blob: 02d3462f4d3e99edb907ddaee16ed75300e827b0 [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Author: Adrian Hunter
20 */
21
22#include "ubifs.h"
23
24/*
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
33 *
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
39 *
40 * The number of orphans that can fit in a LEB is:
41 *
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
43 *
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
45 *
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orph nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
53 */
54
55#ifdef CONFIG_UBIFS_FS_DEBUG
56static int dbg_check_orphans(struct ubifs_info *c);
57#else
58#define dbg_check_orphans(c) 0
59#endif
60
61/**
62 * ubifs_add_orphan - add an orphan.
63 * @c: UBIFS file-system description object
64 * @inum: orphan inode number
65 *
66 * Add an orphan. This function is called when an inodes link count drops to
67 * zero.
68 */
69int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
70{
71 struct ubifs_orphan *orphan, *o;
72 struct rb_node **p, *parent = NULL;
73
74 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
75 if (!orphan)
76 return -ENOMEM;
77 orphan->inum = inum;
78 orphan->new = 1;
79
80 spin_lock(&c->orphan_lock);
81 if (c->tot_orphans >= c->max_orphans) {
82 spin_unlock(&c->orphan_lock);
83 kfree(orphan);
84 return -ENFILE;
85 }
86 p = &c->orph_tree.rb_node;
87 while (*p) {
88 parent = *p;
89 o = rb_entry(parent, struct ubifs_orphan, rb);
90 if (inum < o->inum)
91 p = &(*p)->rb_left;
92 else if (inum > o->inum)
93 p = &(*p)->rb_right;
94 else {
95 dbg_err("orphaned twice");
96 spin_unlock(&c->orphan_lock);
97 kfree(orphan);
98 return 0;
99 }
100 }
101 c->tot_orphans += 1;
102 c->new_orphans += 1;
103 rb_link_node(&orphan->rb, parent, p);
104 rb_insert_color(&orphan->rb, &c->orph_tree);
105 list_add_tail(&orphan->list, &c->orph_list);
106 list_add_tail(&orphan->new_list, &c->orph_new);
107 spin_unlock(&c->orphan_lock);
108 dbg_gen("ino %lu", inum);
109 return 0;
110}
111
112/**
113 * ubifs_delete_orphan - delete an orphan.
114 * @c: UBIFS file-system description object
115 * @inum: orphan inode number
116 *
117 * Delete an orphan. This function is called when an inode is deleted.
118 */
119void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
120{
121 struct ubifs_orphan *o;
122 struct rb_node *p;
123
124 spin_lock(&c->orphan_lock);
125 p = c->orph_tree.rb_node;
126 while (p) {
127 o = rb_entry(p, struct ubifs_orphan, rb);
128 if (inum < o->inum)
129 p = p->rb_left;
130 else if (inum > o->inum)
131 p = p->rb_right;
132 else {
133 if (o->dnext) {
134 spin_unlock(&c->orphan_lock);
135 dbg_gen("deleted twice ino %lu", inum);
136 return;
137 }
138 if (o->cnext) {
139 o->dnext = c->orph_dnext;
140 c->orph_dnext = o;
141 spin_unlock(&c->orphan_lock);
142 dbg_gen("delete later ino %lu", inum);
143 return;
144 }
145 rb_erase(p, &c->orph_tree);
146 list_del(&o->list);
147 c->tot_orphans -= 1;
148 if (o->new) {
149 list_del(&o->new_list);
150 c->new_orphans -= 1;
151 }
152 spin_unlock(&c->orphan_lock);
153 kfree(o);
154 dbg_gen("inum %lu", inum);
155 return;
156 }
157 }
158 spin_unlock(&c->orphan_lock);
159 dbg_err("missing orphan ino %lu", inum);
160 dbg_dump_stack();
161}
162
163/**
164 * ubifs_orphan_start_commit - start commit of orphans.
165 * @c: UBIFS file-system description object
166 *
167 * Start commit of orphans.
168 */
169int ubifs_orphan_start_commit(struct ubifs_info *c)
170{
171 struct ubifs_orphan *orphan, **last;
172
173 spin_lock(&c->orphan_lock);
174 last = &c->orph_cnext;
175 list_for_each_entry(orphan, &c->orph_new, new_list) {
176 ubifs_assert(orphan->new);
177 orphan->new = 0;
178 *last = orphan;
179 last = &orphan->cnext;
180 }
181 *last = orphan->cnext;
182 c->cmt_orphans = c->new_orphans;
183 c->new_orphans = 0;
184 dbg_cmt("%d orphans to commit", c->cmt_orphans);
185 INIT_LIST_HEAD(&c->orph_new);
186 if (c->tot_orphans == 0)
187 c->no_orphs = 1;
188 else
189 c->no_orphs = 0;
190 spin_unlock(&c->orphan_lock);
191 return 0;
192}
193
194/**
195 * avail_orphs - calculate available space.
196 * @c: UBIFS file-system description object
197 *
198 * This function returns the number of orphans that can be written in the
199 * available space.
200 */
201static int avail_orphs(struct ubifs_info *c)
202{
203 int avail_lebs, avail, gap;
204
205 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
206 avail = avail_lebs *
207 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
208 gap = c->leb_size - c->ohead_offs;
209 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
210 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
211 return avail;
212}
213
214/**
215 * tot_avail_orphs - calculate total space.
216 * @c: UBIFS file-system description object
217 *
218 * This function returns the number of orphans that can be written in half
219 * the total space. That leaves half the space for adding new orphans.
220 */
221static int tot_avail_orphs(struct ubifs_info *c)
222{
223 int avail_lebs, avail;
224
225 avail_lebs = c->orph_lebs;
226 avail = avail_lebs *
227 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
228 return avail / 2;
229}
230
231/**
232 * do_write_orph_node - write a node
233 * @c: UBIFS file-system description object
234 * @len: length of node
235 * @atomic: write atomically
236 *
237 * This function writes a node to the orphan head from the orphan buffer. If
238 * %atomic is not zero, then the write is done atomically. On success, %0 is
239 * returned, otherwise a negative error code is returned.
240 */
241static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
242{
243 int err = 0;
244
245 if (atomic) {
246 ubifs_assert(c->ohead_offs == 0);
247 ubifs_prepare_node(c, c->orph_buf, len, 1);
248 len = ALIGN(len, c->min_io_size);
249 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
250 UBI_SHORTTERM);
251 } else {
252 if (c->ohead_offs == 0) {
253 /* Ensure LEB has been unmapped */
254 err = ubifs_leb_unmap(c, c->ohead_lnum);
255 if (err)
256 return err;
257 }
258 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
259 c->ohead_offs, UBI_SHORTTERM);
260 }
261 return err;
262}
263
264/**
265 * write_orph_node - write an orph node
266 * @c: UBIFS file-system description object
267 * @atomic: write atomically
268 *
269 * This function builds an orph node from the cnext list and writes it to the
270 * orphan head. On success, %0 is returned, otherwise a negative error code
271 * is returned.
272 */
273static int write_orph_node(struct ubifs_info *c, int atomic)
274{
275 struct ubifs_orphan *orphan, *cnext;
276 struct ubifs_orph_node *orph;
277 int gap, err, len, cnt, i;
278
279 ubifs_assert(c->cmt_orphans > 0);
280 gap = c->leb_size - c->ohead_offs;
281 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
282 c->ohead_lnum += 1;
283 c->ohead_offs = 0;
284 gap = c->leb_size;
285 if (c->ohead_lnum > c->orph_last) {
286 /*
287 * We limit the number of orphans so that this should
288 * never happen.
289 */
290 ubifs_err("out of space in orphan area");
291 return -EINVAL;
292 }
293 }
294 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
295 if (cnt > c->cmt_orphans)
296 cnt = c->cmt_orphans;
297 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
298 ubifs_assert(c->orph_buf);
299 orph = c->orph_buf;
300 orph->ch.node_type = UBIFS_ORPH_NODE;
301 spin_lock(&c->orphan_lock);
302 cnext = c->orph_cnext;
303 for (i = 0; i < cnt; i++) {
304 orphan = cnext;
305 orph->inos[i] = cpu_to_le64(orphan->inum);
306 cnext = orphan->cnext;
307 orphan->cnext = NULL;
308 }
309 c->orph_cnext = cnext;
310 c->cmt_orphans -= cnt;
311 spin_unlock(&c->orphan_lock);
312 if (c->cmt_orphans)
Artem Bityutskiy014eb042008-07-21 17:14:29 +0300313 orph->cmt_no = cpu_to_le64(c->cmt_no);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300314 else
315 /* Mark the last node of the commit */
Artem Bityutskiy014eb042008-07-21 17:14:29 +0300316 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300317 ubifs_assert(c->ohead_offs + len <= c->leb_size);
318 ubifs_assert(c->ohead_lnum >= c->orph_first);
319 ubifs_assert(c->ohead_lnum <= c->orph_last);
320 err = do_write_orph_node(c, len, atomic);
321 c->ohead_offs += ALIGN(len, c->min_io_size);
322 c->ohead_offs = ALIGN(c->ohead_offs, 8);
323 return err;
324}
325
326/**
327 * write_orph_nodes - write orph nodes until there are no more to commit
328 * @c: UBIFS file-system description object
329 * @atomic: write atomically
330 *
331 * This function writes orph nodes for all the orphans to commit. On success,
332 * %0 is returned, otherwise a negative error code is returned.
333 */
334static int write_orph_nodes(struct ubifs_info *c, int atomic)
335{
336 int err;
337
338 while (c->cmt_orphans > 0) {
339 err = write_orph_node(c, atomic);
340 if (err)
341 return err;
342 }
343 if (atomic) {
344 int lnum;
345
346 /* Unmap any unused LEBs after consolidation */
347 lnum = c->ohead_lnum + 1;
348 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
349 err = ubifs_leb_unmap(c, lnum);
350 if (err)
351 return err;
352 }
353 }
354 return 0;
355}
356
357/**
358 * consolidate - consolidate the orphan area.
359 * @c: UBIFS file-system description object
360 *
361 * This function enables consolidation by putting all the orphans into the list
362 * to commit. The list is in the order that the orphans were added, and the
363 * LEBs are written atomically in order, so at no time can orphans be lost by
364 * an unclean unmount.
365 *
366 * This function returns %0 on success and a negative error code on failure.
367 */
368static int consolidate(struct ubifs_info *c)
369{
370 int tot_avail = tot_avail_orphs(c), err = 0;
371
372 spin_lock(&c->orphan_lock);
373 dbg_cmt("there is space for %d orphans and there are %d",
374 tot_avail, c->tot_orphans);
375 if (c->tot_orphans - c->new_orphans <= tot_avail) {
376 struct ubifs_orphan *orphan, **last;
377 int cnt = 0;
378
379 /* Change the cnext list to include all non-new orphans */
380 last = &c->orph_cnext;
381 list_for_each_entry(orphan, &c->orph_list, list) {
382 if (orphan->new)
383 continue;
384 *last = orphan;
385 last = &orphan->cnext;
386 cnt += 1;
387 }
388 *last = orphan->cnext;
389 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
390 c->cmt_orphans = cnt;
391 c->ohead_lnum = c->orph_first;
392 c->ohead_offs = 0;
393 } else {
394 /*
395 * We limit the number of orphans so that this should
396 * never happen.
397 */
398 ubifs_err("out of space in orphan area");
399 err = -EINVAL;
400 }
401 spin_unlock(&c->orphan_lock);
402 return err;
403}
404
405/**
406 * commit_orphans - commit orphans.
407 * @c: UBIFS file-system description object
408 *
409 * This function commits orphans to flash. On success, %0 is returned,
410 * otherwise a negative error code is returned.
411 */
412static int commit_orphans(struct ubifs_info *c)
413{
414 int avail, atomic = 0, err;
415
416 ubifs_assert(c->cmt_orphans > 0);
417 avail = avail_orphs(c);
418 if (avail < c->cmt_orphans) {
419 /* Not enough space to write new orphans, so consolidate */
420 err = consolidate(c);
421 if (err)
422 return err;
423 atomic = 1;
424 }
425 err = write_orph_nodes(c, atomic);
426 return err;
427}
428
429/**
430 * erase_deleted - erase the orphans marked for deletion.
431 * @c: UBIFS file-system description object
432 *
433 * During commit, the orphans being committed cannot be deleted, so they are
434 * marked for deletion and deleted by this function. Also, the recovery
435 * adds killed orphans to the deletion list, and therefore they are deleted
436 * here too.
437 */
438static void erase_deleted(struct ubifs_info *c)
439{
440 struct ubifs_orphan *orphan, *dnext;
441
442 spin_lock(&c->orphan_lock);
443 dnext = c->orph_dnext;
444 while (dnext) {
445 orphan = dnext;
446 dnext = orphan->dnext;
447 ubifs_assert(!orphan->new);
448 rb_erase(&orphan->rb, &c->orph_tree);
449 list_del(&orphan->list);
450 c->tot_orphans -= 1;
451 dbg_gen("deleting orphan ino %lu", orphan->inum);
452 kfree(orphan);
453 }
454 c->orph_dnext = NULL;
455 spin_unlock(&c->orphan_lock);
456}
457
458/**
459 * ubifs_orphan_end_commit - end commit of orphans.
460 * @c: UBIFS file-system description object
461 *
462 * End commit of orphans.
463 */
464int ubifs_orphan_end_commit(struct ubifs_info *c)
465{
466 int err;
467
468 if (c->cmt_orphans != 0) {
469 err = commit_orphans(c);
470 if (err)
471 return err;
472 }
473 erase_deleted(c);
474 err = dbg_check_orphans(c);
475 return err;
476}
477
478/**
479 * clear_orphans - erase all LEBs used for orphans.
480 * @c: UBIFS file-system description object
481 *
482 * If recovery is not required, then the orphans from the previous session
483 * are not needed. This function locates the LEBs used to record
484 * orphans, and un-maps them.
485 */
486static int clear_orphans(struct ubifs_info *c)
487{
488 int lnum, err;
489
490 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
491 err = ubifs_leb_unmap(c, lnum);
492 if (err)
493 return err;
494 }
495 c->ohead_lnum = c->orph_first;
496 c->ohead_offs = 0;
497 return 0;
498}
499
500/**
501 * insert_dead_orphan - insert an orphan.
502 * @c: UBIFS file-system description object
503 * @inum: orphan inode number
504 *
505 * This function is a helper to the 'do_kill_orphans()' function. The orphan
506 * must be kept until the next commit, so it is added to the rb-tree and the
507 * deletion list.
508 */
509static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
510{
511 struct ubifs_orphan *orphan, *o;
512 struct rb_node **p, *parent = NULL;
513
514 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
515 if (!orphan)
516 return -ENOMEM;
517 orphan->inum = inum;
518
519 p = &c->orph_tree.rb_node;
520 while (*p) {
521 parent = *p;
522 o = rb_entry(parent, struct ubifs_orphan, rb);
523 if (inum < o->inum)
524 p = &(*p)->rb_left;
525 else if (inum > o->inum)
526 p = &(*p)->rb_right;
527 else {
528 /* Already added - no problem */
529 kfree(orphan);
530 return 0;
531 }
532 }
533 c->tot_orphans += 1;
534 rb_link_node(&orphan->rb, parent, p);
535 rb_insert_color(&orphan->rb, &c->orph_tree);
536 list_add_tail(&orphan->list, &c->orph_list);
537 orphan->dnext = c->orph_dnext;
538 c->orph_dnext = orphan;
539 dbg_mnt("ino %lu, new %d, tot %d",
540 inum, c->new_orphans, c->tot_orphans);
541 return 0;
542}
543
544/**
545 * do_kill_orphans - remove orphan inodes from the index.
546 * @c: UBIFS file-system description object
547 * @sleb: scanned LEB
548 * @last_cmt_no: cmt_no of last orph node read is passed and returned here
549 * @outofdate: whether the LEB is out of date is returned here
550 * @last_flagged: whether the end orph node is encountered
551 *
552 * This function is a helper to the 'kill_orphans()' function. It goes through
553 * every orphan node in a LEB and for every inode number recorded, removes
554 * all keys for that inode from the TNC.
555 */
556static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
557 unsigned long long *last_cmt_no, int *outofdate,
558 int *last_flagged)
559{
560 struct ubifs_scan_node *snod;
561 struct ubifs_orph_node *orph;
562 unsigned long long cmt_no;
563 ino_t inum;
564 int i, n, err, first = 1;
565
566 list_for_each_entry(snod, &sleb->nodes, list) {
567 if (snod->type != UBIFS_ORPH_NODE) {
568 ubifs_err("invalid node type %d in orphan area at "
569 "%d:%d", snod->type, sleb->lnum, snod->offs);
570 dbg_dump_node(c, snod->node);
571 return -EINVAL;
572 }
573
574 orph = snod->node;
575
576 /* Check commit number */
577 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
578 /*
579 * The commit number on the master node may be less, because
580 * of a failed commit. If there are several failed commits in a
581 * row, the commit number written on orph nodes will continue to
582 * increase (because the commit number is adjusted here) even
583 * though the commit number on the master node stays the same
584 * because the master node has not been re-written.
585 */
586 if (cmt_no > c->cmt_no)
587 c->cmt_no = cmt_no;
588 if (cmt_no < *last_cmt_no && *last_flagged) {
589 /*
590 * The last orph node had a higher commit number and was
591 * flagged as the last written for that commit number.
592 * That makes this orph node, out of date.
593 */
594 if (!first) {
595 ubifs_err("out of order commit number %llu in "
596 "orphan node at %d:%d",
597 cmt_no, sleb->lnum, snod->offs);
598 dbg_dump_node(c, snod->node);
599 return -EINVAL;
600 }
601 dbg_rcvry("out of date LEB %d", sleb->lnum);
602 *outofdate = 1;
603 return 0;
604 }
605
606 if (first)
607 first = 0;
608
609 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
610 for (i = 0; i < n; i++) {
611 inum = le64_to_cpu(orph->inos[i]);
612 dbg_rcvry("deleting orphaned inode %lu", inum);
613 err = ubifs_tnc_remove_ino(c, inum);
614 if (err)
615 return err;
616 err = insert_dead_orphan(c, inum);
617 if (err)
618 return err;
619 }
620
621 *last_cmt_no = cmt_no;
622 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
623 dbg_rcvry("last orph node for commit %llu at %d:%d",
624 cmt_no, sleb->lnum, snod->offs);
625 *last_flagged = 1;
626 } else
627 *last_flagged = 0;
628 }
629
630 return 0;
631}
632
633/**
634 * kill_orphans - remove all orphan inodes from the index.
635 * @c: UBIFS file-system description object
636 *
637 * If recovery is required, then orphan inodes recorded during the previous
638 * session (which ended with an unclean unmount) must be deleted from the index.
639 * This is done by updating the TNC, but since the index is not updated until
640 * the next commit, the LEBs where the orphan information is recorded are not
641 * erased until the next commit.
642 */
643static int kill_orphans(struct ubifs_info *c)
644{
645 unsigned long long last_cmt_no = 0;
646 int lnum, err = 0, outofdate = 0, last_flagged = 0;
647
648 c->ohead_lnum = c->orph_first;
649 c->ohead_offs = 0;
650 /* Check no-orphans flag and skip this if no orphans */
651 if (c->no_orphs) {
652 dbg_rcvry("no orphans");
653 return 0;
654 }
655 /*
656 * Orph nodes always start at c->orph_first and are written to each
657 * successive LEB in turn. Generally unused LEBs will have been unmapped
658 * but may contain out of date orph nodes if the unmap didn't go
659 * through. In addition, the last orph node written for each commit is
660 * marked (top bit of orph->cmt_no is set to 1). It is possible that
661 * there are orph nodes from the next commit (i.e. the commit did not
662 * complete successfully). In that case, no orphans will have been lost
663 * due to the way that orphans are written, and any orphans added will
664 * be valid orphans anyway and so can be deleted.
665 */
666 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
667 struct ubifs_scan_leb *sleb;
668
669 dbg_rcvry("LEB %d", lnum);
670 sleb = ubifs_scan(c, lnum, 0, c->sbuf);
671 if (IS_ERR(sleb)) {
672 sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0);
673 if (IS_ERR(sleb)) {
674 err = PTR_ERR(sleb);
675 break;
676 }
677 }
678 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
679 &last_flagged);
680 if (err || outofdate) {
681 ubifs_scan_destroy(sleb);
682 break;
683 }
684 if (sleb->endpt) {
685 c->ohead_lnum = lnum;
686 c->ohead_offs = sleb->endpt;
687 }
688 ubifs_scan_destroy(sleb);
689 }
690 return err;
691}
692
693/**
694 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
695 * @c: UBIFS file-system description object
696 * @unclean: indicates recovery from unclean unmount
697 * @read_only: indicates read only mount
698 *
699 * This function is called when mounting to erase orphans from the previous
700 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
701 * orphans are deleted.
702 */
703int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
704{
705 int err = 0;
706
707 c->max_orphans = tot_avail_orphs(c);
708
709 if (!read_only) {
710 c->orph_buf = vmalloc(c->leb_size);
711 if (!c->orph_buf)
712 return -ENOMEM;
713 }
714
715 if (unclean)
716 err = kill_orphans(c);
717 else if (!read_only)
718 err = clear_orphans(c);
719
720 return err;
721}
722
723#ifdef CONFIG_UBIFS_FS_DEBUG
724
725struct check_orphan {
726 struct rb_node rb;
727 ino_t inum;
728};
729
730struct check_info {
731 unsigned long last_ino;
732 unsigned long tot_inos;
733 unsigned long missing;
734 unsigned long long leaf_cnt;
735 struct ubifs_ino_node *node;
736 struct rb_root root;
737};
738
739static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
740{
741 struct ubifs_orphan *o;
742 struct rb_node *p;
743
744 spin_lock(&c->orphan_lock);
745 p = c->orph_tree.rb_node;
746 while (p) {
747 o = rb_entry(p, struct ubifs_orphan, rb);
748 if (inum < o->inum)
749 p = p->rb_left;
750 else if (inum > o->inum)
751 p = p->rb_right;
752 else {
753 spin_unlock(&c->orphan_lock);
754 return 1;
755 }
756 }
757 spin_unlock(&c->orphan_lock);
758 return 0;
759}
760
761static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
762{
763 struct check_orphan *orphan, *o;
764 struct rb_node **p, *parent = NULL;
765
766 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
767 if (!orphan)
768 return -ENOMEM;
769 orphan->inum = inum;
770
771 p = &root->rb_node;
772 while (*p) {
773 parent = *p;
774 o = rb_entry(parent, struct check_orphan, rb);
775 if (inum < o->inum)
776 p = &(*p)->rb_left;
777 else if (inum > o->inum)
778 p = &(*p)->rb_right;
779 else {
780 kfree(orphan);
781 return 0;
782 }
783 }
784 rb_link_node(&orphan->rb, parent, p);
785 rb_insert_color(&orphan->rb, root);
786 return 0;
787}
788
789static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
790{
791 struct check_orphan *o;
792 struct rb_node *p;
793
794 p = root->rb_node;
795 while (p) {
796 o = rb_entry(p, struct check_orphan, rb);
797 if (inum < o->inum)
798 p = p->rb_left;
799 else if (inum > o->inum)
800 p = p->rb_right;
801 else
802 return 1;
803 }
804 return 0;
805}
806
807static void dbg_free_check_tree(struct rb_root *root)
808{
809 struct rb_node *this = root->rb_node;
810 struct check_orphan *o;
811
812 while (this) {
813 if (this->rb_left) {
814 this = this->rb_left;
815 continue;
816 } else if (this->rb_right) {
817 this = this->rb_right;
818 continue;
819 }
820 o = rb_entry(this, struct check_orphan, rb);
821 this = rb_parent(this);
822 if (this) {
823 if (this->rb_left == &o->rb)
824 this->rb_left = NULL;
825 else
826 this->rb_right = NULL;
827 }
828 kfree(o);
829 }
830}
831
832static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
833 void *priv)
834{
835 struct check_info *ci = priv;
836 ino_t inum;
837 int err;
838
839 inum = key_inum(c, &zbr->key);
840 if (inum != ci->last_ino) {
841 /* Lowest node type is the inode node, so it comes first */
842 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
843 ubifs_err("found orphan node ino %lu, type %d", inum,
844 key_type(c, &zbr->key));
845 ci->last_ino = inum;
846 ci->tot_inos += 1;
847 err = ubifs_tnc_read_node(c, zbr, ci->node);
848 if (err) {
849 ubifs_err("node read failed, error %d", err);
850 return err;
851 }
852 if (ci->node->nlink == 0)
853 /* Must be recorded as an orphan */
854 if (!dbg_find_check_orphan(&ci->root, inum) &&
855 !dbg_find_orphan(c, inum)) {
856 ubifs_err("missing orphan, ino %lu", inum);
857 ci->missing += 1;
858 }
859 }
860 ci->leaf_cnt += 1;
861 return 0;
862}
863
864static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
865{
866 struct ubifs_scan_node *snod;
867 struct ubifs_orph_node *orph;
868 ino_t inum;
869 int i, n, err;
870
871 list_for_each_entry(snod, &sleb->nodes, list) {
872 cond_resched();
873 if (snod->type != UBIFS_ORPH_NODE)
874 continue;
875 orph = snod->node;
876 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
877 for (i = 0; i < n; i++) {
878 inum = le64_to_cpu(orph->inos[i]);
879 err = dbg_ins_check_orphan(&ci->root, inum);
880 if (err)
881 return err;
882 }
883 }
884 return 0;
885}
886
887static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
888{
889 int lnum, err = 0;
890
891 /* Check no-orphans flag and skip this if no orphans */
892 if (c->no_orphs)
893 return 0;
894
895 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
896 struct ubifs_scan_leb *sleb;
897
898 sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
899 if (IS_ERR(sleb)) {
900 err = PTR_ERR(sleb);
901 break;
902 }
903
904 err = dbg_read_orphans(ci, sleb);
905 ubifs_scan_destroy(sleb);
906 if (err)
907 break;
908 }
909
910 return err;
911}
912
913static int dbg_check_orphans(struct ubifs_info *c)
914{
915 struct check_info ci;
916 int err;
917
918 if (!(ubifs_chk_flags & UBIFS_CHK_ORPH))
919 return 0;
920
921 ci.last_ino = 0;
922 ci.tot_inos = 0;
923 ci.missing = 0;
924 ci.leaf_cnt = 0;
925 ci.root = RB_ROOT;
926 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
927 if (!ci.node) {
928 ubifs_err("out of memory");
929 return -ENOMEM;
930 }
931
932 err = dbg_scan_orphans(c, &ci);
933 if (err)
934 goto out;
935
936 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
937 if (err) {
938 ubifs_err("cannot scan TNC, error %d", err);
939 goto out;
940 }
941
942 if (ci.missing) {
943 ubifs_err("%lu missing orphan(s)", ci.missing);
944 err = -EINVAL;
945 goto out;
946 }
947
948 dbg_cmt("last inode number is %lu", ci.last_ino);
949 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
950 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
951
952out:
953 dbg_free_check_tree(&ci.root);
954 kfree(ci.node);
955 return err;
956}
957
958#endif /* CONFIG_UBIFS_FS_DEBUG */