blob: d70a03906ac0a0cecfb3f078fa584e376eae061a [file] [log] [blame]
Bruce Allanfe2ddfb2011-12-21 09:47:10 +00001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanbf670442013-01-01 16:00:01 +00004 Copyright(c) 1999 - 2013 Intel Corporation.
Bruce Allanfe2ddfb2011-12-21 09:47:10 +00005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 * e1000_raise_eec_clk - Raise EEPROM clock
33 * @hw: pointer to the HW structure
34 * @eecd: pointer to the EEPROM
35 *
36 * Enable/Raise the EEPROM clock bit.
37 **/
38static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
39{
40 *eecd = *eecd | E1000_EECD_SK;
41 ew32(EECD, *eecd);
42 e1e_flush();
43 udelay(hw->nvm.delay_usec);
44}
45
46/**
47 * e1000_lower_eec_clk - Lower EEPROM clock
48 * @hw: pointer to the HW structure
49 * @eecd: pointer to the EEPROM
50 *
51 * Clear/Lower the EEPROM clock bit.
52 **/
53static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
54{
55 *eecd = *eecd & ~E1000_EECD_SK;
56 ew32(EECD, *eecd);
57 e1e_flush();
58 udelay(hw->nvm.delay_usec);
59}
60
61/**
62 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
63 * @hw: pointer to the HW structure
64 * @data: data to send to the EEPROM
65 * @count: number of bits to shift out
66 *
67 * We need to shift 'count' bits out to the EEPROM. So, the value in the
68 * "data" parameter will be shifted out to the EEPROM one bit at a time.
69 * In order to do this, "data" must be broken down into bits.
70 **/
71static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
72{
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 u32 eecd = er32(EECD);
75 u32 mask;
76
77 mask = 0x01 << (count - 1);
78 if (nvm->type == e1000_nvm_eeprom_spi)
79 eecd |= E1000_EECD_DO;
80
81 do {
82 eecd &= ~E1000_EECD_DI;
83
84 if (data & mask)
85 eecd |= E1000_EECD_DI;
86
87 ew32(EECD, eecd);
88 e1e_flush();
89
90 udelay(nvm->delay_usec);
91
92 e1000_raise_eec_clk(hw, &eecd);
93 e1000_lower_eec_clk(hw, &eecd);
94
95 mask >>= 1;
96 } while (mask);
97
98 eecd &= ~E1000_EECD_DI;
99 ew32(EECD, eecd);
100}
101
102/**
103 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
104 * @hw: pointer to the HW structure
105 * @count: number of bits to shift in
106 *
107 * In order to read a register from the EEPROM, we need to shift 'count' bits
108 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
109 * the EEPROM (setting the SK bit), and then reading the value of the data out
110 * "DO" bit. During this "shifting in" process the data in "DI" bit should
111 * always be clear.
112 **/
113static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
114{
115 u32 eecd;
116 u32 i;
117 u16 data;
118
119 eecd = er32(EECD);
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000120 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
121 data = 0;
122
123 for (i = 0; i < count; i++) {
124 data <<= 1;
125 e1000_raise_eec_clk(hw, &eecd);
126
127 eecd = er32(EECD);
128
129 eecd &= ~E1000_EECD_DI;
130 if (eecd & E1000_EECD_DO)
131 data |= 1;
132
133 e1000_lower_eec_clk(hw, &eecd);
134 }
135
136 return data;
137}
138
139/**
140 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
141 * @hw: pointer to the HW structure
142 * @ee_reg: EEPROM flag for polling
143 *
144 * Polls the EEPROM status bit for either read or write completion based
145 * upon the value of 'ee_reg'.
146 **/
147s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
148{
149 u32 attempts = 100000;
150 u32 i, reg = 0;
151
152 for (i = 0; i < attempts; i++) {
153 if (ee_reg == E1000_NVM_POLL_READ)
154 reg = er32(EERD);
155 else
156 reg = er32(EEWR);
157
158 if (reg & E1000_NVM_RW_REG_DONE)
159 return 0;
160
161 udelay(5);
162 }
163
164 return -E1000_ERR_NVM;
165}
166
167/**
168 * e1000e_acquire_nvm - Generic request for access to EEPROM
169 * @hw: pointer to the HW structure
170 *
171 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
172 * Return successful if access grant bit set, else clear the request for
173 * EEPROM access and return -E1000_ERR_NVM (-1).
174 **/
175s32 e1000e_acquire_nvm(struct e1000_hw *hw)
176{
177 u32 eecd = er32(EECD);
178 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
179
180 ew32(EECD, eecd | E1000_EECD_REQ);
181 eecd = er32(EECD);
182
183 while (timeout) {
184 if (eecd & E1000_EECD_GNT)
185 break;
186 udelay(5);
187 eecd = er32(EECD);
188 timeout--;
189 }
190
191 if (!timeout) {
192 eecd &= ~E1000_EECD_REQ;
193 ew32(EECD, eecd);
194 e_dbg("Could not acquire NVM grant\n");
195 return -E1000_ERR_NVM;
196 }
197
198 return 0;
199}
200
201/**
202 * e1000_standby_nvm - Return EEPROM to standby state
203 * @hw: pointer to the HW structure
204 *
205 * Return the EEPROM to a standby state.
206 **/
207static void e1000_standby_nvm(struct e1000_hw *hw)
208{
209 struct e1000_nvm_info *nvm = &hw->nvm;
210 u32 eecd = er32(EECD);
211
212 if (nvm->type == e1000_nvm_eeprom_spi) {
213 /* Toggle CS to flush commands */
214 eecd |= E1000_EECD_CS;
215 ew32(EECD, eecd);
216 e1e_flush();
217 udelay(nvm->delay_usec);
218 eecd &= ~E1000_EECD_CS;
219 ew32(EECD, eecd);
220 e1e_flush();
221 udelay(nvm->delay_usec);
222 }
223}
224
225/**
226 * e1000_stop_nvm - Terminate EEPROM command
227 * @hw: pointer to the HW structure
228 *
229 * Terminates the current command by inverting the EEPROM's chip select pin.
230 **/
231static void e1000_stop_nvm(struct e1000_hw *hw)
232{
233 u32 eecd;
234
235 eecd = er32(EECD);
236 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
237 /* Pull CS high */
238 eecd |= E1000_EECD_CS;
239 e1000_lower_eec_clk(hw, &eecd);
240 }
241}
242
243/**
244 * e1000e_release_nvm - Release exclusive access to EEPROM
245 * @hw: pointer to the HW structure
246 *
247 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
248 **/
249void e1000e_release_nvm(struct e1000_hw *hw)
250{
251 u32 eecd;
252
253 e1000_stop_nvm(hw);
254
255 eecd = er32(EECD);
256 eecd &= ~E1000_EECD_REQ;
257 ew32(EECD, eecd);
258}
259
260/**
261 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
262 * @hw: pointer to the HW structure
263 *
264 * Setups the EEPROM for reading and writing.
265 **/
266static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
267{
268 struct e1000_nvm_info *nvm = &hw->nvm;
269 u32 eecd = er32(EECD);
270 u8 spi_stat_reg;
271
272 if (nvm->type == e1000_nvm_eeprom_spi) {
273 u16 timeout = NVM_MAX_RETRY_SPI;
274
275 /* Clear SK and CS */
276 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
277 ew32(EECD, eecd);
278 e1e_flush();
279 udelay(1);
280
Bruce Allane921eb12012-11-28 09:28:37 +0000281 /* Read "Status Register" repeatedly until the LSB is cleared.
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000282 * The EEPROM will signal that the command has been completed
283 * by clearing bit 0 of the internal status register. If it's
284 * not cleared within 'timeout', then error out.
285 */
286 while (timeout) {
287 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
288 hw->nvm.opcode_bits);
289 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
290 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
291 break;
292
293 udelay(5);
294 e1000_standby_nvm(hw);
295 timeout--;
296 }
297
298 if (!timeout) {
299 e_dbg("SPI NVM Status error\n");
300 return -E1000_ERR_NVM;
301 }
302 }
303
304 return 0;
305}
306
307/**
308 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
309 * @hw: pointer to the HW structure
310 * @offset: offset of word in the EEPROM to read
311 * @words: number of words to read
312 * @data: word read from the EEPROM
313 *
314 * Reads a 16 bit word from the EEPROM using the EERD register.
315 **/
316s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
317{
318 struct e1000_nvm_info *nvm = &hw->nvm;
319 u32 i, eerd = 0;
320 s32 ret_val = 0;
321
Bruce Allane921eb12012-11-28 09:28:37 +0000322 /* A check for invalid values: offset too large, too many words,
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000323 * too many words for the offset, and not enough words.
324 */
325 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
326 (words == 0)) {
327 e_dbg("nvm parameter(s) out of bounds\n");
328 return -E1000_ERR_NVM;
329 }
330
331 for (i = 0; i < words; i++) {
332 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
333 E1000_NVM_RW_REG_START;
334
335 ew32(EERD, eerd);
336 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
337 if (ret_val)
338 break;
339
340 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
341 }
342
343 return ret_val;
344}
345
346/**
347 * e1000e_write_nvm_spi - Write to EEPROM using SPI
348 * @hw: pointer to the HW structure
349 * @offset: offset within the EEPROM to be written to
350 * @words: number of words to write
351 * @data: 16 bit word(s) to be written to the EEPROM
352 *
353 * Writes data to EEPROM at offset using SPI interface.
354 *
355 * If e1000e_update_nvm_checksum is not called after this function , the
356 * EEPROM will most likely contain an invalid checksum.
357 **/
358s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
359{
360 struct e1000_nvm_info *nvm = &hw->nvm;
Bruce Allan635ab562012-12-05 06:25:47 +0000361 s32 ret_val = -E1000_ERR_NVM;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000362 u16 widx = 0;
363
Bruce Allane921eb12012-11-28 09:28:37 +0000364 /* A check for invalid values: offset too large, too many words,
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000365 * and not enough words.
366 */
367 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
368 (words == 0)) {
369 e_dbg("nvm parameter(s) out of bounds\n");
370 return -E1000_ERR_NVM;
371 }
372
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000373 while (widx < words) {
374 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
375
Bruce Allan635ab562012-12-05 06:25:47 +0000376 ret_val = nvm->ops.acquire(hw);
Bruce Allanffacd472012-02-08 02:54:42 +0000377 if (ret_val)
Bruce Allan635ab562012-12-05 06:25:47 +0000378 return ret_val;
379
380 ret_val = e1000_ready_nvm_eeprom(hw);
381 if (ret_val) {
382 nvm->ops.release(hw);
383 return ret_val;
384 }
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000385
386 e1000_standby_nvm(hw);
387
388 /* Send the WRITE ENABLE command (8 bit opcode) */
389 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
390 nvm->opcode_bits);
391
392 e1000_standby_nvm(hw);
393
Bruce Allane921eb12012-11-28 09:28:37 +0000394 /* Some SPI eeproms use the 8th address bit embedded in the
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000395 * opcode
396 */
397 if ((nvm->address_bits == 8) && (offset >= 128))
398 write_opcode |= NVM_A8_OPCODE_SPI;
399
400 /* Send the Write command (8-bit opcode + addr) */
401 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
402 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
403 nvm->address_bits);
404
405 /* Loop to allow for up to whole page write of eeprom */
406 while (widx < words) {
407 u16 word_out = data[widx];
408 word_out = (word_out >> 8) | (word_out << 8);
409 e1000_shift_out_eec_bits(hw, word_out, 16);
410 widx++;
411
412 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
413 e1000_standby_nvm(hw);
414 break;
415 }
416 }
Bruce Allan635ab562012-12-05 06:25:47 +0000417 usleep_range(10000, 20000);
418 nvm->ops.release(hw);
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000419 }
420
Bruce Allanffacd472012-02-08 02:54:42 +0000421 return ret_val;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000422}
423
424/**
425 * e1000_read_pba_string_generic - Read device part number
426 * @hw: pointer to the HW structure
427 * @pba_num: pointer to device part number
428 * @pba_num_size: size of part number buffer
429 *
430 * Reads the product board assembly (PBA) number from the EEPROM and stores
431 * the value in pba_num.
432 **/
433s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
434 u32 pba_num_size)
435{
436 s32 ret_val;
437 u16 nvm_data;
438 u16 pba_ptr;
439 u16 offset;
440 u16 length;
441
442 if (pba_num == NULL) {
443 e_dbg("PBA string buffer was null\n");
Bruce Allan5015e532012-02-08 02:55:56 +0000444 return -E1000_ERR_INVALID_ARGUMENT;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000445 }
446
447 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
448 if (ret_val) {
449 e_dbg("NVM Read Error\n");
Bruce Allan5015e532012-02-08 02:55:56 +0000450 return ret_val;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000451 }
452
453 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
454 if (ret_val) {
455 e_dbg("NVM Read Error\n");
Bruce Allan5015e532012-02-08 02:55:56 +0000456 return ret_val;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000457 }
458
Bruce Allane921eb12012-11-28 09:28:37 +0000459 /* if nvm_data is not ptr guard the PBA must be in legacy format which
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000460 * means pba_ptr is actually our second data word for the PBA number
461 * and we can decode it into an ascii string
462 */
463 if (nvm_data != NVM_PBA_PTR_GUARD) {
464 e_dbg("NVM PBA number is not stored as string\n");
465
Bruce Allan3a3104e2012-12-05 06:26:46 +0000466 /* make sure callers buffer is big enough to store the PBA */
467 if (pba_num_size < E1000_PBANUM_LENGTH) {
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000468 e_dbg("PBA string buffer too small\n");
469 return E1000_ERR_NO_SPACE;
470 }
471
472 /* extract hex string from data and pba_ptr */
473 pba_num[0] = (nvm_data >> 12) & 0xF;
474 pba_num[1] = (nvm_data >> 8) & 0xF;
475 pba_num[2] = (nvm_data >> 4) & 0xF;
476 pba_num[3] = nvm_data & 0xF;
477 pba_num[4] = (pba_ptr >> 12) & 0xF;
478 pba_num[5] = (pba_ptr >> 8) & 0xF;
479 pba_num[6] = '-';
480 pba_num[7] = 0;
481 pba_num[8] = (pba_ptr >> 4) & 0xF;
482 pba_num[9] = pba_ptr & 0xF;
483
484 /* put a null character on the end of our string */
485 pba_num[10] = '\0';
486
487 /* switch all the data but the '-' to hex char */
488 for (offset = 0; offset < 10; offset++) {
489 if (pba_num[offset] < 0xA)
490 pba_num[offset] += '0';
491 else if (pba_num[offset] < 0x10)
492 pba_num[offset] += 'A' - 0xA;
493 }
494
Bruce Allan5015e532012-02-08 02:55:56 +0000495 return 0;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000496 }
497
498 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
499 if (ret_val) {
500 e_dbg("NVM Read Error\n");
Bruce Allan5015e532012-02-08 02:55:56 +0000501 return ret_val;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000502 }
503
504 if (length == 0xFFFF || length == 0) {
505 e_dbg("NVM PBA number section invalid length\n");
Bruce Allan5015e532012-02-08 02:55:56 +0000506 return -E1000_ERR_NVM_PBA_SECTION;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000507 }
508 /* check if pba_num buffer is big enough */
509 if (pba_num_size < (((u32)length * 2) - 1)) {
510 e_dbg("PBA string buffer too small\n");
Bruce Allan5015e532012-02-08 02:55:56 +0000511 return -E1000_ERR_NO_SPACE;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000512 }
513
514 /* trim pba length from start of string */
515 pba_ptr++;
516 length--;
517
518 for (offset = 0; offset < length; offset++) {
519 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
520 if (ret_val) {
521 e_dbg("NVM Read Error\n");
Bruce Allan5015e532012-02-08 02:55:56 +0000522 return ret_val;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000523 }
524 pba_num[offset * 2] = (u8)(nvm_data >> 8);
525 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
526 }
527 pba_num[offset * 2] = '\0';
528
Bruce Allan5015e532012-02-08 02:55:56 +0000529 return 0;
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000530}
531
532/**
533 * e1000_read_mac_addr_generic - Read device MAC address
534 * @hw: pointer to the HW structure
535 *
536 * Reads the device MAC address from the EEPROM and stores the value.
537 * Since devices with two ports use the same EEPROM, we increment the
538 * last bit in the MAC address for the second port.
539 **/
540s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
541{
542 u32 rar_high;
543 u32 rar_low;
544 u16 i;
545
546 rar_high = er32(RAH(0));
547 rar_low = er32(RAL(0));
548
549 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
550 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
551
552 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
553 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
554
555 for (i = 0; i < ETH_ALEN; i++)
556 hw->mac.addr[i] = hw->mac.perm_addr[i];
557
558 return 0;
559}
560
561/**
562 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
563 * @hw: pointer to the HW structure
564 *
565 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
566 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
567 **/
568s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
569{
570 s32 ret_val;
571 u16 checksum = 0;
572 u16 i, nvm_data;
573
574 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
575 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
576 if (ret_val) {
577 e_dbg("NVM Read Error\n");
578 return ret_val;
579 }
580 checksum += nvm_data;
581 }
582
583 if (checksum != (u16)NVM_SUM) {
584 e_dbg("NVM Checksum Invalid\n");
585 return -E1000_ERR_NVM;
586 }
587
588 return 0;
589}
590
591/**
592 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
593 * @hw: pointer to the HW structure
594 *
595 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
596 * up to the checksum. Then calculates the EEPROM checksum and writes the
597 * value to the EEPROM.
598 **/
599s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
600{
601 s32 ret_val;
602 u16 checksum = 0;
603 u16 i, nvm_data;
604
605 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
606 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
607 if (ret_val) {
608 e_dbg("NVM Read Error while updating checksum.\n");
609 return ret_val;
610 }
611 checksum += nvm_data;
612 }
613 checksum = (u16)NVM_SUM - checksum;
614 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
615 if (ret_val)
616 e_dbg("NVM Write Error while updating checksum.\n");
617
618 return ret_val;
619}
620
621/**
Bruce Allane85e3632012-02-22 09:03:14 +0000622 * e1000e_reload_nvm_generic - Reloads EEPROM
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000623 * @hw: pointer to the HW structure
624 *
625 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
626 * extended control register.
627 **/
Bruce Allane85e3632012-02-22 09:03:14 +0000628void e1000e_reload_nvm_generic(struct e1000_hw *hw)
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000629{
630 u32 ctrl_ext;
631
Bruce Allance43a212013-02-20 04:06:32 +0000632 usleep_range(10, 20);
Bruce Allanfe2ddfb2011-12-21 09:47:10 +0000633 ctrl_ext = er32(CTRL_EXT);
634 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
635 ew32(CTRL_EXT, ctrl_ext);
636 e1e_flush();
637}