blob: 6c98cf04271407163e6c201922a20675b9b6ebd8 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
Christoph Lameter19460892005-06-23 00:08:19 -070031#include <linux/blkdev.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
Adrian Bunk93d17d32005-06-25 14:59:10 -070040static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
Linus Torvalds1da177e2005-04-16 15:20:36 -070041
42/*
43 * For the allocated request tables
44 */
45static kmem_cache_t *request_cachep;
46
47/*
48 * For queue allocation
49 */
50static kmem_cache_t *requestq_cachep;
51
52/*
53 * For io context allocations
54 */
55static kmem_cache_t *iocontext_cachep;
56
57static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
60 };
61
62/*
63 * Controlling structure to kblockd
64 */
65static struct workqueue_struct *kblockd_workqueue;
66
67unsigned long blk_max_low_pfn, blk_max_pfn;
68
69EXPORT_SYMBOL(blk_max_low_pfn);
70EXPORT_SYMBOL(blk_max_pfn);
71
72/* Amount of time in which a process may batch requests */
73#define BLK_BATCH_TIME (HZ/50UL)
74
75/* Number of requests a "batching" process may submit */
76#define BLK_BATCH_REQ 32
77
78/*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83static inline int queue_congestion_on_threshold(struct request_queue *q)
84{
85 return q->nr_congestion_on;
86}
87
88/*
89 * The threshold at which a queue is considered to be uncongested
90 */
91static inline int queue_congestion_off_threshold(struct request_queue *q)
92{
93 return q->nr_congestion_off;
94}
95
96static void blk_queue_congestion_threshold(struct request_queue *q)
97{
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109}
110
111/*
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
114 * put back.
115 */
116static void clear_queue_congested(request_queue_t *q, int rw)
117{
118 enum bdi_state bit;
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
120
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
125 wake_up(wqh);
126}
127
128/*
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
131 */
132static void set_queue_congested(request_queue_t *q, int rw)
133{
134 enum bdi_state bit;
135
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
138}
139
140/**
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * @bdev: device
143 *
144 * Locates the passed device's request queue and returns the address of its
145 * backing_dev_info
146 *
147 * Will return NULL if the request queue cannot be located.
148 */
149struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
150{
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
153
154 if (q)
155 ret = &q->backing_dev_info;
156 return ret;
157}
158
159EXPORT_SYMBOL(blk_get_backing_dev_info);
160
161void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162{
163 q->activity_fn = fn;
164 q->activity_data = data;
165}
166
167EXPORT_SYMBOL(blk_queue_activity_fn);
168
169/**
170 * blk_queue_prep_rq - set a prepare_request function for queue
171 * @q: queue
172 * @pfn: prepare_request function
173 *
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
178 *
179 */
180void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
181{
182 q->prep_rq_fn = pfn;
183}
184
185EXPORT_SYMBOL(blk_queue_prep_rq);
186
187/**
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
189 * @q: queue
190 * @mbfn: merge_bvec_fn
191 *
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 * honored.
202 */
203void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
204{
205 q->merge_bvec_fn = mbfn;
206}
207
208EXPORT_SYMBOL(blk_queue_merge_bvec);
209
210/**
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
214 *
215 * Description:
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
225 *
226 * Caveat:
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
231 **/
232void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233{
234 /*
235 * set defaults
236 */
237 q->nr_requests = BLKDEV_MAX_RQ;
238 q->max_phys_segments = MAX_PHYS_SEGMENTS;
239 q->max_hw_segments = MAX_HW_SEGMENTS;
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
249
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
253 q->unplug_delay = 1;
254
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
256
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
259
260 /*
261 * by default assume old behaviour and bounce for any highmem page
262 */
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
264
265 blk_queue_activity_fn(q, NULL, NULL);
266
267 INIT_LIST_HEAD(&q->drain_list);
268}
269
270EXPORT_SYMBOL(blk_queue_make_request);
271
272static inline void rq_init(request_queue_t *q, struct request *rq)
273{
274 INIT_LIST_HEAD(&rq->queuelist);
275
276 rq->errors = 0;
277 rq->rq_status = RQ_ACTIVE;
278 rq->bio = rq->biotail = NULL;
Jens Axboe22e2c502005-06-27 10:55:12 +0200279 rq->ioprio = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 rq->buffer = NULL;
281 rq->ref_count = 1;
282 rq->q = q;
283 rq->waiting = NULL;
284 rq->special = NULL;
285 rq->data_len = 0;
286 rq->data = NULL;
287 rq->sense = NULL;
288 rq->end_io = NULL;
289 rq->end_io_data = NULL;
290}
291
292/**
293 * blk_queue_ordered - does this queue support ordered writes
294 * @q: the request queue
295 * @flag: see below
296 *
297 * Description:
298 * For journalled file systems, doing ordered writes on a commit
299 * block instead of explicitly doing wait_on_buffer (which is bad
300 * for performance) can be a big win. Block drivers supporting this
301 * feature should call this function and indicate so.
302 *
303 **/
304void blk_queue_ordered(request_queue_t *q, int flag)
305{
306 switch (flag) {
307 case QUEUE_ORDERED_NONE:
308 if (q->flush_rq)
309 kmem_cache_free(request_cachep, q->flush_rq);
310 q->flush_rq = NULL;
311 q->ordered = flag;
312 break;
313 case QUEUE_ORDERED_TAG:
314 q->ordered = flag;
315 break;
316 case QUEUE_ORDERED_FLUSH:
317 q->ordered = flag;
318 if (!q->flush_rq)
319 q->flush_rq = kmem_cache_alloc(request_cachep,
320 GFP_KERNEL);
321 break;
322 default:
323 printk("blk_queue_ordered: bad value %d\n", flag);
324 break;
325 }
326}
327
328EXPORT_SYMBOL(blk_queue_ordered);
329
330/**
331 * blk_queue_issue_flush_fn - set function for issuing a flush
332 * @q: the request queue
333 * @iff: the function to be called issuing the flush
334 *
335 * Description:
336 * If a driver supports issuing a flush command, the support is notified
337 * to the block layer by defining it through this call.
338 *
339 **/
340void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
341{
342 q->issue_flush_fn = iff;
343}
344
345EXPORT_SYMBOL(blk_queue_issue_flush_fn);
346
347/*
348 * Cache flushing for ordered writes handling
349 */
350static void blk_pre_flush_end_io(struct request *flush_rq)
351{
352 struct request *rq = flush_rq->end_io_data;
353 request_queue_t *q = rq->q;
354
355 rq->flags |= REQ_BAR_PREFLUSH;
356
357 if (!flush_rq->errors)
358 elv_requeue_request(q, rq);
359 else {
360 q->end_flush_fn(q, flush_rq);
361 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
362 q->request_fn(q);
363 }
364}
365
366static void blk_post_flush_end_io(struct request *flush_rq)
367{
368 struct request *rq = flush_rq->end_io_data;
369 request_queue_t *q = rq->q;
370
371 rq->flags |= REQ_BAR_POSTFLUSH;
372
373 q->end_flush_fn(q, flush_rq);
374 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
375 q->request_fn(q);
376}
377
378struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
379{
380 struct request *flush_rq = q->flush_rq;
381
382 BUG_ON(!blk_barrier_rq(rq));
383
384 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
385 return NULL;
386
387 rq_init(q, flush_rq);
388 flush_rq->elevator_private = NULL;
389 flush_rq->flags = REQ_BAR_FLUSH;
390 flush_rq->rq_disk = rq->rq_disk;
391 flush_rq->rl = NULL;
392
393 /*
394 * prepare_flush returns 0 if no flush is needed, just mark both
395 * pre and post flush as done in that case
396 */
397 if (!q->prepare_flush_fn(q, flush_rq)) {
398 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
399 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
400 return rq;
401 }
402
403 /*
404 * some drivers dequeue requests right away, some only after io
405 * completion. make sure the request is dequeued.
406 */
407 if (!list_empty(&rq->queuelist))
408 blkdev_dequeue_request(rq);
409
410 elv_deactivate_request(q, rq);
411
412 flush_rq->end_io_data = rq;
413 flush_rq->end_io = blk_pre_flush_end_io;
414
415 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
416 return flush_rq;
417}
418
419static void blk_start_post_flush(request_queue_t *q, struct request *rq)
420{
421 struct request *flush_rq = q->flush_rq;
422
423 BUG_ON(!blk_barrier_rq(rq));
424
425 rq_init(q, flush_rq);
426 flush_rq->elevator_private = NULL;
427 flush_rq->flags = REQ_BAR_FLUSH;
428 flush_rq->rq_disk = rq->rq_disk;
429 flush_rq->rl = NULL;
430
431 if (q->prepare_flush_fn(q, flush_rq)) {
432 flush_rq->end_io_data = rq;
433 flush_rq->end_io = blk_post_flush_end_io;
434
435 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
436 q->request_fn(q);
437 }
438}
439
440static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
441 int sectors)
442{
443 if (sectors > rq->nr_sectors)
444 sectors = rq->nr_sectors;
445
446 rq->nr_sectors -= sectors;
447 return rq->nr_sectors;
448}
449
450static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
451 int sectors, int queue_locked)
452{
453 if (q->ordered != QUEUE_ORDERED_FLUSH)
454 return 0;
455 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
456 return 0;
457 if (blk_barrier_postflush(rq))
458 return 0;
459
460 if (!blk_check_end_barrier(q, rq, sectors)) {
461 unsigned long flags = 0;
462
463 if (!queue_locked)
464 spin_lock_irqsave(q->queue_lock, flags);
465
466 blk_start_post_flush(q, rq);
467
468 if (!queue_locked)
469 spin_unlock_irqrestore(q->queue_lock, flags);
470 }
471
472 return 1;
473}
474
475/**
476 * blk_complete_barrier_rq - complete possible barrier request
477 * @q: the request queue for the device
478 * @rq: the request
479 * @sectors: number of sectors to complete
480 *
481 * Description:
482 * Used in driver end_io handling to determine whether to postpone
483 * completion of a barrier request until a post flush has been done. This
484 * is the unlocked variant, used if the caller doesn't already hold the
485 * queue lock.
486 **/
487int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
488{
489 return __blk_complete_barrier_rq(q, rq, sectors, 0);
490}
491EXPORT_SYMBOL(blk_complete_barrier_rq);
492
493/**
494 * blk_complete_barrier_rq_locked - complete possible barrier request
495 * @q: the request queue for the device
496 * @rq: the request
497 * @sectors: number of sectors to complete
498 *
499 * Description:
500 * See blk_complete_barrier_rq(). This variant must be used if the caller
501 * holds the queue lock.
502 **/
503int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
504 int sectors)
505{
506 return __blk_complete_barrier_rq(q, rq, sectors, 1);
507}
508EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
509
510/**
511 * blk_queue_bounce_limit - set bounce buffer limit for queue
512 * @q: the request queue for the device
513 * @dma_addr: bus address limit
514 *
515 * Description:
516 * Different hardware can have different requirements as to what pages
517 * it can do I/O directly to. A low level driver can call
518 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
519 * buffers for doing I/O to pages residing above @page. By default
520 * the block layer sets this to the highest numbered "low" memory page.
521 **/
522void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
523{
524 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
525
526 /*
527 * set appropriate bounce gfp mask -- unfortunately we don't have a
528 * full 4GB zone, so we have to resort to low memory for any bounces.
529 * ISA has its own < 16MB zone.
530 */
531 if (bounce_pfn < blk_max_low_pfn) {
532 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
533 init_emergency_isa_pool();
534 q->bounce_gfp = GFP_NOIO | GFP_DMA;
535 } else
536 q->bounce_gfp = GFP_NOIO;
537
538 q->bounce_pfn = bounce_pfn;
539}
540
541EXPORT_SYMBOL(blk_queue_bounce_limit);
542
543/**
544 * blk_queue_max_sectors - set max sectors for a request for this queue
545 * @q: the request queue for the device
546 * @max_sectors: max sectors in the usual 512b unit
547 *
548 * Description:
549 * Enables a low level driver to set an upper limit on the size of
550 * received requests.
551 **/
552void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
553{
554 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
555 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
556 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
557 }
558
559 q->max_sectors = q->max_hw_sectors = max_sectors;
560}
561
562EXPORT_SYMBOL(blk_queue_max_sectors);
563
564/**
565 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
566 * @q: the request queue for the device
567 * @max_segments: max number of segments
568 *
569 * Description:
570 * Enables a low level driver to set an upper limit on the number of
571 * physical data segments in a request. This would be the largest sized
572 * scatter list the driver could handle.
573 **/
574void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
575{
576 if (!max_segments) {
577 max_segments = 1;
578 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
579 }
580
581 q->max_phys_segments = max_segments;
582}
583
584EXPORT_SYMBOL(blk_queue_max_phys_segments);
585
586/**
587 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
588 * @q: the request queue for the device
589 * @max_segments: max number of segments
590 *
591 * Description:
592 * Enables a low level driver to set an upper limit on the number of
593 * hw data segments in a request. This would be the largest number of
594 * address/length pairs the host adapter can actually give as once
595 * to the device.
596 **/
597void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
598{
599 if (!max_segments) {
600 max_segments = 1;
601 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
602 }
603
604 q->max_hw_segments = max_segments;
605}
606
607EXPORT_SYMBOL(blk_queue_max_hw_segments);
608
609/**
610 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
611 * @q: the request queue for the device
612 * @max_size: max size of segment in bytes
613 *
614 * Description:
615 * Enables a low level driver to set an upper limit on the size of a
616 * coalesced segment
617 **/
618void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
619{
620 if (max_size < PAGE_CACHE_SIZE) {
621 max_size = PAGE_CACHE_SIZE;
622 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
623 }
624
625 q->max_segment_size = max_size;
626}
627
628EXPORT_SYMBOL(blk_queue_max_segment_size);
629
630/**
631 * blk_queue_hardsect_size - set hardware sector size for the queue
632 * @q: the request queue for the device
633 * @size: the hardware sector size, in bytes
634 *
635 * Description:
636 * This should typically be set to the lowest possible sector size
637 * that the hardware can operate on (possible without reverting to
638 * even internal read-modify-write operations). Usually the default
639 * of 512 covers most hardware.
640 **/
641void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
642{
643 q->hardsect_size = size;
644}
645
646EXPORT_SYMBOL(blk_queue_hardsect_size);
647
648/*
649 * Returns the minimum that is _not_ zero, unless both are zero.
650 */
651#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
652
653/**
654 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
655 * @t: the stacking driver (top)
656 * @b: the underlying device (bottom)
657 **/
658void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
659{
660 /* zero is "infinity" */
661 t->max_sectors = t->max_hw_sectors =
662 min_not_zero(t->max_sectors,b->max_sectors);
663
664 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
665 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
666 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
667 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
668}
669
670EXPORT_SYMBOL(blk_queue_stack_limits);
671
672/**
673 * blk_queue_segment_boundary - set boundary rules for segment merging
674 * @q: the request queue for the device
675 * @mask: the memory boundary mask
676 **/
677void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
678{
679 if (mask < PAGE_CACHE_SIZE - 1) {
680 mask = PAGE_CACHE_SIZE - 1;
681 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
682 }
683
684 q->seg_boundary_mask = mask;
685}
686
687EXPORT_SYMBOL(blk_queue_segment_boundary);
688
689/**
690 * blk_queue_dma_alignment - set dma length and memory alignment
691 * @q: the request queue for the device
692 * @mask: alignment mask
693 *
694 * description:
695 * set required memory and length aligment for direct dma transactions.
696 * this is used when buiding direct io requests for the queue.
697 *
698 **/
699void blk_queue_dma_alignment(request_queue_t *q, int mask)
700{
701 q->dma_alignment = mask;
702}
703
704EXPORT_SYMBOL(blk_queue_dma_alignment);
705
706/**
707 * blk_queue_find_tag - find a request by its tag and queue
708 *
709 * @q: The request queue for the device
710 * @tag: The tag of the request
711 *
712 * Notes:
713 * Should be used when a device returns a tag and you want to match
714 * it with a request.
715 *
716 * no locks need be held.
717 **/
718struct request *blk_queue_find_tag(request_queue_t *q, int tag)
719{
720 struct blk_queue_tag *bqt = q->queue_tags;
721
Tejun Heofa72b902005-06-23 00:08:49 -0700722 if (unlikely(bqt == NULL || tag >= bqt->max_depth))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700723 return NULL;
724
725 return bqt->tag_index[tag];
726}
727
728EXPORT_SYMBOL(blk_queue_find_tag);
729
730/**
731 * __blk_queue_free_tags - release tag maintenance info
732 * @q: the request queue for the device
733 *
734 * Notes:
735 * blk_cleanup_queue() will take care of calling this function, if tagging
736 * has been used. So there's no need to call this directly.
737 **/
738static void __blk_queue_free_tags(request_queue_t *q)
739{
740 struct blk_queue_tag *bqt = q->queue_tags;
741
742 if (!bqt)
743 return;
744
745 if (atomic_dec_and_test(&bqt->refcnt)) {
746 BUG_ON(bqt->busy);
747 BUG_ON(!list_empty(&bqt->busy_list));
748
749 kfree(bqt->tag_index);
750 bqt->tag_index = NULL;
751
752 kfree(bqt->tag_map);
753 bqt->tag_map = NULL;
754
755 kfree(bqt);
756 }
757
758 q->queue_tags = NULL;
759 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
760}
761
762/**
763 * blk_queue_free_tags - release tag maintenance info
764 * @q: the request queue for the device
765 *
766 * Notes:
767 * This is used to disabled tagged queuing to a device, yet leave
768 * queue in function.
769 **/
770void blk_queue_free_tags(request_queue_t *q)
771{
772 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
773}
774
775EXPORT_SYMBOL(blk_queue_free_tags);
776
777static int
778init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
779{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700780 struct request **tag_index;
781 unsigned long *tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700782 int nr_ulongs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783
784 if (depth > q->nr_requests * 2) {
785 depth = q->nr_requests * 2;
786 printk(KERN_ERR "%s: adjusted depth to %d\n",
787 __FUNCTION__, depth);
788 }
789
790 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
791 if (!tag_index)
792 goto fail;
793
Tejun Heof7d37d02005-06-23 00:08:50 -0700794 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
Tejun Heofa72b902005-06-23 00:08:49 -0700795 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796 if (!tag_map)
797 goto fail;
798
799 memset(tag_index, 0, depth * sizeof(struct request *));
Tejun Heofa72b902005-06-23 00:08:49 -0700800 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801 tags->max_depth = depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802 tags->tag_index = tag_index;
803 tags->tag_map = tag_map;
804
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805 return 0;
806fail:
807 kfree(tag_index);
808 return -ENOMEM;
809}
810
811/**
812 * blk_queue_init_tags - initialize the queue tag info
813 * @q: the request queue for the device
814 * @depth: the maximum queue depth supported
815 * @tags: the tag to use
816 **/
817int blk_queue_init_tags(request_queue_t *q, int depth,
818 struct blk_queue_tag *tags)
819{
820 int rc;
821
822 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
823
824 if (!tags && !q->queue_tags) {
825 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
826 if (!tags)
827 goto fail;
828
829 if (init_tag_map(q, tags, depth))
830 goto fail;
831
832 INIT_LIST_HEAD(&tags->busy_list);
833 tags->busy = 0;
834 atomic_set(&tags->refcnt, 1);
835 } else if (q->queue_tags) {
836 if ((rc = blk_queue_resize_tags(q, depth)))
837 return rc;
838 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
839 return 0;
840 } else
841 atomic_inc(&tags->refcnt);
842
843 /*
844 * assign it, all done
845 */
846 q->queue_tags = tags;
847 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
848 return 0;
849fail:
850 kfree(tags);
851 return -ENOMEM;
852}
853
854EXPORT_SYMBOL(blk_queue_init_tags);
855
856/**
857 * blk_queue_resize_tags - change the queueing depth
858 * @q: the request queue for the device
859 * @new_depth: the new max command queueing depth
860 *
861 * Notes:
862 * Must be called with the queue lock held.
863 **/
864int blk_queue_resize_tags(request_queue_t *q, int new_depth)
865{
866 struct blk_queue_tag *bqt = q->queue_tags;
867 struct request **tag_index;
868 unsigned long *tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700869 int max_depth, nr_ulongs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700870
871 if (!bqt)
872 return -ENXIO;
873
874 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700875 * save the old state info, so we can copy it back
876 */
877 tag_index = bqt->tag_index;
878 tag_map = bqt->tag_map;
Tejun Heofa72b902005-06-23 00:08:49 -0700879 max_depth = bqt->max_depth;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880
881 if (init_tag_map(q, bqt, new_depth))
882 return -ENOMEM;
883
884 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
Tejun Heof7d37d02005-06-23 00:08:50 -0700885 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
Tejun Heofa72b902005-06-23 00:08:49 -0700886 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700887
888 kfree(tag_index);
889 kfree(tag_map);
890 return 0;
891}
892
893EXPORT_SYMBOL(blk_queue_resize_tags);
894
895/**
896 * blk_queue_end_tag - end tag operations for a request
897 * @q: the request queue for the device
898 * @rq: the request that has completed
899 *
900 * Description:
901 * Typically called when end_that_request_first() returns 0, meaning
902 * all transfers have been done for a request. It's important to call
903 * this function before end_that_request_last(), as that will put the
904 * request back on the free list thus corrupting the internal tag list.
905 *
906 * Notes:
907 * queue lock must be held.
908 **/
909void blk_queue_end_tag(request_queue_t *q, struct request *rq)
910{
911 struct blk_queue_tag *bqt = q->queue_tags;
912 int tag = rq->tag;
913
914 BUG_ON(tag == -1);
915
Tejun Heofa72b902005-06-23 00:08:49 -0700916 if (unlikely(tag >= bqt->max_depth))
Tejun Heo040c9282005-06-23 00:08:51 -0700917 /*
918 * This can happen after tag depth has been reduced.
919 * FIXME: how about a warning or info message here?
920 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700921 return;
922
923 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
Tejun Heo040c9282005-06-23 00:08:51 -0700924 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
925 __FUNCTION__, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926 return;
927 }
928
929 list_del_init(&rq->queuelist);
930 rq->flags &= ~REQ_QUEUED;
931 rq->tag = -1;
932
933 if (unlikely(bqt->tag_index[tag] == NULL))
Tejun Heo040c9282005-06-23 00:08:51 -0700934 printk(KERN_ERR "%s: tag %d is missing\n",
935 __FUNCTION__, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700936
937 bqt->tag_index[tag] = NULL;
938 bqt->busy--;
939}
940
941EXPORT_SYMBOL(blk_queue_end_tag);
942
943/**
944 * blk_queue_start_tag - find a free tag and assign it
945 * @q: the request queue for the device
946 * @rq: the block request that needs tagging
947 *
948 * Description:
949 * This can either be used as a stand-alone helper, or possibly be
950 * assigned as the queue &prep_rq_fn (in which case &struct request
951 * automagically gets a tag assigned). Note that this function
952 * assumes that any type of request can be queued! if this is not
953 * true for your device, you must check the request type before
954 * calling this function. The request will also be removed from
955 * the request queue, so it's the drivers responsibility to readd
956 * it if it should need to be restarted for some reason.
957 *
958 * Notes:
959 * queue lock must be held.
960 **/
961int blk_queue_start_tag(request_queue_t *q, struct request *rq)
962{
963 struct blk_queue_tag *bqt = q->queue_tags;
Tejun Heo2bf0fda2005-06-23 00:08:48 -0700964 int tag;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965
966 if (unlikely((rq->flags & REQ_QUEUED))) {
967 printk(KERN_ERR
Tejun Heo040c9282005-06-23 00:08:51 -0700968 "%s: request %p for device [%s] already tagged %d",
969 __FUNCTION__, rq,
970 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700971 BUG();
972 }
973
Tejun Heo2bf0fda2005-06-23 00:08:48 -0700974 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
975 if (tag >= bqt->max_depth)
976 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978 __set_bit(tag, bqt->tag_map);
979
980 rq->flags |= REQ_QUEUED;
981 rq->tag = tag;
982 bqt->tag_index[tag] = rq;
983 blkdev_dequeue_request(rq);
984 list_add(&rq->queuelist, &bqt->busy_list);
985 bqt->busy++;
986 return 0;
987}
988
989EXPORT_SYMBOL(blk_queue_start_tag);
990
991/**
992 * blk_queue_invalidate_tags - invalidate all pending tags
993 * @q: the request queue for the device
994 *
995 * Description:
996 * Hardware conditions may dictate a need to stop all pending requests.
997 * In this case, we will safely clear the block side of the tag queue and
998 * readd all requests to the request queue in the right order.
999 *
1000 * Notes:
1001 * queue lock must be held.
1002 **/
1003void blk_queue_invalidate_tags(request_queue_t *q)
1004{
1005 struct blk_queue_tag *bqt = q->queue_tags;
1006 struct list_head *tmp, *n;
1007 struct request *rq;
1008
1009 list_for_each_safe(tmp, n, &bqt->busy_list) {
1010 rq = list_entry_rq(tmp);
1011
1012 if (rq->tag == -1) {
Tejun Heo040c9282005-06-23 00:08:51 -07001013 printk(KERN_ERR
1014 "%s: bad tag found on list\n", __FUNCTION__);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001015 list_del_init(&rq->queuelist);
1016 rq->flags &= ~REQ_QUEUED;
1017 } else
1018 blk_queue_end_tag(q, rq);
1019
1020 rq->flags &= ~REQ_STARTED;
1021 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1022 }
1023}
1024
1025EXPORT_SYMBOL(blk_queue_invalidate_tags);
1026
1027static char *rq_flags[] = {
1028 "REQ_RW",
1029 "REQ_FAILFAST",
1030 "REQ_SOFTBARRIER",
1031 "REQ_HARDBARRIER",
1032 "REQ_CMD",
1033 "REQ_NOMERGE",
1034 "REQ_STARTED",
1035 "REQ_DONTPREP",
1036 "REQ_QUEUED",
1037 "REQ_PC",
1038 "REQ_BLOCK_PC",
1039 "REQ_SENSE",
1040 "REQ_FAILED",
1041 "REQ_QUIET",
1042 "REQ_SPECIAL",
1043 "REQ_DRIVE_CMD",
1044 "REQ_DRIVE_TASK",
1045 "REQ_DRIVE_TASKFILE",
1046 "REQ_PREEMPT",
1047 "REQ_PM_SUSPEND",
1048 "REQ_PM_RESUME",
1049 "REQ_PM_SHUTDOWN",
1050};
1051
1052void blk_dump_rq_flags(struct request *rq, char *msg)
1053{
1054 int bit;
1055
1056 printk("%s: dev %s: flags = ", msg,
1057 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1058 bit = 0;
1059 do {
1060 if (rq->flags & (1 << bit))
1061 printk("%s ", rq_flags[bit]);
1062 bit++;
1063 } while (bit < __REQ_NR_BITS);
1064
1065 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1066 rq->nr_sectors,
1067 rq->current_nr_sectors);
1068 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1069
1070 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1071 printk("cdb: ");
1072 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1073 printk("%02x ", rq->cmd[bit]);
1074 printk("\n");
1075 }
1076}
1077
1078EXPORT_SYMBOL(blk_dump_rq_flags);
1079
1080void blk_recount_segments(request_queue_t *q, struct bio *bio)
1081{
1082 struct bio_vec *bv, *bvprv = NULL;
1083 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1084 int high, highprv = 1;
1085
1086 if (unlikely(!bio->bi_io_vec))
1087 return;
1088
1089 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1090 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1091 bio_for_each_segment(bv, bio, i) {
1092 /*
1093 * the trick here is making sure that a high page is never
1094 * considered part of another segment, since that might
1095 * change with the bounce page.
1096 */
1097 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1098 if (high || highprv)
1099 goto new_hw_segment;
1100 if (cluster) {
1101 if (seg_size + bv->bv_len > q->max_segment_size)
1102 goto new_segment;
1103 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1104 goto new_segment;
1105 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1106 goto new_segment;
1107 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1108 goto new_hw_segment;
1109
1110 seg_size += bv->bv_len;
1111 hw_seg_size += bv->bv_len;
1112 bvprv = bv;
1113 continue;
1114 }
1115new_segment:
1116 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1117 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1118 hw_seg_size += bv->bv_len;
1119 } else {
1120new_hw_segment:
1121 if (hw_seg_size > bio->bi_hw_front_size)
1122 bio->bi_hw_front_size = hw_seg_size;
1123 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1124 nr_hw_segs++;
1125 }
1126
1127 nr_phys_segs++;
1128 bvprv = bv;
1129 seg_size = bv->bv_len;
1130 highprv = high;
1131 }
1132 if (hw_seg_size > bio->bi_hw_back_size)
1133 bio->bi_hw_back_size = hw_seg_size;
1134 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1135 bio->bi_hw_front_size = hw_seg_size;
1136 bio->bi_phys_segments = nr_phys_segs;
1137 bio->bi_hw_segments = nr_hw_segs;
1138 bio->bi_flags |= (1 << BIO_SEG_VALID);
1139}
1140
1141
Adrian Bunk93d17d32005-06-25 14:59:10 -07001142static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143 struct bio *nxt)
1144{
1145 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1146 return 0;
1147
1148 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1149 return 0;
1150 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1151 return 0;
1152
1153 /*
1154 * bio and nxt are contigous in memory, check if the queue allows
1155 * these two to be merged into one
1156 */
1157 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1158 return 1;
1159
1160 return 0;
1161}
1162
Adrian Bunk93d17d32005-06-25 14:59:10 -07001163static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001164 struct bio *nxt)
1165{
1166 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1167 blk_recount_segments(q, bio);
1168 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1169 blk_recount_segments(q, nxt);
1170 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1171 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1172 return 0;
1173 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1174 return 0;
1175
1176 return 1;
1177}
1178
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179/*
1180 * map a request to scatterlist, return number of sg entries setup. Caller
1181 * must make sure sg can hold rq->nr_phys_segments entries
1182 */
1183int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1184{
1185 struct bio_vec *bvec, *bvprv;
1186 struct bio *bio;
1187 int nsegs, i, cluster;
1188
1189 nsegs = 0;
1190 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1191
1192 /*
1193 * for each bio in rq
1194 */
1195 bvprv = NULL;
1196 rq_for_each_bio(bio, rq) {
1197 /*
1198 * for each segment in bio
1199 */
1200 bio_for_each_segment(bvec, bio, i) {
1201 int nbytes = bvec->bv_len;
1202
1203 if (bvprv && cluster) {
1204 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1205 goto new_segment;
1206
1207 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1208 goto new_segment;
1209 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1210 goto new_segment;
1211
1212 sg[nsegs - 1].length += nbytes;
1213 } else {
1214new_segment:
1215 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1216 sg[nsegs].page = bvec->bv_page;
1217 sg[nsegs].length = nbytes;
1218 sg[nsegs].offset = bvec->bv_offset;
1219
1220 nsegs++;
1221 }
1222 bvprv = bvec;
1223 } /* segments in bio */
1224 } /* bios in rq */
1225
1226 return nsegs;
1227}
1228
1229EXPORT_SYMBOL(blk_rq_map_sg);
1230
1231/*
1232 * the standard queue merge functions, can be overridden with device
1233 * specific ones if so desired
1234 */
1235
1236static inline int ll_new_mergeable(request_queue_t *q,
1237 struct request *req,
1238 struct bio *bio)
1239{
1240 int nr_phys_segs = bio_phys_segments(q, bio);
1241
1242 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1243 req->flags |= REQ_NOMERGE;
1244 if (req == q->last_merge)
1245 q->last_merge = NULL;
1246 return 0;
1247 }
1248
1249 /*
1250 * A hw segment is just getting larger, bump just the phys
1251 * counter.
1252 */
1253 req->nr_phys_segments += nr_phys_segs;
1254 return 1;
1255}
1256
1257static inline int ll_new_hw_segment(request_queue_t *q,
1258 struct request *req,
1259 struct bio *bio)
1260{
1261 int nr_hw_segs = bio_hw_segments(q, bio);
1262 int nr_phys_segs = bio_phys_segments(q, bio);
1263
1264 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1265 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1266 req->flags |= REQ_NOMERGE;
1267 if (req == q->last_merge)
1268 q->last_merge = NULL;
1269 return 0;
1270 }
1271
1272 /*
1273 * This will form the start of a new hw segment. Bump both
1274 * counters.
1275 */
1276 req->nr_hw_segments += nr_hw_segs;
1277 req->nr_phys_segments += nr_phys_segs;
1278 return 1;
1279}
1280
1281static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1282 struct bio *bio)
1283{
1284 int len;
1285
1286 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1287 req->flags |= REQ_NOMERGE;
1288 if (req == q->last_merge)
1289 q->last_merge = NULL;
1290 return 0;
1291 }
1292 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1293 blk_recount_segments(q, req->biotail);
1294 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1295 blk_recount_segments(q, bio);
1296 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1297 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1298 !BIOVEC_VIRT_OVERSIZE(len)) {
1299 int mergeable = ll_new_mergeable(q, req, bio);
1300
1301 if (mergeable) {
1302 if (req->nr_hw_segments == 1)
1303 req->bio->bi_hw_front_size = len;
1304 if (bio->bi_hw_segments == 1)
1305 bio->bi_hw_back_size = len;
1306 }
1307 return mergeable;
1308 }
1309
1310 return ll_new_hw_segment(q, req, bio);
1311}
1312
1313static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1314 struct bio *bio)
1315{
1316 int len;
1317
1318 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1319 req->flags |= REQ_NOMERGE;
1320 if (req == q->last_merge)
1321 q->last_merge = NULL;
1322 return 0;
1323 }
1324 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1325 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1326 blk_recount_segments(q, bio);
1327 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1328 blk_recount_segments(q, req->bio);
1329 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1330 !BIOVEC_VIRT_OVERSIZE(len)) {
1331 int mergeable = ll_new_mergeable(q, req, bio);
1332
1333 if (mergeable) {
1334 if (bio->bi_hw_segments == 1)
1335 bio->bi_hw_front_size = len;
1336 if (req->nr_hw_segments == 1)
1337 req->biotail->bi_hw_back_size = len;
1338 }
1339 return mergeable;
1340 }
1341
1342 return ll_new_hw_segment(q, req, bio);
1343}
1344
1345static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1346 struct request *next)
1347{
Nikita Danilovdfa1a552005-06-25 14:59:20 -07001348 int total_phys_segments;
1349 int total_hw_segments;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001350
1351 /*
1352 * First check if the either of the requests are re-queued
1353 * requests. Can't merge them if they are.
1354 */
1355 if (req->special || next->special)
1356 return 0;
1357
1358 /*
Nikita Danilovdfa1a552005-06-25 14:59:20 -07001359 * Will it become too large?
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360 */
1361 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1362 return 0;
1363
1364 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1365 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1366 total_phys_segments--;
1367
1368 if (total_phys_segments > q->max_phys_segments)
1369 return 0;
1370
1371 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1372 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1373 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1374 /*
1375 * propagate the combined length to the end of the requests
1376 */
1377 if (req->nr_hw_segments == 1)
1378 req->bio->bi_hw_front_size = len;
1379 if (next->nr_hw_segments == 1)
1380 next->biotail->bi_hw_back_size = len;
1381 total_hw_segments--;
1382 }
1383
1384 if (total_hw_segments > q->max_hw_segments)
1385 return 0;
1386
1387 /* Merge is OK... */
1388 req->nr_phys_segments = total_phys_segments;
1389 req->nr_hw_segments = total_hw_segments;
1390 return 1;
1391}
1392
1393/*
1394 * "plug" the device if there are no outstanding requests: this will
1395 * force the transfer to start only after we have put all the requests
1396 * on the list.
1397 *
1398 * This is called with interrupts off and no requests on the queue and
1399 * with the queue lock held.
1400 */
1401void blk_plug_device(request_queue_t *q)
1402{
1403 WARN_ON(!irqs_disabled());
1404
1405 /*
1406 * don't plug a stopped queue, it must be paired with blk_start_queue()
1407 * which will restart the queueing
1408 */
1409 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1410 return;
1411
1412 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1413 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1414}
1415
1416EXPORT_SYMBOL(blk_plug_device);
1417
1418/*
1419 * remove the queue from the plugged list, if present. called with
1420 * queue lock held and interrupts disabled.
1421 */
1422int blk_remove_plug(request_queue_t *q)
1423{
1424 WARN_ON(!irqs_disabled());
1425
1426 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1427 return 0;
1428
1429 del_timer(&q->unplug_timer);
1430 return 1;
1431}
1432
1433EXPORT_SYMBOL(blk_remove_plug);
1434
1435/*
1436 * remove the plug and let it rip..
1437 */
1438void __generic_unplug_device(request_queue_t *q)
1439{
Nick Pigginfde6ad22005-06-23 00:08:53 -07001440 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 return;
1442
1443 if (!blk_remove_plug(q))
1444 return;
1445
Jens Axboe22e2c502005-06-27 10:55:12 +02001446 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447}
1448EXPORT_SYMBOL(__generic_unplug_device);
1449
1450/**
1451 * generic_unplug_device - fire a request queue
1452 * @q: The &request_queue_t in question
1453 *
1454 * Description:
1455 * Linux uses plugging to build bigger requests queues before letting
1456 * the device have at them. If a queue is plugged, the I/O scheduler
1457 * is still adding and merging requests on the queue. Once the queue
1458 * gets unplugged, the request_fn defined for the queue is invoked and
1459 * transfers started.
1460 **/
1461void generic_unplug_device(request_queue_t *q)
1462{
1463 spin_lock_irq(q->queue_lock);
1464 __generic_unplug_device(q);
1465 spin_unlock_irq(q->queue_lock);
1466}
1467EXPORT_SYMBOL(generic_unplug_device);
1468
1469static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1470 struct page *page)
1471{
1472 request_queue_t *q = bdi->unplug_io_data;
1473
1474 /*
1475 * devices don't necessarily have an ->unplug_fn defined
1476 */
1477 if (q->unplug_fn)
1478 q->unplug_fn(q);
1479}
1480
1481static void blk_unplug_work(void *data)
1482{
1483 request_queue_t *q = data;
1484
1485 q->unplug_fn(q);
1486}
1487
1488static void blk_unplug_timeout(unsigned long data)
1489{
1490 request_queue_t *q = (request_queue_t *)data;
1491
1492 kblockd_schedule_work(&q->unplug_work);
1493}
1494
1495/**
1496 * blk_start_queue - restart a previously stopped queue
1497 * @q: The &request_queue_t in question
1498 *
1499 * Description:
1500 * blk_start_queue() will clear the stop flag on the queue, and call
1501 * the request_fn for the queue if it was in a stopped state when
1502 * entered. Also see blk_stop_queue(). Queue lock must be held.
1503 **/
1504void blk_start_queue(request_queue_t *q)
1505{
1506 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1507
1508 /*
1509 * one level of recursion is ok and is much faster than kicking
1510 * the unplug handling
1511 */
1512 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1513 q->request_fn(q);
1514 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1515 } else {
1516 blk_plug_device(q);
1517 kblockd_schedule_work(&q->unplug_work);
1518 }
1519}
1520
1521EXPORT_SYMBOL(blk_start_queue);
1522
1523/**
1524 * blk_stop_queue - stop a queue
1525 * @q: The &request_queue_t in question
1526 *
1527 * Description:
1528 * The Linux block layer assumes that a block driver will consume all
1529 * entries on the request queue when the request_fn strategy is called.
1530 * Often this will not happen, because of hardware limitations (queue
1531 * depth settings). If a device driver gets a 'queue full' response,
1532 * or if it simply chooses not to queue more I/O at one point, it can
1533 * call this function to prevent the request_fn from being called until
1534 * the driver has signalled it's ready to go again. This happens by calling
1535 * blk_start_queue() to restart queue operations. Queue lock must be held.
1536 **/
1537void blk_stop_queue(request_queue_t *q)
1538{
1539 blk_remove_plug(q);
1540 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1541}
1542EXPORT_SYMBOL(blk_stop_queue);
1543
1544/**
1545 * blk_sync_queue - cancel any pending callbacks on a queue
1546 * @q: the queue
1547 *
1548 * Description:
1549 * The block layer may perform asynchronous callback activity
1550 * on a queue, such as calling the unplug function after a timeout.
1551 * A block device may call blk_sync_queue to ensure that any
1552 * such activity is cancelled, thus allowing it to release resources
1553 * the the callbacks might use. The caller must already have made sure
1554 * that its ->make_request_fn will not re-add plugging prior to calling
1555 * this function.
1556 *
1557 */
1558void blk_sync_queue(struct request_queue *q)
1559{
1560 del_timer_sync(&q->unplug_timer);
1561 kblockd_flush();
1562}
1563EXPORT_SYMBOL(blk_sync_queue);
1564
1565/**
1566 * blk_run_queue - run a single device queue
1567 * @q: The queue to run
1568 */
1569void blk_run_queue(struct request_queue *q)
1570{
1571 unsigned long flags;
1572
1573 spin_lock_irqsave(q->queue_lock, flags);
1574 blk_remove_plug(q);
Ken Chena2997382005-04-16 15:25:43 -07001575 if (!elv_queue_empty(q))
1576 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001577 spin_unlock_irqrestore(q->queue_lock, flags);
1578}
1579EXPORT_SYMBOL(blk_run_queue);
1580
1581/**
1582 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1583 * @q: the request queue to be released
1584 *
1585 * Description:
1586 * blk_cleanup_queue is the pair to blk_init_queue() or
1587 * blk_queue_make_request(). It should be called when a request queue is
1588 * being released; typically when a block device is being de-registered.
1589 * Currently, its primary task it to free all the &struct request
1590 * structures that were allocated to the queue and the queue itself.
1591 *
1592 * Caveat:
1593 * Hopefully the low level driver will have finished any
1594 * outstanding requests first...
1595 **/
1596void blk_cleanup_queue(request_queue_t * q)
1597{
1598 struct request_list *rl = &q->rq;
1599
1600 if (!atomic_dec_and_test(&q->refcnt))
1601 return;
1602
1603 if (q->elevator)
1604 elevator_exit(q->elevator);
1605
1606 blk_sync_queue(q);
1607
1608 if (rl->rq_pool)
1609 mempool_destroy(rl->rq_pool);
1610
1611 if (q->queue_tags)
1612 __blk_queue_free_tags(q);
1613
1614 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1615
1616 kmem_cache_free(requestq_cachep, q);
1617}
1618
1619EXPORT_SYMBOL(blk_cleanup_queue);
1620
1621static int blk_init_free_list(request_queue_t *q)
1622{
1623 struct request_list *rl = &q->rq;
1624
1625 rl->count[READ] = rl->count[WRITE] = 0;
1626 rl->starved[READ] = rl->starved[WRITE] = 0;
1627 init_waitqueue_head(&rl->wait[READ]);
1628 init_waitqueue_head(&rl->wait[WRITE]);
1629 init_waitqueue_head(&rl->drain);
1630
Christoph Lameter19460892005-06-23 00:08:19 -07001631 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1632 mempool_free_slab, request_cachep, q->node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633
1634 if (!rl->rq_pool)
1635 return -ENOMEM;
1636
1637 return 0;
1638}
1639
1640static int __make_request(request_queue_t *, struct bio *);
1641
1642request_queue_t *blk_alloc_queue(int gfp_mask)
1643{
Christoph Lameter19460892005-06-23 00:08:19 -07001644 return blk_alloc_queue_node(gfp_mask, -1);
1645}
1646EXPORT_SYMBOL(blk_alloc_queue);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647
Christoph Lameter19460892005-06-23 00:08:19 -07001648request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1649{
1650 request_queue_t *q;
1651
1652 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001653 if (!q)
1654 return NULL;
1655
1656 memset(q, 0, sizeof(*q));
1657 init_timer(&q->unplug_timer);
1658 atomic_set(&q->refcnt, 1);
1659
1660 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1661 q->backing_dev_info.unplug_io_data = q;
1662
1663 return q;
1664}
Christoph Lameter19460892005-06-23 00:08:19 -07001665EXPORT_SYMBOL(blk_alloc_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666
1667/**
1668 * blk_init_queue - prepare a request queue for use with a block device
1669 * @rfn: The function to be called to process requests that have been
1670 * placed on the queue.
1671 * @lock: Request queue spin lock
1672 *
1673 * Description:
1674 * If a block device wishes to use the standard request handling procedures,
1675 * which sorts requests and coalesces adjacent requests, then it must
1676 * call blk_init_queue(). The function @rfn will be called when there
1677 * are requests on the queue that need to be processed. If the device
1678 * supports plugging, then @rfn may not be called immediately when requests
1679 * are available on the queue, but may be called at some time later instead.
1680 * Plugged queues are generally unplugged when a buffer belonging to one
1681 * of the requests on the queue is needed, or due to memory pressure.
1682 *
1683 * @rfn is not required, or even expected, to remove all requests off the
1684 * queue, but only as many as it can handle at a time. If it does leave
1685 * requests on the queue, it is responsible for arranging that the requests
1686 * get dealt with eventually.
1687 *
1688 * The queue spin lock must be held while manipulating the requests on the
1689 * request queue.
1690 *
1691 * Function returns a pointer to the initialized request queue, or NULL if
1692 * it didn't succeed.
1693 *
1694 * Note:
1695 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1696 * when the block device is deactivated (such as at module unload).
1697 **/
Christoph Lameter19460892005-06-23 00:08:19 -07001698
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1700{
Christoph Lameter19460892005-06-23 00:08:19 -07001701 return blk_init_queue_node(rfn, lock, -1);
1702}
1703EXPORT_SYMBOL(blk_init_queue);
1704
1705request_queue_t *
1706blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1707{
1708 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001709
1710 if (!q)
1711 return NULL;
1712
Christoph Lameter19460892005-06-23 00:08:19 -07001713 q->node = node_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001714 if (blk_init_free_list(q))
1715 goto out_init;
1716
152587d2005-04-12 16:22:06 -05001717 /*
1718 * if caller didn't supply a lock, they get per-queue locking with
1719 * our embedded lock
1720 */
1721 if (!lock) {
1722 spin_lock_init(&q->__queue_lock);
1723 lock = &q->__queue_lock;
1724 }
1725
Linus Torvalds1da177e2005-04-16 15:20:36 -07001726 q->request_fn = rfn;
1727 q->back_merge_fn = ll_back_merge_fn;
1728 q->front_merge_fn = ll_front_merge_fn;
1729 q->merge_requests_fn = ll_merge_requests_fn;
1730 q->prep_rq_fn = NULL;
1731 q->unplug_fn = generic_unplug_device;
1732 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1733 q->queue_lock = lock;
1734
1735 blk_queue_segment_boundary(q, 0xffffffff);
1736
1737 blk_queue_make_request(q, __make_request);
1738 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1739
1740 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1741 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1742
1743 /*
1744 * all done
1745 */
1746 if (!elevator_init(q, NULL)) {
1747 blk_queue_congestion_threshold(q);
1748 return q;
1749 }
1750
1751 blk_cleanup_queue(q);
1752out_init:
1753 kmem_cache_free(requestq_cachep, q);
1754 return NULL;
1755}
Christoph Lameter19460892005-06-23 00:08:19 -07001756EXPORT_SYMBOL(blk_init_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757
1758int blk_get_queue(request_queue_t *q)
1759{
Nick Pigginfde6ad22005-06-23 00:08:53 -07001760 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001761 atomic_inc(&q->refcnt);
1762 return 0;
1763 }
1764
1765 return 1;
1766}
1767
1768EXPORT_SYMBOL(blk_get_queue);
1769
1770static inline void blk_free_request(request_queue_t *q, struct request *rq)
1771{
1772 elv_put_request(q, rq);
1773 mempool_free(rq, q->rq.rq_pool);
1774}
1775
Jens Axboe22e2c502005-06-27 10:55:12 +02001776static inline struct request *
1777blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, int gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778{
1779 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1780
1781 if (!rq)
1782 return NULL;
1783
1784 /*
1785 * first three bits are identical in rq->flags and bio->bi_rw,
1786 * see bio.h and blkdev.h
1787 */
1788 rq->flags = rw;
1789
Jens Axboe22e2c502005-06-27 10:55:12 +02001790 if (!elv_set_request(q, rq, bio, gfp_mask))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791 return rq;
1792
1793 mempool_free(rq, q->rq.rq_pool);
1794 return NULL;
1795}
1796
1797/*
1798 * ioc_batching returns true if the ioc is a valid batching request and
1799 * should be given priority access to a request.
1800 */
1801static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1802{
1803 if (!ioc)
1804 return 0;
1805
1806 /*
1807 * Make sure the process is able to allocate at least 1 request
1808 * even if the batch times out, otherwise we could theoretically
1809 * lose wakeups.
1810 */
1811 return ioc->nr_batch_requests == q->nr_batching ||
1812 (ioc->nr_batch_requests > 0
1813 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1814}
1815
1816/*
1817 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1818 * will cause the process to be a "batcher" on all queues in the system. This
1819 * is the behaviour we want though - once it gets a wakeup it should be given
1820 * a nice run.
1821 */
Adrian Bunk93d17d32005-06-25 14:59:10 -07001822static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001823{
1824 if (!ioc || ioc_batching(q, ioc))
1825 return;
1826
1827 ioc->nr_batch_requests = q->nr_batching;
1828 ioc->last_waited = jiffies;
1829}
1830
1831static void __freed_request(request_queue_t *q, int rw)
1832{
1833 struct request_list *rl = &q->rq;
1834
1835 if (rl->count[rw] < queue_congestion_off_threshold(q))
1836 clear_queue_congested(q, rw);
1837
1838 if (rl->count[rw] + 1 <= q->nr_requests) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839 if (waitqueue_active(&rl->wait[rw]))
1840 wake_up(&rl->wait[rw]);
1841
1842 blk_clear_queue_full(q, rw);
1843 }
1844}
1845
1846/*
1847 * A request has just been released. Account for it, update the full and
1848 * congestion status, wake up any waiters. Called under q->queue_lock.
1849 */
1850static void freed_request(request_queue_t *q, int rw)
1851{
1852 struct request_list *rl = &q->rq;
1853
1854 rl->count[rw]--;
1855
1856 __freed_request(q, rw);
1857
1858 if (unlikely(rl->starved[rw ^ 1]))
1859 __freed_request(q, rw ^ 1);
1860
1861 if (!rl->count[READ] && !rl->count[WRITE]) {
1862 smp_mb();
1863 if (unlikely(waitqueue_active(&rl->drain)))
1864 wake_up(&rl->drain);
1865 }
1866}
1867
1868#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1869/*
1870 * Get a free request, queue_lock must not be held
1871 */
Jens Axboe22e2c502005-06-27 10:55:12 +02001872static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1873 int gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001874{
1875 struct request *rq = NULL;
1876 struct request_list *rl = &q->rq;
1877 struct io_context *ioc = get_io_context(gfp_mask);
1878
1879 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1880 goto out;
1881
1882 spin_lock_irq(q->queue_lock);
1883 if (rl->count[rw]+1 >= q->nr_requests) {
1884 /*
1885 * The queue will fill after this allocation, so set it as
1886 * full, and mark this process as "batching". This process
1887 * will be allowed to complete a batch of requests, others
1888 * will be blocked.
1889 */
1890 if (!blk_queue_full(q, rw)) {
1891 ioc_set_batching(q, ioc);
1892 blk_set_queue_full(q, rw);
1893 }
1894 }
1895
Jens Axboe22e2c502005-06-27 10:55:12 +02001896 switch (elv_may_queue(q, rw, bio)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001897 case ELV_MQUEUE_NO:
1898 goto rq_starved;
1899 case ELV_MQUEUE_MAY:
1900 break;
1901 case ELV_MQUEUE_MUST:
1902 goto get_rq;
1903 }
1904
1905 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1906 /*
1907 * The queue is full and the allocating process is not a
1908 * "batcher", and not exempted by the IO scheduler
1909 */
1910 spin_unlock_irq(q->queue_lock);
1911 goto out;
1912 }
1913
1914get_rq:
Jens Axboe082cf692005-06-28 16:35:11 +02001915 /*
1916 * Only allow batching queuers to allocate up to 50% over the defined
1917 * limit of requests, otherwise we could have thousands of requests
1918 * allocated with any setting of ->nr_requests
1919 */
1920 if (rl->count[rw] >= (3 * q->nr_requests / 2)) {
1921 spin_unlock_irq(q->queue_lock);
1922 goto out;
1923 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001924 rl->count[rw]++;
1925 rl->starved[rw] = 0;
1926 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1927 set_queue_congested(q, rw);
1928 spin_unlock_irq(q->queue_lock);
1929
Jens Axboe22e2c502005-06-27 10:55:12 +02001930 rq = blk_alloc_request(q, rw, bio, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001931 if (!rq) {
1932 /*
1933 * Allocation failed presumably due to memory. Undo anything
1934 * we might have messed up.
1935 *
1936 * Allocating task should really be put onto the front of the
1937 * wait queue, but this is pretty rare.
1938 */
1939 spin_lock_irq(q->queue_lock);
1940 freed_request(q, rw);
1941
1942 /*
1943 * in the very unlikely event that allocation failed and no
1944 * requests for this direction was pending, mark us starved
1945 * so that freeing of a request in the other direction will
1946 * notice us. another possible fix would be to split the
1947 * rq mempool into READ and WRITE
1948 */
1949rq_starved:
1950 if (unlikely(rl->count[rw] == 0))
1951 rl->starved[rw] = 1;
1952
1953 spin_unlock_irq(q->queue_lock);
1954 goto out;
1955 }
1956
1957 if (ioc_batching(q, ioc))
1958 ioc->nr_batch_requests--;
1959
1960 rq_init(q, rq);
1961 rq->rl = rl;
1962out:
1963 put_io_context(ioc);
1964 return rq;
1965}
1966
1967/*
1968 * No available requests for this queue, unplug the device and wait for some
1969 * requests to become available.
1970 */
Jens Axboe22e2c502005-06-27 10:55:12 +02001971static struct request *get_request_wait(request_queue_t *q, int rw,
1972 struct bio *bio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001973{
1974 DEFINE_WAIT(wait);
1975 struct request *rq;
1976
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977 do {
1978 struct request_list *rl = &q->rq;
1979
1980 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1981 TASK_UNINTERRUPTIBLE);
1982
Jens Axboe22e2c502005-06-27 10:55:12 +02001983 rq = get_request(q, rw, bio, GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001984
1985 if (!rq) {
1986 struct io_context *ioc;
1987
Nick Pigginbdd646a2005-06-23 00:08:54 -07001988 generic_unplug_device(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989 io_schedule();
1990
1991 /*
1992 * After sleeping, we become a "batching" process and
1993 * will be able to allocate at least one request, and
1994 * up to a big batch of them for a small period time.
1995 * See ioc_batching, ioc_set_batching
1996 */
1997 ioc = get_io_context(GFP_NOIO);
1998 ioc_set_batching(q, ioc);
1999 put_io_context(ioc);
2000 }
2001 finish_wait(&rl->wait[rw], &wait);
2002 } while (!rq);
2003
2004 return rq;
2005}
2006
2007struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2008{
2009 struct request *rq;
2010
2011 BUG_ON(rw != READ && rw != WRITE);
2012
2013 if (gfp_mask & __GFP_WAIT)
Jens Axboe22e2c502005-06-27 10:55:12 +02002014 rq = get_request_wait(q, rw, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015 else
Jens Axboe22e2c502005-06-27 10:55:12 +02002016 rq = get_request(q, rw, NULL, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002017
2018 return rq;
2019}
2020
2021EXPORT_SYMBOL(blk_get_request);
2022
2023/**
2024 * blk_requeue_request - put a request back on queue
2025 * @q: request queue where request should be inserted
2026 * @rq: request to be inserted
2027 *
2028 * Description:
2029 * Drivers often keep queueing requests until the hardware cannot accept
2030 * more, when that condition happens we need to put the request back
2031 * on the queue. Must be called with queue lock held.
2032 */
2033void blk_requeue_request(request_queue_t *q, struct request *rq)
2034{
2035 if (blk_rq_tagged(rq))
2036 blk_queue_end_tag(q, rq);
2037
2038 elv_requeue_request(q, rq);
2039}
2040
2041EXPORT_SYMBOL(blk_requeue_request);
2042
2043/**
2044 * blk_insert_request - insert a special request in to a request queue
2045 * @q: request queue where request should be inserted
2046 * @rq: request to be inserted
2047 * @at_head: insert request at head or tail of queue
2048 * @data: private data
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049 *
2050 * Description:
2051 * Many block devices need to execute commands asynchronously, so they don't
2052 * block the whole kernel from preemption during request execution. This is
2053 * accomplished normally by inserting aritficial requests tagged as
2054 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2055 * scheduled for actual execution by the request queue.
2056 *
2057 * We have the option of inserting the head or the tail of the queue.
2058 * Typically we use the tail for new ioctls and so forth. We use the head
2059 * of the queue for things like a QUEUE_FULL message from a device, or a
2060 * host that is unable to accept a particular command.
2061 */
2062void blk_insert_request(request_queue_t *q, struct request *rq,
Tejun Heo 867d1192005-04-24 02:06:05 -05002063 int at_head, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002064{
Tejun Heo 867d1192005-04-24 02:06:05 -05002065 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066 unsigned long flags;
2067
2068 /*
2069 * tell I/O scheduler that this isn't a regular read/write (ie it
2070 * must not attempt merges on this) and that it acts as a soft
2071 * barrier
2072 */
2073 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2074
2075 rq->special = data;
2076
2077 spin_lock_irqsave(q->queue_lock, flags);
2078
2079 /*
2080 * If command is tagged, release the tag
2081 */
Tejun Heo 867d1192005-04-24 02:06:05 -05002082 if (blk_rq_tagged(rq))
2083 blk_queue_end_tag(q, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084
Tejun Heo 867d1192005-04-24 02:06:05 -05002085 drive_stat_acct(rq, rq->nr_sectors, 1);
2086 __elv_add_request(q, rq, where, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002087
Linus Torvalds1da177e2005-04-16 15:20:36 -07002088 if (blk_queue_plugged(q))
2089 __generic_unplug_device(q);
2090 else
2091 q->request_fn(q);
2092 spin_unlock_irqrestore(q->queue_lock, flags);
2093}
2094
2095EXPORT_SYMBOL(blk_insert_request);
2096
2097/**
2098 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2099 * @q: request queue where request should be inserted
2100 * @rw: READ or WRITE data
2101 * @ubuf: the user buffer
2102 * @len: length of user data
2103 *
2104 * Description:
2105 * Data will be mapped directly for zero copy io, if possible. Otherwise
2106 * a kernel bounce buffer is used.
2107 *
2108 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2109 * still in process context.
2110 *
2111 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2112 * before being submitted to the device, as pages mapped may be out of
2113 * reach. It's the callers responsibility to make sure this happens. The
2114 * original bio must be passed back in to blk_rq_unmap_user() for proper
2115 * unmapping.
2116 */
2117struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2118 unsigned int len)
2119{
2120 unsigned long uaddr;
2121 struct request *rq;
2122 struct bio *bio;
2123
2124 if (len > (q->max_sectors << 9))
2125 return ERR_PTR(-EINVAL);
2126 if ((!len && ubuf) || (len && !ubuf))
2127 return ERR_PTR(-EINVAL);
2128
2129 rq = blk_get_request(q, rw, __GFP_WAIT);
2130 if (!rq)
2131 return ERR_PTR(-ENOMEM);
2132
2133 /*
2134 * if alignment requirement is satisfied, map in user pages for
2135 * direct dma. else, set up kernel bounce buffers
2136 */
2137 uaddr = (unsigned long) ubuf;
2138 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2139 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2140 else
2141 bio = bio_copy_user(q, uaddr, len, rw == READ);
2142
2143 if (!IS_ERR(bio)) {
2144 rq->bio = rq->biotail = bio;
2145 blk_rq_bio_prep(q, rq, bio);
2146
2147 rq->buffer = rq->data = NULL;
2148 rq->data_len = len;
2149 return rq;
2150 }
2151
2152 /*
2153 * bio is the err-ptr
2154 */
2155 blk_put_request(rq);
2156 return (struct request *) bio;
2157}
2158
2159EXPORT_SYMBOL(blk_rq_map_user);
2160
2161/**
2162 * blk_rq_unmap_user - unmap a request with user data
2163 * @rq: request to be unmapped
2164 * @bio: bio for the request
2165 * @ulen: length of user buffer
2166 *
2167 * Description:
2168 * Unmap a request previously mapped by blk_rq_map_user().
2169 */
2170int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2171{
2172 int ret = 0;
2173
2174 if (bio) {
2175 if (bio_flagged(bio, BIO_USER_MAPPED))
2176 bio_unmap_user(bio);
2177 else
2178 ret = bio_uncopy_user(bio);
2179 }
2180
2181 blk_put_request(rq);
2182 return ret;
2183}
2184
2185EXPORT_SYMBOL(blk_rq_unmap_user);
2186
2187/**
2188 * blk_execute_rq - insert a request into queue for execution
2189 * @q: queue to insert the request in
2190 * @bd_disk: matching gendisk
2191 * @rq: request to insert
2192 *
2193 * Description:
2194 * Insert a fully prepared request at the back of the io scheduler queue
2195 * for execution.
2196 */
2197int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2198 struct request *rq)
2199{
2200 DECLARE_COMPLETION(wait);
2201 char sense[SCSI_SENSE_BUFFERSIZE];
2202 int err = 0;
2203
2204 rq->rq_disk = bd_disk;
2205
2206 /*
2207 * we need an extra reference to the request, so we can look at
2208 * it after io completion
2209 */
2210 rq->ref_count++;
2211
2212 if (!rq->sense) {
2213 memset(sense, 0, sizeof(sense));
2214 rq->sense = sense;
2215 rq->sense_len = 0;
2216 }
2217
2218 rq->flags |= REQ_NOMERGE;
2219 rq->waiting = &wait;
2220 rq->end_io = blk_end_sync_rq;
2221 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2222 generic_unplug_device(q);
2223 wait_for_completion(&wait);
2224 rq->waiting = NULL;
2225
2226 if (rq->errors)
2227 err = -EIO;
2228
2229 return err;
2230}
2231
2232EXPORT_SYMBOL(blk_execute_rq);
2233
2234/**
2235 * blkdev_issue_flush - queue a flush
2236 * @bdev: blockdev to issue flush for
2237 * @error_sector: error sector
2238 *
2239 * Description:
2240 * Issue a flush for the block device in question. Caller can supply
2241 * room for storing the error offset in case of a flush error, if they
2242 * wish to. Caller must run wait_for_completion() on its own.
2243 */
2244int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2245{
2246 request_queue_t *q;
2247
2248 if (bdev->bd_disk == NULL)
2249 return -ENXIO;
2250
2251 q = bdev_get_queue(bdev);
2252 if (!q)
2253 return -ENXIO;
2254 if (!q->issue_flush_fn)
2255 return -EOPNOTSUPP;
2256
2257 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2258}
2259
2260EXPORT_SYMBOL(blkdev_issue_flush);
2261
Adrian Bunk93d17d32005-06-25 14:59:10 -07002262static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263{
2264 int rw = rq_data_dir(rq);
2265
2266 if (!blk_fs_request(rq) || !rq->rq_disk)
2267 return;
2268
2269 if (rw == READ) {
2270 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2271 if (!new_io)
2272 __disk_stat_inc(rq->rq_disk, read_merges);
2273 } else if (rw == WRITE) {
2274 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2275 if (!new_io)
2276 __disk_stat_inc(rq->rq_disk, write_merges);
2277 }
2278 if (new_io) {
2279 disk_round_stats(rq->rq_disk);
2280 rq->rq_disk->in_flight++;
2281 }
2282}
2283
2284/*
2285 * add-request adds a request to the linked list.
2286 * queue lock is held and interrupts disabled, as we muck with the
2287 * request queue list.
2288 */
2289static inline void add_request(request_queue_t * q, struct request * req)
2290{
2291 drive_stat_acct(req, req->nr_sectors, 1);
2292
2293 if (q->activity_fn)
2294 q->activity_fn(q->activity_data, rq_data_dir(req));
2295
2296 /*
2297 * elevator indicated where it wants this request to be
2298 * inserted at elevator_merge time
2299 */
2300 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2301}
2302
2303/*
2304 * disk_round_stats() - Round off the performance stats on a struct
2305 * disk_stats.
2306 *
2307 * The average IO queue length and utilisation statistics are maintained
2308 * by observing the current state of the queue length and the amount of
2309 * time it has been in this state for.
2310 *
2311 * Normally, that accounting is done on IO completion, but that can result
2312 * in more than a second's worth of IO being accounted for within any one
2313 * second, leading to >100% utilisation. To deal with that, we call this
2314 * function to do a round-off before returning the results when reading
2315 * /proc/diskstats. This accounts immediately for all queue usage up to
2316 * the current jiffies and restarts the counters again.
2317 */
2318void disk_round_stats(struct gendisk *disk)
2319{
2320 unsigned long now = jiffies;
2321
2322 __disk_stat_add(disk, time_in_queue,
2323 disk->in_flight * (now - disk->stamp));
2324 disk->stamp = now;
2325
2326 if (disk->in_flight)
2327 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2328 disk->stamp_idle = now;
2329}
2330
2331/*
2332 * queue lock must be held
2333 */
2334static void __blk_put_request(request_queue_t *q, struct request *req)
2335{
2336 struct request_list *rl = req->rl;
2337
2338 if (unlikely(!q))
2339 return;
2340 if (unlikely(--req->ref_count))
2341 return;
2342
2343 req->rq_status = RQ_INACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344 req->rl = NULL;
2345
2346 /*
2347 * Request may not have originated from ll_rw_blk. if not,
2348 * it didn't come out of our reserved rq pools
2349 */
2350 if (rl) {
2351 int rw = rq_data_dir(req);
2352
2353 elv_completed_request(q, req);
2354
2355 BUG_ON(!list_empty(&req->queuelist));
2356
2357 blk_free_request(q, req);
2358 freed_request(q, rw);
2359 }
2360}
2361
2362void blk_put_request(struct request *req)
2363{
2364 /*
2365 * if req->rl isn't set, this request didnt originate from the
2366 * block layer, so it's safe to just disregard it
2367 */
2368 if (req->rl) {
2369 unsigned long flags;
2370 request_queue_t *q = req->q;
2371
2372 spin_lock_irqsave(q->queue_lock, flags);
2373 __blk_put_request(q, req);
2374 spin_unlock_irqrestore(q->queue_lock, flags);
2375 }
2376}
2377
2378EXPORT_SYMBOL(blk_put_request);
2379
2380/**
2381 * blk_end_sync_rq - executes a completion event on a request
2382 * @rq: request to complete
2383 */
2384void blk_end_sync_rq(struct request *rq)
2385{
2386 struct completion *waiting = rq->waiting;
2387
2388 rq->waiting = NULL;
2389 __blk_put_request(rq->q, rq);
2390
2391 /*
2392 * complete last, if this is a stack request the process (and thus
2393 * the rq pointer) could be invalid right after this complete()
2394 */
2395 complete(waiting);
2396}
2397EXPORT_SYMBOL(blk_end_sync_rq);
2398
2399/**
2400 * blk_congestion_wait - wait for a queue to become uncongested
2401 * @rw: READ or WRITE
2402 * @timeout: timeout in jiffies
2403 *
2404 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2405 * If no queues are congested then just wait for the next request to be
2406 * returned.
2407 */
2408long blk_congestion_wait(int rw, long timeout)
2409{
2410 long ret;
2411 DEFINE_WAIT(wait);
2412 wait_queue_head_t *wqh = &congestion_wqh[rw];
2413
2414 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2415 ret = io_schedule_timeout(timeout);
2416 finish_wait(wqh, &wait);
2417 return ret;
2418}
2419
2420EXPORT_SYMBOL(blk_congestion_wait);
2421
2422/*
2423 * Has to be called with the request spinlock acquired
2424 */
2425static int attempt_merge(request_queue_t *q, struct request *req,
2426 struct request *next)
2427{
2428 if (!rq_mergeable(req) || !rq_mergeable(next))
2429 return 0;
2430
2431 /*
2432 * not contigious
2433 */
2434 if (req->sector + req->nr_sectors != next->sector)
2435 return 0;
2436
2437 if (rq_data_dir(req) != rq_data_dir(next)
2438 || req->rq_disk != next->rq_disk
2439 || next->waiting || next->special)
2440 return 0;
2441
2442 /*
2443 * If we are allowed to merge, then append bio list
2444 * from next to rq and release next. merge_requests_fn
2445 * will have updated segment counts, update sector
2446 * counts here.
2447 */
2448 if (!q->merge_requests_fn(q, req, next))
2449 return 0;
2450
2451 /*
2452 * At this point we have either done a back merge
2453 * or front merge. We need the smaller start_time of
2454 * the merged requests to be the current request
2455 * for accounting purposes.
2456 */
2457 if (time_after(req->start_time, next->start_time))
2458 req->start_time = next->start_time;
2459
2460 req->biotail->bi_next = next->bio;
2461 req->biotail = next->biotail;
2462
2463 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2464
2465 elv_merge_requests(q, req, next);
2466
2467 if (req->rq_disk) {
2468 disk_round_stats(req->rq_disk);
2469 req->rq_disk->in_flight--;
2470 }
2471
Jens Axboe22e2c502005-06-27 10:55:12 +02002472 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2473
Linus Torvalds1da177e2005-04-16 15:20:36 -07002474 __blk_put_request(q, next);
2475 return 1;
2476}
2477
2478static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2479{
2480 struct request *next = elv_latter_request(q, rq);
2481
2482 if (next)
2483 return attempt_merge(q, rq, next);
2484
2485 return 0;
2486}
2487
2488static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2489{
2490 struct request *prev = elv_former_request(q, rq);
2491
2492 if (prev)
2493 return attempt_merge(q, prev, rq);
2494
2495 return 0;
2496}
2497
2498/**
2499 * blk_attempt_remerge - attempt to remerge active head with next request
2500 * @q: The &request_queue_t belonging to the device
2501 * @rq: The head request (usually)
2502 *
2503 * Description:
2504 * For head-active devices, the queue can easily be unplugged so quickly
2505 * that proper merging is not done on the front request. This may hurt
2506 * performance greatly for some devices. The block layer cannot safely
2507 * do merging on that first request for these queues, but the driver can
2508 * call this function and make it happen any way. Only the driver knows
2509 * when it is safe to do so.
2510 **/
2511void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2512{
2513 unsigned long flags;
2514
2515 spin_lock_irqsave(q->queue_lock, flags);
2516 attempt_back_merge(q, rq);
2517 spin_unlock_irqrestore(q->queue_lock, flags);
2518}
2519
2520EXPORT_SYMBOL(blk_attempt_remerge);
2521
Linus Torvalds1da177e2005-04-16 15:20:36 -07002522static int __make_request(request_queue_t *q, struct bio *bio)
2523{
2524 struct request *req, *freereq = NULL;
Jens Axboe4a534f92005-04-16 15:25:40 -07002525 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
Jens Axboe22e2c502005-06-27 10:55:12 +02002526 unsigned short prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002527 sector_t sector;
2528
2529 sector = bio->bi_sector;
2530 nr_sectors = bio_sectors(bio);
2531 cur_nr_sectors = bio_cur_sectors(bio);
Jens Axboe22e2c502005-06-27 10:55:12 +02002532 prio = bio_prio(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533
2534 rw = bio_data_dir(bio);
Jens Axboe4a534f92005-04-16 15:25:40 -07002535 sync = bio_sync(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536
2537 /*
2538 * low level driver can indicate that it wants pages above a
2539 * certain limit bounced to low memory (ie for highmem, or even
2540 * ISA dma in theory)
2541 */
2542 blk_queue_bounce(q, &bio);
2543
2544 spin_lock_prefetch(q->queue_lock);
2545
2546 barrier = bio_barrier(bio);
Nick Pigginfde6ad22005-06-23 00:08:53 -07002547 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002548 err = -EOPNOTSUPP;
2549 goto end_io;
2550 }
2551
2552again:
2553 spin_lock_irq(q->queue_lock);
2554
2555 if (elv_queue_empty(q)) {
2556 blk_plug_device(q);
2557 goto get_rq;
2558 }
2559 if (barrier)
2560 goto get_rq;
2561
2562 el_ret = elv_merge(q, &req, bio);
2563 switch (el_ret) {
2564 case ELEVATOR_BACK_MERGE:
2565 BUG_ON(!rq_mergeable(req));
2566
2567 if (!q->back_merge_fn(q, req, bio))
2568 break;
2569
2570 req->biotail->bi_next = bio;
2571 req->biotail = bio;
2572 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
Jens Axboe22e2c502005-06-27 10:55:12 +02002573 req->ioprio = ioprio_best(req->ioprio, prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002574 drive_stat_acct(req, nr_sectors, 0);
2575 if (!attempt_back_merge(q, req))
2576 elv_merged_request(q, req);
2577 goto out;
2578
2579 case ELEVATOR_FRONT_MERGE:
2580 BUG_ON(!rq_mergeable(req));
2581
2582 if (!q->front_merge_fn(q, req, bio))
2583 break;
2584
2585 bio->bi_next = req->bio;
2586 req->bio = bio;
2587
2588 /*
2589 * may not be valid. if the low level driver said
2590 * it didn't need a bounce buffer then it better
2591 * not touch req->buffer either...
2592 */
2593 req->buffer = bio_data(bio);
2594 req->current_nr_sectors = cur_nr_sectors;
2595 req->hard_cur_sectors = cur_nr_sectors;
2596 req->sector = req->hard_sector = sector;
2597 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
Jens Axboe22e2c502005-06-27 10:55:12 +02002598 req->ioprio = ioprio_best(req->ioprio, prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002599 drive_stat_acct(req, nr_sectors, 0);
2600 if (!attempt_front_merge(q, req))
2601 elv_merged_request(q, req);
2602 goto out;
2603
2604 /*
2605 * elevator says don't/can't merge. get new request
2606 */
2607 case ELEVATOR_NO_MERGE:
2608 break;
2609
2610 default:
2611 printk("elevator returned crap (%d)\n", el_ret);
2612 BUG();
2613 }
2614
2615 /*
2616 * Grab a free request from the freelist - if that is empty, check
2617 * if we are doing read ahead and abort instead of blocking for
2618 * a free slot.
2619 */
2620get_rq:
2621 if (freereq) {
2622 req = freereq;
2623 freereq = NULL;
2624 } else {
2625 spin_unlock_irq(q->queue_lock);
Jens Axboe22e2c502005-06-27 10:55:12 +02002626 if ((freereq = get_request(q, rw, bio, GFP_ATOMIC)) == NULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002627 /*
2628 * READA bit set
2629 */
2630 err = -EWOULDBLOCK;
2631 if (bio_rw_ahead(bio))
2632 goto end_io;
2633
Jens Axboe22e2c502005-06-27 10:55:12 +02002634 freereq = get_request_wait(q, rw, bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635 }
2636 goto again;
2637 }
2638
2639 req->flags |= REQ_CMD;
2640
2641 /*
2642 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2643 */
2644 if (bio_rw_ahead(bio) || bio_failfast(bio))
2645 req->flags |= REQ_FAILFAST;
2646
2647 /*
2648 * REQ_BARRIER implies no merging, but lets make it explicit
2649 */
Nick Pigginfde6ad22005-06-23 00:08:53 -07002650 if (unlikely(barrier))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2652
2653 req->errors = 0;
2654 req->hard_sector = req->sector = sector;
2655 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2656 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2657 req->nr_phys_segments = bio_phys_segments(q, bio);
2658 req->nr_hw_segments = bio_hw_segments(q, bio);
2659 req->buffer = bio_data(bio); /* see ->buffer comment above */
2660 req->waiting = NULL;
2661 req->bio = req->biotail = bio;
Jens Axboe22e2c502005-06-27 10:55:12 +02002662 req->ioprio = prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002663 req->rq_disk = bio->bi_bdev->bd_disk;
2664 req->start_time = jiffies;
2665
2666 add_request(q, req);
2667out:
2668 if (freereq)
2669 __blk_put_request(q, freereq);
Jens Axboe4a534f92005-04-16 15:25:40 -07002670 if (sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002671 __generic_unplug_device(q);
2672
2673 spin_unlock_irq(q->queue_lock);
2674 return 0;
2675
2676end_io:
2677 bio_endio(bio, nr_sectors << 9, err);
2678 return 0;
2679}
2680
2681/*
2682 * If bio->bi_dev is a partition, remap the location
2683 */
2684static inline void blk_partition_remap(struct bio *bio)
2685{
2686 struct block_device *bdev = bio->bi_bdev;
2687
2688 if (bdev != bdev->bd_contains) {
2689 struct hd_struct *p = bdev->bd_part;
2690
Jens Axboe22e2c502005-06-27 10:55:12 +02002691 switch (bio_data_dir(bio)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002692 case READ:
2693 p->read_sectors += bio_sectors(bio);
2694 p->reads++;
2695 break;
2696 case WRITE:
2697 p->write_sectors += bio_sectors(bio);
2698 p->writes++;
2699 break;
2700 }
2701 bio->bi_sector += p->start_sect;
2702 bio->bi_bdev = bdev->bd_contains;
2703 }
2704}
2705
2706void blk_finish_queue_drain(request_queue_t *q)
2707{
2708 struct request_list *rl = &q->rq;
2709 struct request *rq;
Jens Axboe22e2c502005-06-27 10:55:12 +02002710 int requeued = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711
2712 spin_lock_irq(q->queue_lock);
2713 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2714
2715 while (!list_empty(&q->drain_list)) {
2716 rq = list_entry_rq(q->drain_list.next);
2717
2718 list_del_init(&rq->queuelist);
Jens Axboe22e2c502005-06-27 10:55:12 +02002719 elv_requeue_request(q, rq);
2720 requeued++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 }
2722
Jens Axboe22e2c502005-06-27 10:55:12 +02002723 if (requeued)
2724 q->request_fn(q);
2725
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 spin_unlock_irq(q->queue_lock);
2727
2728 wake_up(&rl->wait[0]);
2729 wake_up(&rl->wait[1]);
2730 wake_up(&rl->drain);
2731}
2732
2733static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2734{
2735 int wait = rl->count[READ] + rl->count[WRITE];
2736
2737 if (dispatch)
2738 wait += !list_empty(&q->queue_head);
2739
2740 return wait;
2741}
2742
2743/*
2744 * We rely on the fact that only requests allocated through blk_alloc_request()
2745 * have io scheduler private data structures associated with them. Any other
2746 * type of request (allocated on stack or through kmalloc()) should not go
2747 * to the io scheduler core, but be attached to the queue head instead.
2748 */
2749void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2750{
2751 struct request_list *rl = &q->rq;
2752 DEFINE_WAIT(wait);
2753
2754 spin_lock_irq(q->queue_lock);
2755 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2756
2757 while (wait_drain(q, rl, wait_dispatch)) {
2758 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2759
2760 if (wait_drain(q, rl, wait_dispatch)) {
2761 __generic_unplug_device(q);
2762 spin_unlock_irq(q->queue_lock);
2763 io_schedule();
2764 spin_lock_irq(q->queue_lock);
2765 }
2766
2767 finish_wait(&rl->drain, &wait);
2768 }
2769
2770 spin_unlock_irq(q->queue_lock);
2771}
2772
2773/*
2774 * block waiting for the io scheduler being started again.
2775 */
2776static inline void block_wait_queue_running(request_queue_t *q)
2777{
2778 DEFINE_WAIT(wait);
2779
Nick Pigginfde6ad22005-06-23 00:08:53 -07002780 while (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002781 struct request_list *rl = &q->rq;
2782
2783 prepare_to_wait_exclusive(&rl->drain, &wait,
2784 TASK_UNINTERRUPTIBLE);
2785
2786 /*
2787 * re-check the condition. avoids using prepare_to_wait()
2788 * in the fast path (queue is running)
2789 */
2790 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2791 io_schedule();
2792
2793 finish_wait(&rl->drain, &wait);
2794 }
2795}
2796
2797static void handle_bad_sector(struct bio *bio)
2798{
2799 char b[BDEVNAME_SIZE];
2800
2801 printk(KERN_INFO "attempt to access beyond end of device\n");
2802 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2803 bdevname(bio->bi_bdev, b),
2804 bio->bi_rw,
2805 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2806 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2807
2808 set_bit(BIO_EOF, &bio->bi_flags);
2809}
2810
2811/**
2812 * generic_make_request: hand a buffer to its device driver for I/O
2813 * @bio: The bio describing the location in memory and on the device.
2814 *
2815 * generic_make_request() is used to make I/O requests of block
2816 * devices. It is passed a &struct bio, which describes the I/O that needs
2817 * to be done.
2818 *
2819 * generic_make_request() does not return any status. The
2820 * success/failure status of the request, along with notification of
2821 * completion, is delivered asynchronously through the bio->bi_end_io
2822 * function described (one day) else where.
2823 *
2824 * The caller of generic_make_request must make sure that bi_io_vec
2825 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2826 * set to describe the device address, and the
2827 * bi_end_io and optionally bi_private are set to describe how
2828 * completion notification should be signaled.
2829 *
2830 * generic_make_request and the drivers it calls may use bi_next if this
2831 * bio happens to be merged with someone else, and may change bi_dev and
2832 * bi_sector for remaps as it sees fit. So the values of these fields
2833 * should NOT be depended on after the call to generic_make_request.
2834 */
2835void generic_make_request(struct bio *bio)
2836{
2837 request_queue_t *q;
2838 sector_t maxsector;
2839 int ret, nr_sectors = bio_sectors(bio);
2840
2841 might_sleep();
2842 /* Test device or partition size, when known. */
2843 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2844 if (maxsector) {
2845 sector_t sector = bio->bi_sector;
2846
2847 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2848 /*
2849 * This may well happen - the kernel calls bread()
2850 * without checking the size of the device, e.g., when
2851 * mounting a device.
2852 */
2853 handle_bad_sector(bio);
2854 goto end_io;
2855 }
2856 }
2857
2858 /*
2859 * Resolve the mapping until finished. (drivers are
2860 * still free to implement/resolve their own stacking
2861 * by explicitly returning 0)
2862 *
2863 * NOTE: we don't repeat the blk_size check for each new device.
2864 * Stacking drivers are expected to know what they are doing.
2865 */
2866 do {
2867 char b[BDEVNAME_SIZE];
2868
2869 q = bdev_get_queue(bio->bi_bdev);
2870 if (!q) {
2871 printk(KERN_ERR
2872 "generic_make_request: Trying to access "
2873 "nonexistent block-device %s (%Lu)\n",
2874 bdevname(bio->bi_bdev, b),
2875 (long long) bio->bi_sector);
2876end_io:
2877 bio_endio(bio, bio->bi_size, -EIO);
2878 break;
2879 }
2880
2881 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2882 printk("bio too big device %s (%u > %u)\n",
2883 bdevname(bio->bi_bdev, b),
2884 bio_sectors(bio),
2885 q->max_hw_sectors);
2886 goto end_io;
2887 }
2888
Nick Pigginfde6ad22005-06-23 00:08:53 -07002889 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002890 goto end_io;
2891
2892 block_wait_queue_running(q);
2893
2894 /*
2895 * If this device has partitions, remap block n
2896 * of partition p to block n+start(p) of the disk.
2897 */
2898 blk_partition_remap(bio);
2899
2900 ret = q->make_request_fn(q, bio);
2901 } while (ret);
2902}
2903
2904EXPORT_SYMBOL(generic_make_request);
2905
2906/**
2907 * submit_bio: submit a bio to the block device layer for I/O
2908 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2909 * @bio: The &struct bio which describes the I/O
2910 *
2911 * submit_bio() is very similar in purpose to generic_make_request(), and
2912 * uses that function to do most of the work. Both are fairly rough
2913 * interfaces, @bio must be presetup and ready for I/O.
2914 *
2915 */
2916void submit_bio(int rw, struct bio *bio)
2917{
2918 int count = bio_sectors(bio);
2919
2920 BIO_BUG_ON(!bio->bi_size);
2921 BIO_BUG_ON(!bio->bi_io_vec);
Jens Axboe22e2c502005-06-27 10:55:12 +02002922 bio->bi_rw |= rw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002923 if (rw & WRITE)
2924 mod_page_state(pgpgout, count);
2925 else
2926 mod_page_state(pgpgin, count);
2927
2928 if (unlikely(block_dump)) {
2929 char b[BDEVNAME_SIZE];
2930 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2931 current->comm, current->pid,
2932 (rw & WRITE) ? "WRITE" : "READ",
2933 (unsigned long long)bio->bi_sector,
2934 bdevname(bio->bi_bdev,b));
2935 }
2936
2937 generic_make_request(bio);
2938}
2939
2940EXPORT_SYMBOL(submit_bio);
2941
Adrian Bunk93d17d32005-06-25 14:59:10 -07002942static void blk_recalc_rq_segments(struct request *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943{
2944 struct bio *bio, *prevbio = NULL;
2945 int nr_phys_segs, nr_hw_segs;
2946 unsigned int phys_size, hw_size;
2947 request_queue_t *q = rq->q;
2948
2949 if (!rq->bio)
2950 return;
2951
2952 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2953 rq_for_each_bio(bio, rq) {
2954 /* Force bio hw/phys segs to be recalculated. */
2955 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2956
2957 nr_phys_segs += bio_phys_segments(q, bio);
2958 nr_hw_segs += bio_hw_segments(q, bio);
2959 if (prevbio) {
2960 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2961 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2962
2963 if (blk_phys_contig_segment(q, prevbio, bio) &&
2964 pseg <= q->max_segment_size) {
2965 nr_phys_segs--;
2966 phys_size += prevbio->bi_size + bio->bi_size;
2967 } else
2968 phys_size = 0;
2969
2970 if (blk_hw_contig_segment(q, prevbio, bio) &&
2971 hseg <= q->max_segment_size) {
2972 nr_hw_segs--;
2973 hw_size += prevbio->bi_size + bio->bi_size;
2974 } else
2975 hw_size = 0;
2976 }
2977 prevbio = bio;
2978 }
2979
2980 rq->nr_phys_segments = nr_phys_segs;
2981 rq->nr_hw_segments = nr_hw_segs;
2982}
2983
Adrian Bunk93d17d32005-06-25 14:59:10 -07002984static void blk_recalc_rq_sectors(struct request *rq, int nsect)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002985{
2986 if (blk_fs_request(rq)) {
2987 rq->hard_sector += nsect;
2988 rq->hard_nr_sectors -= nsect;
2989
2990 /*
2991 * Move the I/O submission pointers ahead if required.
2992 */
2993 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2994 (rq->sector <= rq->hard_sector)) {
2995 rq->sector = rq->hard_sector;
2996 rq->nr_sectors = rq->hard_nr_sectors;
2997 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2998 rq->current_nr_sectors = rq->hard_cur_sectors;
2999 rq->buffer = bio_data(rq->bio);
3000 }
3001
3002 /*
3003 * if total number of sectors is less than the first segment
3004 * size, something has gone terribly wrong
3005 */
3006 if (rq->nr_sectors < rq->current_nr_sectors) {
3007 printk("blk: request botched\n");
3008 rq->nr_sectors = rq->current_nr_sectors;
3009 }
3010 }
3011}
3012
3013static int __end_that_request_first(struct request *req, int uptodate,
3014 int nr_bytes)
3015{
3016 int total_bytes, bio_nbytes, error, next_idx = 0;
3017 struct bio *bio;
3018
3019 /*
3020 * extend uptodate bool to allow < 0 value to be direct io error
3021 */
3022 error = 0;
3023 if (end_io_error(uptodate))
3024 error = !uptodate ? -EIO : uptodate;
3025
3026 /*
3027 * for a REQ_BLOCK_PC request, we want to carry any eventual
3028 * sense key with us all the way through
3029 */
3030 if (!blk_pc_request(req))
3031 req->errors = 0;
3032
3033 if (!uptodate) {
3034 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3035 printk("end_request: I/O error, dev %s, sector %llu\n",
3036 req->rq_disk ? req->rq_disk->disk_name : "?",
3037 (unsigned long long)req->sector);
3038 }
3039
3040 total_bytes = bio_nbytes = 0;
3041 while ((bio = req->bio) != NULL) {
3042 int nbytes;
3043
3044 if (nr_bytes >= bio->bi_size) {
3045 req->bio = bio->bi_next;
3046 nbytes = bio->bi_size;
3047 bio_endio(bio, nbytes, error);
3048 next_idx = 0;
3049 bio_nbytes = 0;
3050 } else {
3051 int idx = bio->bi_idx + next_idx;
3052
3053 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3054 blk_dump_rq_flags(req, "__end_that");
3055 printk("%s: bio idx %d >= vcnt %d\n",
3056 __FUNCTION__,
3057 bio->bi_idx, bio->bi_vcnt);
3058 break;
3059 }
3060
3061 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3062 BIO_BUG_ON(nbytes > bio->bi_size);
3063
3064 /*
3065 * not a complete bvec done
3066 */
3067 if (unlikely(nbytes > nr_bytes)) {
3068 bio_nbytes += nr_bytes;
3069 total_bytes += nr_bytes;
3070 break;
3071 }
3072
3073 /*
3074 * advance to the next vector
3075 */
3076 next_idx++;
3077 bio_nbytes += nbytes;
3078 }
3079
3080 total_bytes += nbytes;
3081 nr_bytes -= nbytes;
3082
3083 if ((bio = req->bio)) {
3084 /*
3085 * end more in this run, or just return 'not-done'
3086 */
3087 if (unlikely(nr_bytes <= 0))
3088 break;
3089 }
3090 }
3091
3092 /*
3093 * completely done
3094 */
3095 if (!req->bio)
3096 return 0;
3097
3098 /*
3099 * if the request wasn't completed, update state
3100 */
3101 if (bio_nbytes) {
3102 bio_endio(bio, bio_nbytes, error);
3103 bio->bi_idx += next_idx;
3104 bio_iovec(bio)->bv_offset += nr_bytes;
3105 bio_iovec(bio)->bv_len -= nr_bytes;
3106 }
3107
3108 blk_recalc_rq_sectors(req, total_bytes >> 9);
3109 blk_recalc_rq_segments(req);
3110 return 1;
3111}
3112
3113/**
3114 * end_that_request_first - end I/O on a request
3115 * @req: the request being processed
3116 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3117 * @nr_sectors: number of sectors to end I/O on
3118 *
3119 * Description:
3120 * Ends I/O on a number of sectors attached to @req, and sets it up
3121 * for the next range of segments (if any) in the cluster.
3122 *
3123 * Return:
3124 * 0 - we are done with this request, call end_that_request_last()
3125 * 1 - still buffers pending for this request
3126 **/
3127int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3128{
3129 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3130}
3131
3132EXPORT_SYMBOL(end_that_request_first);
3133
3134/**
3135 * end_that_request_chunk - end I/O on a request
3136 * @req: the request being processed
3137 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3138 * @nr_bytes: number of bytes to complete
3139 *
3140 * Description:
3141 * Ends I/O on a number of bytes attached to @req, and sets it up
3142 * for the next range of segments (if any). Like end_that_request_first(),
3143 * but deals with bytes instead of sectors.
3144 *
3145 * Return:
3146 * 0 - we are done with this request, call end_that_request_last()
3147 * 1 - still buffers pending for this request
3148 **/
3149int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3150{
3151 return __end_that_request_first(req, uptodate, nr_bytes);
3152}
3153
3154EXPORT_SYMBOL(end_that_request_chunk);
3155
3156/*
3157 * queue lock must be held
3158 */
3159void end_that_request_last(struct request *req)
3160{
3161 struct gendisk *disk = req->rq_disk;
3162
3163 if (unlikely(laptop_mode) && blk_fs_request(req))
3164 laptop_io_completion();
3165
3166 if (disk && blk_fs_request(req)) {
3167 unsigned long duration = jiffies - req->start_time;
3168 switch (rq_data_dir(req)) {
3169 case WRITE:
3170 __disk_stat_inc(disk, writes);
3171 __disk_stat_add(disk, write_ticks, duration);
3172 break;
3173 case READ:
3174 __disk_stat_inc(disk, reads);
3175 __disk_stat_add(disk, read_ticks, duration);
3176 break;
3177 }
3178 disk_round_stats(disk);
3179 disk->in_flight--;
3180 }
3181 if (req->end_io)
3182 req->end_io(req);
3183 else
3184 __blk_put_request(req->q, req);
3185}
3186
3187EXPORT_SYMBOL(end_that_request_last);
3188
3189void end_request(struct request *req, int uptodate)
3190{
3191 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3192 add_disk_randomness(req->rq_disk);
3193 blkdev_dequeue_request(req);
3194 end_that_request_last(req);
3195 }
3196}
3197
3198EXPORT_SYMBOL(end_request);
3199
3200void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3201{
3202 /* first three bits are identical in rq->flags and bio->bi_rw */
3203 rq->flags |= (bio->bi_rw & 7);
3204
3205 rq->nr_phys_segments = bio_phys_segments(q, bio);
3206 rq->nr_hw_segments = bio_hw_segments(q, bio);
3207 rq->current_nr_sectors = bio_cur_sectors(bio);
3208 rq->hard_cur_sectors = rq->current_nr_sectors;
3209 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3210 rq->buffer = bio_data(bio);
3211
3212 rq->bio = rq->biotail = bio;
3213}
3214
3215EXPORT_SYMBOL(blk_rq_bio_prep);
3216
3217int kblockd_schedule_work(struct work_struct *work)
3218{
3219 return queue_work(kblockd_workqueue, work);
3220}
3221
3222EXPORT_SYMBOL(kblockd_schedule_work);
3223
3224void kblockd_flush(void)
3225{
3226 flush_workqueue(kblockd_workqueue);
3227}
3228EXPORT_SYMBOL(kblockd_flush);
3229
3230int __init blk_dev_init(void)
3231{
3232 kblockd_workqueue = create_workqueue("kblockd");
3233 if (!kblockd_workqueue)
3234 panic("Failed to create kblockd\n");
3235
3236 request_cachep = kmem_cache_create("blkdev_requests",
3237 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3238
3239 requestq_cachep = kmem_cache_create("blkdev_queue",
3240 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3241
3242 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3243 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3244
3245 blk_max_low_pfn = max_low_pfn;
3246 blk_max_pfn = max_pfn;
3247
3248 return 0;
3249}
3250
3251/*
3252 * IO Context helper functions
3253 */
3254void put_io_context(struct io_context *ioc)
3255{
3256 if (ioc == NULL)
3257 return;
3258
3259 BUG_ON(atomic_read(&ioc->refcount) == 0);
3260
3261 if (atomic_dec_and_test(&ioc->refcount)) {
3262 if (ioc->aic && ioc->aic->dtor)
3263 ioc->aic->dtor(ioc->aic);
3264 if (ioc->cic && ioc->cic->dtor)
3265 ioc->cic->dtor(ioc->cic);
3266
3267 kmem_cache_free(iocontext_cachep, ioc);
3268 }
3269}
3270EXPORT_SYMBOL(put_io_context);
3271
3272/* Called by the exitting task */
3273void exit_io_context(void)
3274{
3275 unsigned long flags;
3276 struct io_context *ioc;
3277
3278 local_irq_save(flags);
Jens Axboe22e2c502005-06-27 10:55:12 +02003279 task_lock(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003280 ioc = current->io_context;
3281 current->io_context = NULL;
Jens Axboe22e2c502005-06-27 10:55:12 +02003282 ioc->task = NULL;
3283 task_unlock(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003284 local_irq_restore(flags);
3285
3286 if (ioc->aic && ioc->aic->exit)
3287 ioc->aic->exit(ioc->aic);
3288 if (ioc->cic && ioc->cic->exit)
3289 ioc->cic->exit(ioc->cic);
3290
3291 put_io_context(ioc);
3292}
3293
3294/*
3295 * If the current task has no IO context then create one and initialise it.
3296 * If it does have a context, take a ref on it.
3297 *
3298 * This is always called in the context of the task which submitted the I/O.
3299 * But weird things happen, so we disable local interrupts to ensure exclusive
3300 * access to *current.
3301 */
3302struct io_context *get_io_context(int gfp_flags)
3303{
3304 struct task_struct *tsk = current;
3305 unsigned long flags;
3306 struct io_context *ret;
3307
3308 local_irq_save(flags);
3309 ret = tsk->io_context;
3310 if (ret)
3311 goto out;
3312
3313 local_irq_restore(flags);
3314
3315 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3316 if (ret) {
3317 atomic_set(&ret->refcount, 1);
Jens Axboe22e2c502005-06-27 10:55:12 +02003318 ret->task = current;
3319 ret->set_ioprio = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003320 ret->last_waited = jiffies; /* doesn't matter... */
3321 ret->nr_batch_requests = 0; /* because this is 0 */
3322 ret->aic = NULL;
3323 ret->cic = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003324
3325 local_irq_save(flags);
3326
3327 /*
3328 * very unlikely, someone raced with us in setting up the task
3329 * io context. free new context and just grab a reference.
3330 */
3331 if (!tsk->io_context)
3332 tsk->io_context = ret;
3333 else {
3334 kmem_cache_free(iocontext_cachep, ret);
3335 ret = tsk->io_context;
3336 }
3337
3338out:
3339 atomic_inc(&ret->refcount);
3340 local_irq_restore(flags);
3341 }
3342
3343 return ret;
3344}
3345EXPORT_SYMBOL(get_io_context);
3346
3347void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3348{
3349 struct io_context *src = *psrc;
3350 struct io_context *dst = *pdst;
3351
3352 if (src) {
3353 BUG_ON(atomic_read(&src->refcount) == 0);
3354 atomic_inc(&src->refcount);
3355 put_io_context(dst);
3356 *pdst = src;
3357 }
3358}
3359EXPORT_SYMBOL(copy_io_context);
3360
3361void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3362{
3363 struct io_context *temp;
3364 temp = *ioc1;
3365 *ioc1 = *ioc2;
3366 *ioc2 = temp;
3367}
3368EXPORT_SYMBOL(swap_io_context);
3369
3370/*
3371 * sysfs parts below
3372 */
3373struct queue_sysfs_entry {
3374 struct attribute attr;
3375 ssize_t (*show)(struct request_queue *, char *);
3376 ssize_t (*store)(struct request_queue *, const char *, size_t);
3377};
3378
3379static ssize_t
3380queue_var_show(unsigned int var, char *page)
3381{
3382 return sprintf(page, "%d\n", var);
3383}
3384
3385static ssize_t
3386queue_var_store(unsigned long *var, const char *page, size_t count)
3387{
3388 char *p = (char *) page;
3389
3390 *var = simple_strtoul(p, &p, 10);
3391 return count;
3392}
3393
3394static ssize_t queue_requests_show(struct request_queue *q, char *page)
3395{
3396 return queue_var_show(q->nr_requests, (page));
3397}
3398
3399static ssize_t
3400queue_requests_store(struct request_queue *q, const char *page, size_t count)
3401{
3402 struct request_list *rl = &q->rq;
3403
3404 int ret = queue_var_store(&q->nr_requests, page, count);
3405 if (q->nr_requests < BLKDEV_MIN_RQ)
3406 q->nr_requests = BLKDEV_MIN_RQ;
3407 blk_queue_congestion_threshold(q);
3408
3409 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3410 set_queue_congested(q, READ);
3411 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3412 clear_queue_congested(q, READ);
3413
3414 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3415 set_queue_congested(q, WRITE);
3416 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3417 clear_queue_congested(q, WRITE);
3418
3419 if (rl->count[READ] >= q->nr_requests) {
3420 blk_set_queue_full(q, READ);
3421 } else if (rl->count[READ]+1 <= q->nr_requests) {
3422 blk_clear_queue_full(q, READ);
3423 wake_up(&rl->wait[READ]);
3424 }
3425
3426 if (rl->count[WRITE] >= q->nr_requests) {
3427 blk_set_queue_full(q, WRITE);
3428 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3429 blk_clear_queue_full(q, WRITE);
3430 wake_up(&rl->wait[WRITE]);
3431 }
3432 return ret;
3433}
3434
3435static ssize_t queue_ra_show(struct request_queue *q, char *page)
3436{
3437 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3438
3439 return queue_var_show(ra_kb, (page));
3440}
3441
3442static ssize_t
3443queue_ra_store(struct request_queue *q, const char *page, size_t count)
3444{
3445 unsigned long ra_kb;
3446 ssize_t ret = queue_var_store(&ra_kb, page, count);
3447
3448 spin_lock_irq(q->queue_lock);
3449 if (ra_kb > (q->max_sectors >> 1))
3450 ra_kb = (q->max_sectors >> 1);
3451
3452 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3453 spin_unlock_irq(q->queue_lock);
3454
3455 return ret;
3456}
3457
3458static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3459{
3460 int max_sectors_kb = q->max_sectors >> 1;
3461
3462 return queue_var_show(max_sectors_kb, (page));
3463}
3464
3465static ssize_t
3466queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3467{
3468 unsigned long max_sectors_kb,
3469 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3470 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3471 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3472 int ra_kb;
3473
3474 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3475 return -EINVAL;
3476 /*
3477 * Take the queue lock to update the readahead and max_sectors
3478 * values synchronously:
3479 */
3480 spin_lock_irq(q->queue_lock);
3481 /*
3482 * Trim readahead window as well, if necessary:
3483 */
3484 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3485 if (ra_kb > max_sectors_kb)
3486 q->backing_dev_info.ra_pages =
3487 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3488
3489 q->max_sectors = max_sectors_kb << 1;
3490 spin_unlock_irq(q->queue_lock);
3491
3492 return ret;
3493}
3494
3495static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3496{
3497 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3498
3499 return queue_var_show(max_hw_sectors_kb, (page));
3500}
3501
3502
3503static struct queue_sysfs_entry queue_requests_entry = {
3504 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3505 .show = queue_requests_show,
3506 .store = queue_requests_store,
3507};
3508
3509static struct queue_sysfs_entry queue_ra_entry = {
3510 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3511 .show = queue_ra_show,
3512 .store = queue_ra_store,
3513};
3514
3515static struct queue_sysfs_entry queue_max_sectors_entry = {
3516 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3517 .show = queue_max_sectors_show,
3518 .store = queue_max_sectors_store,
3519};
3520
3521static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3522 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3523 .show = queue_max_hw_sectors_show,
3524};
3525
3526static struct queue_sysfs_entry queue_iosched_entry = {
3527 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3528 .show = elv_iosched_show,
3529 .store = elv_iosched_store,
3530};
3531
3532static struct attribute *default_attrs[] = {
3533 &queue_requests_entry.attr,
3534 &queue_ra_entry.attr,
3535 &queue_max_hw_sectors_entry.attr,
3536 &queue_max_sectors_entry.attr,
3537 &queue_iosched_entry.attr,
3538 NULL,
3539};
3540
3541#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3542
3543static ssize_t
3544queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3545{
3546 struct queue_sysfs_entry *entry = to_queue(attr);
3547 struct request_queue *q;
3548
3549 q = container_of(kobj, struct request_queue, kobj);
3550 if (!entry->show)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003551 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003552
3553 return entry->show(q, page);
3554}
3555
3556static ssize_t
3557queue_attr_store(struct kobject *kobj, struct attribute *attr,
3558 const char *page, size_t length)
3559{
3560 struct queue_sysfs_entry *entry = to_queue(attr);
3561 struct request_queue *q;
3562
3563 q = container_of(kobj, struct request_queue, kobj);
3564 if (!entry->store)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003565 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003566
3567 return entry->store(q, page, length);
3568}
3569
3570static struct sysfs_ops queue_sysfs_ops = {
3571 .show = queue_attr_show,
3572 .store = queue_attr_store,
3573};
3574
Adrian Bunk93d17d32005-06-25 14:59:10 -07003575static struct kobj_type queue_ktype = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576 .sysfs_ops = &queue_sysfs_ops,
3577 .default_attrs = default_attrs,
3578};
3579
3580int blk_register_queue(struct gendisk *disk)
3581{
3582 int ret;
3583
3584 request_queue_t *q = disk->queue;
3585
3586 if (!q || !q->request_fn)
3587 return -ENXIO;
3588
3589 q->kobj.parent = kobject_get(&disk->kobj);
3590 if (!q->kobj.parent)
3591 return -EBUSY;
3592
3593 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3594 q->kobj.ktype = &queue_ktype;
3595
3596 ret = kobject_register(&q->kobj);
3597 if (ret < 0)
3598 return ret;
3599
3600 ret = elv_register_queue(q);
3601 if (ret) {
3602 kobject_unregister(&q->kobj);
3603 return ret;
3604 }
3605
3606 return 0;
3607}
3608
3609void blk_unregister_queue(struct gendisk *disk)
3610{
3611 request_queue_t *q = disk->queue;
3612
3613 if (q && q->request_fn) {
3614 elv_unregister_queue(q);
3615
3616 kobject_unregister(&q->kobj);
3617 kobject_put(&disk->kobj);
3618 }
3619}