Ryusuke Konishi | 0bd49f9 | 2009-04-06 19:01:27 -0700 | [diff] [blame] | 1 | /* |
| 2 | * page.c - buffer/page management specific to NILFS |
| 3 | * |
| 4 | * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software |
| 18 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 19 | * |
| 20 | * Written by Ryusuke Konishi <ryusuke@osrg.net>, |
| 21 | * Seiji Kihara <kihara@osrg.net>. |
| 22 | */ |
| 23 | |
| 24 | #include <linux/pagemap.h> |
| 25 | #include <linux/writeback.h> |
| 26 | #include <linux/swap.h> |
| 27 | #include <linux/bitops.h> |
| 28 | #include <linux/page-flags.h> |
| 29 | #include <linux/list.h> |
| 30 | #include <linux/highmem.h> |
| 31 | #include <linux/pagevec.h> |
Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 32 | #include <linux/gfp.h> |
Ryusuke Konishi | 0bd49f9 | 2009-04-06 19:01:27 -0700 | [diff] [blame] | 33 | #include "nilfs.h" |
| 34 | #include "page.h" |
| 35 | #include "mdt.h" |
| 36 | |
| 37 | |
| 38 | #define NILFS_BUFFER_INHERENT_BITS \ |
| 39 | ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \ |
| 40 | (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated)) |
| 41 | |
| 42 | static struct buffer_head * |
| 43 | __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, |
| 44 | int blkbits, unsigned long b_state) |
| 45 | |
| 46 | { |
| 47 | unsigned long first_block; |
| 48 | struct buffer_head *bh; |
| 49 | |
| 50 | if (!page_has_buffers(page)) |
| 51 | create_empty_buffers(page, 1 << blkbits, b_state); |
| 52 | |
| 53 | first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits); |
| 54 | bh = nilfs_page_get_nth_block(page, block - first_block); |
| 55 | |
| 56 | touch_buffer(bh); |
| 57 | wait_on_buffer(bh); |
| 58 | return bh; |
| 59 | } |
| 60 | |
| 61 | /* |
| 62 | * Since the page cache of B-tree node pages or data page cache of pseudo |
| 63 | * inodes does not have a valid mapping->host pointer, calling |
| 64 | * mark_buffer_dirty() for their buffers causes a NULL pointer dereference; |
| 65 | * it calls __mark_inode_dirty(NULL) through __set_page_dirty(). |
| 66 | * To avoid this problem, the old style mark_buffer_dirty() is used instead. |
| 67 | */ |
| 68 | void nilfs_mark_buffer_dirty(struct buffer_head *bh) |
| 69 | { |
| 70 | if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) |
| 71 | __set_page_dirty_nobuffers(bh->b_page); |
| 72 | } |
| 73 | |
| 74 | struct buffer_head *nilfs_grab_buffer(struct inode *inode, |
| 75 | struct address_space *mapping, |
| 76 | unsigned long blkoff, |
| 77 | unsigned long b_state) |
| 78 | { |
| 79 | int blkbits = inode->i_blkbits; |
| 80 | pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits); |
| 81 | struct page *page, *opage; |
| 82 | struct buffer_head *bh, *obh; |
| 83 | |
| 84 | page = grab_cache_page(mapping, index); |
| 85 | if (unlikely(!page)) |
| 86 | return NULL; |
| 87 | |
| 88 | bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); |
| 89 | if (unlikely(!bh)) { |
| 90 | unlock_page(page); |
| 91 | page_cache_release(page); |
| 92 | return NULL; |
| 93 | } |
| 94 | if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) { |
| 95 | /* |
| 96 | * Shadow page cache uses assoc_mapping to point its original |
| 97 | * page cache. The following code tries the original cache |
| 98 | * if the given cache is a shadow and it didn't hit. |
| 99 | */ |
| 100 | opage = find_lock_page(mapping->assoc_mapping, index); |
| 101 | if (!opage) |
| 102 | return bh; |
| 103 | |
| 104 | obh = __nilfs_get_page_block(opage, blkoff, index, blkbits, |
| 105 | b_state); |
| 106 | if (buffer_uptodate(obh)) { |
| 107 | nilfs_copy_buffer(bh, obh); |
| 108 | if (buffer_dirty(obh)) { |
| 109 | nilfs_mark_buffer_dirty(bh); |
| 110 | if (!buffer_nilfs_node(bh) && NILFS_MDT(inode)) |
| 111 | nilfs_mdt_mark_dirty(inode); |
| 112 | } |
| 113 | } |
| 114 | brelse(obh); |
| 115 | unlock_page(opage); |
| 116 | page_cache_release(opage); |
| 117 | } |
| 118 | return bh; |
| 119 | } |
| 120 | |
| 121 | /** |
| 122 | * nilfs_forget_buffer - discard dirty state |
| 123 | * @inode: owner inode of the buffer |
| 124 | * @bh: buffer head of the buffer to be discarded |
| 125 | */ |
| 126 | void nilfs_forget_buffer(struct buffer_head *bh) |
| 127 | { |
| 128 | struct page *page = bh->b_page; |
| 129 | |
| 130 | lock_buffer(bh); |
| 131 | clear_buffer_nilfs_volatile(bh); |
Ryusuke Konishi | 8433823 | 2009-05-05 21:52:06 +0900 | [diff] [blame] | 132 | clear_buffer_dirty(bh); |
| 133 | if (nilfs_page_buffers_clean(page)) |
Ryusuke Konishi | 0bd49f9 | 2009-04-06 19:01:27 -0700 | [diff] [blame] | 134 | __nilfs_clear_page_dirty(page); |
| 135 | |
| 136 | clear_buffer_uptodate(bh); |
| 137 | clear_buffer_mapped(bh); |
| 138 | bh->b_blocknr = -1; |
| 139 | ClearPageUptodate(page); |
| 140 | ClearPageMappedToDisk(page); |
| 141 | unlock_buffer(bh); |
| 142 | brelse(bh); |
| 143 | } |
| 144 | |
| 145 | /** |
| 146 | * nilfs_copy_buffer -- copy buffer data and flags |
| 147 | * @dbh: destination buffer |
| 148 | * @sbh: source buffer |
| 149 | */ |
| 150 | void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) |
| 151 | { |
| 152 | void *kaddr0, *kaddr1; |
| 153 | unsigned long bits; |
| 154 | struct page *spage = sbh->b_page, *dpage = dbh->b_page; |
| 155 | struct buffer_head *bh; |
| 156 | |
| 157 | kaddr0 = kmap_atomic(spage, KM_USER0); |
| 158 | kaddr1 = kmap_atomic(dpage, KM_USER1); |
| 159 | memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); |
| 160 | kunmap_atomic(kaddr1, KM_USER1); |
| 161 | kunmap_atomic(kaddr0, KM_USER0); |
| 162 | |
| 163 | dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; |
| 164 | dbh->b_blocknr = sbh->b_blocknr; |
| 165 | dbh->b_bdev = sbh->b_bdev; |
| 166 | |
| 167 | bh = dbh; |
| 168 | bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped)); |
| 169 | while ((bh = bh->b_this_page) != dbh) { |
| 170 | lock_buffer(bh); |
| 171 | bits &= bh->b_state; |
| 172 | unlock_buffer(bh); |
| 173 | } |
| 174 | if (bits & (1UL << BH_Uptodate)) |
| 175 | SetPageUptodate(dpage); |
| 176 | else |
| 177 | ClearPageUptodate(dpage); |
| 178 | if (bits & (1UL << BH_Mapped)) |
| 179 | SetPageMappedToDisk(dpage); |
| 180 | else |
| 181 | ClearPageMappedToDisk(dpage); |
| 182 | } |
| 183 | |
| 184 | /** |
| 185 | * nilfs_page_buffers_clean - check if a page has dirty buffers or not. |
| 186 | * @page: page to be checked |
| 187 | * |
| 188 | * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. |
| 189 | * Otherwise, it returns non-zero value. |
| 190 | */ |
| 191 | int nilfs_page_buffers_clean(struct page *page) |
| 192 | { |
| 193 | struct buffer_head *bh, *head; |
| 194 | |
| 195 | bh = head = page_buffers(page); |
| 196 | do { |
| 197 | if (buffer_dirty(bh)) |
| 198 | return 0; |
| 199 | bh = bh->b_this_page; |
| 200 | } while (bh != head); |
| 201 | return 1; |
| 202 | } |
| 203 | |
| 204 | void nilfs_page_bug(struct page *page) |
| 205 | { |
| 206 | struct address_space *m; |
| 207 | unsigned long ino = 0; |
| 208 | |
| 209 | if (unlikely(!page)) { |
| 210 | printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); |
| 211 | return; |
| 212 | } |
| 213 | |
| 214 | m = page->mapping; |
| 215 | if (m) { |
| 216 | struct inode *inode = NILFS_AS_I(m); |
| 217 | if (inode != NULL) |
| 218 | ino = inode->i_ino; |
| 219 | } |
| 220 | printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " |
| 221 | "mapping=%p ino=%lu\n", |
| 222 | page, atomic_read(&page->_count), |
| 223 | (unsigned long long)page->index, page->flags, m, ino); |
| 224 | |
| 225 | if (page_has_buffers(page)) { |
| 226 | struct buffer_head *bh, *head; |
| 227 | int i = 0; |
| 228 | |
| 229 | bh = head = page_buffers(page); |
| 230 | do { |
| 231 | printk(KERN_CRIT |
| 232 | " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", |
| 233 | i++, bh, atomic_read(&bh->b_count), |
| 234 | (unsigned long long)bh->b_blocknr, bh->b_state); |
| 235 | bh = bh->b_this_page; |
| 236 | } while (bh != head); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | /** |
| 241 | * nilfs_alloc_private_page - allocate a private page with buffer heads |
| 242 | * |
| 243 | * Return Value: On success, a pointer to the allocated page is returned. |
| 244 | * On error, NULL is returned. |
| 245 | */ |
| 246 | struct page *nilfs_alloc_private_page(struct block_device *bdev, int size, |
| 247 | unsigned long state) |
| 248 | { |
| 249 | struct buffer_head *bh, *head, *tail; |
| 250 | struct page *page; |
| 251 | |
| 252 | page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */ |
| 253 | if (unlikely(!page)) |
| 254 | return NULL; |
| 255 | |
| 256 | lock_page(page); |
| 257 | head = alloc_page_buffers(page, size, 0); |
| 258 | if (unlikely(!head)) { |
| 259 | unlock_page(page); |
| 260 | __free_page(page); |
| 261 | return NULL; |
| 262 | } |
| 263 | |
| 264 | bh = head; |
| 265 | do { |
| 266 | bh->b_state = (1UL << BH_NILFS_Allocated) | state; |
| 267 | tail = bh; |
| 268 | bh->b_bdev = bdev; |
| 269 | bh = bh->b_this_page; |
| 270 | } while (bh); |
| 271 | |
| 272 | tail->b_this_page = head; |
| 273 | attach_page_buffers(page, head); |
| 274 | |
| 275 | return page; |
| 276 | } |
| 277 | |
| 278 | void nilfs_free_private_page(struct page *page) |
| 279 | { |
| 280 | BUG_ON(!PageLocked(page)); |
| 281 | BUG_ON(page->mapping); |
| 282 | |
| 283 | if (page_has_buffers(page) && !try_to_free_buffers(page)) |
| 284 | NILFS_PAGE_BUG(page, "failed to free page"); |
| 285 | |
| 286 | unlock_page(page); |
| 287 | __free_page(page); |
| 288 | } |
| 289 | |
| 290 | /** |
| 291 | * nilfs_copy_page -- copy the page with buffers |
| 292 | * @dst: destination page |
| 293 | * @src: source page |
| 294 | * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. |
| 295 | * |
Ryusuke Konishi | 7a65004 | 2010-03-14 03:32:40 +0900 | [diff] [blame] | 296 | * This function is for both data pages and btnode pages. The dirty flag |
Ryusuke Konishi | 0bd49f9 | 2009-04-06 19:01:27 -0700 | [diff] [blame] | 297 | * should be treated by caller. The page must not be under i/o. |
| 298 | * Both src and dst page must be locked |
| 299 | */ |
| 300 | static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) |
| 301 | { |
| 302 | struct buffer_head *dbh, *dbufs, *sbh, *sbufs; |
| 303 | unsigned long mask = NILFS_BUFFER_INHERENT_BITS; |
| 304 | |
| 305 | BUG_ON(PageWriteback(dst)); |
| 306 | |
| 307 | sbh = sbufs = page_buffers(src); |
| 308 | if (!page_has_buffers(dst)) |
| 309 | create_empty_buffers(dst, sbh->b_size, 0); |
| 310 | |
| 311 | if (copy_dirty) |
| 312 | mask |= (1UL << BH_Dirty); |
| 313 | |
| 314 | dbh = dbufs = page_buffers(dst); |
| 315 | do { |
| 316 | lock_buffer(sbh); |
| 317 | lock_buffer(dbh); |
| 318 | dbh->b_state = sbh->b_state & mask; |
| 319 | dbh->b_blocknr = sbh->b_blocknr; |
| 320 | dbh->b_bdev = sbh->b_bdev; |
| 321 | sbh = sbh->b_this_page; |
| 322 | dbh = dbh->b_this_page; |
| 323 | } while (dbh != dbufs); |
| 324 | |
| 325 | copy_highpage(dst, src); |
| 326 | |
| 327 | if (PageUptodate(src) && !PageUptodate(dst)) |
| 328 | SetPageUptodate(dst); |
| 329 | else if (!PageUptodate(src) && PageUptodate(dst)) |
| 330 | ClearPageUptodate(dst); |
| 331 | if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) |
| 332 | SetPageMappedToDisk(dst); |
| 333 | else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) |
| 334 | ClearPageMappedToDisk(dst); |
| 335 | |
| 336 | do { |
| 337 | unlock_buffer(sbh); |
| 338 | unlock_buffer(dbh); |
| 339 | sbh = sbh->b_this_page; |
| 340 | dbh = dbh->b_this_page; |
| 341 | } while (dbh != dbufs); |
| 342 | } |
| 343 | |
| 344 | int nilfs_copy_dirty_pages(struct address_space *dmap, |
| 345 | struct address_space *smap) |
| 346 | { |
| 347 | struct pagevec pvec; |
| 348 | unsigned int i; |
| 349 | pgoff_t index = 0; |
| 350 | int err = 0; |
| 351 | |
| 352 | pagevec_init(&pvec, 0); |
| 353 | repeat: |
| 354 | if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY, |
| 355 | PAGEVEC_SIZE)) |
| 356 | return 0; |
| 357 | |
| 358 | for (i = 0; i < pagevec_count(&pvec); i++) { |
| 359 | struct page *page = pvec.pages[i], *dpage; |
| 360 | |
| 361 | lock_page(page); |
| 362 | if (unlikely(!PageDirty(page))) |
| 363 | NILFS_PAGE_BUG(page, "inconsistent dirty state"); |
| 364 | |
| 365 | dpage = grab_cache_page(dmap, page->index); |
| 366 | if (unlikely(!dpage)) { |
| 367 | /* No empty page is added to the page cache */ |
| 368 | err = -ENOMEM; |
| 369 | unlock_page(page); |
| 370 | break; |
| 371 | } |
| 372 | if (unlikely(!page_has_buffers(page))) |
| 373 | NILFS_PAGE_BUG(page, |
| 374 | "found empty page in dat page cache"); |
| 375 | |
| 376 | nilfs_copy_page(dpage, page, 1); |
| 377 | __set_page_dirty_nobuffers(dpage); |
| 378 | |
| 379 | unlock_page(dpage); |
| 380 | page_cache_release(dpage); |
| 381 | unlock_page(page); |
| 382 | } |
| 383 | pagevec_release(&pvec); |
| 384 | cond_resched(); |
| 385 | |
| 386 | if (likely(!err)) |
| 387 | goto repeat; |
| 388 | return err; |
| 389 | } |
| 390 | |
| 391 | /** |
Ryusuke Konishi | 7a65004 | 2010-03-14 03:32:40 +0900 | [diff] [blame] | 392 | * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache |
Ryusuke Konishi | 0bd49f9 | 2009-04-06 19:01:27 -0700 | [diff] [blame] | 393 | * @dmap: destination page cache |
| 394 | * @smap: source page cache |
| 395 | * |
| 396 | * No pages must no be added to the cache during this process. |
| 397 | * This must be ensured by the caller. |
| 398 | */ |
| 399 | void nilfs_copy_back_pages(struct address_space *dmap, |
| 400 | struct address_space *smap) |
| 401 | { |
| 402 | struct pagevec pvec; |
| 403 | unsigned int i, n; |
| 404 | pgoff_t index = 0; |
| 405 | int err; |
| 406 | |
| 407 | pagevec_init(&pvec, 0); |
| 408 | repeat: |
| 409 | n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE); |
| 410 | if (!n) |
| 411 | return; |
| 412 | index = pvec.pages[n - 1]->index + 1; |
| 413 | |
| 414 | for (i = 0; i < pagevec_count(&pvec); i++) { |
| 415 | struct page *page = pvec.pages[i], *dpage; |
| 416 | pgoff_t offset = page->index; |
| 417 | |
| 418 | lock_page(page); |
| 419 | dpage = find_lock_page(dmap, offset); |
| 420 | if (dpage) { |
| 421 | /* override existing page on the destination cache */ |
Ryusuke Konishi | 1f5abe7 | 2009-04-06 19:01:55 -0700 | [diff] [blame] | 422 | WARN_ON(PageDirty(dpage)); |
Ryusuke Konishi | 0bd49f9 | 2009-04-06 19:01:27 -0700 | [diff] [blame] | 423 | nilfs_copy_page(dpage, page, 0); |
| 424 | unlock_page(dpage); |
| 425 | page_cache_release(dpage); |
| 426 | } else { |
| 427 | struct page *page2; |
| 428 | |
| 429 | /* move the page to the destination cache */ |
| 430 | spin_lock_irq(&smap->tree_lock); |
| 431 | page2 = radix_tree_delete(&smap->page_tree, offset); |
Ryusuke Konishi | 1f5abe7 | 2009-04-06 19:01:55 -0700 | [diff] [blame] | 432 | WARN_ON(page2 != page); |
| 433 | |
Ryusuke Konishi | 0bd49f9 | 2009-04-06 19:01:27 -0700 | [diff] [blame] | 434 | smap->nrpages--; |
| 435 | spin_unlock_irq(&smap->tree_lock); |
| 436 | |
| 437 | spin_lock_irq(&dmap->tree_lock); |
| 438 | err = radix_tree_insert(&dmap->page_tree, offset, page); |
| 439 | if (unlikely(err < 0)) { |
Ryusuke Konishi | 1f5abe7 | 2009-04-06 19:01:55 -0700 | [diff] [blame] | 440 | WARN_ON(err == -EEXIST); |
Ryusuke Konishi | 0bd49f9 | 2009-04-06 19:01:27 -0700 | [diff] [blame] | 441 | page->mapping = NULL; |
| 442 | page_cache_release(page); /* for cache */ |
| 443 | } else { |
| 444 | page->mapping = dmap; |
| 445 | dmap->nrpages++; |
| 446 | if (PageDirty(page)) |
| 447 | radix_tree_tag_set(&dmap->page_tree, |
| 448 | offset, |
| 449 | PAGECACHE_TAG_DIRTY); |
| 450 | } |
| 451 | spin_unlock_irq(&dmap->tree_lock); |
| 452 | } |
| 453 | unlock_page(page); |
| 454 | } |
| 455 | pagevec_release(&pvec); |
| 456 | cond_resched(); |
| 457 | |
| 458 | goto repeat; |
| 459 | } |
| 460 | |
| 461 | void nilfs_clear_dirty_pages(struct address_space *mapping) |
| 462 | { |
| 463 | struct pagevec pvec; |
| 464 | unsigned int i; |
| 465 | pgoff_t index = 0; |
| 466 | |
| 467 | pagevec_init(&pvec, 0); |
| 468 | |
| 469 | while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, |
| 470 | PAGEVEC_SIZE)) { |
| 471 | for (i = 0; i < pagevec_count(&pvec); i++) { |
| 472 | struct page *page = pvec.pages[i]; |
| 473 | struct buffer_head *bh, *head; |
| 474 | |
| 475 | lock_page(page); |
| 476 | ClearPageUptodate(page); |
| 477 | ClearPageMappedToDisk(page); |
| 478 | bh = head = page_buffers(page); |
| 479 | do { |
| 480 | lock_buffer(bh); |
| 481 | clear_buffer_dirty(bh); |
| 482 | clear_buffer_nilfs_volatile(bh); |
| 483 | clear_buffer_uptodate(bh); |
| 484 | clear_buffer_mapped(bh); |
| 485 | unlock_buffer(bh); |
| 486 | bh = bh->b_this_page; |
| 487 | } while (bh != head); |
| 488 | |
| 489 | __nilfs_clear_page_dirty(page); |
| 490 | unlock_page(page); |
| 491 | } |
| 492 | pagevec_release(&pvec); |
| 493 | cond_resched(); |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | unsigned nilfs_page_count_clean_buffers(struct page *page, |
| 498 | unsigned from, unsigned to) |
| 499 | { |
| 500 | unsigned block_start, block_end; |
| 501 | struct buffer_head *bh, *head; |
| 502 | unsigned nc = 0; |
| 503 | |
| 504 | for (bh = head = page_buffers(page), block_start = 0; |
| 505 | bh != head || !block_start; |
| 506 | block_start = block_end, bh = bh->b_this_page) { |
| 507 | block_end = block_start + bh->b_size; |
| 508 | if (block_end > from && block_start < to && !buffer_dirty(bh)) |
| 509 | nc++; |
| 510 | } |
| 511 | return nc; |
| 512 | } |
| 513 | |
| 514 | /* |
| 515 | * NILFS2 needs clear_page_dirty() in the following two cases: |
| 516 | * |
| 517 | * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears |
| 518 | * page dirty flags when it copies back pages from the shadow cache |
| 519 | * (gcdat->{i_mapping,i_btnode_cache}) to its original cache |
| 520 | * (dat->{i_mapping,i_btnode_cache}). |
| 521 | * |
| 522 | * 2) Some B-tree operations like insertion or deletion may dispose buffers |
| 523 | * in dirty state, and this needs to cancel the dirty state of their pages. |
| 524 | */ |
| 525 | int __nilfs_clear_page_dirty(struct page *page) |
| 526 | { |
| 527 | struct address_space *mapping = page->mapping; |
| 528 | |
| 529 | if (mapping) { |
| 530 | spin_lock_irq(&mapping->tree_lock); |
| 531 | if (test_bit(PG_dirty, &page->flags)) { |
| 532 | radix_tree_tag_clear(&mapping->page_tree, |
| 533 | page_index(page), |
| 534 | PAGECACHE_TAG_DIRTY); |
| 535 | spin_unlock_irq(&mapping->tree_lock); |
| 536 | return clear_page_dirty_for_io(page); |
| 537 | } |
| 538 | spin_unlock_irq(&mapping->tree_lock); |
| 539 | return 0; |
| 540 | } |
| 541 | return TestClearPageDirty(page); |
| 542 | } |