blob: bb6f9255c17c3a8869b31c5bdb4a4a862b1cfa72 [file] [log] [blame]
J Freyensee0b61d2a2011-05-06 16:56:49 -07001/*
2 * pti.c - PTI driver for cJTAG data extration
3 *
4 * Copyright (C) Intel 2010
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 *
17 * The PTI (Parallel Trace Interface) driver directs trace data routed from
18 * various parts in the system out through the Intel Penwell PTI port and
19 * out of the mobile device for analysis with a debugging tool
20 * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
21 * compact JTAG, standard.
22 */
23
24#include <linux/init.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/console.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/tty.h>
31#include <linux/tty_driver.h>
32#include <linux/pci.h>
33#include <linux/mutex.h>
34#include <linux/miscdevice.h>
35#include <linux/pti.h>
36
37#define DRIVERNAME "pti"
38#define PCINAME "pciPTI"
39#define TTYNAME "ttyPTI"
40#define CHARNAME "pti"
41#define PTITTY_MINOR_START 0
42#define PTITTY_MINOR_NUM 2
43#define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */
44#define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */
45#define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */
46#define MODEM_BASE_ID 71 /* modem master ID address */
47#define CONTROL_ID 72 /* control master ID address */
48#define CONSOLE_ID 73 /* console master ID address */
49#define OS_BASE_ID 74 /* base OS master ID address */
50#define APP_BASE_ID 80 /* base App master ID address */
51#define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */
52#define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */
53#define APERTURE_14 0x3800000 /* offset to first OS write addr */
54#define APERTURE_LEN 0x400000 /* address length */
55
56struct pti_tty {
57 struct pti_masterchannel *mc;
58};
59
60struct pti_dev {
61 struct tty_port port;
62 unsigned long pti_addr;
63 unsigned long aperture_base;
64 void __iomem *pti_ioaddr;
65 u8 ia_app[MAX_APP_IDS];
66 u8 ia_os[MAX_OS_IDS];
67 u8 ia_modem[MAX_MODEM_IDS];
68};
69
70/*
71 * This protects access to ia_app, ia_os, and ia_modem,
72 * which keeps track of channels allocated in
73 * an aperture write id.
74 */
75static DEFINE_MUTEX(alloclock);
76
77static struct pci_device_id pci_ids[] __devinitconst = {
78 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
79 {0}
80};
81
82static struct tty_driver *pti_tty_driver;
83static struct pti_dev *drv_data;
84
85static unsigned int pti_console_channel;
86static unsigned int pti_control_channel;
87
88/**
89 * pti_write_to_aperture()- The private write function to PTI HW.
90 *
91 * @mc: The 'aperture'. It's part of a write address that holds
92 * a master and channel ID.
93 * @buf: Data being written to the HW that will ultimately be seen
94 * in a debugging tool (Fido, Lauterbach).
95 * @len: Size of buffer.
96 *
97 * Since each aperture is specified by a unique
98 * master/channel ID, no two processes will be writing
99 * to the same aperture at the same time so no lock is required. The
100 * PTI-Output agent will send these out in the order that they arrived, and
101 * thus, it will intermix these messages. The debug tool can then later
102 * regroup the appropriate message segments together reconstituting each
103 * message.
104 */
105static void pti_write_to_aperture(struct pti_masterchannel *mc,
106 u8 *buf,
107 int len)
108{
109 int dwordcnt;
110 int final;
111 int i;
112 u32 ptiword;
113 u32 __iomem *aperture;
114 u8 *p = buf;
115
116 /*
117 * calculate the aperture offset from the base using the master and
118 * channel id's.
119 */
120 aperture = drv_data->pti_ioaddr + (mc->master << 15)
121 + (mc->channel << 8);
122
123 dwordcnt = len >> 2;
124 final = len - (dwordcnt << 2); /* final = trailing bytes */
125 if (final == 0 && dwordcnt != 0) { /* always need a final dword */
126 final += 4;
127 dwordcnt--;
128 }
129
130 for (i = 0; i < dwordcnt; i++) {
131 ptiword = be32_to_cpu(*(u32 *)p);
132 p += 4;
133 iowrite32(ptiword, aperture);
134 }
135
136 aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */
137
138 ptiword = 0;
139 for (i = 0; i < final; i++)
140 ptiword |= *p++ << (24-(8*i));
141
142 iowrite32(ptiword, aperture);
143 return;
144}
145
146/**
147 * pti_control_frame_built_and_sent()- control frame build and send function.
148 *
149 * @mc: The master / channel structure on which the function
150 * built a control frame.
151 *
152 * To be able to post process the PTI contents on host side, a control frame
153 * is added before sending any PTI content. So the host side knows on
154 * each PTI frame the name of the thread using a dedicated master / channel.
155 * The thread name is retrieved from the 'current' global variable.
156 * This function builds this frame and sends it to a master ID CONTROL_ID.
157 * The overhead is only 32 bytes since the driver only writes to HW
158 * in 32 byte chunks.
159 */
160
161static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc)
162{
163 struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
164 .channel = 0};
165 const char *control_format = "%3d %3d %s";
166 u8 control_frame[CONTROL_FRAME_LEN];
167
168 /*
169 * Since we access the comm member in current's task_struct,
170 * we only need to be as large as what 'comm' in that
171 * structure is.
172 */
173 char comm[TASK_COMM_LEN];
174
175 if (!in_interrupt())
176 get_task_comm(comm, current);
177 else
178 strncpy(comm, "Interrupt", TASK_COMM_LEN);
179
180 /* Absolutely ensure our buffer is zero terminated. */
181 comm[TASK_COMM_LEN-1] = 0;
182
183 mccontrol.channel = pti_control_channel;
184 pti_control_channel = (pti_control_channel + 1) & 0x7f;
185
186 snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
187 mc->channel, comm);
188 pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
189}
190
191/**
192 * pti_write_full_frame_to_aperture()- high level function to
193 * write to PTI.
194 *
195 * @mc: The 'aperture'. It's part of a write address that holds
196 * a master and channel ID.
197 * @buf: Data being written to the HW that will ultimately be seen
198 * in a debugging tool (Fido, Lauterbach).
199 * @len: Size of buffer.
200 *
201 * All threads sending data (either console, user space application, ...)
202 * are calling the high level function to write to PTI meaning that it is
203 * possible to add a control frame before sending the content.
204 */
205static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
206 const unsigned char *buf,
207 int len)
208{
209 pti_control_frame_built_and_sent(mc);
210 pti_write_to_aperture(mc, (u8 *)buf, len);
211}
212
213/**
214 * get_id()- Allocate a master and channel ID.
215 *
216 * @id_array: an array of bits representing what channel
217 * id's are allocated for writing.
218 * @max_ids: The max amount of available write IDs to use.
219 * @base_id: The starting SW channel ID, based on the Intel
220 * PTI arch.
221 *
222 * Returns:
223 * pti_masterchannel struct with master, channel ID address
224 * 0 for error
225 *
226 * Each bit in the arrays ia_app and ia_os correspond to a master and
227 * channel id. The bit is one if the id is taken and 0 if free. For
228 * every master there are 128 channel id's.
229 */
230static struct pti_masterchannel *get_id(u8 *id_array, int max_ids, int base_id)
231{
232 struct pti_masterchannel *mc;
233 int i, j, mask;
234
235 mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
236 if (mc == NULL)
237 return NULL;
238
239 /* look for a byte with a free bit */
240 for (i = 0; i < max_ids; i++)
241 if (id_array[i] != 0xff)
242 break;
243 if (i == max_ids) {
244 kfree(mc);
245 return NULL;
246 }
247 /* find the bit in the 128 possible channel opportunities */
248 mask = 0x80;
249 for (j = 0; j < 8; j++) {
250 if ((id_array[i] & mask) == 0)
251 break;
252 mask >>= 1;
253 }
254
255 /* grab it */
256 id_array[i] |= mask;
257 mc->master = base_id;
258 mc->channel = ((i & 0xf)<<3) + j;
259 /* write new master Id / channel Id allocation to channel control */
260 pti_control_frame_built_and_sent(mc);
261 return mc;
262}
263
264/*
265 * The following three functions:
266 * pti_request_mastercahannel(), mipi_release_masterchannel()
267 * and pti_writedata() are an API for other kernel drivers to
268 * access PTI.
269 */
270
271/**
272 * pti_request_masterchannel()- Kernel API function used to allocate
273 * a master, channel ID address
274 * to write to PTI HW.
275 *
276 * @type: 0- request Application master, channel aperture ID write address.
277 * 1- request OS master, channel aperture ID write
278 * address.
279 * 2- request Modem master, channel aperture ID
280 * write address.
281 * Other values, error.
282 *
283 * Returns:
284 * pti_masterchannel struct
285 * 0 for error
286 */
287struct pti_masterchannel *pti_request_masterchannel(u8 type)
288{
289 struct pti_masterchannel *mc;
290
291 mutex_lock(&alloclock);
292
293 switch (type) {
294
295 case 0:
296 mc = get_id(drv_data->ia_app, MAX_APP_IDS, APP_BASE_ID);
297 break;
298
299 case 1:
300 mc = get_id(drv_data->ia_os, MAX_OS_IDS, OS_BASE_ID);
301 break;
302
303 case 2:
304 mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS, MODEM_BASE_ID);
305 break;
306 default:
307 mc = NULL;
308 }
309
310 mutex_unlock(&alloclock);
311 return mc;
312}
313EXPORT_SYMBOL_GPL(pti_request_masterchannel);
314
315/**
316 * pti_release_masterchannel()- Kernel API function used to release
317 * a master, channel ID address
318 * used to write to PTI HW.
319 *
320 * @mc: master, channel apeture ID address to be released.
321 */
322void pti_release_masterchannel(struct pti_masterchannel *mc)
323{
324 u8 master, channel, i;
325
326 mutex_lock(&alloclock);
327
328 if (mc) {
329 master = mc->master;
330 channel = mc->channel;
331
332 if (master == APP_BASE_ID) {
333 i = channel >> 3;
334 drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7));
335 } else if (master == OS_BASE_ID) {
336 i = channel >> 3;
337 drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
338 } else {
339 i = channel >> 3;
340 drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
341 }
342
343 kfree(mc);
344 }
345
346 mutex_unlock(&alloclock);
347}
348EXPORT_SYMBOL_GPL(pti_release_masterchannel);
349
350/**
351 * pti_writedata()- Kernel API function used to write trace
352 * debugging data to PTI HW.
353 *
354 * @mc: Master, channel aperture ID address to write to.
355 * Null value will return with no write occurring.
356 * @buf: Trace debuging data to write to the PTI HW.
357 * Null value will return with no write occurring.
358 * @count: Size of buf. Value of 0 or a negative number will
359 * return with no write occuring.
360 */
361void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
362{
363 /*
364 * since this function is exported, this is treated like an
365 * API function, thus, all parameters should
366 * be checked for validity.
367 */
368 if ((mc != NULL) && (buf != NULL) && (count > 0))
369 pti_write_to_aperture(mc, buf, count);
370 return;
371}
372EXPORT_SYMBOL_GPL(pti_writedata);
373
374/**
375 * pti_pci_remove()- Driver exit method to remove PTI from
376 * PCI bus.
377 * @pdev: variable containing pci info of PTI.
378 */
379static void __devexit pti_pci_remove(struct pci_dev *pdev)
380{
381 struct pti_dev *drv_data;
382
383 drv_data = pci_get_drvdata(pdev);
384 if (drv_data != NULL) {
385 pci_iounmap(pdev, drv_data->pti_ioaddr);
386 pci_set_drvdata(pdev, NULL);
387 kfree(drv_data);
388 pci_release_region(pdev, 1);
389 pci_disable_device(pdev);
390 }
391}
392
393/*
394 * for the tty_driver_*() basic function descriptions, see tty_driver.h.
395 * Specific header comments made for PTI-related specifics.
396 */
397
398/**
399 * pti_tty_driver_open()- Open an Application master, channel aperture
400 * ID to the PTI device via tty device.
401 *
402 * @tty: tty interface.
403 * @filp: filp interface pased to tty_port_open() call.
404 *
405 * Returns:
406 * int, 0 for success
407 * otherwise, fail value
408 *
409 * The main purpose of using the tty device interface is for
410 * each tty port to have a unique PTI write aperture. In an
411 * example use case, ttyPTI0 gets syslogd and an APP aperture
412 * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
413 * modem messages into PTI. Modem trace data does not have to
414 * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
415 * master IDs. These messages go through the PTI HW and out of
416 * the handheld platform and to the Fido/Lauterbach device.
417 */
418static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
419{
420 /*
421 * we actually want to allocate a new channel per open, per
422 * system arch. HW gives more than plenty channels for a single
423 * system task to have its own channel to write trace data. This
424 * also removes a locking requirement for the actual write
425 * procedure.
426 */
427 return tty_port_open(&drv_data->port, tty, filp);
428}
429
430/**
431 * pti_tty_driver_close()- close tty device and release Application
432 * master, channel aperture ID to the PTI device via tty device.
433 *
434 * @tty: tty interface.
435 * @filp: filp interface pased to tty_port_close() call.
436 *
437 * The main purpose of using the tty device interface is to route
438 * syslog daemon messages to the PTI HW and out of the handheld platform
439 * and to the Fido/Lauterbach device.
440 */
441static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
442{
443 tty_port_close(&drv_data->port, tty, filp);
444}
445
446/**
447 * pti_tty_intstall()- Used to set up specific master-channels
448 * to tty ports for organizational purposes when
449 * tracing viewed from debuging tools.
450 *
451 * @driver: tty driver information.
452 * @tty: tty struct containing pti information.
453 *
454 * Returns:
455 * 0 for success
456 * otherwise, error
457 */
458static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
459{
460 int idx = tty->index;
461 struct pti_tty *pti_tty_data;
462 int ret = tty_init_termios(tty);
463
464 if (ret == 0) {
465 tty_driver_kref_get(driver);
466 tty->count++;
467 driver->ttys[idx] = tty;
468
469 pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
470 if (pti_tty_data == NULL)
471 return -ENOMEM;
472
473 if (idx == PTITTY_MINOR_START)
474 pti_tty_data->mc = pti_request_masterchannel(0);
475 else
476 pti_tty_data->mc = pti_request_masterchannel(2);
477
478 if (pti_tty_data->mc == NULL)
479 return -ENXIO;
480 tty->driver_data = pti_tty_data;
481 }
482
483 return ret;
484}
485
486/**
487 * pti_tty_cleanup()- Used to de-allocate master-channel resources
488 * tied to tty's of this driver.
489 *
490 * @tty: tty struct containing pti information.
491 */
492static void pti_tty_cleanup(struct tty_struct *tty)
493{
494 struct pti_tty *pti_tty_data = tty->driver_data;
495 if (pti_tty_data == NULL)
496 return;
497 pti_release_masterchannel(pti_tty_data->mc);
498 kfree(tty->driver_data);
499 tty->driver_data = NULL;
500}
501
502/**
503 * pti_tty_driver_write()- Write trace debugging data through the char
504 * interface to the PTI HW. Part of the misc device implementation.
505 *
506 * @filp: Contains private data which is used to obtain
507 * master, channel write ID.
508 * @data: trace data to be written.
509 * @len: # of byte to write.
510 *
511 * Returns:
512 * int, # of bytes written
513 * otherwise, error
514 */
515static int pti_tty_driver_write(struct tty_struct *tty,
516 const unsigned char *buf, int len)
517{
518 struct pti_tty *pti_tty_data = tty->driver_data;
519 if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
520 pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
521 return len;
522 }
523 /*
524 * we can't write to the pti hardware if the private driver_data
525 * and the mc address is not there.
526 */
527 else
528 return -EFAULT;
529}
530
531/**
532 * pti_tty_write_room()- Always returns 2048.
533 *
534 * @tty: contains tty info of the pti driver.
535 */
536static int pti_tty_write_room(struct tty_struct *tty)
537{
538 return 2048;
539}
540
541/**
542 * pti_char_open()- Open an Application master, channel aperture
543 * ID to the PTI device. Part of the misc device implementation.
544 *
545 * @inode: not used.
546 * @filp: Output- will have a masterchannel struct set containing
547 * the allocated application PTI aperture write address.
548 *
549 * Returns:
550 * int, 0 for success
551 * otherwise, a fail value
552 */
553static int pti_char_open(struct inode *inode, struct file *filp)
554{
555 struct pti_masterchannel *mc;
556
557 /*
558 * We really do want to fail immediately if
559 * pti_request_masterchannel() fails,
560 * before assigning the value to filp->private_data.
561 * Slightly easier to debug if this driver needs debugging.
562 */
563 mc = pti_request_masterchannel(0);
564 if (mc == NULL)
565 return -ENOMEM;
566 filp->private_data = mc;
567 return 0;
568}
569
570/**
571 * pti_char_release()- Close a char channel to the PTI device. Part
572 * of the misc device implementation.
573 *
574 * @inode: Not used in this implementaiton.
575 * @filp: Contains private_data that contains the master, channel
576 * ID to be released by the PTI device.
577 *
578 * Returns:
579 * always 0
580 */
581static int pti_char_release(struct inode *inode, struct file *filp)
582{
583 pti_release_masterchannel(filp->private_data);
584 kfree(filp->private_data);
585 return 0;
586}
587
588/**
589 * pti_char_write()- Write trace debugging data through the char
590 * interface to the PTI HW. Part of the misc device implementation.
591 *
592 * @filp: Contains private data which is used to obtain
593 * master, channel write ID.
594 * @data: trace data to be written.
595 * @len: # of byte to write.
596 * @ppose: Not used in this function implementation.
597 *
598 * Returns:
599 * int, # of bytes written
600 * otherwise, error value
601 *
602 * Notes: From side discussions with Alan Cox and experimenting
603 * with PTI debug HW like Nokia's Fido box and Lauterbach
604 * devices, 8192 byte write buffer used by USER_COPY_SIZE was
605 * deemed an appropriate size for this type of usage with
606 * debugging HW.
607 */
608static ssize_t pti_char_write(struct file *filp, const char __user *data,
609 size_t len, loff_t *ppose)
610{
611 struct pti_masterchannel *mc;
612 void *kbuf;
613 const char __user *tmp;
614 size_t size = USER_COPY_SIZE;
615 size_t n = 0;
616
617 tmp = data;
618 mc = filp->private_data;
619
620 kbuf = kmalloc(size, GFP_KERNEL);
621 if (kbuf == NULL) {
622 pr_err("%s(%d): buf allocation failed\n",
623 __func__, __LINE__);
624 return -ENOMEM;
625 }
626
627 do {
628 if (len - n > USER_COPY_SIZE)
629 size = USER_COPY_SIZE;
630 else
631 size = len - n;
632
633 if (copy_from_user(kbuf, tmp, size)) {
634 kfree(kbuf);
635 return n ? n : -EFAULT;
636 }
637
638 pti_write_to_aperture(mc, kbuf, size);
639 n += size;
640 tmp += size;
641
642 } while (len > n);
643
644 kfree(kbuf);
645 return len;
646}
647
648static const struct tty_operations pti_tty_driver_ops = {
649 .open = pti_tty_driver_open,
650 .close = pti_tty_driver_close,
651 .write = pti_tty_driver_write,
652 .write_room = pti_tty_write_room,
653 .install = pti_tty_install,
654 .cleanup = pti_tty_cleanup
655};
656
657static const struct file_operations pti_char_driver_ops = {
658 .owner = THIS_MODULE,
659 .write = pti_char_write,
660 .open = pti_char_open,
661 .release = pti_char_release,
662};
663
664static struct miscdevice pti_char_driver = {
665 .minor = MISC_DYNAMIC_MINOR,
666 .name = CHARNAME,
667 .fops = &pti_char_driver_ops
668};
669
670/**
671 * pti_console_write()- Write to the console that has been acquired.
672 *
673 * @c: Not used in this implementaiton.
674 * @buf: Data to be written.
675 * @len: Length of buf.
676 */
677static void pti_console_write(struct console *c, const char *buf, unsigned len)
678{
679 static struct pti_masterchannel mc = {.master = CONSOLE_ID,
680 .channel = 0};
681
682 mc.channel = pti_console_channel;
683 pti_console_channel = (pti_console_channel + 1) & 0x7f;
684
685 pti_write_full_frame_to_aperture(&mc, buf, len);
686}
687
688/**
689 * pti_console_device()- Return the driver tty structure and set the
690 * associated index implementation.
691 *
692 * @c: Console device of the driver.
693 * @index: index associated with c.
694 *
695 * Returns:
696 * always value of pti_tty_driver structure when this function
697 * is called.
698 */
699static struct tty_driver *pti_console_device(struct console *c, int *index)
700{
701 *index = c->index;
702 return pti_tty_driver;
703}
704
705/**
706 * pti_console_setup()- Initialize console variables used by the driver.
707 *
708 * @c: Not used.
709 * @opts: Not used.
710 *
711 * Returns:
712 * always 0.
713 */
714static int pti_console_setup(struct console *c, char *opts)
715{
716 pti_console_channel = 0;
717 pti_control_channel = 0;
718 return 0;
719}
720
721/*
722 * pti_console struct, used to capture OS printk()'s and shift
723 * out to the PTI device for debugging. This cannot be
724 * enabled upon boot because of the possibility of eating
725 * any serial console printk's (race condition discovered).
726 * The console should be enabled upon when the tty port is
727 * used for the first time. Since the primary purpose for
728 * the tty port is to hook up syslog to it, the tty port
729 * will be open for a really long time.
730 */
731static struct console pti_console = {
732 .name = TTYNAME,
733 .write = pti_console_write,
734 .device = pti_console_device,
735 .setup = pti_console_setup,
736 .flags = CON_PRINTBUFFER,
737 .index = 0,
738};
739
740/**
741 * pti_port_activate()- Used to start/initialize any items upon
742 * first opening of tty_port().
743 *
744 * @port- The tty port number of the PTI device.
745 * @tty- The tty struct associated with this device.
746 *
747 * Returns:
748 * always returns 0
749 *
750 * Notes: The primary purpose of the PTI tty port 0 is to hook
751 * the syslog daemon to it; thus this port will be open for a
752 * very long time.
753 */
754static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
755{
756 if (port->tty->index == PTITTY_MINOR_START)
757 console_start(&pti_console);
758 return 0;
759}
760
761/**
762 * pti_port_shutdown()- Used to stop/shutdown any items upon the
763 * last tty port close.
764 *
765 * @port- The tty port number of the PTI device.
766 *
767 * Notes: The primary purpose of the PTI tty port 0 is to hook
768 * the syslog daemon to it; thus this port will be open for a
769 * very long time.
770 */
771static void pti_port_shutdown(struct tty_port *port)
772{
773 if (port->tty->index == PTITTY_MINOR_START)
774 console_stop(&pti_console);
775}
776
777static const struct tty_port_operations tty_port_ops = {
778 .activate = pti_port_activate,
779 .shutdown = pti_port_shutdown,
780};
781
782/*
783 * Note the _probe() call sets everything up and ties the char and tty
784 * to successfully detecting the PTI device on the pci bus.
785 */
786
787/**
788 * pti_pci_probe()- Used to detect pti on the pci bus and set
789 * things up in the driver.
790 *
791 * @pdev- pci_dev struct values for pti.
792 * @ent- pci_device_id struct for pti driver.
793 *
794 * Returns:
795 * 0 for success
796 * otherwise, error
797 */
798static int __devinit pti_pci_probe(struct pci_dev *pdev,
799 const struct pci_device_id *ent)
800{
801 int retval = -EINVAL;
802 int pci_bar = 1;
803
804 dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
805 __func__, __LINE__, pdev->vendor, pdev->device);
806
807 retval = misc_register(&pti_char_driver);
808 if (retval) {
809 pr_err("%s(%d): CHAR registration failed of pti driver\n",
810 __func__, __LINE__);
811 pr_err("%s(%d): Error value returned: %d\n",
812 __func__, __LINE__, retval);
813 return retval;
814 }
815
816 retval = pci_enable_device(pdev);
817 if (retval != 0) {
818 dev_err(&pdev->dev,
819 "%s: pci_enable_device() returned error %d\n",
820 __func__, retval);
821 return retval;
822 }
823
824 drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
825
826 if (drv_data == NULL) {
827 retval = -ENOMEM;
828 dev_err(&pdev->dev,
829 "%s(%d): kmalloc() returned NULL memory.\n",
830 __func__, __LINE__);
831 return retval;
832 }
833 drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
834
835 retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
836 if (retval != 0) {
837 dev_err(&pdev->dev,
838 "%s(%d): pci_request_region() returned error %d\n",
839 __func__, __LINE__, retval);
840 kfree(drv_data);
841 return retval;
842 }
843 drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
844 drv_data->pti_ioaddr =
845 ioremap_nocache((u32)drv_data->aperture_base,
846 APERTURE_LEN);
847 if (!drv_data->pti_ioaddr) {
848 pci_release_region(pdev, pci_bar);
849 retval = -ENOMEM;
850 kfree(drv_data);
851 return retval;
852 }
853
854 pci_set_drvdata(pdev, drv_data);
855
856 tty_port_init(&drv_data->port);
857 drv_data->port.ops = &tty_port_ops;
858
859 tty_register_device(pti_tty_driver, 0, &pdev->dev);
860 tty_register_device(pti_tty_driver, 1, &pdev->dev);
861
862 register_console(&pti_console);
863
864 return retval;
865}
866
867static struct pci_driver pti_pci_driver = {
868 .name = PCINAME,
869 .id_table = pci_ids,
870 .probe = pti_pci_probe,
871 .remove = pti_pci_remove,
872};
873
874/**
875 *
876 * pti_init()- Overall entry/init call to the pti driver.
877 * It starts the registration process with the kernel.
878 *
879 * Returns:
880 * int __init, 0 for success
881 * otherwise value is an error
882 *
883 */
884static int __init pti_init(void)
885{
886 int retval = -EINVAL;
887
888 /* First register module as tty device */
889
890 pti_tty_driver = alloc_tty_driver(1);
891 if (pti_tty_driver == NULL) {
892 pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
893 __func__, __LINE__);
894 return -ENOMEM;
895 }
896
897 pti_tty_driver->owner = THIS_MODULE;
898 pti_tty_driver->magic = TTY_DRIVER_MAGIC;
899 pti_tty_driver->driver_name = DRIVERNAME;
900 pti_tty_driver->name = TTYNAME;
901 pti_tty_driver->major = 0;
902 pti_tty_driver->minor_start = PTITTY_MINOR_START;
903 pti_tty_driver->minor_num = PTITTY_MINOR_NUM;
904 pti_tty_driver->num = PTITTY_MINOR_NUM;
905 pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM;
906 pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS;
907 pti_tty_driver->flags = TTY_DRIVER_REAL_RAW |
908 TTY_DRIVER_DYNAMIC_DEV;
909 pti_tty_driver->init_termios = tty_std_termios;
910
911 tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
912
913 retval = tty_register_driver(pti_tty_driver);
914 if (retval) {
915 pr_err("%s(%d): TTY registration failed of pti driver\n",
916 __func__, __LINE__);
917 pr_err("%s(%d): Error value returned: %d\n",
918 __func__, __LINE__, retval);
919
920 pti_tty_driver = NULL;
921 return retval;
922 }
923
924 retval = pci_register_driver(&pti_pci_driver);
925
926 if (retval) {
927 pr_err("%s(%d): PCI registration failed of pti driver\n",
928 __func__, __LINE__);
929 pr_err("%s(%d): Error value returned: %d\n",
930 __func__, __LINE__, retval);
931
932 tty_unregister_driver(pti_tty_driver);
933 pr_err("%s(%d): Unregistering TTY part of pti driver\n",
934 __func__, __LINE__);
935 pti_tty_driver = NULL;
936 return retval;
937 }
938
939 return retval;
940}
941
942/**
943 * pti_exit()- Unregisters this module as a tty and pci driver.
944 */
945static void __exit pti_exit(void)
946{
947 int retval;
948
949 tty_unregister_device(pti_tty_driver, 0);
950 tty_unregister_device(pti_tty_driver, 1);
951
952 retval = tty_unregister_driver(pti_tty_driver);
953 if (retval) {
954 pr_err("%s(%d): TTY unregistration failed of pti driver\n",
955 __func__, __LINE__);
956 pr_err("%s(%d): Error value returned: %d\n",
957 __func__, __LINE__, retval);
958 }
959
960 pci_unregister_driver(&pti_pci_driver);
961
962 retval = misc_deregister(&pti_char_driver);
963 if (retval) {
964 pr_err("%s(%d): CHAR unregistration failed of pti driver\n",
965 __func__, __LINE__);
966 pr_err("%s(%d): Error value returned: %d\n",
967 __func__, __LINE__, retval);
968 }
969
970 unregister_console(&pti_console);
971 return;
972}
973
974module_init(pti_init);
975module_exit(pti_exit);
976
977MODULE_LICENSE("GPL");
978MODULE_AUTHOR("Ken Mills, Jay Freyensee");
979MODULE_DESCRIPTION("PTI Driver");
980