Claudiu Manoil | c535e92 | 2016-09-22 18:04:09 +0300 | [diff] [blame] | 1 | /* Copyright 2008 - 2016 Freescale Semiconductor, Inc. |
| 2 | * |
| 3 | * Redistribution and use in source and binary forms, with or without |
| 4 | * modification, are permitted provided that the following conditions are met: |
| 5 | * * Redistributions of source code must retain the above copyright |
| 6 | * notice, this list of conditions and the following disclaimer. |
| 7 | * * Redistributions in binary form must reproduce the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer in the |
| 9 | * documentation and/or other materials provided with the distribution. |
| 10 | * * Neither the name of Freescale Semiconductor nor the |
| 11 | * names of its contributors may be used to endorse or promote products |
| 12 | * derived from this software without specific prior written permission. |
| 13 | * |
| 14 | * ALTERNATIVELY, this software may be distributed under the terms of the |
| 15 | * GNU General Public License ("GPL") as published by the Free Software |
| 16 | * Foundation, either version 2 of that License or (at your option) any |
| 17 | * later version. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY |
| 20 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 21 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 22 | * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY |
| 23 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 24 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 25 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 26 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 28 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | */ |
| 30 | |
| 31 | #ifndef __FSL_QMAN_H |
| 32 | #define __FSL_QMAN_H |
| 33 | |
| 34 | #include <linux/bitops.h> |
| 35 | |
| 36 | /* Hardware constants */ |
| 37 | #define QM_CHANNEL_SWPORTAL0 0 |
| 38 | #define QMAN_CHANNEL_POOL1 0x21 |
| 39 | #define QMAN_CHANNEL_POOL1_REV3 0x401 |
| 40 | extern u16 qm_channel_pool1; |
| 41 | |
| 42 | /* Portal processing (interrupt) sources */ |
| 43 | #define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */ |
| 44 | #define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */ |
| 45 | #define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */ |
| 46 | #define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */ |
| 47 | #define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */ |
| 48 | /* |
| 49 | * This mask contains all the interrupt sources that need handling except DQRI, |
| 50 | * ie. that if present should trigger slow-path processing. |
| 51 | */ |
| 52 | #define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \ |
| 53 | QM_PIRQ_MRI) |
| 54 | |
| 55 | /* For qman_static_dequeue_*** APIs */ |
| 56 | #define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff |
| 57 | /* for n in [1,15] */ |
| 58 | #define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n)) |
| 59 | /* for conversion from n of qm_channel */ |
| 60 | static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel) |
| 61 | { |
| 62 | return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1); |
| 63 | } |
| 64 | |
| 65 | /* --- QMan data structures (and associated constants) --- */ |
| 66 | |
| 67 | /* "Frame Descriptor (FD)" */ |
| 68 | struct qm_fd { |
| 69 | union { |
| 70 | struct { |
| 71 | u8 cfg8b_w1; |
| 72 | u8 bpid; /* Buffer Pool ID */ |
| 73 | u8 cfg8b_w3; |
| 74 | u8 addr_hi; /* high 8-bits of 40-bit address */ |
| 75 | __be32 addr_lo; /* low 32-bits of 40-bit address */ |
| 76 | } __packed; |
| 77 | __be64 data; |
| 78 | }; |
| 79 | __be32 cfg; /* format, offset, length / congestion */ |
| 80 | union { |
| 81 | __be32 cmd; |
| 82 | __be32 status; |
| 83 | }; |
| 84 | } __aligned(8); |
| 85 | |
| 86 | #define QM_FD_FORMAT_SG BIT(31) |
| 87 | #define QM_FD_FORMAT_LONG BIT(30) |
| 88 | #define QM_FD_FORMAT_COMPOUND BIT(29) |
| 89 | #define QM_FD_FORMAT_MASK GENMASK(31, 29) |
| 90 | #define QM_FD_OFF_SHIFT 20 |
| 91 | #define QM_FD_OFF_MASK GENMASK(28, 20) |
| 92 | #define QM_FD_LEN_MASK GENMASK(19, 0) |
| 93 | #define QM_FD_LEN_BIG_MASK GENMASK(28, 0) |
| 94 | |
| 95 | enum qm_fd_format { |
| 96 | /* |
| 97 | * 'contig' implies a contiguous buffer, whereas 'sg' implies a |
| 98 | * scatter-gather table. 'big' implies a 29-bit length with no offset |
| 99 | * field, otherwise length is 20-bit and offset is 9-bit. 'compound' |
| 100 | * implies a s/g-like table, where each entry itself represents a frame |
| 101 | * (contiguous or scatter-gather) and the 29-bit "length" is |
| 102 | * interpreted purely for congestion calculations, ie. a "congestion |
| 103 | * weight". |
| 104 | */ |
| 105 | qm_fd_contig = 0, |
| 106 | qm_fd_contig_big = QM_FD_FORMAT_LONG, |
| 107 | qm_fd_sg = QM_FD_FORMAT_SG, |
| 108 | qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG, |
| 109 | qm_fd_compound = QM_FD_FORMAT_COMPOUND |
| 110 | }; |
| 111 | |
| 112 | static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd) |
| 113 | { |
| 114 | return be64_to_cpu(fd->data) & 0xffffffffffLLU; |
| 115 | } |
| 116 | |
| 117 | static inline u64 qm_fd_addr_get64(const struct qm_fd *fd) |
| 118 | { |
| 119 | return be64_to_cpu(fd->data) & 0xffffffffffLLU; |
| 120 | } |
| 121 | |
| 122 | static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr) |
| 123 | { |
| 124 | fd->addr_hi = upper_32_bits(addr); |
| 125 | fd->addr_lo = cpu_to_be32(lower_32_bits(addr)); |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * The 'format' field indicates the interpretation of the remaining |
| 130 | * 29 bits of the 32-bit word. |
| 131 | * If 'format' is _contig or _sg, 20b length and 9b offset. |
| 132 | * If 'format' is _contig_big or _sg_big, 29b length. |
| 133 | * If 'format' is _compound, 29b "congestion weight". |
| 134 | */ |
| 135 | static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd) |
| 136 | { |
| 137 | return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK; |
| 138 | } |
| 139 | |
| 140 | static inline int qm_fd_get_offset(const struct qm_fd *fd) |
| 141 | { |
| 142 | return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT; |
| 143 | } |
| 144 | |
| 145 | static inline int qm_fd_get_length(const struct qm_fd *fd) |
| 146 | { |
| 147 | return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK; |
| 148 | } |
| 149 | |
| 150 | static inline int qm_fd_get_len_big(const struct qm_fd *fd) |
| 151 | { |
| 152 | return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK; |
| 153 | } |
| 154 | |
| 155 | static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt, |
| 156 | int off, int len) |
| 157 | { |
| 158 | fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) | |
| 159 | ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK)); |
| 160 | } |
| 161 | |
| 162 | #define qm_fd_set_contig(fd, off, len) \ |
| 163 | qm_fd_set_param(fd, qm_fd_contig, off, len) |
| 164 | #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len) |
| 165 | #define qm_fd_set_contig_big(fd, len) \ |
| 166 | qm_fd_set_param(fd, qm_fd_contig_big, 0, len) |
| 167 | #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len) |
| 168 | |
| 169 | static inline void qm_fd_clear_fd(struct qm_fd *fd) |
| 170 | { |
| 171 | fd->data = 0; |
| 172 | fd->cfg = 0; |
| 173 | fd->cmd = 0; |
| 174 | } |
| 175 | |
| 176 | /* Scatter/Gather table entry */ |
| 177 | struct qm_sg_entry { |
| 178 | union { |
| 179 | struct { |
| 180 | u8 __reserved1[3]; |
| 181 | u8 addr_hi; /* high 8-bits of 40-bit address */ |
| 182 | __be32 addr_lo; /* low 32-bits of 40-bit address */ |
| 183 | }; |
| 184 | __be64 data; |
| 185 | }; |
| 186 | __be32 cfg; /* E bit, F bit, length */ |
| 187 | u8 __reserved2; |
| 188 | u8 bpid; |
| 189 | __be16 offset; /* 13-bit, _res[13-15]*/ |
| 190 | } __packed; |
| 191 | |
| 192 | #define QM_SG_LEN_MASK GENMASK(29, 0) |
| 193 | #define QM_SG_OFF_MASK GENMASK(12, 0) |
| 194 | #define QM_SG_FIN BIT(30) |
| 195 | #define QM_SG_EXT BIT(31) |
| 196 | |
| 197 | static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg) |
| 198 | { |
| 199 | return be64_to_cpu(sg->data) & 0xffffffffffLLU; |
| 200 | } |
| 201 | |
| 202 | static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg) |
| 203 | { |
| 204 | return be64_to_cpu(sg->data) & 0xffffffffffLLU; |
| 205 | } |
| 206 | |
| 207 | static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr) |
| 208 | { |
| 209 | sg->addr_hi = upper_32_bits(addr); |
| 210 | sg->addr_lo = cpu_to_be32(lower_32_bits(addr)); |
| 211 | } |
| 212 | |
| 213 | static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg) |
| 214 | { |
| 215 | return be32_to_cpu(sg->cfg) & QM_SG_FIN; |
| 216 | } |
| 217 | |
| 218 | static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg) |
| 219 | { |
| 220 | return be32_to_cpu(sg->cfg) & QM_SG_EXT; |
| 221 | } |
| 222 | |
| 223 | static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg) |
| 224 | { |
| 225 | return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK; |
| 226 | } |
| 227 | |
| 228 | static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len) |
| 229 | { |
| 230 | sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK); |
| 231 | } |
| 232 | |
| 233 | static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len) |
| 234 | { |
| 235 | sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK)); |
| 236 | } |
| 237 | |
| 238 | static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg) |
| 239 | { |
| 240 | return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK; |
| 241 | } |
| 242 | |
| 243 | /* "Frame Dequeue Response" */ |
| 244 | struct qm_dqrr_entry { |
| 245 | u8 verb; |
| 246 | u8 stat; |
| 247 | u16 seqnum; /* 15-bit */ |
| 248 | u8 tok; |
| 249 | u8 __reserved2[3]; |
| 250 | u32 fqid; /* 24-bit */ |
| 251 | u32 contextB; |
| 252 | struct qm_fd fd; |
| 253 | u8 __reserved4[32]; |
| 254 | } __packed; |
| 255 | #define QM_DQRR_VERB_VBIT 0x80 |
| 256 | #define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */ |
| 257 | #define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */ |
| 258 | #define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */ |
| 259 | #define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */ |
| 260 | #define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */ |
| 261 | #define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */ |
| 262 | #define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */ |
| 263 | #define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/ |
| 264 | |
| 265 | /* "ERN Message Response" */ |
| 266 | /* "FQ State Change Notification" */ |
| 267 | union qm_mr_entry { |
| 268 | struct { |
| 269 | u8 verb; |
| 270 | u8 __reserved[63]; |
| 271 | }; |
| 272 | struct { |
| 273 | u8 verb; |
| 274 | u8 dca; |
| 275 | u16 seqnum; |
| 276 | u8 rc; /* Rej Code: 8-bit */ |
| 277 | u8 orp_hi; /* ORP: 24-bit */ |
| 278 | u16 orp_lo; |
| 279 | u32 fqid; /* 24-bit */ |
| 280 | u32 tag; |
| 281 | struct qm_fd fd; |
| 282 | u8 __reserved1[32]; |
| 283 | } __packed ern; |
| 284 | struct { |
| 285 | u8 verb; |
| 286 | u8 fqs; /* Frame Queue Status */ |
| 287 | u8 __reserved1[6]; |
| 288 | u32 fqid; /* 24-bit */ |
| 289 | u32 contextB; |
| 290 | u8 __reserved2[48]; |
| 291 | } __packed fq; /* FQRN/FQRNI/FQRL/FQPN */ |
| 292 | }; |
| 293 | #define QM_MR_VERB_VBIT 0x80 |
| 294 | /* |
| 295 | * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb |
| 296 | * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished |
| 297 | * from the other MR types by noting if the 0x20 bit is unset. |
| 298 | */ |
| 299 | #define QM_MR_VERB_TYPE_MASK 0x27 |
| 300 | #define QM_MR_VERB_DC_ERN 0x20 |
| 301 | #define QM_MR_VERB_FQRN 0x21 |
| 302 | #define QM_MR_VERB_FQRNI 0x22 |
| 303 | #define QM_MR_VERB_FQRL 0x23 |
| 304 | #define QM_MR_VERB_FQPN 0x24 |
| 305 | #define QM_MR_RC_MASK 0xf0 /* contains one of; */ |
| 306 | #define QM_MR_RC_CGR_TAILDROP 0x00 |
| 307 | #define QM_MR_RC_WRED 0x10 |
| 308 | #define QM_MR_RC_ERROR 0x20 |
| 309 | #define QM_MR_RC_ORPWINDOW_EARLY 0x30 |
| 310 | #define QM_MR_RC_ORPWINDOW_LATE 0x40 |
| 311 | #define QM_MR_RC_FQ_TAILDROP 0x50 |
| 312 | #define QM_MR_RC_ORPWINDOW_RETIRED 0x60 |
| 313 | #define QM_MR_RC_ORP_ZERO 0x70 |
| 314 | #define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ |
| 315 | #define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ |
| 316 | |
| 317 | /* |
| 318 | * An identical structure of FQD fields is present in the "Init FQ" command and |
| 319 | * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type. |
| 320 | * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the |
| 321 | * latter has two inlines to assist with converting to/from the mant+exp |
| 322 | * representation. |
| 323 | */ |
| 324 | struct qm_fqd_stashing { |
| 325 | /* See QM_STASHING_EXCL_<...> */ |
| 326 | u8 exclusive; |
| 327 | /* Numbers of cachelines */ |
| 328 | u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */ |
| 329 | }; |
| 330 | |
| 331 | struct qm_fqd_oac { |
| 332 | /* "Overhead Accounting Control", see QM_OAC_<...> */ |
| 333 | u8 oac; /* oac[6-7], _res[0-5] */ |
| 334 | /* Two's-complement value (-128 to +127) */ |
| 335 | s8 oal; /* "Overhead Accounting Length" */ |
| 336 | }; |
| 337 | |
| 338 | struct qm_fqd { |
| 339 | /* _res[6-7], orprws[3-5], oa[2], olws[0-1] */ |
| 340 | u8 orpc; |
| 341 | u8 cgid; |
| 342 | __be16 fq_ctrl; /* See QM_FQCTRL_<...> */ |
| 343 | __be16 dest_wq; /* channel[3-15], wq[0-2] */ |
| 344 | __be16 ics_cred; /* 15-bit */ |
| 345 | /* |
| 346 | * For "Initialize Frame Queue" commands, the write-enable mask |
| 347 | * determines whether 'td' or 'oac_init' is observed. For query |
| 348 | * commands, this field is always 'td', and 'oac_query' (below) reflects |
| 349 | * the Overhead ACcounting values. |
| 350 | */ |
| 351 | union { |
| 352 | __be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */ |
| 353 | struct qm_fqd_oac oac_init; |
| 354 | }; |
| 355 | __be32 context_b; |
| 356 | union { |
| 357 | /* Treat it as 64-bit opaque */ |
| 358 | __be64 opaque; |
| 359 | struct { |
| 360 | __be32 hi; |
| 361 | __be32 lo; |
| 362 | }; |
| 363 | /* Treat it as s/w portal stashing config */ |
| 364 | /* see "FQD Context_A field used for [...]" */ |
| 365 | struct { |
| 366 | struct qm_fqd_stashing stashing; |
| 367 | /* |
| 368 | * 48-bit address of FQ context to |
| 369 | * stash, must be cacheline-aligned |
| 370 | */ |
| 371 | __be16 context_hi; |
| 372 | __be32 context_lo; |
| 373 | } __packed; |
| 374 | } context_a; |
| 375 | struct qm_fqd_oac oac_query; |
| 376 | } __packed; |
| 377 | |
| 378 | #define QM_FQD_CHAN_OFF 3 |
| 379 | #define QM_FQD_WQ_MASK GENMASK(2, 0) |
| 380 | #define QM_FQD_TD_EXP_MASK GENMASK(4, 0) |
| 381 | #define QM_FQD_TD_MANT_OFF 5 |
| 382 | #define QM_FQD_TD_MANT_MASK GENMASK(12, 5) |
| 383 | #define QM_FQD_TD_MAX 0xe0000000 |
| 384 | #define QM_FQD_TD_MANT_MAX 0xff |
| 385 | #define QM_FQD_OAC_OFF 6 |
| 386 | #define QM_FQD_AS_OFF 4 |
| 387 | #define QM_FQD_DS_OFF 2 |
| 388 | #define QM_FQD_XS_MASK 0x3 |
| 389 | |
| 390 | /* 64-bit converters for context_hi/lo */ |
| 391 | static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd) |
| 392 | { |
| 393 | return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL; |
| 394 | } |
| 395 | |
| 396 | static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd) |
| 397 | { |
| 398 | return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL; |
| 399 | } |
| 400 | |
| 401 | static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd) |
| 402 | { |
| 403 | return qm_fqd_stashing_get64(fqd); |
| 404 | } |
| 405 | |
| 406 | static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr) |
| 407 | { |
| 408 | fqd->context_a.context_hi = upper_32_bits(addr); |
| 409 | fqd->context_a.context_lo = lower_32_bits(addr); |
| 410 | } |
| 411 | |
| 412 | static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr) |
| 413 | { |
| 414 | fqd->context_a.hi = cpu_to_be16(upper_32_bits(addr)); |
| 415 | fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr)); |
| 416 | } |
| 417 | |
| 418 | /* convert a threshold value into mant+exp representation */ |
| 419 | static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val, |
| 420 | int roundup) |
| 421 | { |
| 422 | u32 e = 0; |
| 423 | int td, oddbit = 0; |
| 424 | |
| 425 | if (val > QM_FQD_TD_MAX) |
| 426 | return -ERANGE; |
| 427 | |
| 428 | while (val > QM_FQD_TD_MANT_MAX) { |
| 429 | oddbit = val & 1; |
| 430 | val >>= 1; |
| 431 | e++; |
| 432 | if (roundup && oddbit) |
| 433 | val++; |
| 434 | } |
| 435 | |
| 436 | td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK; |
| 437 | td |= (e & QM_FQD_TD_EXP_MASK); |
| 438 | fqd->td = cpu_to_be16(td); |
| 439 | return 0; |
| 440 | } |
| 441 | /* and the other direction */ |
| 442 | static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd) |
| 443 | { |
| 444 | int td = be16_to_cpu(fqd->td); |
| 445 | |
| 446 | return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF) |
| 447 | << (td & QM_FQD_TD_EXP_MASK); |
| 448 | } |
| 449 | |
| 450 | static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs) |
| 451 | { |
| 452 | struct qm_fqd_stashing *st = &fqd->context_a.stashing; |
| 453 | |
| 454 | st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) | |
| 455 | ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) | |
| 456 | (cs & QM_FQD_XS_MASK); |
| 457 | } |
| 458 | |
| 459 | static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd) |
| 460 | { |
| 461 | return fqd->context_a.stashing.cl; |
| 462 | } |
| 463 | |
| 464 | static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val) |
| 465 | { |
| 466 | fqd->oac_init.oac = val << QM_FQD_OAC_OFF; |
| 467 | } |
| 468 | |
| 469 | static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val) |
| 470 | { |
| 471 | fqd->oac_init.oal = val; |
| 472 | } |
| 473 | |
| 474 | static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq) |
| 475 | { |
| 476 | fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) | |
| 477 | (wq & QM_FQD_WQ_MASK)); |
| 478 | } |
| 479 | |
| 480 | static inline int qm_fqd_get_chan(const struct qm_fqd *fqd) |
| 481 | { |
| 482 | return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF; |
| 483 | } |
| 484 | |
| 485 | static inline int qm_fqd_get_wq(const struct qm_fqd *fqd) |
| 486 | { |
| 487 | return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK; |
| 488 | } |
| 489 | |
| 490 | /* See "Frame Queue Descriptor (FQD)" */ |
| 491 | /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */ |
| 492 | #define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */ |
| 493 | #define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */ |
| 494 | #define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */ |
| 495 | #define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */ |
| 496 | #define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */ |
| 497 | #define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */ |
| 498 | #define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */ |
| 499 | #define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */ |
| 500 | #define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */ |
| 501 | #define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */ |
| 502 | |
| 503 | /* See "FQD Context_A field used for [...] */ |
| 504 | /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */ |
| 505 | #define QM_STASHING_EXCL_ANNOTATION 0x04 |
| 506 | #define QM_STASHING_EXCL_DATA 0x02 |
| 507 | #define QM_STASHING_EXCL_CTX 0x01 |
| 508 | |
| 509 | /* See "Intra Class Scheduling" */ |
| 510 | /* FQD field 'OAC' (Overhead ACcounting) uses these constants */ |
| 511 | #define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */ |
| 512 | #define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */ |
| 513 | |
| 514 | /* |
| 515 | * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields |
| 516 | * and associated commands/responses. The WRED parameters are calculated from |
| 517 | * these fields as follows; |
| 518 | * MaxTH = MA * (2 ^ Mn) |
| 519 | * Slope = SA / (2 ^ Sn) |
| 520 | * MaxP = 4 * (Pn + 1) |
| 521 | */ |
| 522 | struct qm_cgr_wr_parm { |
| 523 | /* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */ |
| 524 | u32 word; |
| 525 | }; |
| 526 | /* |
| 527 | * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding |
| 528 | * management commands, this is padded to a 16-bit structure field, so that's |
| 529 | * how we represent it here. The congestion state threshold is calculated from |
| 530 | * these fields as follows; |
| 531 | * CS threshold = TA * (2 ^ Tn) |
| 532 | */ |
| 533 | struct qm_cgr_cs_thres { |
| 534 | /* _res[13-15], TA[5-12], Tn[0-4] */ |
| 535 | u16 word; |
| 536 | }; |
| 537 | /* |
| 538 | * This identical structure of CGR fields is present in the "Init/Modify CGR" |
| 539 | * commands and the "Query CGR" result. It's suctioned out here into its own |
| 540 | * struct. |
| 541 | */ |
| 542 | struct __qm_mc_cgr { |
| 543 | struct qm_cgr_wr_parm wr_parm_g; |
| 544 | struct qm_cgr_wr_parm wr_parm_y; |
| 545 | struct qm_cgr_wr_parm wr_parm_r; |
| 546 | u8 wr_en_g; /* boolean, use QM_CGR_EN */ |
| 547 | u8 wr_en_y; /* boolean, use QM_CGR_EN */ |
| 548 | u8 wr_en_r; /* boolean, use QM_CGR_EN */ |
| 549 | u8 cscn_en; /* boolean, use QM_CGR_EN */ |
| 550 | union { |
| 551 | struct { |
| 552 | u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */ |
| 553 | u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */ |
| 554 | }; |
| 555 | u32 cscn_targ; /* use QM_CGR_TARG_* */ |
| 556 | }; |
| 557 | u8 cstd_en; /* boolean, use QM_CGR_EN */ |
| 558 | u8 cs; /* boolean, only used in query response */ |
| 559 | struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */ |
| 560 | u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */ |
| 561 | } __packed; |
| 562 | #define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */ |
| 563 | #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/ |
| 564 | #define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */ |
| 565 | #define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */ |
| 566 | #define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */ |
| 567 | #define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */ |
| 568 | /* Convert CGR thresholds to/from "cs_thres" format */ |
| 569 | static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th) |
| 570 | { |
| 571 | return ((th->word >> 5) & 0xff) << (th->word & 0x1f); |
| 572 | } |
| 573 | |
| 574 | static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val, |
| 575 | int roundup) |
| 576 | { |
| 577 | u32 e = 0; |
| 578 | int oddbit = 0; |
| 579 | |
| 580 | while (val > 0xff) { |
| 581 | oddbit = val & 1; |
| 582 | val >>= 1; |
| 583 | e++; |
| 584 | if (roundup && oddbit) |
| 585 | val++; |
| 586 | } |
| 587 | th->word = ((val & 0xff) << 5) | (e & 0x1f); |
| 588 | return 0; |
| 589 | } |
| 590 | |
| 591 | /* "Initialize FQ" */ |
| 592 | struct qm_mcc_initfq { |
| 593 | u8 __reserved1[2]; |
| 594 | u16 we_mask; /* Write Enable Mask */ |
| 595 | u32 fqid; /* 24-bit */ |
| 596 | u16 count; /* Initialises 'count+1' FQDs */ |
| 597 | struct qm_fqd fqd; /* the FQD fields go here */ |
| 598 | u8 __reserved2[30]; |
| 599 | } __packed; |
| 600 | /* "Initialize/Modify CGR" */ |
| 601 | struct qm_mcc_initcgr { |
| 602 | u8 __reserve1[2]; |
| 603 | u16 we_mask; /* Write Enable Mask */ |
| 604 | struct __qm_mc_cgr cgr; /* CGR fields */ |
| 605 | u8 __reserved2[2]; |
| 606 | u8 cgid; |
| 607 | u8 __reserved3[32]; |
| 608 | } __packed; |
| 609 | |
| 610 | /* INITFQ-specific flags */ |
| 611 | #define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */ |
| 612 | #define QM_INITFQ_WE_OAC 0x0100 |
| 613 | #define QM_INITFQ_WE_ORPC 0x0080 |
| 614 | #define QM_INITFQ_WE_CGID 0x0040 |
| 615 | #define QM_INITFQ_WE_FQCTRL 0x0020 |
| 616 | #define QM_INITFQ_WE_DESTWQ 0x0010 |
| 617 | #define QM_INITFQ_WE_ICSCRED 0x0008 |
| 618 | #define QM_INITFQ_WE_TDTHRESH 0x0004 |
| 619 | #define QM_INITFQ_WE_CONTEXTB 0x0002 |
| 620 | #define QM_INITFQ_WE_CONTEXTA 0x0001 |
| 621 | /* INITCGR/MODIFYCGR-specific flags */ |
| 622 | #define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */ |
| 623 | #define QM_CGR_WE_WR_PARM_G 0x0400 |
| 624 | #define QM_CGR_WE_WR_PARM_Y 0x0200 |
| 625 | #define QM_CGR_WE_WR_PARM_R 0x0100 |
| 626 | #define QM_CGR_WE_WR_EN_G 0x0080 |
| 627 | #define QM_CGR_WE_WR_EN_Y 0x0040 |
| 628 | #define QM_CGR_WE_WR_EN_R 0x0020 |
| 629 | #define QM_CGR_WE_CSCN_EN 0x0010 |
| 630 | #define QM_CGR_WE_CSCN_TARG 0x0008 |
| 631 | #define QM_CGR_WE_CSTD_EN 0x0004 |
| 632 | #define QM_CGR_WE_CS_THRES 0x0002 |
| 633 | #define QM_CGR_WE_MODE 0x0001 |
| 634 | |
| 635 | #define QMAN_CGR_FLAG_USE_INIT 0x00000001 |
| 636 | |
| 637 | /* Portal and Frame Queues */ |
| 638 | /* Represents a managed portal */ |
| 639 | struct qman_portal; |
| 640 | |
| 641 | /* |
| 642 | * This object type represents QMan frame queue descriptors (FQD), it is |
| 643 | * cacheline-aligned, and initialised by qman_create_fq(). The structure is |
| 644 | * defined further down. |
| 645 | */ |
| 646 | struct qman_fq; |
| 647 | |
| 648 | /* |
| 649 | * This object type represents a QMan congestion group, it is defined further |
| 650 | * down. |
| 651 | */ |
| 652 | struct qman_cgr; |
| 653 | |
| 654 | /* |
| 655 | * This enum, and the callback type that returns it, are used when handling |
| 656 | * dequeued frames via DQRR. Note that for "null" callbacks registered with the |
| 657 | * portal object (for handling dequeues that do not demux because contextB is |
| 658 | * NULL), the return value *MUST* be qman_cb_dqrr_consume. |
| 659 | */ |
| 660 | enum qman_cb_dqrr_result { |
| 661 | /* DQRR entry can be consumed */ |
| 662 | qman_cb_dqrr_consume, |
| 663 | /* Like _consume, but requests parking - FQ must be held-active */ |
| 664 | qman_cb_dqrr_park, |
| 665 | /* Does not consume, for DCA mode only. */ |
| 666 | qman_cb_dqrr_defer, |
| 667 | /* |
| 668 | * Stop processing without consuming this ring entry. Exits the current |
| 669 | * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within |
| 670 | * an interrupt handler, the callback would typically call |
| 671 | * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value, |
| 672 | * otherwise the interrupt will reassert immediately. |
| 673 | */ |
| 674 | qman_cb_dqrr_stop, |
| 675 | /* Like qman_cb_dqrr_stop, but consumes the current entry. */ |
| 676 | qman_cb_dqrr_consume_stop |
| 677 | }; |
| 678 | typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm, |
| 679 | struct qman_fq *fq, |
| 680 | const struct qm_dqrr_entry *dqrr); |
| 681 | |
| 682 | /* |
| 683 | * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They |
| 684 | * are always consumed after the callback returns. |
| 685 | */ |
| 686 | typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq, |
| 687 | const union qm_mr_entry *msg); |
| 688 | |
| 689 | /* |
| 690 | * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active + |
| 691 | * held-active + held-suspended are just "sched". Things like "retired" will not |
| 692 | * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until |
| 693 | * then, to indicate it's completing and to gate attempts to retry the retire |
| 694 | * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's |
| 695 | * technically impossible in the case of enqueue DCAs (which refer to DQRR ring |
| 696 | * index rather than the FQ that ring entry corresponds to), so repeated park |
| 697 | * commands are allowed (if you're silly enough to try) but won't change FQ |
| 698 | * state, and the resulting park notifications move FQs from "sched" to |
| 699 | * "parked". |
| 700 | */ |
| 701 | enum qman_fq_state { |
| 702 | qman_fq_state_oos, |
| 703 | qman_fq_state_parked, |
| 704 | qman_fq_state_sched, |
| 705 | qman_fq_state_retired |
| 706 | }; |
| 707 | |
| 708 | #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */ |
| 709 | #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */ |
| 710 | #define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */ |
| 711 | #define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */ |
| 712 | #define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */ |
| 713 | #define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */ |
| 714 | |
| 715 | /* |
| 716 | * Frame queue objects (struct qman_fq) are stored within memory passed to |
| 717 | * qman_create_fq(), as this allows stashing of caller-provided demux callback |
| 718 | * pointers at no extra cost to stashing of (driver-internal) FQ state. If the |
| 719 | * caller wishes to add per-FQ state and have it benefit from dequeue-stashing, |
| 720 | * they should; |
| 721 | * |
| 722 | * (a) extend the qman_fq structure with their state; eg. |
| 723 | * |
| 724 | * // myfq is allocated and driver_fq callbacks filled in; |
| 725 | * struct my_fq { |
| 726 | * struct qman_fq base; |
| 727 | * int an_extra_field; |
| 728 | * [ ... add other fields to be associated with each FQ ...] |
| 729 | * } *myfq = some_my_fq_allocator(); |
| 730 | * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base); |
| 731 | * |
| 732 | * // in a dequeue callback, access extra fields from 'fq' via a cast; |
| 733 | * struct my_fq *myfq = (struct my_fq *)fq; |
| 734 | * do_something_with(myfq->an_extra_field); |
| 735 | * [...] |
| 736 | * |
| 737 | * (b) when and if configuring the FQ for context stashing, specify how ever |
| 738 | * many cachelines are required to stash 'struct my_fq', to accelerate not |
| 739 | * only the QMan driver but the callback as well. |
| 740 | */ |
| 741 | |
| 742 | struct qman_fq_cb { |
| 743 | qman_cb_dqrr dqrr; /* for dequeued frames */ |
| 744 | qman_cb_mr ern; /* for s/w ERNs */ |
| 745 | qman_cb_mr fqs; /* frame-queue state changes*/ |
| 746 | }; |
| 747 | |
| 748 | struct qman_fq { |
| 749 | /* Caller of qman_create_fq() provides these demux callbacks */ |
| 750 | struct qman_fq_cb cb; |
| 751 | /* |
| 752 | * These are internal to the driver, don't touch. In particular, they |
| 753 | * may change, be removed, or extended (so you shouldn't rely on |
| 754 | * sizeof(qman_fq) being a constant). |
| 755 | */ |
| 756 | u32 fqid, idx; |
| 757 | unsigned long flags; |
| 758 | enum qman_fq_state state; |
| 759 | int cgr_groupid; |
| 760 | }; |
| 761 | |
| 762 | /* |
| 763 | * This callback type is used when handling congestion group entry/exit. |
| 764 | * 'congested' is non-zero on congestion-entry, and zero on congestion-exit. |
| 765 | */ |
| 766 | typedef void (*qman_cb_cgr)(struct qman_portal *qm, |
| 767 | struct qman_cgr *cgr, int congested); |
| 768 | |
| 769 | struct qman_cgr { |
| 770 | /* Set these prior to qman_create_cgr() */ |
| 771 | u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/ |
| 772 | qman_cb_cgr cb; |
| 773 | /* These are private to the driver */ |
| 774 | u16 chan; /* portal channel this object is created on */ |
| 775 | struct list_head node; |
| 776 | }; |
| 777 | |
| 778 | /* Flags to qman_create_fq() */ |
| 779 | #define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */ |
| 780 | #define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */ |
| 781 | #define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */ |
| 782 | #define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */ |
| 783 | |
| 784 | /* Flags to qman_init_fq() */ |
| 785 | #define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */ |
| 786 | #define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */ |
| 787 | |
| 788 | /* Portal Management */ |
| 789 | /** |
| 790 | * qman_p_irqsource_add - add processing sources to be interrupt-driven |
| 791 | * @bits: bitmask of QM_PIRQ_**I processing sources |
| 792 | * |
| 793 | * Adds processing sources that should be interrupt-driven (rather than |
| 794 | * processed via qman_poll_***() functions). |
| 795 | */ |
| 796 | void qman_p_irqsource_add(struct qman_portal *p, u32 bits); |
| 797 | |
| 798 | /** |
| 799 | * qman_p_irqsource_remove - remove processing sources from being int-driven |
| 800 | * @bits: bitmask of QM_PIRQ_**I processing sources |
| 801 | * |
| 802 | * Removes processing sources from being interrupt-driven, so that they will |
| 803 | * instead be processed via qman_poll_***() functions. |
| 804 | */ |
| 805 | void qman_p_irqsource_remove(struct qman_portal *p, u32 bits); |
| 806 | |
| 807 | /** |
| 808 | * qman_affine_cpus - return a mask of cpus that have affine portals |
| 809 | */ |
| 810 | const cpumask_t *qman_affine_cpus(void); |
| 811 | |
| 812 | /** |
| 813 | * qman_affine_channel - return the channel ID of an portal |
| 814 | * @cpu: the cpu whose affine portal is the subject of the query |
| 815 | * |
| 816 | * If @cpu is -1, the affine portal for the current CPU will be used. It is a |
| 817 | * bug to call this function for any value of @cpu (other than -1) that is not a |
| 818 | * member of the mask returned from qman_affine_cpus(). |
| 819 | */ |
| 820 | u16 qman_affine_channel(int cpu); |
| 821 | |
| 822 | /** |
| 823 | * qman_get_affine_portal - return the portal pointer affine to cpu |
| 824 | * @cpu: the cpu whose affine portal is the subject of the query |
| 825 | */ |
| 826 | struct qman_portal *qman_get_affine_portal(int cpu); |
| 827 | |
| 828 | /** |
| 829 | * qman_p_poll_dqrr - process DQRR (fast-path) entries |
| 830 | * @limit: the maximum number of DQRR entries to process |
| 831 | * |
| 832 | * Use of this function requires that DQRR processing not be interrupt-driven. |
| 833 | * The return value represents the number of DQRR entries processed. |
| 834 | */ |
| 835 | int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit); |
| 836 | |
| 837 | /** |
| 838 | * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR |
| 839 | * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n) |
| 840 | * |
| 841 | * Adds a set of pool channels to the portal's static dequeue command register |
| 842 | * (SDQCR). The requested pools are limited to those the portal has dequeue |
| 843 | * access to. |
| 844 | */ |
| 845 | void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools); |
| 846 | |
| 847 | /* FQ management */ |
| 848 | /** |
| 849 | * qman_create_fq - Allocates a FQ |
| 850 | * @fqid: the index of the FQD to encapsulate, must be "Out of Service" |
| 851 | * @flags: bit-mask of QMAN_FQ_FLAG_*** options |
| 852 | * @fq: memory for storing the 'fq', with callbacks filled in |
| 853 | * |
| 854 | * Creates a frame queue object for the given @fqid, unless the |
| 855 | * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is |
| 856 | * dynamically allocated (or the function fails if none are available). Once |
| 857 | * created, the caller should not touch the memory at 'fq' except as extended to |
| 858 | * adjacent memory for user-defined fields (see the definition of "struct |
| 859 | * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to |
| 860 | * pre-existing frame-queues that aren't to be otherwise interfered with, it |
| 861 | * prevents all other modifications to the frame queue. The TO_DCPORTAL flag |
| 862 | * causes the driver to honour any contextB modifications requested in the |
| 863 | * qm_init_fq() API, as this indicates the frame queue will be consumed by a |
| 864 | * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by |
| 865 | * software portals, the contextB field is controlled by the driver and can't be |
| 866 | * modified by the caller. |
| 867 | */ |
| 868 | int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq); |
| 869 | |
| 870 | /** |
| 871 | * qman_destroy_fq - Deallocates a FQ |
| 872 | * @fq: the frame queue object to release |
| 873 | * |
| 874 | * The memory for this frame queue object ('fq' provided in qman_create_fq()) is |
| 875 | * not deallocated but the caller regains ownership, to do with as desired. The |
| 876 | * FQ must be in the 'out-of-service' or in the 'parked' state. |
| 877 | */ |
| 878 | void qman_destroy_fq(struct qman_fq *fq); |
| 879 | |
| 880 | /** |
| 881 | * qman_fq_fqid - Queries the frame queue ID of a FQ object |
| 882 | * @fq: the frame queue object to query |
| 883 | */ |
| 884 | u32 qman_fq_fqid(struct qman_fq *fq); |
| 885 | |
| 886 | /** |
| 887 | * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled" |
| 888 | * @fq: the frame queue object to modify, must be 'parked' or new. |
| 889 | * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options |
| 890 | * @opts: the FQ-modification settings, as defined in the low-level API |
| 891 | * |
| 892 | * The @opts parameter comes from the low-level portal API. Select |
| 893 | * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled |
| 894 | * rather than parked. NB, @opts can be NULL. |
| 895 | * |
| 896 | * Note that some fields and options within @opts may be ignored or overwritten |
| 897 | * by the driver; |
| 898 | * 1. the 'count' and 'fqid' fields are always ignored (this operation only |
| 899 | * affects one frame queue: @fq). |
| 900 | * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated |
| 901 | * 'fqd' structure's 'context_b' field are sometimes overwritten; |
| 902 | * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is |
| 903 | * initialised to a value used by the driver for demux. |
| 904 | * - if context_b is initialised for demux, so is context_a in case stashing |
| 905 | * is requested (see item 4). |
| 906 | * (So caller control of context_b is only possible for TO_DCPORTAL frame queue |
| 907 | * objects.) |
| 908 | * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's |
| 909 | * 'dest::channel' field will be overwritten to match the portal used to issue |
| 910 | * the command. If the WE_DESTWQ write-enable bit had already been set by the |
| 911 | * caller, the channel workqueue will be left as-is, otherwise the write-enable |
| 912 | * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag |
| 913 | * isn't set, the destination channel/workqueue fields and the write-enable bit |
| 914 | * are left as-is. |
| 915 | * 4. if the driver overwrites context_a/b for demux, then if |
| 916 | * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite |
| 917 | * context_a.address fields and will leave the stashing fields provided by the |
| 918 | * user alone, otherwise it will zero out the context_a.stashing fields. |
| 919 | */ |
| 920 | int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts); |
| 921 | |
| 922 | /** |
| 923 | * qman_schedule_fq - Schedules a FQ |
| 924 | * @fq: the frame queue object to schedule, must be 'parked' |
| 925 | * |
| 926 | * Schedules the frame queue, which must be Parked, which takes it to |
| 927 | * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level. |
| 928 | */ |
| 929 | int qman_schedule_fq(struct qman_fq *fq); |
| 930 | |
| 931 | /** |
| 932 | * qman_retire_fq - Retires a FQ |
| 933 | * @fq: the frame queue object to retire |
| 934 | * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately |
| 935 | * |
| 936 | * Retires the frame queue. This returns zero if it succeeds immediately, +1 if |
| 937 | * the retirement was started asynchronously, otherwise it returns negative for |
| 938 | * failure. When this function returns zero, @flags is set to indicate whether |
| 939 | * the retired FQ is empty and/or whether it has any ORL fragments (to show up |
| 940 | * as ERNs). Otherwise the corresponding flags will be known when a subsequent |
| 941 | * FQRN message shows up on the portal's message ring. |
| 942 | * |
| 943 | * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or |
| 944 | * Active state), the completion will be via the message ring as a FQRN - but |
| 945 | * the corresponding callback may occur before this function returns!! Ie. the |
| 946 | * caller should be prepared to accept the callback as the function is called, |
| 947 | * not only once it has returned. |
| 948 | */ |
| 949 | int qman_retire_fq(struct qman_fq *fq, u32 *flags); |
| 950 | |
| 951 | /** |
| 952 | * qman_oos_fq - Puts a FQ "out of service" |
| 953 | * @fq: the frame queue object to be put out-of-service, must be 'retired' |
| 954 | * |
| 955 | * The frame queue must be retired and empty, and if any order restoration list |
| 956 | * was released as ERNs at the time of retirement, they must all be consumed. |
| 957 | */ |
| 958 | int qman_oos_fq(struct qman_fq *fq); |
| 959 | |
| 960 | /** |
| 961 | * qman_enqueue - Enqueue a frame to a frame queue |
| 962 | * @fq: the frame queue object to enqueue to |
| 963 | * @fd: a descriptor of the frame to be enqueued |
| 964 | * |
| 965 | * Fills an entry in the EQCR of portal @qm to enqueue the frame described by |
| 966 | * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid' |
| 967 | * field is ignored. The return value is non-zero on error, such as ring full. |
| 968 | */ |
| 969 | int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd); |
| 970 | |
| 971 | /** |
| 972 | * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs |
| 973 | * @result: is set by the API to the base FQID of the allocated range |
| 974 | * @count: the number of FQIDs required |
| 975 | * |
| 976 | * Returns 0 on success, or a negative error code. |
| 977 | */ |
| 978 | int qman_alloc_fqid_range(u32 *result, u32 count); |
| 979 | #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1) |
| 980 | |
| 981 | /** |
| 982 | * qman_release_fqid - Release the specified frame queue ID |
| 983 | * @fqid: the FQID to be released back to the resource pool |
| 984 | * |
| 985 | * This function can also be used to seed the allocator with |
| 986 | * FQID ranges that it can subsequently allocate from. |
| 987 | * Returns 0 on success, or a negative error code. |
| 988 | */ |
| 989 | int qman_release_fqid(u32 fqid); |
| 990 | |
| 991 | /* Pool-channel management */ |
| 992 | /** |
| 993 | * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs |
| 994 | * @result: is set by the API to the base pool-channel ID of the allocated range |
| 995 | * @count: the number of pool-channel IDs required |
| 996 | * |
| 997 | * Returns 0 on success, or a negative error code. |
| 998 | */ |
| 999 | int qman_alloc_pool_range(u32 *result, u32 count); |
| 1000 | #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1) |
| 1001 | |
| 1002 | /** |
| 1003 | * qman_release_pool - Release the specified pool-channel ID |
| 1004 | * @id: the pool-chan ID to be released back to the resource pool |
| 1005 | * |
| 1006 | * This function can also be used to seed the allocator with |
| 1007 | * pool-channel ID ranges that it can subsequently allocate from. |
| 1008 | * Returns 0 on success, or a negative error code. |
| 1009 | */ |
| 1010 | int qman_release_pool(u32 id); |
| 1011 | |
| 1012 | /* CGR management */ |
| 1013 | /** |
| 1014 | * qman_create_cgr - Register a congestion group object |
| 1015 | * @cgr: the 'cgr' object, with fields filled in |
| 1016 | * @flags: QMAN_CGR_FLAG_* values |
| 1017 | * @opts: optional state of CGR settings |
| 1018 | * |
| 1019 | * Registers this object to receiving congestion entry/exit callbacks on the |
| 1020 | * portal affine to the cpu portal on which this API is executed. If opts is |
| 1021 | * NULL then only the callback (cgr->cb) function is registered. If @flags |
| 1022 | * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset |
| 1023 | * any unspecified parameters) will be used rather than a modify hw hardware |
| 1024 | * (which only modifies the specified parameters). |
| 1025 | */ |
| 1026 | int qman_create_cgr(struct qman_cgr *cgr, u32 flags, |
| 1027 | struct qm_mcc_initcgr *opts); |
| 1028 | |
| 1029 | /** |
| 1030 | * qman_delete_cgr - Deregisters a congestion group object |
| 1031 | * @cgr: the 'cgr' object to deregister |
| 1032 | * |
| 1033 | * "Unplugs" this CGR object from the portal affine to the cpu on which this API |
| 1034 | * is executed. This must be excuted on the same affine portal on which it was |
| 1035 | * created. |
| 1036 | */ |
| 1037 | int qman_delete_cgr(struct qman_cgr *cgr); |
| 1038 | |
| 1039 | /** |
| 1040 | * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU |
| 1041 | * @cgr: the 'cgr' object to deregister |
| 1042 | * |
| 1043 | * This will select the proper CPU and run there qman_delete_cgr(). |
| 1044 | */ |
| 1045 | void qman_delete_cgr_safe(struct qman_cgr *cgr); |
| 1046 | |
| 1047 | /** |
| 1048 | * qman_query_cgr_congested - Queries CGR's congestion status |
| 1049 | * @cgr: the 'cgr' object to query |
| 1050 | * @result: returns 'cgr's congestion status, 1 (true) if congested |
| 1051 | */ |
| 1052 | int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result); |
| 1053 | |
| 1054 | /** |
| 1055 | * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs |
| 1056 | * @result: is set by the API to the base CGR ID of the allocated range |
| 1057 | * @count: the number of CGR IDs required |
| 1058 | * |
| 1059 | * Returns 0 on success, or a negative error code. |
| 1060 | */ |
| 1061 | int qman_alloc_cgrid_range(u32 *result, u32 count); |
| 1062 | #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1) |
| 1063 | |
| 1064 | /** |
| 1065 | * qman_release_cgrid - Release the specified CGR ID |
| 1066 | * @id: the CGR ID to be released back to the resource pool |
| 1067 | * |
| 1068 | * This function can also be used to seed the allocator with |
| 1069 | * CGR ID ranges that it can subsequently allocate from. |
| 1070 | * Returns 0 on success, or a negative error code. |
| 1071 | */ |
| 1072 | int qman_release_cgrid(u32 id); |
| 1073 | |
| 1074 | #endif /* __FSL_QMAN_H */ |