blob: 39bf5820297e472d95e88ddc28c868a0c80b5f6c [file] [log] [blame]
Simon Arlott75fabc32012-09-10 23:26:15 -06001/*
Eric Anholt41691b82015-10-08 18:37:24 -07002 * Copyright (C) 2010,2015 Broadcom
Simon Arlott75fabc32012-09-10 23:26:15 -06003 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
Eric Anholt41691b82015-10-08 18:37:24 -070020/**
21 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
22 *
23 * The clock tree on the 2835 has several levels. There's a root
24 * oscillator running at 19.2Mhz. After the oscillator there are 5
25 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
26 * and "HDMI displays". Those 5 PLLs each can divide their output to
27 * produce up to 4 channels. Finally, there is the level of clocks to
28 * be consumed by other hardware components (like "H264" or "HDMI
29 * state machine"), which divide off of some subset of the PLL
30 * channels.
31 *
32 * All of the clocks in the tree are exposed in the DT, because the DT
33 * may want to make assignments of the final layer of clocks to the
34 * PLL channels, and some components of the hardware will actually
35 * skip layers of the tree (for example, the pixel clock comes
36 * directly from the PLLH PIX channel without using a CM_*CTL clock
37 * generator).
38 */
39
Simon Arlott75fabc32012-09-10 23:26:15 -060040#include <linux/clk-provider.h>
41#include <linux/clkdev.h>
42#include <linux/clk/bcm2835.h>
Eric Anholt41691b82015-10-08 18:37:24 -070043#include <linux/module.h>
Stephen Warren526d2392012-12-24 21:55:01 -070044#include <linux/of.h>
Eric Anholt41691b82015-10-08 18:37:24 -070045#include <linux/platform_device.h>
46#include <linux/slab.h>
47#include <dt-bindings/clock/bcm2835.h>
48
49#define CM_PASSWORD 0x5a000000
50
51#define CM_GNRICCTL 0x000
52#define CM_GNRICDIV 0x004
53# define CM_DIV_FRAC_BITS 12
54
55#define CM_VPUCTL 0x008
56#define CM_VPUDIV 0x00c
57#define CM_SYSCTL 0x010
58#define CM_SYSDIV 0x014
59#define CM_PERIACTL 0x018
60#define CM_PERIADIV 0x01c
61#define CM_PERIICTL 0x020
62#define CM_PERIIDIV 0x024
63#define CM_H264CTL 0x028
64#define CM_H264DIV 0x02c
65#define CM_ISPCTL 0x030
66#define CM_ISPDIV 0x034
67#define CM_V3DCTL 0x038
68#define CM_V3DDIV 0x03c
69#define CM_CAM0CTL 0x040
70#define CM_CAM0DIV 0x044
71#define CM_CAM1CTL 0x048
72#define CM_CAM1DIV 0x04c
73#define CM_CCP2CTL 0x050
74#define CM_CCP2DIV 0x054
75#define CM_DSI0ECTL 0x058
76#define CM_DSI0EDIV 0x05c
77#define CM_DSI0PCTL 0x060
78#define CM_DSI0PDIV 0x064
79#define CM_DPICTL 0x068
80#define CM_DPIDIV 0x06c
81#define CM_GP0CTL 0x070
82#define CM_GP0DIV 0x074
83#define CM_GP1CTL 0x078
84#define CM_GP1DIV 0x07c
85#define CM_GP2CTL 0x080
86#define CM_GP2DIV 0x084
87#define CM_HSMCTL 0x088
88#define CM_HSMDIV 0x08c
89#define CM_OTPCTL 0x090
90#define CM_OTPDIV 0x094
91#define CM_PWMCTL 0x0a0
92#define CM_PWMDIV 0x0a4
93#define CM_SMICTL 0x0b0
94#define CM_SMIDIV 0x0b4
95#define CM_TSENSCTL 0x0e0
96#define CM_TSENSDIV 0x0e4
97#define CM_TIMERCTL 0x0e8
98#define CM_TIMERDIV 0x0ec
99#define CM_UARTCTL 0x0f0
100#define CM_UARTDIV 0x0f4
101#define CM_VECCTL 0x0f8
102#define CM_VECDIV 0x0fc
103#define CM_PULSECTL 0x190
104#define CM_PULSEDIV 0x194
105#define CM_SDCCTL 0x1a8
106#define CM_SDCDIV 0x1ac
107#define CM_ARMCTL 0x1b0
108#define CM_EMMCCTL 0x1c0
109#define CM_EMMCDIV 0x1c4
110
111/* General bits for the CM_*CTL regs */
112# define CM_ENABLE BIT(4)
113# define CM_KILL BIT(5)
114# define CM_GATE_BIT 6
115# define CM_GATE BIT(CM_GATE_BIT)
116# define CM_BUSY BIT(7)
117# define CM_BUSYD BIT(8)
118# define CM_SRC_SHIFT 0
119# define CM_SRC_BITS 4
120# define CM_SRC_MASK 0xf
121# define CM_SRC_GND 0
122# define CM_SRC_OSC 1
123# define CM_SRC_TESTDEBUG0 2
124# define CM_SRC_TESTDEBUG1 3
125# define CM_SRC_PLLA_CORE 4
126# define CM_SRC_PLLA_PER 4
127# define CM_SRC_PLLC_CORE0 5
128# define CM_SRC_PLLC_PER 5
129# define CM_SRC_PLLC_CORE1 8
130# define CM_SRC_PLLD_CORE 6
131# define CM_SRC_PLLD_PER 6
132# define CM_SRC_PLLH_AUX 7
133# define CM_SRC_PLLC_CORE1 8
134# define CM_SRC_PLLC_CORE2 9
135
136#define CM_OSCCOUNT 0x100
137
138#define CM_PLLA 0x104
139# define CM_PLL_ANARST BIT(8)
140# define CM_PLLA_HOLDPER BIT(7)
141# define CM_PLLA_LOADPER BIT(6)
142# define CM_PLLA_HOLDCORE BIT(5)
143# define CM_PLLA_LOADCORE BIT(4)
144# define CM_PLLA_HOLDCCP2 BIT(3)
145# define CM_PLLA_LOADCCP2 BIT(2)
146# define CM_PLLA_HOLDDSI0 BIT(1)
147# define CM_PLLA_LOADDSI0 BIT(0)
148
149#define CM_PLLC 0x108
150# define CM_PLLC_HOLDPER BIT(7)
151# define CM_PLLC_LOADPER BIT(6)
152# define CM_PLLC_HOLDCORE2 BIT(5)
153# define CM_PLLC_LOADCORE2 BIT(4)
154# define CM_PLLC_HOLDCORE1 BIT(3)
155# define CM_PLLC_LOADCORE1 BIT(2)
156# define CM_PLLC_HOLDCORE0 BIT(1)
157# define CM_PLLC_LOADCORE0 BIT(0)
158
159#define CM_PLLD 0x10c
160# define CM_PLLD_HOLDPER BIT(7)
161# define CM_PLLD_LOADPER BIT(6)
162# define CM_PLLD_HOLDCORE BIT(5)
163# define CM_PLLD_LOADCORE BIT(4)
164# define CM_PLLD_HOLDDSI1 BIT(3)
165# define CM_PLLD_LOADDSI1 BIT(2)
166# define CM_PLLD_HOLDDSI0 BIT(1)
167# define CM_PLLD_LOADDSI0 BIT(0)
168
169#define CM_PLLH 0x110
170# define CM_PLLH_LOADRCAL BIT(2)
171# define CM_PLLH_LOADAUX BIT(1)
172# define CM_PLLH_LOADPIX BIT(0)
173
174#define CM_LOCK 0x114
175# define CM_LOCK_FLOCKH BIT(12)
176# define CM_LOCK_FLOCKD BIT(11)
177# define CM_LOCK_FLOCKC BIT(10)
178# define CM_LOCK_FLOCKB BIT(9)
179# define CM_LOCK_FLOCKA BIT(8)
180
181#define CM_EVENT 0x118
182#define CM_DSI1ECTL 0x158
183#define CM_DSI1EDIV 0x15c
184#define CM_DSI1PCTL 0x160
185#define CM_DSI1PDIV 0x164
186#define CM_DFTCTL 0x168
187#define CM_DFTDIV 0x16c
188
189#define CM_PLLB 0x170
190# define CM_PLLB_HOLDARM BIT(1)
191# define CM_PLLB_LOADARM BIT(0)
192
193#define A2W_PLLA_CTRL 0x1100
194#define A2W_PLLC_CTRL 0x1120
195#define A2W_PLLD_CTRL 0x1140
196#define A2W_PLLH_CTRL 0x1160
197#define A2W_PLLB_CTRL 0x11e0
198# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
199# define A2W_PLL_CTRL_PWRDN BIT(16)
200# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
201# define A2W_PLL_CTRL_PDIV_SHIFT 12
202# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
203# define A2W_PLL_CTRL_NDIV_SHIFT 0
204
205#define A2W_PLLA_ANA0 0x1010
206#define A2W_PLLC_ANA0 0x1030
207#define A2W_PLLD_ANA0 0x1050
208#define A2W_PLLH_ANA0 0x1070
209#define A2W_PLLB_ANA0 0x10f0
210
211#define A2W_PLL_KA_SHIFT 7
212#define A2W_PLL_KA_MASK GENMASK(9, 7)
213#define A2W_PLL_KI_SHIFT 19
214#define A2W_PLL_KI_MASK GENMASK(21, 19)
215#define A2W_PLL_KP_SHIFT 15
216#define A2W_PLL_KP_MASK GENMASK(18, 15)
217
218#define A2W_PLLH_KA_SHIFT 19
219#define A2W_PLLH_KA_MASK GENMASK(21, 19)
220#define A2W_PLLH_KI_LOW_SHIFT 22
221#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
222#define A2W_PLLH_KI_HIGH_SHIFT 0
223#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
224#define A2W_PLLH_KP_SHIFT 1
225#define A2W_PLLH_KP_MASK GENMASK(4, 1)
226
227#define A2W_XOSC_CTRL 0x1190
228# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
229# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
230# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
231# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
232# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
233# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
234# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
235# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
236
237#define A2W_PLLA_FRAC 0x1200
238#define A2W_PLLC_FRAC 0x1220
239#define A2W_PLLD_FRAC 0x1240
240#define A2W_PLLH_FRAC 0x1260
241#define A2W_PLLB_FRAC 0x12e0
242# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
243# define A2W_PLL_FRAC_BITS 20
244
245#define A2W_PLL_CHANNEL_DISABLE BIT(8)
246#define A2W_PLL_DIV_BITS 8
247#define A2W_PLL_DIV_SHIFT 0
248
249#define A2W_PLLA_DSI0 0x1300
250#define A2W_PLLA_CORE 0x1400
251#define A2W_PLLA_PER 0x1500
252#define A2W_PLLA_CCP2 0x1600
253
254#define A2W_PLLC_CORE2 0x1320
255#define A2W_PLLC_CORE1 0x1420
256#define A2W_PLLC_PER 0x1520
257#define A2W_PLLC_CORE0 0x1620
258
259#define A2W_PLLD_DSI0 0x1340
260#define A2W_PLLD_CORE 0x1440
261#define A2W_PLLD_PER 0x1540
262#define A2W_PLLD_DSI1 0x1640
263
264#define A2W_PLLH_AUX 0x1360
265#define A2W_PLLH_RCAL 0x1460
266#define A2W_PLLH_PIX 0x1560
267#define A2W_PLLH_STS 0x1660
268
269#define A2W_PLLH_CTRLR 0x1960
270#define A2W_PLLH_FRACR 0x1a60
271#define A2W_PLLH_AUXR 0x1b60
272#define A2W_PLLH_RCALR 0x1c60
273#define A2W_PLLH_PIXR 0x1d60
274#define A2W_PLLH_STSR 0x1e60
275
276#define A2W_PLLB_ARM 0x13e0
277#define A2W_PLLB_SP0 0x14e0
278#define A2W_PLLB_SP1 0x15e0
279#define A2W_PLLB_SP2 0x16e0
280
281#define LOCK_TIMEOUT_NS 100000000
282#define BCM2835_MAX_FB_RATE 1750000000u
283
284struct bcm2835_cprman {
285 struct device *dev;
286 void __iomem *regs;
287 spinlock_t regs_lock;
288 const char *osc_name;
289
290 struct clk_onecell_data onecell;
291 struct clk *clks[BCM2835_CLOCK_COUNT];
292};
293
294static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
295{
296 writel(CM_PASSWORD | val, cprman->regs + reg);
297}
298
299static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
300{
301 return readl(cprman->regs + reg);
302}
Stephen Warren526d2392012-12-24 21:55:01 -0700303
Simon Arlott75fabc32012-09-10 23:26:15 -0600304/*
305 * These are fixed clocks. They're probably not all root clocks and it may
306 * be possible to turn them on and off but until this is mapped out better
307 * it's the only way they can be used.
308 */
309void __init bcm2835_init_clocks(void)
310{
311 struct clk *clk;
312 int ret;
313
Simon Arlott75fabc32012-09-10 23:26:15 -0600314 clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, CLK_IS_ROOT,
315 126000000);
Wei Yongjun0de9f232012-10-09 10:46:00 +0800316 if (IS_ERR(clk))
Simon Arlott75fabc32012-09-10 23:26:15 -0600317 pr_err("apb_pclk not registered\n");
318
319 clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, CLK_IS_ROOT,
320 3000000);
Wei Yongjun0de9f232012-10-09 10:46:00 +0800321 if (IS_ERR(clk))
Simon Arlott75fabc32012-09-10 23:26:15 -0600322 pr_err("uart0_pclk not registered\n");
323 ret = clk_register_clkdev(clk, NULL, "20201000.uart");
324 if (ret)
325 pr_err("uart0_pclk alias not registered\n");
326
327 clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, CLK_IS_ROOT,
328 125000000);
Wei Yongjun0de9f232012-10-09 10:46:00 +0800329 if (IS_ERR(clk))
Simon Arlott75fabc32012-09-10 23:26:15 -0600330 pr_err("uart1_pclk not registered\n");
331 ret = clk_register_clkdev(clk, NULL, "20215000.uart");
332 if (ret)
Domenico Andreoli686ea5852012-10-20 03:35:28 +0200333 pr_err("uart1_pclk alias not registered\n");
Simon Arlott75fabc32012-09-10 23:26:15 -0600334}
Eric Anholt41691b82015-10-08 18:37:24 -0700335
336struct bcm2835_pll_data {
337 const char *name;
338 u32 cm_ctrl_reg;
339 u32 a2w_ctrl_reg;
340 u32 frac_reg;
341 u32 ana_reg_base;
342 u32 reference_enable_mask;
343 /* Bit in CM_LOCK to indicate when the PLL has locked. */
344 u32 lock_mask;
345
346 const struct bcm2835_pll_ana_bits *ana;
347
348 unsigned long min_rate;
349 unsigned long max_rate;
350 /*
351 * Highest rate for the VCO before we have to use the
352 * pre-divide-by-2.
353 */
354 unsigned long max_fb_rate;
355};
356
357struct bcm2835_pll_ana_bits {
358 u32 mask0;
359 u32 set0;
360 u32 mask1;
361 u32 set1;
362 u32 mask3;
363 u32 set3;
364 u32 fb_prediv_mask;
365};
366
367static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
368 .mask0 = 0,
369 .set0 = 0,
370 .mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
371 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
372 .mask3 = ~A2W_PLL_KA_MASK,
373 .set3 = (2 << A2W_PLL_KA_SHIFT),
374 .fb_prediv_mask = BIT(14),
375};
376
377static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
378 .mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
379 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
380 .mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
381 .set1 = (6 << A2W_PLLH_KP_SHIFT),
382 .mask3 = 0,
383 .set3 = 0,
384 .fb_prediv_mask = BIT(11),
385};
386
387/*
388 * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera
389 * Port 2) transmitter clock.
390 *
391 * It is in the PX LDO power domain, which is on when the AUDIO domain
392 * is on.
393 */
394static const struct bcm2835_pll_data bcm2835_plla_data = {
395 .name = "plla",
396 .cm_ctrl_reg = CM_PLLA,
397 .a2w_ctrl_reg = A2W_PLLA_CTRL,
398 .frac_reg = A2W_PLLA_FRAC,
399 .ana_reg_base = A2W_PLLA_ANA0,
400 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
401 .lock_mask = CM_LOCK_FLOCKA,
402
403 .ana = &bcm2835_ana_default,
404
405 .min_rate = 600000000u,
406 .max_rate = 2400000000u,
407 .max_fb_rate = BCM2835_MAX_FB_RATE,
408};
409
410/* PLLB is used for the ARM's clock. */
411static const struct bcm2835_pll_data bcm2835_pllb_data = {
412 .name = "pllb",
413 .cm_ctrl_reg = CM_PLLB,
414 .a2w_ctrl_reg = A2W_PLLB_CTRL,
415 .frac_reg = A2W_PLLB_FRAC,
416 .ana_reg_base = A2W_PLLB_ANA0,
417 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
418 .lock_mask = CM_LOCK_FLOCKB,
419
420 .ana = &bcm2835_ana_default,
421
422 .min_rate = 600000000u,
423 .max_rate = 3000000000u,
424 .max_fb_rate = BCM2835_MAX_FB_RATE,
425};
426
427/*
428 * PLLC is the core PLL, used to drive the core VPU clock.
429 *
430 * It is in the PX LDO power domain, which is on when the AUDIO domain
431 * is on.
432*/
433static const struct bcm2835_pll_data bcm2835_pllc_data = {
434 .name = "pllc",
435 .cm_ctrl_reg = CM_PLLC,
436 .a2w_ctrl_reg = A2W_PLLC_CTRL,
437 .frac_reg = A2W_PLLC_FRAC,
438 .ana_reg_base = A2W_PLLC_ANA0,
439 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
440 .lock_mask = CM_LOCK_FLOCKC,
441
442 .ana = &bcm2835_ana_default,
443
444 .min_rate = 600000000u,
445 .max_rate = 3000000000u,
446 .max_fb_rate = BCM2835_MAX_FB_RATE,
447};
448
449/*
450 * PLLD is the display PLL, used to drive DSI display panels.
451 *
452 * It is in the PX LDO power domain, which is on when the AUDIO domain
453 * is on.
454 */
455static const struct bcm2835_pll_data bcm2835_plld_data = {
456 .name = "plld",
457 .cm_ctrl_reg = CM_PLLD,
458 .a2w_ctrl_reg = A2W_PLLD_CTRL,
459 .frac_reg = A2W_PLLD_FRAC,
460 .ana_reg_base = A2W_PLLD_ANA0,
461 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
462 .lock_mask = CM_LOCK_FLOCKD,
463
464 .ana = &bcm2835_ana_default,
465
466 .min_rate = 600000000u,
467 .max_rate = 2400000000u,
468 .max_fb_rate = BCM2835_MAX_FB_RATE,
469};
470
471/*
472 * PLLH is used to supply the pixel clock or the AUX clock for the TV
473 * encoder.
474 *
475 * It is in the HDMI power domain.
476 */
477static const struct bcm2835_pll_data bcm2835_pllh_data = {
478 "pllh",
479 .cm_ctrl_reg = CM_PLLH,
480 .a2w_ctrl_reg = A2W_PLLH_CTRL,
481 .frac_reg = A2W_PLLH_FRAC,
482 .ana_reg_base = A2W_PLLH_ANA0,
483 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
484 .lock_mask = CM_LOCK_FLOCKH,
485
486 .ana = &bcm2835_ana_pllh,
487
488 .min_rate = 600000000u,
489 .max_rate = 3000000000u,
490 .max_fb_rate = BCM2835_MAX_FB_RATE,
491};
492
493struct bcm2835_pll_divider_data {
494 const char *name;
495 const struct bcm2835_pll_data *source_pll;
496 u32 cm_reg;
497 u32 a2w_reg;
498
499 u32 load_mask;
500 u32 hold_mask;
501 u32 fixed_divider;
502};
503
504static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = {
505 .name = "plla_core",
506 .source_pll = &bcm2835_plla_data,
507 .cm_reg = CM_PLLA,
508 .a2w_reg = A2W_PLLA_CORE,
509 .load_mask = CM_PLLA_LOADCORE,
510 .hold_mask = CM_PLLA_HOLDCORE,
511 .fixed_divider = 1,
512};
513
514static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = {
515 .name = "plla_per",
516 .source_pll = &bcm2835_plla_data,
517 .cm_reg = CM_PLLA,
518 .a2w_reg = A2W_PLLA_PER,
519 .load_mask = CM_PLLA_LOADPER,
520 .hold_mask = CM_PLLA_HOLDPER,
521 .fixed_divider = 1,
522};
523
524static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = {
525 .name = "pllb_arm",
526 .source_pll = &bcm2835_pllb_data,
527 .cm_reg = CM_PLLB,
528 .a2w_reg = A2W_PLLB_ARM,
529 .load_mask = CM_PLLB_LOADARM,
530 .hold_mask = CM_PLLB_HOLDARM,
531 .fixed_divider = 1,
532};
533
534static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = {
535 .name = "pllc_core0",
536 .source_pll = &bcm2835_pllc_data,
537 .cm_reg = CM_PLLC,
538 .a2w_reg = A2W_PLLC_CORE0,
539 .load_mask = CM_PLLC_LOADCORE0,
540 .hold_mask = CM_PLLC_HOLDCORE0,
541 .fixed_divider = 1,
542};
543
544static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = {
545 .name = "pllc_core1", .source_pll = &bcm2835_pllc_data,
546 .cm_reg = CM_PLLC, A2W_PLLC_CORE1,
547 .load_mask = CM_PLLC_LOADCORE1,
548 .hold_mask = CM_PLLC_HOLDCORE1,
549 .fixed_divider = 1,
550};
551
552static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = {
553 .name = "pllc_core2",
554 .source_pll = &bcm2835_pllc_data,
555 .cm_reg = CM_PLLC,
556 .a2w_reg = A2W_PLLC_CORE2,
557 .load_mask = CM_PLLC_LOADCORE2,
558 .hold_mask = CM_PLLC_HOLDCORE2,
559 .fixed_divider = 1,
560};
561
562static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = {
563 .name = "pllc_per",
564 .source_pll = &bcm2835_pllc_data,
565 .cm_reg = CM_PLLC,
566 .a2w_reg = A2W_PLLC_PER,
567 .load_mask = CM_PLLC_LOADPER,
568 .hold_mask = CM_PLLC_HOLDPER,
569 .fixed_divider = 1,
570};
571
572static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = {
573 .name = "plld_core",
574 .source_pll = &bcm2835_plld_data,
575 .cm_reg = CM_PLLD,
576 .a2w_reg = A2W_PLLD_CORE,
577 .load_mask = CM_PLLD_LOADCORE,
578 .hold_mask = CM_PLLD_HOLDCORE,
579 .fixed_divider = 1,
580};
581
582static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = {
583 .name = "plld_per",
584 .source_pll = &bcm2835_plld_data,
585 .cm_reg = CM_PLLD,
586 .a2w_reg = A2W_PLLD_PER,
587 .load_mask = CM_PLLD_LOADPER,
588 .hold_mask = CM_PLLD_HOLDPER,
589 .fixed_divider = 1,
590};
591
592static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = {
593 .name = "pllh_rcal",
594 .source_pll = &bcm2835_pllh_data,
595 .cm_reg = CM_PLLH,
596 .a2w_reg = A2W_PLLH_RCAL,
597 .load_mask = CM_PLLH_LOADRCAL,
598 .hold_mask = 0,
599 .fixed_divider = 10,
600};
601
602static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = {
603 .name = "pllh_aux",
604 .source_pll = &bcm2835_pllh_data,
605 .cm_reg = CM_PLLH,
606 .a2w_reg = A2W_PLLH_AUX,
607 .load_mask = CM_PLLH_LOADAUX,
608 .hold_mask = 0,
609 .fixed_divider = 10,
610};
611
612static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = {
613 .name = "pllh_pix",
614 .source_pll = &bcm2835_pllh_data,
615 .cm_reg = CM_PLLH,
616 .a2w_reg = A2W_PLLH_PIX,
617 .load_mask = CM_PLLH_LOADPIX,
618 .hold_mask = 0,
619 .fixed_divider = 10,
620};
621
622struct bcm2835_clock_data {
623 const char *name;
624
625 const char *const *parents;
626 int num_mux_parents;
627
628 u32 ctl_reg;
629 u32 div_reg;
630
631 /* Number of integer bits in the divider */
632 u32 int_bits;
633 /* Number of fractional bits in the divider */
634 u32 frac_bits;
635
636 bool is_vpu_clock;
637};
638
639static const char *const bcm2835_clock_per_parents[] = {
640 "gnd",
641 "xosc",
642 "testdebug0",
643 "testdebug1",
644 "plla_per",
645 "pllc_per",
646 "plld_per",
647 "pllh_aux",
648};
649
650static const char *const bcm2835_clock_vpu_parents[] = {
651 "gnd",
652 "xosc",
653 "testdebug0",
654 "testdebug1",
655 "plla_core",
656 "pllc_core0",
657 "plld_core",
658 "pllh_aux",
659 "pllc_core1",
660 "pllc_core2",
661};
662
663static const char *const bcm2835_clock_osc_parents[] = {
664 "gnd",
665 "xosc",
666 "testdebug0",
667 "testdebug1"
668};
669
670/*
671 * Used for a 1Mhz clock for the system clocksource, and also used by
672 * the watchdog timer and the camera pulse generator.
673 */
674static const struct bcm2835_clock_data bcm2835_clock_timer_data = {
675 .name = "timer",
676 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
677 .parents = bcm2835_clock_osc_parents,
678 .ctl_reg = CM_TIMERCTL,
679 .div_reg = CM_TIMERDIV,
680 .int_bits = 6,
681 .frac_bits = 12,
682};
683
684/* One Time Programmable Memory clock. Maximum 10Mhz. */
685static const struct bcm2835_clock_data bcm2835_clock_otp_data = {
686 .name = "otp",
687 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
688 .parents = bcm2835_clock_osc_parents,
689 .ctl_reg = CM_OTPCTL,
690 .div_reg = CM_OTPDIV,
691 .int_bits = 4,
692 .frac_bits = 0,
693};
694
695/*
696 * VPU clock. This doesn't have an enable bit, since it drives the
697 * bus for everything else, and is special so it doesn't need to be
698 * gated for rate changes. It is also known as "clk_audio" in various
699 * hardware documentation.
700 */
701static const struct bcm2835_clock_data bcm2835_clock_vpu_data = {
702 .name = "vpu",
703 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
704 .parents = bcm2835_clock_vpu_parents,
705 .ctl_reg = CM_VPUCTL,
706 .div_reg = CM_VPUDIV,
707 .int_bits = 12,
708 .frac_bits = 8,
709 .is_vpu_clock = true,
710};
711
712static const struct bcm2835_clock_data bcm2835_clock_v3d_data = {
713 .name = "v3d",
714 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
715 .parents = bcm2835_clock_vpu_parents,
716 .ctl_reg = CM_V3DCTL,
717 .div_reg = CM_V3DDIV,
718 .int_bits = 4,
719 .frac_bits = 8,
720};
721
722static const struct bcm2835_clock_data bcm2835_clock_isp_data = {
723 .name = "isp",
724 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
725 .parents = bcm2835_clock_vpu_parents,
726 .ctl_reg = CM_ISPCTL,
727 .div_reg = CM_ISPDIV,
728 .int_bits = 4,
729 .frac_bits = 8,
730};
731
732static const struct bcm2835_clock_data bcm2835_clock_h264_data = {
733 .name = "h264",
734 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
735 .parents = bcm2835_clock_vpu_parents,
736 .ctl_reg = CM_H264CTL,
737 .div_reg = CM_H264DIV,
738 .int_bits = 4,
739 .frac_bits = 8,
740};
741
742/* TV encoder clock. Only operating frequency is 108Mhz. */
743static const struct bcm2835_clock_data bcm2835_clock_vec_data = {
744 .name = "vec",
745 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
746 .parents = bcm2835_clock_per_parents,
747 .ctl_reg = CM_VECCTL,
748 .div_reg = CM_VECDIV,
749 .int_bits = 4,
750 .frac_bits = 0,
751};
752
753static const struct bcm2835_clock_data bcm2835_clock_uart_data = {
754 .name = "uart",
755 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
756 .parents = bcm2835_clock_per_parents,
757 .ctl_reg = CM_UARTCTL,
758 .div_reg = CM_UARTDIV,
759 .int_bits = 10,
760 .frac_bits = 12,
761};
762
763/* HDMI state machine */
764static const struct bcm2835_clock_data bcm2835_clock_hsm_data = {
765 .name = "hsm",
766 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
767 .parents = bcm2835_clock_per_parents,
768 .ctl_reg = CM_HSMCTL,
769 .div_reg = CM_HSMDIV,
770 .int_bits = 4,
771 .frac_bits = 8,
772};
773
774/*
775 * Secondary SDRAM clock. Used for low-voltage modes when the PLL in
776 * the SDRAM controller can't be used.
777 */
778static const struct bcm2835_clock_data bcm2835_clock_sdram_data = {
779 .name = "sdram",
780 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),
781 .parents = bcm2835_clock_vpu_parents,
782 .ctl_reg = CM_SDCCTL,
783 .div_reg = CM_SDCDIV,
784 .int_bits = 6,
785 .frac_bits = 0,
786};
787
788/* Clock for the temperature sensor. Generally run at 2Mhz, max 5Mhz. */
789static const struct bcm2835_clock_data bcm2835_clock_tsens_data = {
790 .name = "tsens",
791 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),
792 .parents = bcm2835_clock_osc_parents,
793 .ctl_reg = CM_TSENSCTL,
794 .div_reg = CM_TSENSDIV,
795 .int_bits = 5,
796 .frac_bits = 0,
797};
798
799/* Arasan EMMC clock */
800static const struct bcm2835_clock_data bcm2835_clock_emmc_data = {
801 .name = "emmc",
802 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),
803 .parents = bcm2835_clock_per_parents,
804 .ctl_reg = CM_EMMCCTL,
805 .div_reg = CM_EMMCDIV,
806 .int_bits = 4,
807 .frac_bits = 8,
808};
809
810struct bcm2835_pll {
811 struct clk_hw hw;
812 struct bcm2835_cprman *cprman;
813 const struct bcm2835_pll_data *data;
814};
815
816static int bcm2835_pll_is_on(struct clk_hw *hw)
817{
818 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
819 struct bcm2835_cprman *cprman = pll->cprman;
820 const struct bcm2835_pll_data *data = pll->data;
821
822 return cprman_read(cprman, data->a2w_ctrl_reg) &
823 A2W_PLL_CTRL_PRST_DISABLE;
824}
825
826static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
827 unsigned long parent_rate,
828 u32 *ndiv, u32 *fdiv)
829{
830 u64 div;
831
832 div = (u64)rate << A2W_PLL_FRAC_BITS;
833 do_div(div, parent_rate);
834
835 *ndiv = div >> A2W_PLL_FRAC_BITS;
836 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
837}
838
839static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
840 u32 ndiv, u32 fdiv, u32 pdiv)
841{
842 u64 rate;
843
844 if (pdiv == 0)
845 return 0;
846
847 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
848 do_div(rate, pdiv);
849 return rate >> A2W_PLL_FRAC_BITS;
850}
851
852static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
853 unsigned long *parent_rate)
854{
855 u32 ndiv, fdiv;
856
857 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
858
859 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
860}
861
862static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
863 unsigned long parent_rate)
864{
865 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
866 struct bcm2835_cprman *cprman = pll->cprman;
867 const struct bcm2835_pll_data *data = pll->data;
868 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
869 u32 ndiv, pdiv, fdiv;
870 bool using_prediv;
871
872 if (parent_rate == 0)
873 return 0;
874
875 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
876 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
877 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
878 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
879 data->ana->fb_prediv_mask;
880
881 if (using_prediv)
882 ndiv *= 2;
883
884 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
885}
886
887static void bcm2835_pll_off(struct clk_hw *hw)
888{
889 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
890 struct bcm2835_cprman *cprman = pll->cprman;
891 const struct bcm2835_pll_data *data = pll->data;
892
893 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
894 cprman_write(cprman, data->a2w_ctrl_reg, A2W_PLL_CTRL_PWRDN);
895}
896
897static int bcm2835_pll_on(struct clk_hw *hw)
898{
899 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
900 struct bcm2835_cprman *cprman = pll->cprman;
901 const struct bcm2835_pll_data *data = pll->data;
902 ktime_t timeout;
903
904 /* Take the PLL out of reset. */
905 cprman_write(cprman, data->cm_ctrl_reg,
906 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
907
908 /* Wait for the PLL to lock. */
909 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
910 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
911 if (ktime_after(ktime_get(), timeout)) {
912 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
913 clk_hw_get_name(hw));
914 return -ETIMEDOUT;
915 }
916
917 cpu_relax();
918 }
919
920 return 0;
921}
922
923static void
924bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
925{
926 int i;
927
928 /*
929 * ANA register setup is done as a series of writes to
930 * ANA3-ANA0, in that order. This lets us write all 4
931 * registers as a single cycle of the serdes interface (taking
932 * 100 xosc clocks), whereas if we were to update ana0, 1, and
933 * 3 individually through their partial-write registers, each
934 * would be their own serdes cycle.
935 */
936 for (i = 3; i >= 0; i--)
937 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
938}
939
940static int bcm2835_pll_set_rate(struct clk_hw *hw,
941 unsigned long rate, unsigned long parent_rate)
942{
943 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
944 struct bcm2835_cprman *cprman = pll->cprman;
945 const struct bcm2835_pll_data *data = pll->data;
946 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
947 u32 ndiv, fdiv, a2w_ctl;
948 u32 ana[4];
949 int i;
950
951 if (rate < data->min_rate || rate > data->max_rate) {
952 dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n",
953 clk_hw_get_name(hw), rate,
954 data->min_rate, data->max_rate);
955 return -EINVAL;
956 }
957
958 if (rate > data->max_fb_rate) {
959 use_fb_prediv = true;
960 rate /= 2;
961 } else {
962 use_fb_prediv = false;
963 }
964
965 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
966
967 for (i = 3; i >= 0; i--)
968 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
969
970 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
971
972 ana[0] &= ~data->ana->mask0;
973 ana[0] |= data->ana->set0;
974 ana[1] &= ~data->ana->mask1;
975 ana[1] |= data->ana->set1;
976 ana[3] &= ~data->ana->mask3;
977 ana[3] |= data->ana->set3;
978
979 if (was_using_prediv && !use_fb_prediv) {
980 ana[1] &= ~data->ana->fb_prediv_mask;
981 do_ana_setup_first = true;
982 } else if (!was_using_prediv && use_fb_prediv) {
983 ana[1] |= data->ana->fb_prediv_mask;
984 do_ana_setup_first = false;
985 } else {
986 do_ana_setup_first = true;
987 }
988
989 /* Unmask the reference clock from the oscillator. */
990 cprman_write(cprman, A2W_XOSC_CTRL,
991 cprman_read(cprman, A2W_XOSC_CTRL) |
992 data->reference_enable_mask);
993
994 if (do_ana_setup_first)
995 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
996
997 /* Set the PLL multiplier from the oscillator. */
998 cprman_write(cprman, data->frac_reg, fdiv);
999
1000 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
1001 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
1002 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
1003 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
1004 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
1005 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
1006
1007 if (!do_ana_setup_first)
1008 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
1009
1010 return 0;
1011}
1012
1013static const struct clk_ops bcm2835_pll_clk_ops = {
1014 .is_prepared = bcm2835_pll_is_on,
1015 .prepare = bcm2835_pll_on,
1016 .unprepare = bcm2835_pll_off,
1017 .recalc_rate = bcm2835_pll_get_rate,
1018 .set_rate = bcm2835_pll_set_rate,
1019 .round_rate = bcm2835_pll_round_rate,
1020};
1021
1022struct bcm2835_pll_divider {
1023 struct clk_divider div;
1024 struct bcm2835_cprman *cprman;
1025 const struct bcm2835_pll_divider_data *data;
1026};
1027
1028static struct bcm2835_pll_divider *
1029bcm2835_pll_divider_from_hw(struct clk_hw *hw)
1030{
1031 return container_of(hw, struct bcm2835_pll_divider, div.hw);
1032}
1033
1034static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
1035{
1036 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1037 struct bcm2835_cprman *cprman = divider->cprman;
1038 const struct bcm2835_pll_divider_data *data = divider->data;
1039
1040 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
1041}
1042
1043static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
1044 unsigned long rate,
1045 unsigned long *parent_rate)
1046{
1047 return clk_divider_ops.round_rate(hw, rate, parent_rate);
1048}
1049
1050static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
1051 unsigned long parent_rate)
1052{
1053 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1054 struct bcm2835_cprman *cprman = divider->cprman;
1055 const struct bcm2835_pll_divider_data *data = divider->data;
1056 u32 div = cprman_read(cprman, data->a2w_reg);
1057
1058 div &= (1 << A2W_PLL_DIV_BITS) - 1;
1059 if (div == 0)
1060 div = 256;
1061
1062 return parent_rate / div;
1063}
1064
1065static void bcm2835_pll_divider_off(struct clk_hw *hw)
1066{
1067 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1068 struct bcm2835_cprman *cprman = divider->cprman;
1069 const struct bcm2835_pll_divider_data *data = divider->data;
1070
1071 cprman_write(cprman, data->cm_reg,
1072 (cprman_read(cprman, data->cm_reg) &
1073 ~data->load_mask) | data->hold_mask);
1074 cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE);
1075}
1076
1077static int bcm2835_pll_divider_on(struct clk_hw *hw)
1078{
1079 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1080 struct bcm2835_cprman *cprman = divider->cprman;
1081 const struct bcm2835_pll_divider_data *data = divider->data;
1082
1083 cprman_write(cprman, data->a2w_reg,
1084 cprman_read(cprman, data->a2w_reg) &
1085 ~A2W_PLL_CHANNEL_DISABLE);
1086
1087 cprman_write(cprman, data->cm_reg,
1088 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
1089
1090 return 0;
1091}
1092
1093static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
1094 unsigned long rate,
1095 unsigned long parent_rate)
1096{
1097 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
1098 struct bcm2835_cprman *cprman = divider->cprman;
1099 const struct bcm2835_pll_divider_data *data = divider->data;
1100 u32 cm;
1101 int ret;
1102
1103 ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
1104 if (ret)
1105 return ret;
1106
1107 cm = cprman_read(cprman, data->cm_reg);
1108 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
1109 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
1110
1111 return 0;
1112}
1113
1114static const struct clk_ops bcm2835_pll_divider_clk_ops = {
1115 .is_prepared = bcm2835_pll_divider_is_on,
1116 .prepare = bcm2835_pll_divider_on,
1117 .unprepare = bcm2835_pll_divider_off,
1118 .recalc_rate = bcm2835_pll_divider_get_rate,
1119 .set_rate = bcm2835_pll_divider_set_rate,
1120 .round_rate = bcm2835_pll_divider_round_rate,
1121};
1122
1123/*
1124 * The CM dividers do fixed-point division, so we can't use the
1125 * generic integer divider code like the PLL dividers do (and we can't
1126 * fake it by having some fixed shifts preceding it in the clock tree,
1127 * because we'd run out of bits in a 32-bit unsigned long).
1128 */
1129struct bcm2835_clock {
1130 struct clk_hw hw;
1131 struct bcm2835_cprman *cprman;
1132 const struct bcm2835_clock_data *data;
1133};
1134
1135static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
1136{
1137 return container_of(hw, struct bcm2835_clock, hw);
1138}
1139
1140static int bcm2835_clock_is_on(struct clk_hw *hw)
1141{
1142 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1143 struct bcm2835_cprman *cprman = clock->cprman;
1144 const struct bcm2835_clock_data *data = clock->data;
1145
1146 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
1147}
1148
1149static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
1150 unsigned long rate,
1151 unsigned long parent_rate)
1152{
1153 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1154 const struct bcm2835_clock_data *data = clock->data;
1155 u32 unused_frac_mask = GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0);
1156 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
1157 u32 div;
1158
1159 do_div(temp, rate);
1160 div = temp;
1161
1162 /* Round and mask off the unused bits */
1163 if (unused_frac_mask != 0) {
1164 div += unused_frac_mask >> 1;
1165 div &= ~unused_frac_mask;
1166 }
1167
1168 /* Clamp to the limits. */
1169 div = max(div, unused_frac_mask + 1);
1170 div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
1171 CM_DIV_FRAC_BITS - data->frac_bits));
1172
1173 return div;
1174}
1175
1176static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
1177 unsigned long parent_rate,
1178 u32 div)
1179{
1180 const struct bcm2835_clock_data *data = clock->data;
1181 u64 temp;
1182
1183 /*
1184 * The divisor is a 12.12 fixed point field, but only some of
1185 * the bits are populated in any given clock.
1186 */
1187 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1188 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1189
1190 if (div == 0)
1191 return 0;
1192
1193 temp = (u64)parent_rate << data->frac_bits;
1194
1195 do_div(temp, div);
1196
1197 return temp;
1198}
1199
1200static long bcm2835_clock_round_rate(struct clk_hw *hw,
1201 unsigned long rate,
1202 unsigned long *parent_rate)
1203{
1204 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1205 u32 div = bcm2835_clock_choose_div(hw, rate, *parent_rate);
1206
1207 return bcm2835_clock_rate_from_divisor(clock, *parent_rate, div);
1208}
1209
1210static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1211 unsigned long parent_rate)
1212{
1213 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1214 struct bcm2835_cprman *cprman = clock->cprman;
1215 const struct bcm2835_clock_data *data = clock->data;
1216 u32 div = cprman_read(cprman, data->div_reg);
1217
1218 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1219}
1220
1221static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1222{
1223 struct bcm2835_cprman *cprman = clock->cprman;
1224 const struct bcm2835_clock_data *data = clock->data;
1225 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1226
1227 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1228 if (ktime_after(ktime_get(), timeout)) {
1229 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1230 clk_hw_get_name(&clock->hw));
1231 return;
1232 }
1233 cpu_relax();
1234 }
1235}
1236
1237static void bcm2835_clock_off(struct clk_hw *hw)
1238{
1239 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1240 struct bcm2835_cprman *cprman = clock->cprman;
1241 const struct bcm2835_clock_data *data = clock->data;
1242
1243 spin_lock(&cprman->regs_lock);
1244 cprman_write(cprman, data->ctl_reg,
1245 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1246 spin_unlock(&cprman->regs_lock);
1247
1248 /* BUSY will remain high until the divider completes its cycle. */
1249 bcm2835_clock_wait_busy(clock);
1250}
1251
1252static int bcm2835_clock_on(struct clk_hw *hw)
1253{
1254 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1255 struct bcm2835_cprman *cprman = clock->cprman;
1256 const struct bcm2835_clock_data *data = clock->data;
1257
1258 spin_lock(&cprman->regs_lock);
1259 cprman_write(cprman, data->ctl_reg,
1260 cprman_read(cprman, data->ctl_reg) |
1261 CM_ENABLE |
1262 CM_GATE);
1263 spin_unlock(&cprman->regs_lock);
1264
1265 return 0;
1266}
1267
1268static int bcm2835_clock_set_rate(struct clk_hw *hw,
1269 unsigned long rate, unsigned long parent_rate)
1270{
1271 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1272 struct bcm2835_cprman *cprman = clock->cprman;
1273 const struct bcm2835_clock_data *data = clock->data;
1274 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1275
1276 cprman_write(cprman, data->div_reg, div);
1277
1278 return 0;
1279}
1280
1281static const struct clk_ops bcm2835_clock_clk_ops = {
1282 .is_prepared = bcm2835_clock_is_on,
1283 .prepare = bcm2835_clock_on,
1284 .unprepare = bcm2835_clock_off,
1285 .recalc_rate = bcm2835_clock_get_rate,
1286 .set_rate = bcm2835_clock_set_rate,
1287 .round_rate = bcm2835_clock_round_rate,
1288};
1289
1290static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1291{
1292 return true;
1293}
1294
1295/*
1296 * The VPU clock can never be disabled (it doesn't have an ENABLE
1297 * bit), so it gets its own set of clock ops.
1298 */
1299static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1300 .is_prepared = bcm2835_vpu_clock_is_on,
1301 .recalc_rate = bcm2835_clock_get_rate,
1302 .set_rate = bcm2835_clock_set_rate,
1303 .round_rate = bcm2835_clock_round_rate,
1304};
1305
1306static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1307 const struct bcm2835_pll_data *data)
1308{
1309 struct bcm2835_pll *pll;
1310 struct clk_init_data init;
1311
1312 memset(&init, 0, sizeof(init));
1313
1314 /* All of the PLLs derive from the external oscillator. */
1315 init.parent_names = &cprman->osc_name;
1316 init.num_parents = 1;
1317 init.name = data->name;
1318 init.ops = &bcm2835_pll_clk_ops;
1319 init.flags = CLK_IGNORE_UNUSED;
1320
1321 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1322 if (!pll)
1323 return NULL;
1324
1325 pll->cprman = cprman;
1326 pll->data = data;
1327 pll->hw.init = &init;
1328
1329 return devm_clk_register(cprman->dev, &pll->hw);
1330}
1331
1332static struct clk *
1333bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1334 const struct bcm2835_pll_divider_data *data)
1335{
1336 struct bcm2835_pll_divider *divider;
1337 struct clk_init_data init;
1338 struct clk *clk;
1339 const char *divider_name;
1340
1341 if (data->fixed_divider != 1) {
1342 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1343 "%s_prediv", data->name);
1344 if (!divider_name)
1345 return NULL;
1346 } else {
1347 divider_name = data->name;
1348 }
1349
1350 memset(&init, 0, sizeof(init));
1351
1352 init.parent_names = &data->source_pll->name;
1353 init.num_parents = 1;
1354 init.name = divider_name;
1355 init.ops = &bcm2835_pll_divider_clk_ops;
1356 init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1357
1358 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1359 if (!divider)
1360 return NULL;
1361
1362 divider->div.reg = cprman->regs + data->a2w_reg;
1363 divider->div.shift = A2W_PLL_DIV_SHIFT;
1364 divider->div.width = A2W_PLL_DIV_BITS;
1365 divider->div.flags = 0;
1366 divider->div.lock = &cprman->regs_lock;
1367 divider->div.hw.init = &init;
1368 divider->div.table = NULL;
1369
1370 divider->cprman = cprman;
1371 divider->data = data;
1372
1373 clk = devm_clk_register(cprman->dev, &divider->div.hw);
1374 if (IS_ERR(clk))
1375 return clk;
1376
1377 /*
1378 * PLLH's channels have a fixed divide by 10 afterwards, which
1379 * is what our consumers are actually using.
1380 */
1381 if (data->fixed_divider != 1) {
1382 return clk_register_fixed_factor(cprman->dev, data->name,
1383 divider_name,
1384 CLK_SET_RATE_PARENT,
1385 1,
1386 data->fixed_divider);
1387 }
1388
1389 return clk;
1390}
1391
1392static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1393 const struct bcm2835_clock_data *data)
1394{
1395 struct bcm2835_clock *clock;
1396 struct clk_init_data init;
1397 const char *parent;
1398
1399 /*
1400 * Most of the clock generators have a mux field, so we
1401 * instantiate a generic mux as our parent to handle it.
1402 */
1403 if (data->num_mux_parents) {
1404 const char *parents[1 << CM_SRC_BITS];
1405 int i;
1406
1407 parent = devm_kasprintf(cprman->dev, GFP_KERNEL,
1408 "mux_%s", data->name);
1409 if (!parent)
1410 return NULL;
1411
1412 /*
1413 * Replace our "xosc" references with the oscillator's
1414 * actual name.
1415 */
1416 for (i = 0; i < data->num_mux_parents; i++) {
1417 if (strcmp(data->parents[i], "xosc") == 0)
1418 parents[i] = cprman->osc_name;
1419 else
1420 parents[i] = data->parents[i];
1421 }
1422
1423 clk_register_mux(cprman->dev, parent,
1424 parents, data->num_mux_parents,
1425 CLK_SET_RATE_PARENT,
1426 cprman->regs + data->ctl_reg,
1427 CM_SRC_SHIFT, CM_SRC_BITS,
1428 0, &cprman->regs_lock);
1429 } else {
1430 parent = data->parents[0];
1431 }
1432
1433 memset(&init, 0, sizeof(init));
1434 init.parent_names = &parent;
1435 init.num_parents = 1;
1436 init.name = data->name;
1437 init.flags = CLK_IGNORE_UNUSED;
1438
1439 if (data->is_vpu_clock) {
1440 init.ops = &bcm2835_vpu_clock_clk_ops;
1441 } else {
1442 init.ops = &bcm2835_clock_clk_ops;
1443 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1444 }
1445
1446 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1447 if (!clock)
1448 return NULL;
1449
1450 clock->cprman = cprman;
1451 clock->data = data;
1452 clock->hw.init = &init;
1453
1454 return devm_clk_register(cprman->dev, &clock->hw);
1455}
1456
1457static int bcm2835_clk_probe(struct platform_device *pdev)
1458{
1459 struct device *dev = &pdev->dev;
1460 struct clk **clks;
1461 struct bcm2835_cprman *cprman;
1462 struct resource *res;
1463
1464 cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL);
1465 if (!cprman)
1466 return -ENOMEM;
1467
1468 spin_lock_init(&cprman->regs_lock);
1469 cprman->dev = dev;
1470 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1471 cprman->regs = devm_ioremap_resource(dev, res);
1472 if (IS_ERR(cprman->regs))
1473 return PTR_ERR(cprman->regs);
1474
1475 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1476 if (!cprman->osc_name)
1477 return -ENODEV;
1478
1479 platform_set_drvdata(pdev, cprman);
1480
1481 cprman->onecell.clk_num = BCM2835_CLOCK_COUNT;
1482 cprman->onecell.clks = cprman->clks;
1483 clks = cprman->clks;
1484
1485 clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data);
1486 clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data);
1487 clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data);
1488 clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data);
1489 clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data);
1490
1491 clks[BCM2835_PLLA_CORE] =
1492 bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data);
1493 clks[BCM2835_PLLA_PER] =
1494 bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data);
1495 clks[BCM2835_PLLC_CORE0] =
1496 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data);
1497 clks[BCM2835_PLLC_CORE1] =
1498 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data);
1499 clks[BCM2835_PLLC_CORE2] =
1500 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data);
1501 clks[BCM2835_PLLC_PER] =
1502 bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data);
1503 clks[BCM2835_PLLD_CORE] =
1504 bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data);
1505 clks[BCM2835_PLLD_PER] =
1506 bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data);
1507 clks[BCM2835_PLLH_RCAL] =
1508 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data);
1509 clks[BCM2835_PLLH_AUX] =
1510 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data);
1511 clks[BCM2835_PLLH_PIX] =
1512 bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data);
1513
1514 clks[BCM2835_CLOCK_TIMER] =
1515 bcm2835_register_clock(cprman, &bcm2835_clock_timer_data);
1516 clks[BCM2835_CLOCK_OTP] =
1517 bcm2835_register_clock(cprman, &bcm2835_clock_otp_data);
1518 clks[BCM2835_CLOCK_TSENS] =
1519 bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data);
1520 clks[BCM2835_CLOCK_VPU] =
1521 bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data);
1522 clks[BCM2835_CLOCK_V3D] =
1523 bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
1524 clks[BCM2835_CLOCK_ISP] =
1525 bcm2835_register_clock(cprman, &bcm2835_clock_isp_data);
1526 clks[BCM2835_CLOCK_H264] =
1527 bcm2835_register_clock(cprman, &bcm2835_clock_h264_data);
1528 clks[BCM2835_CLOCK_V3D] =
1529 bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data);
1530 clks[BCM2835_CLOCK_SDRAM] =
1531 bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data);
1532 clks[BCM2835_CLOCK_UART] =
1533 bcm2835_register_clock(cprman, &bcm2835_clock_uart_data);
1534 clks[BCM2835_CLOCK_VEC] =
1535 bcm2835_register_clock(cprman, &bcm2835_clock_vec_data);
1536 clks[BCM2835_CLOCK_HSM] =
1537 bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data);
1538 clks[BCM2835_CLOCK_EMMC] =
1539 bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data);
1540
1541 /*
1542 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1543 * you have the debug bit set in the power manager, which we
1544 * don't bother exposing) are individual gates off of the
1545 * non-stop vpu clock.
1546 */
1547 clks[BCM2835_CLOCK_PERI_IMAGE] =
1548 clk_register_gate(dev, "peri_image", "vpu",
1549 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1550 cprman->regs + CM_PERIICTL, CM_GATE_BIT,
1551 0, &cprman->regs_lock);
1552
1553 return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get,
1554 &cprman->onecell);
1555}
1556
1557static const struct of_device_id bcm2835_clk_of_match[] = {
1558 { .compatible = "brcm,bcm2835-cprman", },
1559 {}
1560};
1561MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1562
1563static struct platform_driver bcm2835_clk_driver = {
1564 .driver = {
1565 .name = "bcm2835-clk",
1566 .of_match_table = bcm2835_clk_of_match,
1567 },
1568 .probe = bcm2835_clk_probe,
1569};
1570
1571builtin_platform_driver(bcm2835_clk_driver);
1572
1573MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1574MODULE_DESCRIPTION("BCM2835 clock driver");
1575MODULE_LICENSE("GPL v2");