 | subs tmp3, tmp1, tmp2 |
| 166 | csel pos, tmp1, tmp2, hi /*Choose the maximum. */ |
| 167 | /* |
| 168 | * Here, limit is not less than 8, so directly run .Ltinycmp |
| 169 | * without checking the limit.*/ |
| 170 | sub limit, limit, pos |
| 171 | .Ltinycmp: |
| 172 | ldrb data1w, [src1], #1 |
| 173 | ldrb data2w, [src2], #1 |
| 174 | subs pos, pos, #1 |
| 175 | ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ |
| 176 | ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ |
| 177 | b.eq .Ltinycmp |
| 178 | cbnz pos, 1f /*find the null or unequal...*/ |
| 179 | cmp data1w, #1 |
| 180 | ccmp data1w, data2w, #0, cs |
| 181 | b.eq .Lstart_align /*the last bytes are equal....*/ |
| 182 | 1: |
| 183 | sub result, data1, data2 |
| 184 | ret |
| 185 | |
| 186 | .Lstart_align: |
| 187 | lsr limit_wd, limit, #3 |
| 188 | cbz limit_wd, .Lremain8 |
| 189 | /*process more leading bytes to make str1 aligned...*/ |
| 190 | ands xzr, src1, #7 |
| 191 | b.eq .Lrecal_offset |
| 192 | add src1, src1, tmp3 /*tmp3 is positive in this branch.*/ |
| 193 | add src2, src2, tmp3 |
| 194 | ldr data1, [src1], #8 |
| 195 | ldr data2, [src2], #8 |
| 196 | |
| 197 | sub limit, limit, tmp3 |
| 198 | lsr limit_wd, limit, #3 |
| 199 | subs limit_wd, limit_wd, #1 |
| 200 | |
| 201 | sub tmp1, data1, zeroones |
| 202 | orr tmp2, data1, #REP8_7f |
| 203 | eor diff, data1, data2 /* Non-zero if differences found. */ |
| 204 | csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ |
| 205 | bics has_nul, tmp1, tmp2 |
| 206 | ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/ |
| 207 | b.ne .Lunequal_proc |
| 208 | /*How far is the current str2 from the alignment boundary...*/ |
| 209 | and tmp3, tmp3, #7 |
| 210 | .Lrecal_offset: |
| 211 | neg pos, tmp3 |
| 212 | .Lloopcmp_proc: |
| 213 | /* |
| 214 | * Divide the eight bytes into two parts. First,backwards the src2 |
| 215 | * to an alignment boundary,load eight bytes from the SRC2 alignment |
| 216 | * boundary,then compare with the relative bytes from SRC1. |
| 217 | * If all 8 bytes are equal,then start the second part's comparison. |
| 218 | * Otherwise finish the comparison. |
| 219 | * This special handle can garantee all the accesses are in the |
| 220 | * thread/task space in avoid to overrange access. |
| 221 | */ |
| 222 | ldr data1, [src1,pos] |
| 223 | ldr data2, [src2,pos] |
| 224 | sub tmp1, data1, zeroones |
| 225 | orr tmp2, data1, #REP8_7f |
| 226 | bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ |
| 227 | eor diff, data1, data2 /* Non-zero if differences found. */ |
| 228 | csinv endloop, diff, xzr, eq |
| 229 | cbnz endloop, .Lunequal_proc |
| 230 | |
| 231 | /*The second part process*/ |
| 232 | ldr data1, [src1], #8 |
| 233 | ldr data2, [src2], #8 |
| 234 | subs limit_wd, limit_wd, #1 |
| 235 | sub tmp1, data1, zeroones |
| 236 | orr tmp2, data1, #REP8_7f |
| 237 | eor diff, data1, data2 /* Non-zero if differences found. */ |
| 238 | csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ |
| 239 | bics has_nul, tmp1, tmp2 |
| 240 | ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/ |
| 241 | b.eq .Lloopcmp_proc |
| 242 | |
| 243 | .Lunequal_proc: |
| 244 | orr syndrome, diff, has_nul |
| 245 | cbz syndrome, .Lremain8 |
| 246 | .Lcal_cmpresult: |
| 247 | /* |
| 248 | * reversed the byte-order as big-endian,then CLZ can find the most |
| 249 | * significant zero bits. |
| 250 | */ |
| 251 | CPU_LE( rev syndrome, syndrome ) |
| 252 | CPU_LE( rev data1, data1 ) |
| 253 | CPU_LE( rev data2, data2 ) |
| 254 | /* |
| 255 | * For big-endian we cannot use the trick with the syndrome value |
| 256 | * as carry-propagation can corrupt the upper bits if the trailing |
| 257 | * bytes in the string contain 0x01. |
| 258 | * However, if there is no NUL byte in the dword, we can generate |
| 259 | * the result directly. We can't just subtract the bytes as the |
| 260 | * MSB might be significant. |
| 261 | */ |
| 262 | CPU_BE( cbnz has_nul, 1f ) |
| 263 | CPU_BE( cmp data1, data2 ) |
| 264 | CPU_BE( cset result, ne ) |
| 265 | CPU_BE( cneg result, result, lo ) |
| 266 | CPU_BE( ret ) |
| 267 | CPU_BE( 1: ) |
| 268 | /* Re-compute the NUL-byte detection, using a byte-reversed value.*/ |
| 269 | CPU_BE( rev tmp3, data1 ) |
| 270 | CPU_BE( sub tmp1, tmp3, zeroones ) |
| 271 | CPU_BE( orr tmp2, tmp3, #REP8_7f ) |
| 272 | CPU_BE( bic has_nul, tmp1, tmp2 ) |
| 273 | CPU_BE( rev has_nul, has_nul ) |
| 274 | CPU_BE( orr syndrome, diff, has_nul ) |
| 275 | /* |
| 276 | * The MS-non-zero bit of the syndrome marks either the first bit |
| 277 | * that is different, or the top bit of the first zero byte. |
| 278 | * Shifting left now will bring the critical information into the |
| 279 | * top bits. |
| 280 | */ |
| 281 | clz pos, syndrome |
| 282 | lsl data1, data1, pos |
| 283 | lsl data2, data2, pos |
| 284 | /* |
| 285 | * But we need to zero-extend (char is unsigned) the value and then |
| 286 | * perform a signed 32-bit subtraction. |
| 287 | */ |
| 288 | lsr data1, data1, #56 |
| 289 | sub result, data1, data2, lsr #56 |
| 290 | ret |
| 291 | |
| 292 | .Lremain8: |
| 293 | /* Limit % 8 == 0 => all bytes significant. */ |
| 294 | ands limit, limit, #7 |
| 295 | b.eq .Lret0 |
| 296 | .Ltiny8proc: |
| 297 | ldrb data1w, [src1], #1 |
| 298 | ldrb data2w, [src2], #1 |
| 299 | subs limit, limit, #1 |
| 300 | |
| 301 | ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ |
| 302 | ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ |
| 303 | b.eq .Ltiny8proc |
| 304 | sub result, data1, data2 |
| 305 | ret |
| 306 | |
| 307 | .Lret0: |
| 308 | mov result, #0 |
| 309 | ret |
| 310 | ENDPROC(strncmp) |