blob: 06ba4a95955f46916563db883429381f7c0eee7c [file] [log] [blame]
Mark Einond2796742011-10-20 01:18:30 +01001/*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 *
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
8 *
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *
11 *------------------------------------------------------------------------------
12 *
13 * SOFTWARE LICENSE
14 *
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software. Using this
17 * software indicates your acceptance of these terms and conditions. If you do
18 * not agree with these terms and conditions, do not use the software.
19 *
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
22 *
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
25 *
26 * . Redistributions of source code must retain the above copyright notice, this
27 * list of conditions and the following Disclaimer as comments in the code as
28 * well as in the documentation and/or other materials provided with the
29 * distribution.
30 *
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 * this list of conditions and the following Disclaimer in the documentation
33 * and/or other materials provided with the distribution.
34 *
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
38 *
39 * Disclaimer
40 *
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
53 *
54 */
55
Mark Einond2796742011-10-20 01:18:30 +010056#include <linux/pci.h>
57#include <linux/init.h>
58#include <linux/module.h>
59#include <linux/types.h>
60#include <linux/kernel.h>
61
62#include <linux/sched.h>
63#include <linux/ptrace.h>
64#include <linux/slab.h>
65#include <linux/ctype.h>
66#include <linux/string.h>
67#include <linux/timer.h>
68#include <linux/interrupt.h>
69#include <linux/in.h>
70#include <linux/delay.h>
71#include <linux/bitops.h>
72#include <linux/io.h>
73#include <asm/system.h>
74
75#include <linux/netdevice.h>
76#include <linux/etherdevice.h>
77#include <linux/skbuff.h>
78#include <linux/if_arp.h>
79#include <linux/ioport.h>
80#include <linux/crc32.h>
81#include <linux/random.h>
82#include <linux/phy.h>
83
Mark Einond2796742011-10-20 01:18:30 +010084#include "et131x.h"
85
86MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
87MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
88MODULE_LICENSE("Dual BSD/GPL");
89MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
90 "for the ET1310 by Agere Systems");
91
Mark Einonbd156af2011-10-20 01:18:32 +010092/* EEPROM defines */
93#define MAX_NUM_REGISTER_POLLS 1000
94#define MAX_NUM_WRITE_RETRIES 2
95
96/* MAC defines */
97#define COUNTER_WRAP_16_BIT 0x10000
98#define COUNTER_WRAP_12_BIT 0x1000
99
100/* PCI defines */
101#define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
102#define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
103
104/* ISR defines */
105/*
106 * For interrupts, normal running is:
107 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
108 * watchdog_interrupt & txdma_xfer_done
109 *
110 * In both cases, when flow control is enabled for either Tx or bi-direction,
111 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
112 * buffer rings are running low.
113 */
114#define INT_MASK_DISABLE 0xffffffff
115
116/* NOTE: Masking out MAC_STAT Interrupt for now...
117 * #define INT_MASK_ENABLE 0xfff6bf17
118 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
119 */
120#define INT_MASK_ENABLE 0xfffebf17
121#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
122
Mark Einon1c1c1b52011-10-20 01:18:36 +0100123/* General defines */
124/* Packet and header sizes */
125#define NIC_MIN_PACKET_SIZE 60
126
127/* Multicast list size */
128#define NIC_MAX_MCAST_LIST 128
129
130/* Supported Filters */
131#define ET131X_PACKET_TYPE_DIRECTED 0x0001
132#define ET131X_PACKET_TYPE_MULTICAST 0x0002
133#define ET131X_PACKET_TYPE_BROADCAST 0x0004
134#define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
135#define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
136
137/* Tx Timeout */
138#define ET131X_TX_TIMEOUT (1 * HZ)
139#define NIC_SEND_HANG_THRESHOLD 0
140
141/* MP_TCB flags */
142#define fMP_DEST_MULTI 0x00000001
143#define fMP_DEST_BROAD 0x00000002
144
145/* MP_ADAPTER flags */
146#define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004
147#define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
148#define fMP_ADAPTER_SECONDARY 0x00000010
149
150/* MP_SHARED flags */
151#define fMP_ADAPTER_SHUTDOWN 0x00100000
152#define fMP_ADAPTER_LOWER_POWER 0x00200000
153
154#define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
155#define fMP_ADAPTER_RESET_IN_PROGRESS 0x01000000
156#define fMP_ADAPTER_NO_CABLE 0x02000000
157#define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
158#define fMP_ADAPTER_REMOVE_IN_PROGRESS 0x08000000
159#define fMP_ADAPTER_HALT_IN_PROGRESS 0x10000000
160
161#define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
162#define fMP_ADAPTER_NOT_READY_MASK 0x3ff00000
163
164/* Some offsets in PCI config space that are actually used. */
165#define ET1310_PCI_MAX_PYLD 0x4C
166#define ET1310_PCI_MAC_ADDRESS 0xA4
167#define ET1310_PCI_EEPROM_STATUS 0xB2
168#define ET1310_PCI_ACK_NACK 0xC0
169#define ET1310_PCI_REPLAY 0xC2
170#define ET1310_PCI_L0L1LATENCY 0xCF
171
172/* PCI Vendor/Product IDs */
173#define ET131X_PCI_VENDOR_ID 0x11C1 /* Agere Systems */
174#define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
175#define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
176
177/* Define order of magnitude converter */
178#define NANO_IN_A_MICRO 1000
179
180#define PARM_RX_NUM_BUFS_DEF 4
181#define PARM_RX_TIME_INT_DEF 10
182#define PARM_RX_MEM_END_DEF 0x2bc
183#define PARM_TX_TIME_INT_DEF 40
184#define PARM_TX_NUM_BUFS_DEF 4
185#define PARM_DMA_CACHE_DEF 0
186
Mark Einon562550b2011-10-20 01:18:37 +0100187/* RX defines */
Mark Einon6abafc12011-10-20 01:18:41 +0100188#define USE_FBR0 1
Mark Einon562550b2011-10-20 01:18:37 +0100189
190#define FBR_CHUNKS 32
191
192#define MAX_DESC_PER_RING_RX 1024
193
194/* number of RFDs - default and min */
195#ifdef USE_FBR0
196#define RFD_LOW_WATER_MARK 40
Mark Einon562550b2011-10-20 01:18:37 +0100197#define NIC_DEFAULT_NUM_RFD 1024
Mark Einon6abafc12011-10-20 01:18:41 +0100198#define NUM_FBRS 2
Mark Einon562550b2011-10-20 01:18:37 +0100199#else
200#define RFD_LOW_WATER_MARK 20
Mark Einon562550b2011-10-20 01:18:37 +0100201#define NIC_DEFAULT_NUM_RFD 256
Mark Einon6abafc12011-10-20 01:18:41 +0100202#define NUM_FBRS 1
Mark Einon562550b2011-10-20 01:18:37 +0100203#endif
204
Mark Einon6abafc12011-10-20 01:18:41 +0100205#define NIC_MIN_NUM_RFD 64
206
Mark Einon562550b2011-10-20 01:18:37 +0100207#define NUM_PACKETS_HANDLED 256
208
209#define ALCATEL_BAD_STATUS 0xe47f0000
210#define ALCATEL_MULTICAST_PKT 0x01000000
211#define ALCATEL_BROADCAST_PKT 0x02000000
212
213/* typedefs for Free Buffer Descriptors */
214struct fbr_desc {
215 u32 addr_lo;
216 u32 addr_hi;
217 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
218};
219
220/* Packet Status Ring Descriptors
221 *
222 * Word 0:
223 *
224 * top 16 bits are from the Alcatel Status Word as enumerated in
225 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
226 *
227 * 0: hp hash pass
228 * 1: ipa IP checksum assist
229 * 2: ipp IP checksum pass
230 * 3: tcpa TCP checksum assist
231 * 4: tcpp TCP checksum pass
232 * 5: wol WOL Event
233 * 6: rxmac_error RXMAC Error Indicator
234 * 7: drop Drop packet
235 * 8: ft Frame Truncated
236 * 9: jp Jumbo Packet
237 * 10: vp VLAN Packet
238 * 11-15: unused
239 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
240 * 17: asw_RX_DV_event short receive event detected
241 * 18: asw_false_carrier_event bad carrier since last good packet
242 * 19: asw_code_err one or more nibbles signalled as errors
243 * 20: asw_CRC_err CRC error
244 * 21: asw_len_chk_err frame length field incorrect
245 * 22: asw_too_long frame length > 1518 bytes
246 * 23: asw_OK valid CRC + no code error
247 * 24: asw_multicast has a multicast address
248 * 25: asw_broadcast has a broadcast address
249 * 26: asw_dribble_nibble spurious bits after EOP
250 * 27: asw_control_frame is a control frame
251 * 28: asw_pause_frame is a pause frame
252 * 29: asw_unsupported_op unsupported OP code
253 * 30: asw_VLAN_tag VLAN tag detected
254 * 31: asw_long_evt Rx long event
255 *
256 * Word 1:
257 * 0-15: length length in bytes
258 * 16-25: bi Buffer Index
259 * 26-27: ri Ring Index
260 * 28-31: reserved
261 */
262
263struct pkt_stat_desc {
264 u32 word0;
265 u32 word1;
266};
267
268/* Typedefs for the RX DMA status word */
269
270/*
271 * rx status word 0 holds part of the status bits of the Rx DMA engine
272 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
273 * which contains the Free Buffer ring 0 and 1 available offset.
274 *
275 * bit 0-9 FBR1 offset
276 * bit 10 Wrap flag for FBR1
277 * bit 16-25 FBR0 offset
278 * bit 26 Wrap flag for FBR0
279 */
280
281/*
282 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
283 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
284 * which contains the Packet Status Ring available offset.
285 *
286 * bit 0-15 reserved
287 * bit 16-27 PSRoffset
288 * bit 28 PSRwrap
289 * bit 29-31 unused
290 */
291
292/*
293 * struct rx_status_block is a structure representing the status of the Rx
294 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
295 */
296struct rx_status_block {
297 u32 word0;
298 u32 word1;
299};
300
301/*
Mark Einon6abafc12011-10-20 01:18:41 +0100302 * Structure for look-up table holding free buffer ring pointers, addresses
303 * and state.
Mark Einon562550b2011-10-20 01:18:37 +0100304 */
305struct fbr_lookup {
Mark Einon6abafc12011-10-20 01:18:41 +0100306 void *virt[MAX_DESC_PER_RING_RX];
307 void *buffer1[MAX_DESC_PER_RING_RX];
308 void *buffer2[MAX_DESC_PER_RING_RX];
309 u32 bus_high[MAX_DESC_PER_RING_RX];
310 u32 bus_low[MAX_DESC_PER_RING_RX];
311 void *ring_virtaddr;
312 dma_addr_t ring_physaddr;
313 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
314 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
315 uint64_t real_physaddr;
316 uint64_t offset;
317 u32 local_full;
318 u32 num_entries;
319 u32 buffsize;
Mark Einon562550b2011-10-20 01:18:37 +0100320};
321
322/*
323 * struct rx_ring is the sructure representing the adaptor's local
324 * reference(s) to the rings
Mark Einone592a9b2011-10-20 01:18:42 +0100325 *
326 ******************************************************************************
327 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
328 * and index 1 to refer to FRB0
329 ******************************************************************************
Mark Einon562550b2011-10-20 01:18:37 +0100330 */
331struct rx_ring {
Mark Einon6abafc12011-10-20 01:18:41 +0100332 struct fbr_lookup *fbr[NUM_FBRS];
Mark Einon562550b2011-10-20 01:18:37 +0100333 void *ps_ring_virtaddr;
334 dma_addr_t ps_ring_physaddr;
335 u32 local_psr_full;
336 u32 psr_num_entries;
337
338 struct rx_status_block *rx_status_block;
339 dma_addr_t rx_status_bus;
340
341 struct list_head recv_buff_pool;
342
343 /* RECV */
344 struct list_head recv_list;
345 u32 num_ready_recv;
346
347 u32 num_rfd;
348
349 bool unfinished_receives;
350
351 struct list_head recv_packet_pool;
352
353 /* lookaside lists */
354 struct kmem_cache *recv_lookaside;
355};
356
Mark Einon17ec9ff2011-10-20 01:18:38 +0100357/* TX defines */
358/*
359 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
360 *
361 * 0-15: length of packet
362 * 16-27: VLAN tag
363 * 28: VLAN CFI
364 * 29-31: VLAN priority
365 *
366 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
367 *
368 * 0: last packet in the sequence
369 * 1: first packet in the sequence
370 * 2: interrupt the processor when this pkt sent
371 * 3: Control word - no packet data
372 * 4: Issue half-duplex backpressure : XON/XOFF
373 * 5: send pause frame
374 * 6: Tx frame has error
375 * 7: append CRC
376 * 8: MAC override
377 * 9: pad packet
378 * 10: Packet is a Huge packet
379 * 11: append VLAN tag
380 * 12: IP checksum assist
381 * 13: TCP checksum assist
382 * 14: UDP checksum assist
383 */
384
385/* struct tx_desc represents each descriptor on the ring */
386struct tx_desc {
387 u32 addr_hi;
388 u32 addr_lo;
389 u32 len_vlan; /* control words how to xmit the */
390 u32 flags; /* data (detailed above) */
391};
392
393/*
394 * The status of the Tx DMA engine it sits in free memory, and is pointed to
395 * by 0x101c / 0x1020. This is a DMA10 type
396 */
397
398/* TCB (Transmit Control Block: Host Side) */
399struct tcb {
400 struct tcb *next; /* Next entry in ring */
401 u32 flags; /* Our flags for the packet */
402 u32 count; /* Used to spot stuck/lost packets */
403 u32 stale; /* Used to spot stuck/lost packets */
404 struct sk_buff *skb; /* Network skb we are tied to */
405 u32 index; /* Ring indexes */
406 u32 index_start;
407};
408
409/* Structure representing our local reference(s) to the ring */
410struct tx_ring {
411 /* TCB (Transmit Control Block) memory and lists */
412 struct tcb *tcb_ring;
413
414 /* List of TCBs that are ready to be used */
415 struct tcb *tcb_qhead;
416 struct tcb *tcb_qtail;
417
418 /* list of TCBs that are currently being sent. NOTE that access to all
419 * three of these (including used) are controlled via the
420 * TCBSendQLock. This lock should be secured prior to incementing /
421 * decrementing used, or any queue manipulation on send_head /
422 * tail
423 */
424 struct tcb *send_head;
425 struct tcb *send_tail;
426 int used;
427
428 /* The actual descriptor ring */
429 struct tx_desc *tx_desc_ring;
430 dma_addr_t tx_desc_ring_pa;
431
432 /* send_idx indicates where we last wrote to in the descriptor ring. */
433 u32 send_idx;
434
435 /* The location of the write-back status block */
436 u32 *tx_status;
437 dma_addr_t tx_status_pa;
438
439 /* Packets since the last IRQ: used for interrupt coalescing */
440 int since_irq;
441};
442
Mark Einonfd0651a2011-10-20 01:18:35 +0100443/* ADAPTER defines */
444/*
445 * Do not change these values: if changed, then change also in respective
446 * TXdma and Rxdma engines
447 */
448#define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
449#define NUM_TCB 64
450
451/*
452 * These values are all superseded by registry entries to facilitate tuning.
453 * Once the desired performance has been achieved, the optimal registry values
454 * should be re-populated to these #defines:
455 */
456#define NUM_TRAFFIC_CLASSES 1
457
458#define TX_ERROR_PERIOD 1000
459
460#define LO_MARK_PERCENT_FOR_PSR 15
461#define LO_MARK_PERCENT_FOR_RX 15
462
463/* RFD (Receive Frame Descriptor) */
464struct rfd {
465 struct list_head list_node;
466 struct sk_buff *skb;
467 u32 len; /* total size of receive frame */
468 u16 bufferindex;
469 u8 ringindex;
470};
471
472/* Flow Control */
473#define FLOW_BOTH 0
474#define FLOW_TXONLY 1
475#define FLOW_RXONLY 2
476#define FLOW_NONE 3
477
478/* Struct to define some device statistics */
479struct ce_stats {
480 /* MIB II variables
481 *
482 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
483 * MUST have 32, then we'll need another way to perform atomic
484 * operations
485 */
486 u32 unicast_pkts_rcvd;
487 atomic_t unicast_pkts_xmtd;
488 u32 multicast_pkts_rcvd;
489 atomic_t multicast_pkts_xmtd;
490 u32 broadcast_pkts_rcvd;
491 atomic_t broadcast_pkts_xmtd;
492 u32 rcvd_pkts_dropped;
493
494 /* Tx Statistics. */
495 u32 tx_underflows;
496
497 u32 tx_collisions;
498 u32 tx_excessive_collisions;
499 u32 tx_first_collisions;
500 u32 tx_late_collisions;
501 u32 tx_max_pkt_errs;
502 u32 tx_deferred;
503
504 /* Rx Statistics. */
505 u32 rx_overflows;
506
507 u32 rx_length_errs;
508 u32 rx_align_errs;
509 u32 rx_crc_errs;
510 u32 rx_code_violations;
511 u32 rx_other_errs;
512
513 u32 synchronous_iterations;
514 u32 interrupt_status;
515};
516
517/* The private adapter structure */
518struct et131x_adapter {
519 struct net_device *netdev;
520 struct pci_dev *pdev;
521 struct mii_bus *mii_bus;
522 struct phy_device *phydev;
523 struct work_struct task;
524
525 /* Flags that indicate current state of the adapter */
526 u32 flags;
527
528 /* local link state, to determine if a state change has occurred */
529 int link;
530
531 /* Configuration */
532 u8 rom_addr[ETH_ALEN];
533 u8 addr[ETH_ALEN];
534 bool has_eeprom;
535 u8 eeprom_data[2];
536
537 /* Spinlocks */
538 spinlock_t lock;
539
540 spinlock_t tcb_send_qlock;
541 spinlock_t tcb_ready_qlock;
542 spinlock_t send_hw_lock;
543
544 spinlock_t rcv_lock;
545 spinlock_t rcv_pend_lock;
546 spinlock_t fbr_lock;
547
548 spinlock_t phy_lock;
549
550 /* Packet Filter and look ahead size */
551 u32 packet_filter;
552
553 /* multicast list */
554 u32 multicast_addr_count;
555 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
556
557 /* Pointer to the device's PCI register space */
558 struct address_map __iomem *regs;
559
560 /* Registry parameters */
561 u8 wanted_flow; /* Flow we want for 802.3x flow control */
562 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
563
564 /* Derived from the registry: */
565 u8 flowcontrol; /* flow control validated by the far-end */
566
567 /* Minimize init-time */
568 struct timer_list error_timer;
569
570 /* variable putting the phy into coma mode when boot up with no cable
571 * plugged in after 5 seconds
572 */
573 u8 boot_coma;
574
575 /* Next two used to save power information at power down. This
576 * information will be used during power up to set up parts of Power
577 * Management in JAGCore
578 */
579 u16 pdown_speed;
580 u8 pdown_duplex;
581
582 /* Tx Memory Variables */
583 struct tx_ring tx_ring;
584
585 /* Rx Memory Variables */
586 struct rx_ring rx_ring;
587
588 /* Stats */
589 struct ce_stats stats;
590
591 struct net_device_stats net_stats;
592};
593
Mark Einon2d0c64a2011-10-20 01:18:31 +0100594void et131x_error_timer_handler(unsigned long data);
595void et131x_enable_interrupts(struct et131x_adapter *adapter);
596void et131x_disable_interrupts(struct et131x_adapter *adapter);
597void et131x_align_allocated_memory(struct et131x_adapter *adapter,
598 u64 *phys_addr,
599 u64 *offset, u64 mask);
600void et131x_adapter_setup(struct et131x_adapter *adapter);
601void et131x_soft_reset(struct et131x_adapter *adapter);
602void et131x_isr_handler(struct work_struct *work);
603void et1310_setup_device_for_multicast(struct et131x_adapter *adapter);
604void et1310_setup_device_for_unicast(struct et131x_adapter *adapter);
605void et131x_up(struct net_device *netdev);
606void et131x_down(struct net_device *netdev);
607struct net_device *et131x_device_alloc(void);
608void et131x_enable_txrx(struct net_device *netdev);
609void et131x_disable_txrx(struct net_device *netdev);
610int et1310_in_phy_coma(struct et131x_adapter *adapter);
611void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
612 u16 action,
613 u16 regnum, u16 bitnum, u8 *value);
614int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
615 u8 reg, u16 *value);
616int32_t et131x_mii_write(struct et131x_adapter *adapter,
617 u8 reg, u16 value);
618void et131x_rx_dma_memory_free(struct et131x_adapter *adapter);
619void et131x_rx_dma_disable(struct et131x_adapter *adapter);
620void et131x_rx_dma_enable(struct et131x_adapter *adapter);
621void et131x_reset_recv(struct et131x_adapter *adapter);
622void et131x_init_send(struct et131x_adapter *adapter);
623void et131x_tx_dma_enable(struct et131x_adapter *adapter);
624
Mark Einond2796742011-10-20 01:18:30 +0100625/* EEPROM functions */
626
627static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
628{
629 u32 reg;
630 int i;
631
632 /*
633 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
634 * bits 7,1:0 both equal to 1, at least once after reset.
635 * Subsequent operations need only to check that bits 1:0 are equal
636 * to 1 prior to starting a single byte read/write
637 */
638
639 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
640 /* Read registers grouped in DWORD1 */
641 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
642 return -EIO;
643
644 /* I2C idle and Phy Queue Avail both true */
645 if ((reg & 0x3000) == 0x3000) {
646 if (status)
647 *status = reg;
648 return reg & 0xFF;
649 }
650 }
651 return -ETIMEDOUT;
652}
653
654
655/**
656 * eeprom_write - Write a byte to the ET1310's EEPROM
657 * @adapter: pointer to our private adapter structure
658 * @addr: the address to write
659 * @data: the value to write
660 *
661 * Returns 1 for a successful write.
662 */
663static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
664{
665 struct pci_dev *pdev = adapter->pdev;
666 int index = 0;
667 int retries;
668 int err = 0;
669 int i2c_wack = 0;
670 int writeok = 0;
671 u32 status;
672 u32 val = 0;
673
674 /*
675 * For an EEPROM, an I2C single byte write is defined as a START
676 * condition followed by the device address, EEPROM address, one byte
677 * of data and a STOP condition. The STOP condition will trigger the
678 * EEPROM's internally timed write cycle to the nonvolatile memory.
679 * All inputs are disabled during this write cycle and the EEPROM will
680 * not respond to any access until the internal write is complete.
681 */
682
683 err = eeprom_wait_ready(pdev, NULL);
684 if (err)
685 return err;
686
687 /*
688 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
689 * and bits 1:0 both =0. Bit 5 should be set according to the
690 * type of EEPROM being accessed (1=two byte addressing, 0=one
691 * byte addressing).
692 */
693 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
694 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
695 return -EIO;
696
697 i2c_wack = 1;
698
699 /* Prepare EEPROM address for Step 3 */
700
701 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
702 /* Write the address to the LBCIF Address Register */
703 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
704 break;
705 /*
706 * Write the data to the LBCIF Data Register (the I2C write
707 * will begin).
708 */
709 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
710 break;
711 /*
712 * Monitor bit 1:0 of the LBCIF Status Register. When bits
713 * 1:0 are both equal to 1, the I2C write has completed and the
714 * internal write cycle of the EEPROM is about to start.
715 * (bits 1:0 = 01 is a legal state while waiting from both
716 * equal to 1, but bits 1:0 = 10 is invalid and implies that
717 * something is broken).
718 */
719 err = eeprom_wait_ready(pdev, &status);
720 if (err < 0)
721 return 0;
722
723 /*
724 * Check bit 3 of the LBCIF Status Register. If equal to 1,
725 * an error has occurred.Don't break here if we are revision
726 * 1, this is so we do a blind write for load bug.
727 */
728 if ((status & LBCIF_STATUS_GENERAL_ERROR)
729 && adapter->pdev->revision == 0)
730 break;
731
732 /*
733 * Check bit 2 of the LBCIF Status Register. If equal to 1 an
734 * ACK error has occurred on the address phase of the write.
735 * This could be due to an actual hardware failure or the
736 * EEPROM may still be in its internal write cycle from a
737 * previous write. This write operation was ignored and must be
738 *repeated later.
739 */
740 if (status & LBCIF_STATUS_ACK_ERROR) {
741 /*
742 * This could be due to an actual hardware failure
743 * or the EEPROM may still be in its internal write
744 * cycle from a previous write. This write operation
745 * was ignored and must be repeated later.
746 */
747 udelay(10);
748 continue;
749 }
750
751 writeok = 1;
752 break;
753 }
754
755 /*
756 * Set bit 6 of the LBCIF Control Register = 0.
757 */
758 udelay(10);
759
760 while (i2c_wack) {
761 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
762 LBCIF_CONTROL_LBCIF_ENABLE))
763 writeok = 0;
764
765 /* Do read until internal ACK_ERROR goes away meaning write
766 * completed
767 */
768 do {
769 pci_write_config_dword(pdev,
770 LBCIF_ADDRESS_REGISTER,
771 addr);
772 do {
773 pci_read_config_dword(pdev,
774 LBCIF_DATA_REGISTER, &val);
775 } while ((val & 0x00010000) == 0);
776 } while (val & 0x00040000);
777
778 if ((val & 0xFF00) != 0xC000 || index == 10000)
779 break;
780 index++;
781 }
782 return writeok ? 0 : -EIO;
783}
784
785/**
786 * eeprom_read - Read a byte from the ET1310's EEPROM
787 * @adapter: pointer to our private adapter structure
788 * @addr: the address from which to read
789 * @pdata: a pointer to a byte in which to store the value of the read
790 * @eeprom_id: the ID of the EEPROM
791 * @addrmode: how the EEPROM is to be accessed
792 *
793 * Returns 1 for a successful read
794 */
795static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
796{
797 struct pci_dev *pdev = adapter->pdev;
798 int err;
799 u32 status;
800
801 /*
802 * A single byte read is similar to the single byte write, with the
803 * exception of the data flow:
804 */
805
806 err = eeprom_wait_ready(pdev, NULL);
807 if (err)
808 return err;
809 /*
810 * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
811 * and bits 1:0 both =0. Bit 5 should be set according to the type
812 * of EEPROM being accessed (1=two byte addressing, 0=one byte
813 * addressing).
814 */
815 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
816 LBCIF_CONTROL_LBCIF_ENABLE))
817 return -EIO;
818 /*
819 * Write the address to the LBCIF Address Register (I2C read will
820 * begin).
821 */
822 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
823 return -EIO;
824 /*
825 * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
826 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
827 * has occurred).
828 */
829 err = eeprom_wait_ready(pdev, &status);
830 if (err < 0)
831 return err;
832 /*
833 * Regardless of error status, read data byte from LBCIF Data
834 * Register.
835 */
836 *pdata = err;
837 /*
838 * Check bit 2 of the LBCIF Status Register. If = 1,
839 * then an error has occurred.
840 */
841 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
842}
843
844int et131x_init_eeprom(struct et131x_adapter *adapter)
845{
846 struct pci_dev *pdev = adapter->pdev;
847 u8 eestatus;
848
849 /* We first need to check the EEPROM Status code located at offset
850 * 0xB2 of config space
851 */
852 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
853 &eestatus);
854
855 /* THIS IS A WORKAROUND:
856 * I need to call this function twice to get my card in a
857 * LG M1 Express Dual running. I tried also a msleep before this
858 * function, because I thougth there could be some time condidions
859 * but it didn't work. Call the whole function twice also work.
860 */
861 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
862 dev_err(&pdev->dev,
863 "Could not read PCI config space for EEPROM Status\n");
864 return -EIO;
865 }
866
867 /* Determine if the error(s) we care about are present. If they are
868 * present we need to fail.
869 */
870 if (eestatus & 0x4C) {
871 int write_failed = 0;
872 if (pdev->revision == 0x01) {
873 int i;
874 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
875
876 /* Re-write the first 4 bytes if we have an eeprom
877 * present and the revision id is 1, this fixes the
878 * corruption seen with 1310 B Silicon
879 */
880 for (i = 0; i < 3; i++)
881 if (eeprom_write(adapter, i, eedata[i]) < 0)
882 write_failed = 1;
883 }
884 if (pdev->revision != 0x01 || write_failed) {
885 dev_err(&pdev->dev,
886 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
887
888 /* This error could mean that there was an error
889 * reading the eeprom or that the eeprom doesn't exist.
890 * We will treat each case the same and not try to
891 * gather additional information that normally would
892 * come from the eeprom, like MAC Address
893 */
894 adapter->has_eeprom = 0;
895 return -EIO;
896 }
897 }
898 adapter->has_eeprom = 1;
899
900 /* Read the EEPROM for information regarding LED behavior. Refer to
901 * ET1310_phy.c, et131x_xcvr_init(), for its use.
902 */
903 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
904 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
905
906 if (adapter->eeprom_data[0] != 0xcd)
907 /* Disable all optional features */
908 adapter->eeprom_data[1] = 0x00;
909
910 return 0;
911}
912
913/* MAC functions */
914
915/**
916 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
917 * @adapter: pointer to our adapter structure
918 */
919void et1310_config_mac_regs1(struct et131x_adapter *adapter)
920{
921 struct mac_regs __iomem *macregs = &adapter->regs->mac;
922 u32 station1;
923 u32 station2;
924 u32 ipg;
925
926 /* First we need to reset everything. Write to MAC configuration
927 * register 1 to perform reset.
928 */
929 writel(0xC00F0000, &macregs->cfg1);
930
931 /* Next lets configure the MAC Inter-packet gap register */
932 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
933 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
934 writel(ipg, &macregs->ipg);
935
936 /* Next lets configure the MAC Half Duplex register */
937 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
938 writel(0x00A1F037, &macregs->hfdp);
939
940 /* Next lets configure the MAC Interface Control register */
941 writel(0, &macregs->if_ctrl);
942
943 /* Let's move on to setting up the mii management configuration */
944 writel(0x07, &macregs->mii_mgmt_cfg); /* Clock reset 0x7 */
945
946 /* Next lets configure the MAC Station Address register. These
947 * values are read from the EEPROM during initialization and stored
948 * in the adapter structure. We write what is stored in the adapter
949 * structure to the MAC Station Address registers high and low. This
950 * station address is used for generating and checking pause control
951 * packets.
952 */
953 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
954 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
955 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
956 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
957 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
958 adapter->addr[2];
959 writel(station1, &macregs->station_addr_1);
960 writel(station2, &macregs->station_addr_2);
961
962 /* Max ethernet packet in bytes that will passed by the mac without
963 * being truncated. Allow the MAC to pass 4 more than our max packet
964 * size. This is 4 for the Ethernet CRC.
965 *
966 * Packets larger than (registry_jumbo_packet) that do not contain a
967 * VLAN ID will be dropped by the Rx function.
968 */
969 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
970
971 /* clear out MAC config reset */
972 writel(0, &macregs->cfg1);
973}
974
975/**
976 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
977 * @adapter: pointer to our adapter structure
978 */
979void et1310_config_mac_regs2(struct et131x_adapter *adapter)
980{
981 int32_t delay = 0;
982 struct mac_regs __iomem *mac = &adapter->regs->mac;
983 struct phy_device *phydev = adapter->phydev;
984 u32 cfg1;
985 u32 cfg2;
986 u32 ifctrl;
987 u32 ctl;
988
989 ctl = readl(&adapter->regs->txmac.ctl);
990 cfg1 = readl(&mac->cfg1);
991 cfg2 = readl(&mac->cfg2);
992 ifctrl = readl(&mac->if_ctrl);
993
994 /* Set up the if mode bits */
995 cfg2 &= ~0x300;
996 if (phydev && phydev->speed == SPEED_1000) {
997 cfg2 |= 0x200;
998 /* Phy mode bit */
999 ifctrl &= ~(1 << 24);
1000 } else {
1001 cfg2 |= 0x100;
1002 ifctrl |= (1 << 24);
1003 }
1004
1005 /* We need to enable Rx/Tx */
1006 cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1007 /* Initialize loop back to off */
1008 cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1009 if (adapter->flowcontrol == FLOW_RXONLY ||
1010 adapter->flowcontrol == FLOW_BOTH)
1011 cfg1 |= CFG1_RX_FLOW;
1012 writel(cfg1, &mac->cfg1);
1013
1014 /* Now we need to initialize the MAC Configuration 2 register */
1015 /* preamble 7, check length, huge frame off, pad crc, crc enable
1016 full duplex off */
1017 cfg2 |= 0x7016;
1018 cfg2 &= ~0x0021;
1019
1020 /* Turn on duplex if needed */
1021 if (phydev && phydev->duplex == DUPLEX_FULL)
1022 cfg2 |= 0x01;
1023
1024 ifctrl &= ~(1 << 26);
1025 if (phydev && phydev->duplex == DUPLEX_HALF)
1026 ifctrl |= (1<<26); /* Enable ghd */
1027
1028 writel(ifctrl, &mac->if_ctrl);
1029 writel(cfg2, &mac->cfg2);
1030
1031 do {
1032 udelay(10);
1033 delay++;
1034 cfg1 = readl(&mac->cfg1);
1035 } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1036
1037 if (delay == 100) {
1038 dev_warn(&adapter->pdev->dev,
1039 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1040 cfg1);
1041 }
1042
1043 /* Enable txmac */
1044 ctl |= 0x09; /* TX mac enable, FC disable */
1045 writel(ctl, &adapter->regs->txmac.ctl);
1046
1047 /* Ready to start the RXDMA/TXDMA engine */
1048 if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1049 et131x_rx_dma_enable(adapter);
1050 et131x_tx_dma_enable(adapter);
1051 }
1052}
1053
1054void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1055{
1056 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1057 struct phy_device *phydev = adapter->phydev;
1058 u32 sa_lo;
1059 u32 sa_hi = 0;
1060 u32 pf_ctrl = 0;
1061
1062 /* Disable the MAC while it is being configured (also disable WOL) */
1063 writel(0x8, &rxmac->ctrl);
1064
1065 /* Initialize WOL to disabled. */
1066 writel(0, &rxmac->crc0);
1067 writel(0, &rxmac->crc12);
1068 writel(0, &rxmac->crc34);
1069
1070 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1071 * its default Values of 0x00000000 because there are not WOL masks
1072 * as of this time.
1073 */
1074 writel(0, &rxmac->mask0_word0);
1075 writel(0, &rxmac->mask0_word1);
1076 writel(0, &rxmac->mask0_word2);
1077 writel(0, &rxmac->mask0_word3);
1078
1079 writel(0, &rxmac->mask1_word0);
1080 writel(0, &rxmac->mask1_word1);
1081 writel(0, &rxmac->mask1_word2);
1082 writel(0, &rxmac->mask1_word3);
1083
1084 writel(0, &rxmac->mask2_word0);
1085 writel(0, &rxmac->mask2_word1);
1086 writel(0, &rxmac->mask2_word2);
1087 writel(0, &rxmac->mask2_word3);
1088
1089 writel(0, &rxmac->mask3_word0);
1090 writel(0, &rxmac->mask3_word1);
1091 writel(0, &rxmac->mask3_word2);
1092 writel(0, &rxmac->mask3_word3);
1093
1094 writel(0, &rxmac->mask4_word0);
1095 writel(0, &rxmac->mask4_word1);
1096 writel(0, &rxmac->mask4_word2);
1097 writel(0, &rxmac->mask4_word3);
1098
1099 /* Lets setup the WOL Source Address */
1100 sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1101 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1102 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1103 adapter->addr[5];
1104 writel(sa_lo, &rxmac->sa_lo);
1105
1106 sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1107 adapter->addr[1];
1108 writel(sa_hi, &rxmac->sa_hi);
1109
1110 /* Disable all Packet Filtering */
1111 writel(0, &rxmac->pf_ctrl);
1112
1113 /* Let's initialize the Unicast Packet filtering address */
1114 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1115 et1310_setup_device_for_unicast(adapter);
1116 pf_ctrl |= 4; /* Unicast filter */
1117 } else {
1118 writel(0, &rxmac->uni_pf_addr1);
1119 writel(0, &rxmac->uni_pf_addr2);
1120 writel(0, &rxmac->uni_pf_addr3);
1121 }
1122
1123 /* Let's initialize the Multicast hash */
1124 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1125 pf_ctrl |= 2; /* Multicast filter */
1126 et1310_setup_device_for_multicast(adapter);
1127 }
1128
1129 /* Runt packet filtering. Didn't work in version A silicon. */
1130 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1131 pf_ctrl |= 8; /* Fragment filter */
1132
1133 if (adapter->registry_jumbo_packet > 8192)
1134 /* In order to transmit jumbo packets greater than 8k, the
1135 * FIFO between RxMAC and RxDMA needs to be reduced in size
1136 * to (16k - Jumbo packet size). In order to implement this,
1137 * we must use "cut through" mode in the RxMAC, which chops
1138 * packets down into segments which are (max_size * 16). In
1139 * this case we selected 256 bytes, since this is the size of
1140 * the PCI-Express TLP's that the 1310 uses.
1141 *
1142 * seg_en on, fc_en off, size 0x10
1143 */
1144 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1145 else
1146 writel(0, &rxmac->mcif_ctrl_max_seg);
1147
1148 /* Initialize the MCIF water marks */
1149 writel(0, &rxmac->mcif_water_mark);
1150
1151 /* Initialize the MIF control */
1152 writel(0, &rxmac->mif_ctrl);
1153
1154 /* Initialize the Space Available Register */
1155 writel(0, &rxmac->space_avail);
1156
1157 /* Initialize the the mif_ctrl register
1158 * bit 3: Receive code error. One or more nibbles were signaled as
1159 * errors during the reception of the packet. Clear this
1160 * bit in Gigabit, set it in 100Mbit. This was derived
1161 * experimentally at UNH.
1162 * bit 4: Receive CRC error. The packet's CRC did not match the
1163 * internally generated CRC.
1164 * bit 5: Receive length check error. Indicates that frame length
1165 * field value in the packet does not match the actual data
1166 * byte length and is not a type field.
1167 * bit 16: Receive frame truncated.
1168 * bit 17: Drop packet enable
1169 */
1170 if (phydev && phydev->speed == SPEED_100)
1171 writel(0x30038, &rxmac->mif_ctrl);
1172 else
1173 writel(0x30030, &rxmac->mif_ctrl);
1174
1175 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1176 * filter is always enabled since it is where the runt packets are
1177 * supposed to be dropped. For version A silicon, runt packet
1178 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1179 * but we still leave the packet filter on.
1180 */
1181 writel(pf_ctrl, &rxmac->pf_ctrl);
1182 writel(0x9, &rxmac->ctrl);
1183}
1184
1185void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1186{
1187 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1188
1189 /* We need to update the Control Frame Parameters
1190 * cfpt - control frame pause timer set to 64 (0x40)
1191 * cfep - control frame extended pause timer set to 0x0
1192 */
1193 if (adapter->flowcontrol == FLOW_NONE)
1194 writel(0, &txmac->cf_param);
1195 else
1196 writel(0x40, &txmac->cf_param);
1197}
1198
1199void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1200{
1201 struct macstat_regs __iomem *macstat =
1202 &adapter->regs->macstat;
1203
1204 /* Next we need to initialize all the macstat registers to zero on
1205 * the device.
1206 */
1207 writel(0, &macstat->txrx_0_64_byte_frames);
1208 writel(0, &macstat->txrx_65_127_byte_frames);
1209 writel(0, &macstat->txrx_128_255_byte_frames);
1210 writel(0, &macstat->txrx_256_511_byte_frames);
1211 writel(0, &macstat->txrx_512_1023_byte_frames);
1212 writel(0, &macstat->txrx_1024_1518_byte_frames);
1213 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1214
1215 writel(0, &macstat->rx_bytes);
1216 writel(0, &macstat->rx_packets);
1217 writel(0, &macstat->rx_fcs_errs);
1218 writel(0, &macstat->rx_multicast_packets);
1219 writel(0, &macstat->rx_broadcast_packets);
1220 writel(0, &macstat->rx_control_frames);
1221 writel(0, &macstat->rx_pause_frames);
1222 writel(0, &macstat->rx_unknown_opcodes);
1223 writel(0, &macstat->rx_align_errs);
1224 writel(0, &macstat->rx_frame_len_errs);
1225 writel(0, &macstat->rx_code_errs);
1226 writel(0, &macstat->rx_carrier_sense_errs);
1227 writel(0, &macstat->rx_undersize_packets);
1228 writel(0, &macstat->rx_oversize_packets);
1229 writel(0, &macstat->rx_fragment_packets);
1230 writel(0, &macstat->rx_jabbers);
1231 writel(0, &macstat->rx_drops);
1232
1233 writel(0, &macstat->tx_bytes);
1234 writel(0, &macstat->tx_packets);
1235 writel(0, &macstat->tx_multicast_packets);
1236 writel(0, &macstat->tx_broadcast_packets);
1237 writel(0, &macstat->tx_pause_frames);
1238 writel(0, &macstat->tx_deferred);
1239 writel(0, &macstat->tx_excessive_deferred);
1240 writel(0, &macstat->tx_single_collisions);
1241 writel(0, &macstat->tx_multiple_collisions);
1242 writel(0, &macstat->tx_late_collisions);
1243 writel(0, &macstat->tx_excessive_collisions);
1244 writel(0, &macstat->tx_total_collisions);
1245 writel(0, &macstat->tx_pause_honored_frames);
1246 writel(0, &macstat->tx_drops);
1247 writel(0, &macstat->tx_jabbers);
1248 writel(0, &macstat->tx_fcs_errs);
1249 writel(0, &macstat->tx_control_frames);
1250 writel(0, &macstat->tx_oversize_frames);
1251 writel(0, &macstat->tx_undersize_frames);
1252 writel(0, &macstat->tx_fragments);
1253 writel(0, &macstat->carry_reg1);
1254 writel(0, &macstat->carry_reg2);
1255
1256 /* Unmask any counters that we want to track the overflow of.
1257 * Initially this will be all counters. It may become clear later
1258 * that we do not need to track all counters.
1259 */
1260 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1261 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1262}
1263
1264void et1310_config_flow_control(struct et131x_adapter *adapter)
1265{
1266 struct phy_device *phydev = adapter->phydev;
1267
1268 if (phydev->duplex == DUPLEX_HALF) {
1269 adapter->flowcontrol = FLOW_NONE;
1270 } else {
1271 char remote_pause, remote_async_pause;
1272
1273 et1310_phy_access_mii_bit(adapter,
1274 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1275 et1310_phy_access_mii_bit(adapter,
1276 TRUEPHY_BIT_READ, 5, 11,
1277 &remote_async_pause);
1278
1279 if ((remote_pause == TRUEPHY_BIT_SET) &&
1280 (remote_async_pause == TRUEPHY_BIT_SET)) {
1281 adapter->flowcontrol = adapter->wanted_flow;
1282 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1283 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1284 if (adapter->wanted_flow == FLOW_BOTH)
1285 adapter->flowcontrol = FLOW_BOTH;
1286 else
1287 adapter->flowcontrol = FLOW_NONE;
1288 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1289 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1290 adapter->flowcontrol = FLOW_NONE;
1291 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1292 remote_async_pause == TRUEPHY_SET_BIT) */
1293 if (adapter->wanted_flow == FLOW_BOTH)
1294 adapter->flowcontrol = FLOW_RXONLY;
1295 else
1296 adapter->flowcontrol = FLOW_NONE;
1297 }
1298 }
1299}
1300
1301/**
1302 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1303 * @adapter: pointer to the adapter structure
1304 */
1305void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1306{
1307 struct ce_stats *stats = &adapter->stats;
1308 struct macstat_regs __iomem *macstat =
1309 &adapter->regs->macstat;
1310
1311 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1312 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1313 stats->tx_deferred += readl(&macstat->tx_deferred);
1314 stats->tx_excessive_collisions +=
1315 readl(&macstat->tx_multiple_collisions);
1316 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1317 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1318 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1319
1320 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1321 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1322 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1323 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1324 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1325 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1326 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1327}
1328
1329/**
1330 * et1310_handle_macstat_interrupt
1331 * @adapter: pointer to the adapter structure
1332 *
1333 * One of the MACSTAT counters has wrapped. Update the local copy of
1334 * the statistics held in the adapter structure, checking the "wrap"
1335 * bit for each counter.
1336 */
1337void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1338{
1339 u32 carry_reg1;
1340 u32 carry_reg2;
1341
1342 /* Read the interrupt bits from the register(s). These are Clear On
1343 * Write.
1344 */
1345 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1346 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1347
1348 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1349 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1350
1351 /* We need to do update the host copy of all the MAC_STAT counters.
1352 * For each counter, check it's overflow bit. If the overflow bit is
1353 * set, then increment the host version of the count by one complete
1354 * revolution of the counter. This routine is called when the counter
1355 * block indicates that one of the counters has wrapped.
1356 */
1357 if (carry_reg1 & (1 << 14))
1358 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1359 if (carry_reg1 & (1 << 8))
1360 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1361 if (carry_reg1 & (1 << 7))
1362 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1363 if (carry_reg1 & (1 << 2))
1364 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1365 if (carry_reg1 & (1 << 6))
1366 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1367 if (carry_reg1 & (1 << 3))
1368 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1369 if (carry_reg1 & (1 << 0))
1370 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1371 if (carry_reg2 & (1 << 16))
1372 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1373 if (carry_reg2 & (1 << 15))
1374 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1375 if (carry_reg2 & (1 << 6))
1376 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1377 if (carry_reg2 & (1 << 8))
1378 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1379 if (carry_reg2 & (1 << 5))
1380 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1381 if (carry_reg2 & (1 << 4))
1382 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1383 if (carry_reg2 & (1 << 2))
1384 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1385}
1386
1387void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1388{
1389 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1390 uint32_t nIndex;
1391 uint32_t result;
1392 uint32_t hash1 = 0;
1393 uint32_t hash2 = 0;
1394 uint32_t hash3 = 0;
1395 uint32_t hash4 = 0;
1396 u32 pm_csr;
1397
1398 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1399 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1400 * specified) then we should pass NO multi-cast addresses to the
1401 * driver.
1402 */
1403 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1404 /* Loop through our multicast array and set up the device */
1405 for (nIndex = 0; nIndex < adapter->multicast_addr_count;
1406 nIndex++) {
1407 result = ether_crc(6, adapter->multicast_list[nIndex]);
1408
1409 result = (result & 0x3F800000) >> 23;
1410
1411 if (result < 32) {
1412 hash1 |= (1 << result);
1413 } else if ((31 < result) && (result < 64)) {
1414 result -= 32;
1415 hash2 |= (1 << result);
1416 } else if ((63 < result) && (result < 96)) {
1417 result -= 64;
1418 hash3 |= (1 << result);
1419 } else {
1420 result -= 96;
1421 hash4 |= (1 << result);
1422 }
1423 }
1424 }
1425
1426 /* Write out the new hash to the device */
1427 pm_csr = readl(&adapter->regs->global.pm_csr);
1428 if (!et1310_in_phy_coma(adapter)) {
1429 writel(hash1, &rxmac->multi_hash1);
1430 writel(hash2, &rxmac->multi_hash2);
1431 writel(hash3, &rxmac->multi_hash3);
1432 writel(hash4, &rxmac->multi_hash4);
1433 }
1434}
1435
1436void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1437{
1438 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1439 u32 uni_pf1;
1440 u32 uni_pf2;
1441 u32 uni_pf3;
1442 u32 pm_csr;
1443
1444 /* Set up unicast packet filter reg 3 to be the first two octets of
1445 * the MAC address for both address
1446 *
1447 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1448 * MAC address for second address
1449 *
1450 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1451 * MAC address for first address
1452 */
1453 uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1454 (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1455 (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1456 adapter->addr[1];
1457
1458 uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1459 (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1460 (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1461 adapter->addr[5];
1462
1463 uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1464 (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1465 (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1466 adapter->addr[5];
1467
1468 pm_csr = readl(&adapter->regs->global.pm_csr);
1469 if (!et1310_in_phy_coma(adapter)) {
1470 writel(uni_pf1, &rxmac->uni_pf_addr1);
1471 writel(uni_pf2, &rxmac->uni_pf_addr2);
1472 writel(uni_pf3, &rxmac->uni_pf_addr3);
1473 }
1474}
1475
1476/* PHY functions */
1477
1478int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1479{
1480 struct net_device *netdev = bus->priv;
1481 struct et131x_adapter *adapter = netdev_priv(netdev);
1482 u16 value;
1483 int ret;
1484
1485 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1486
1487 if (ret < 0)
1488 return ret;
1489 else
1490 return value;
1491}
1492
1493int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value)
1494{
1495 struct net_device *netdev = bus->priv;
1496 struct et131x_adapter *adapter = netdev_priv(netdev);
1497
1498 return et131x_mii_write(adapter, reg, value);
1499}
1500
1501int et131x_mdio_reset(struct mii_bus *bus)
1502{
1503 struct net_device *netdev = bus->priv;
1504 struct et131x_adapter *adapter = netdev_priv(netdev);
1505
1506 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1507
1508 return 0;
1509}
1510
1511int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1512{
1513 struct phy_device *phydev = adapter->phydev;
1514
1515 if (!phydev)
1516 return -EIO;
1517
1518 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1519}
1520
1521/**
1522 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1523 * @adapter: pointer to our private adapter structure
1524 * @addr: the address of the transceiver
1525 * @reg: the register to read
1526 * @value: pointer to a 16-bit value in which the value will be stored
1527 *
1528 * Returns 0 on success, errno on failure (as defined in errno.h)
1529 */
1530int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1531 u8 reg, u16 *value)
1532{
1533 struct mac_regs __iomem *mac = &adapter->regs->mac;
1534 int status = 0;
1535 u32 delay = 0;
1536 u32 mii_addr;
1537 u32 mii_cmd;
1538 u32 mii_indicator;
1539
1540 /* Save a local copy of the registers we are dealing with so we can
1541 * set them back
1542 */
1543 mii_addr = readl(&mac->mii_mgmt_addr);
1544 mii_cmd = readl(&mac->mii_mgmt_cmd);
1545
1546 /* Stop the current operation */
1547 writel(0, &mac->mii_mgmt_cmd);
1548
1549 /* Set up the register we need to read from on the correct PHY */
1550 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1551
1552 writel(0x1, &mac->mii_mgmt_cmd);
1553
1554 do {
1555 udelay(50);
1556 delay++;
1557 mii_indicator = readl(&mac->mii_mgmt_indicator);
1558 } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1559
1560 /* If we hit the max delay, we could not read the register */
1561 if (delay == 50) {
1562 dev_warn(&adapter->pdev->dev,
1563 "reg 0x%08x could not be read\n", reg);
1564 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1565 mii_indicator);
1566
1567 status = -EIO;
1568 }
1569
1570 /* If we hit here we were able to read the register and we need to
1571 * return the value to the caller */
1572 *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1573
1574 /* Stop the read operation */
1575 writel(0, &mac->mii_mgmt_cmd);
1576
1577 /* set the registers we touched back to the state at which we entered
1578 * this function
1579 */
1580 writel(mii_addr, &mac->mii_mgmt_addr);
1581 writel(mii_cmd, &mac->mii_mgmt_cmd);
1582
1583 return status;
1584}
1585
1586/**
1587 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1588 * @adapter: pointer to our private adapter structure
1589 * @reg: the register to read
1590 * @value: 16-bit value to write
1591 *
1592 * FIXME: one caller in netdev still
1593 *
1594 * Return 0 on success, errno on failure (as defined in errno.h)
1595 */
1596int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1597{
1598 struct mac_regs __iomem *mac = &adapter->regs->mac;
1599 struct phy_device *phydev = adapter->phydev;
1600 int status = 0;
1601 u8 addr;
1602 u32 delay = 0;
1603 u32 mii_addr;
1604 u32 mii_cmd;
1605 u32 mii_indicator;
1606
1607 if (!phydev)
1608 return -EIO;
1609
1610 addr = phydev->addr;
1611
1612 /* Save a local copy of the registers we are dealing with so we can
1613 * set them back
1614 */
1615 mii_addr = readl(&mac->mii_mgmt_addr);
1616 mii_cmd = readl(&mac->mii_mgmt_cmd);
1617
1618 /* Stop the current operation */
1619 writel(0, &mac->mii_mgmt_cmd);
1620
1621 /* Set up the register we need to write to on the correct PHY */
1622 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1623
1624 /* Add the value to write to the registers to the mac */
1625 writel(value, &mac->mii_mgmt_ctrl);
1626
1627 do {
1628 udelay(50);
1629 delay++;
1630 mii_indicator = readl(&mac->mii_mgmt_indicator);
1631 } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1632
1633 /* If we hit the max delay, we could not write the register */
1634 if (delay == 100) {
1635 u16 tmp;
1636
1637 dev_warn(&adapter->pdev->dev,
1638 "reg 0x%08x could not be written", reg);
1639 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1640 mii_indicator);
1641 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1642 readl(&mac->mii_mgmt_cmd));
1643
1644 et131x_mii_read(adapter, reg, &tmp);
1645
1646 status = -EIO;
1647 }
1648 /* Stop the write operation */
1649 writel(0, &mac->mii_mgmt_cmd);
1650
1651 /*
1652 * set the registers we touched back to the state at which we entered
1653 * this function
1654 */
1655 writel(mii_addr, &mac->mii_mgmt_addr);
1656 writel(mii_cmd, &mac->mii_mgmt_cmd);
1657
1658 return status;
1659}
1660
1661/**
1662 * et1310_phy_power_down - PHY power control
1663 * @adapter: device to control
1664 * @down: true for off/false for back on
1665 *
1666 * one hundred, ten, one thousand megs
1667 * How would you like to have your LAN accessed
1668 * Can't you see that this code processed
1669 * Phy power, phy power..
1670 */
1671void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1672{
1673 u16 data;
1674
1675 et131x_mii_read(adapter, MII_BMCR, &data);
1676 data &= ~BMCR_PDOWN;
1677 if (down)
1678 data |= BMCR_PDOWN;
1679 et131x_mii_write(adapter, MII_BMCR, data);
1680}
1681
1682/* Still used from _mac for BIT_READ */
1683void et1310_phy_access_mii_bit(struct et131x_adapter *adapter, u16 action,
1684 u16 regnum, u16 bitnum, u8 *value)
1685{
1686 u16 reg;
1687 u16 mask = 0x0001 << bitnum;
1688
1689 /* Read the requested register */
1690 et131x_mii_read(adapter, regnum, &reg);
1691
1692 switch (action) {
1693 case TRUEPHY_BIT_READ:
1694 *value = (reg & mask) >> bitnum;
1695 break;
1696
1697 case TRUEPHY_BIT_SET:
1698 et131x_mii_write(adapter, regnum, reg | mask);
1699 break;
1700
1701 case TRUEPHY_BIT_CLEAR:
1702 et131x_mii_write(adapter, regnum, reg & ~mask);
1703 break;
1704
1705 default:
1706 break;
1707 }
1708}
1709
1710/**
1711 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1712 * @adapter: pointer to our private adapter structure
1713 *
1714 */
1715void et131x_xcvr_init(struct et131x_adapter *adapter)
1716{
1717 u16 imr;
1718 u16 isr;
1719 u16 lcr2;
1720
1721 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1722 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1723
1724 /* Set the link status interrupt only. Bad behavior when link status
1725 * and auto neg are set, we run into a nested interrupt problem
1726 */
1727 imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1728 ET_PHY_INT_MASK_LINKSTAT &
1729 ET_PHY_INT_MASK_ENABLE);
1730
1731 et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1732
1733 /* Set the LED behavior such that LED 1 indicates speed (off =
1734 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1735 * link and activity (on for link, blink off for activity).
1736 *
1737 * NOTE: Some customizations have been added here for specific
1738 * vendors; The LED behavior is now determined by vendor data in the
1739 * EEPROM. However, the above description is the default.
1740 */
1741 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1742 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1743
1744 lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1745 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1746
1747 if ((adapter->eeprom_data[1] & 0x8) == 0)
1748 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1749 else
1750 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1751
1752 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1753 }
1754}
1755
1756/* PM functions */
1757
1758/**
1759 * et1310_in_phy_coma - check if the device is in phy coma
1760 * @adapter: pointer to our adapter structure
1761 *
1762 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1763 */
1764int et1310_in_phy_coma(struct et131x_adapter *adapter)
1765{
1766 u32 pmcsr;
1767
1768 pmcsr = readl(&adapter->regs->global.pm_csr);
1769
1770 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1771}
1772
1773/**
1774 * et1310_enable_phy_coma - called when network cable is unplugged
1775 * @adapter: pointer to our adapter structure
1776 *
1777 * driver receive an phy status change interrupt while in D0 and check that
1778 * phy_status is down.
1779 *
1780 * -- gate off JAGCore;
1781 * -- set gigE PHY in Coma mode
1782 * -- wake on phy_interrupt; Perform software reset JAGCore,
1783 * re-initialize jagcore and gigE PHY
1784 *
1785 * Add D0-ASPM-PhyLinkDown Support:
1786 * -- while in D0, when there is a phy_interrupt indicating phy link
1787 * down status, call the MPSetPhyComa routine to enter this active
1788 * state power saving mode
1789 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
1790 * indicating linkup status, call the MPDisablePhyComa routine to
1791 * restore JAGCore and gigE PHY
1792 */
1793void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1794{
1795 unsigned long flags;
1796 u32 pmcsr;
1797
1798 pmcsr = readl(&adapter->regs->global.pm_csr);
1799
1800 /* Save the GbE PHY speed and duplex modes. Need to restore this
1801 * when cable is plugged back in
1802 */
1803 /*
1804 * TODO - when PM is re-enabled, check if we need to
1805 * perform a similar task as this -
1806 * adapter->pdown_speed = adapter->ai_force_speed;
1807 * adapter->pdown_duplex = adapter->ai_force_duplex;
1808 */
1809
1810 /* Stop sending packets. */
1811 spin_lock_irqsave(&adapter->send_hw_lock, flags);
1812 adapter->flags |= fMP_ADAPTER_LOWER_POWER;
1813 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
1814
1815 /* Wait for outstanding Receive packets */
1816
1817 et131x_disable_txrx(adapter->netdev);
1818
1819 /* Gate off JAGCore 3 clock domains */
1820 pmcsr &= ~ET_PMCSR_INIT;
1821 writel(pmcsr, &adapter->regs->global.pm_csr);
1822
1823 /* Program gigE PHY in to Coma mode */
1824 pmcsr |= ET_PM_PHY_SW_COMA;
1825 writel(pmcsr, &adapter->regs->global.pm_csr);
1826}
1827
1828/**
1829 * et1310_disable_phy_coma - Disable the Phy Coma Mode
1830 * @adapter: pointer to our adapter structure
1831 */
1832void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1833{
1834 u32 pmcsr;
1835
1836 pmcsr = readl(&adapter->regs->global.pm_csr);
1837
1838 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1839 pmcsr |= ET_PMCSR_INIT;
1840 pmcsr &= ~ET_PM_PHY_SW_COMA;
1841 writel(pmcsr, &adapter->regs->global.pm_csr);
1842
1843 /* Restore the GbE PHY speed and duplex modes;
1844 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1845 */
1846 /* TODO - when PM is re-enabled, check if we need to
1847 * perform a similar task as this -
1848 * adapter->ai_force_speed = adapter->pdown_speed;
1849 * adapter->ai_force_duplex = adapter->pdown_duplex;
1850 */
1851
1852 /* Re-initialize the send structures */
1853 et131x_init_send(adapter);
1854
1855 /* Reset the RFD list and re-start RU */
1856 et131x_reset_recv(adapter);
1857
1858 /* Bring the device back to the state it was during init prior to
1859 * autonegotiation being complete. This way, when we get the auto-neg
1860 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1861 */
1862 et131x_soft_reset(adapter);
1863
1864 /* setup et1310 as per the documentation ?? */
1865 et131x_adapter_setup(adapter);
1866
1867 /* Allow Tx to restart */
1868 adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
1869
1870 et131x_enable_txrx(adapter->netdev);
1871}
1872
1873/* RX functions */
1874
1875static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1876{
1877 u32 tmp_free_buff_ring = *free_buff_ring;
1878 tmp_free_buff_ring++;
1879 /* This works for all cases where limit < 1024. The 1023 case
1880 works because 1023++ is 1024 which means the if condition is not
1881 taken but the carry of the bit into the wrap bit toggles the wrap
1882 value correctly */
1883 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1884 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1885 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1886 }
1887 /* For the 1023 case */
1888 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
1889 *free_buff_ring = tmp_free_buff_ring;
1890 return tmp_free_buff_ring;
1891}
1892
1893/**
1894 * et131x_rx_dma_memory_alloc
1895 * @adapter: pointer to our private adapter structure
1896 *
1897 * Returns 0 on success and errno on failure (as defined in errno.h)
1898 *
1899 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1900 * and the Packet Status Ring.
1901 */
1902int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1903{
1904 u32 i, j;
1905 u32 bufsize;
1906 u32 pktstat_ringsize, fbr_chunksize;
1907 struct rx_ring *rx_ring;
1908
1909 /* Setup some convenience pointers */
1910 rx_ring = &adapter->rx_ring;
1911
1912 /* Alloc memory for the lookup table */
1913#ifdef USE_FBR0
Mark Einond2796742011-10-20 01:18:30 +01001914 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
Mark Einone592a9b2011-10-20 01:18:42 +01001915#endif
1916 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
Mark Einond2796742011-10-20 01:18:30 +01001917
1918 /* The first thing we will do is configure the sizes of the buffer
1919 * rings. These will change based on jumbo packet support. Larger
1920 * jumbo packets increases the size of each entry in FBR0, and the
1921 * number of entries in FBR0, while at the same time decreasing the
1922 * number of entries in FBR1.
1923 *
1924 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
1925 * entries are huge in order to accommodate a "jumbo" frame, then it
1926 * will have less entries. Conversely, FBR1 will now be relied upon
1927 * to carry more "normal" frames, thus it's entry size also increases
1928 * and the number of entries goes up too (since it now carries
1929 * "small" + "regular" packets.
1930 *
1931 * In this scheme, we try to maintain 512 entries between the two
1932 * rings. Also, FBR1 remains a constant size - when it's size doubles
1933 * the number of entries halves. FBR0 increases in size, however.
1934 */
1935
1936 if (adapter->registry_jumbo_packet < 2048) {
1937#ifdef USE_FBR0
Mark Einone592a9b2011-10-20 01:18:42 +01001938 rx_ring->fbr[1]->buffsize = 256;
Mark Einon6abafc12011-10-20 01:18:41 +01001939 rx_ring->fbr[1]->num_entries = 512;
Mark Einone592a9b2011-10-20 01:18:42 +01001940#endif
1941 rx_ring->fbr[0]->buffsize = 2048;
1942 rx_ring->fbr[0]->num_entries = 512;
Mark Einond2796742011-10-20 01:18:30 +01001943 } else if (adapter->registry_jumbo_packet < 4096) {
1944#ifdef USE_FBR0
Mark Einone592a9b2011-10-20 01:18:42 +01001945 rx_ring->fbr[1]->buffsize = 512;
1946 rx_ring->fbr[1]->num_entries = 1024;
Mark Einond2796742011-10-20 01:18:30 +01001947#endif
Mark Einone592a9b2011-10-20 01:18:42 +01001948 rx_ring->fbr[0]->buffsize = 4096;
1949 rx_ring->fbr[0]->num_entries = 512;
Mark Einond2796742011-10-20 01:18:30 +01001950 } else {
1951#ifdef USE_FBR0
Mark Einone592a9b2011-10-20 01:18:42 +01001952 rx_ring->fbr[1]->buffsize = 1024;
1953 rx_ring->fbr[1]->num_entries = 768;
Mark Einond2796742011-10-20 01:18:30 +01001954#endif
Mark Einone592a9b2011-10-20 01:18:42 +01001955 rx_ring->fbr[0]->buffsize = 16384;
1956 rx_ring->fbr[0]->num_entries = 128;
Mark Einond2796742011-10-20 01:18:30 +01001957 }
1958
1959#ifdef USE_FBR0
Mark Einone592a9b2011-10-20 01:18:42 +01001960 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[1]->num_entries +
1961 adapter->rx_ring.fbr[0]->num_entries;
Mark Einond2796742011-10-20 01:18:30 +01001962#else
Mark Einone592a9b2011-10-20 01:18:42 +01001963 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
Mark Einond2796742011-10-20 01:18:30 +01001964#endif
1965
1966 /* Allocate an area of memory for Free Buffer Ring 1 */
Mark Einone592a9b2011-10-20 01:18:42 +01001967 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) + 0xfff;
Mark Einon0d1b7a82011-10-20 01:18:43 +01001968 rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1969 bufsize,
1970 &rx_ring->fbr[0]->ring_physaddr,
1971 GFP_KERNEL);
Mark Einone592a9b2011-10-20 01:18:42 +01001972 if (!rx_ring->fbr[0]->ring_virtaddr) {
Mark Einond2796742011-10-20 01:18:30 +01001973 dev_err(&adapter->pdev->dev,
1974 "Cannot alloc memory for Free Buffer Ring 1\n");
1975 return -ENOMEM;
1976 }
1977
1978 /* Save physical address
1979 *
1980 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
1981 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1982 * are ever returned, make sure the high part is retrieved here
1983 * before storing the adjusted address.
1984 */
Mark Einone592a9b2011-10-20 01:18:42 +01001985 rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
Mark Einond2796742011-10-20 01:18:30 +01001986
1987 /* Align Free Buffer Ring 1 on a 4K boundary */
1988 et131x_align_allocated_memory(adapter,
Mark Einone592a9b2011-10-20 01:18:42 +01001989 &rx_ring->fbr[0]->real_physaddr,
1990 &rx_ring->fbr[0]->offset, 0x0FFF);
Mark Einond2796742011-10-20 01:18:30 +01001991
Mark Einone592a9b2011-10-20 01:18:42 +01001992 rx_ring->fbr[0]->ring_virtaddr =
1993 (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
1994 rx_ring->fbr[0]->offset);
Mark Einond2796742011-10-20 01:18:30 +01001995
1996#ifdef USE_FBR0
1997 /* Allocate an area of memory for Free Buffer Ring 0 */
Mark Einone592a9b2011-10-20 01:18:42 +01001998 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) + 0xfff;
Mark Einon0d1b7a82011-10-20 01:18:43 +01001999 rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
Mark Einond2796742011-10-20 01:18:30 +01002000 bufsize,
Mark Einon0d1b7a82011-10-20 01:18:43 +01002001 &rx_ring->fbr[1]->ring_physaddr,
2002 GFP_KERNEL);
Mark Einone592a9b2011-10-20 01:18:42 +01002003 if (!rx_ring->fbr[1]->ring_virtaddr) {
Mark Einond2796742011-10-20 01:18:30 +01002004 dev_err(&adapter->pdev->dev,
2005 "Cannot alloc memory for Free Buffer Ring 0\n");
2006 return -ENOMEM;
2007 }
2008
2009 /* Save physical address
2010 *
2011 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
2012 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2013 * are ever returned, make sure the high part is retrieved here before
2014 * storing the adjusted address.
2015 */
Mark Einone592a9b2011-10-20 01:18:42 +01002016 rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
Mark Einond2796742011-10-20 01:18:30 +01002017
2018 /* Align Free Buffer Ring 0 on a 4K boundary */
2019 et131x_align_allocated_memory(adapter,
Mark Einone592a9b2011-10-20 01:18:42 +01002020 &rx_ring->fbr[1]->real_physaddr,
2021 &rx_ring->fbr[1]->offset, 0x0FFF);
Mark Einond2796742011-10-20 01:18:30 +01002022
Mark Einone592a9b2011-10-20 01:18:42 +01002023 rx_ring->fbr[1]->ring_virtaddr =
2024 (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2025 rx_ring->fbr[1]->offset);
Mark Einond2796742011-10-20 01:18:30 +01002026#endif
Mark Einone592a9b2011-10-20 01:18:42 +01002027 for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
Mark Einond2796742011-10-20 01:18:30 +01002028 u64 fbr1_offset;
2029 u64 fbr1_tmp_physaddr;
2030 u32 fbr1_align;
2031
2032 /* This code allocates an area of memory big enough for N
2033 * free buffers + (buffer_size - 1) so that the buffers can
2034 * be aligned on 4k boundaries. If each buffer were aligned
2035 * to a buffer_size boundary, the effect would be to double
2036 * the size of FBR0. By allocating N buffers at once, we
2037 * reduce this overhead.
2038 */
Mark Einone592a9b2011-10-20 01:18:42 +01002039 if (rx_ring->fbr[0]->buffsize > 4096)
Mark Einond2796742011-10-20 01:18:30 +01002040 fbr1_align = 4096;
2041 else
Mark Einone592a9b2011-10-20 01:18:42 +01002042 fbr1_align = rx_ring->fbr[0]->buffsize;
Mark Einond2796742011-10-20 01:18:30 +01002043
2044 fbr_chunksize =
Mark Einone592a9b2011-10-20 01:18:42 +01002045 (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
Mark Einon6abafc12011-10-20 01:18:41 +01002046 rx_ring->fbr[0]->mem_virtaddrs[i] =
Mark Einon0d1b7a82011-10-20 01:18:43 +01002047 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2048 &rx_ring->fbr[0]->mem_physaddrs[i], GFP_KERNEL);
Mark Einond2796742011-10-20 01:18:30 +01002049
Mark Einon6abafc12011-10-20 01:18:41 +01002050 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
Mark Einond2796742011-10-20 01:18:30 +01002051 dev_err(&adapter->pdev->dev,
2052 "Could not alloc memory\n");
2053 return -ENOMEM;
2054 }
2055
2056 /* See NOTE in "Save Physical Address" comment above */
Mark Einone592a9b2011-10-20 01:18:42 +01002057 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
Mark Einond2796742011-10-20 01:18:30 +01002058
2059 et131x_align_allocated_memory(adapter,
Mark Einone592a9b2011-10-20 01:18:42 +01002060 &fbr1_tmp_physaddr,
2061 &fbr1_offset, (fbr1_align - 1));
Mark Einond2796742011-10-20 01:18:30 +01002062
2063 for (j = 0; j < FBR_CHUNKS; j++) {
2064 u32 index = (i * FBR_CHUNKS) + j;
2065
Mark Einone592a9b2011-10-20 01:18:42 +01002066 /* Save the Virtual address of this index for quick
2067 * access later
2068 */
Mark Einond2796742011-10-20 01:18:30 +01002069 rx_ring->fbr[0]->virt[index] =
Mark Einon6abafc12011-10-20 01:18:41 +01002070 (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
Mark Einone592a9b2011-10-20 01:18:42 +01002071 (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
Mark Einond2796742011-10-20 01:18:30 +01002072
Mark Einone592a9b2011-10-20 01:18:42 +01002073 /* now store the physical address in the descriptor
2074 * so the device can access it
2075 */
Mark Einond2796742011-10-20 01:18:30 +01002076 rx_ring->fbr[0]->bus_high[index] =
Mark Einone592a9b2011-10-20 01:18:42 +01002077 (u32) (fbr1_tmp_physaddr >> 32);
Mark Einond2796742011-10-20 01:18:30 +01002078 rx_ring->fbr[0]->bus_low[index] =
Mark Einone592a9b2011-10-20 01:18:42 +01002079 (u32) fbr1_tmp_physaddr;
Mark Einond2796742011-10-20 01:18:30 +01002080
Mark Einone592a9b2011-10-20 01:18:42 +01002081 fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
Mark Einond2796742011-10-20 01:18:30 +01002082
2083 rx_ring->fbr[0]->buffer1[index] =
2084 rx_ring->fbr[0]->virt[index];
2085 rx_ring->fbr[0]->buffer2[index] =
2086 rx_ring->fbr[0]->virt[index] - 4;
2087 }
2088 }
Mark Einone592a9b2011-10-20 01:18:42 +01002089
2090#ifdef USE_FBR0
2091 /* Same for FBR0 (if in use) */
2092 for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2093 u64 fbr0_offset;
2094 u64 fbr0_tmp_physaddr;
2095
2096 fbr_chunksize =
2097 ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2098 rx_ring->fbr[1]->mem_virtaddrs[i] =
Mark Einon0d1b7a82011-10-20 01:18:43 +01002099 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2100 &rx_ring->fbr[1]->mem_physaddrs[i], GFP_KERNEL);
Mark Einone592a9b2011-10-20 01:18:42 +01002101
2102 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2103 dev_err(&adapter->pdev->dev,
2104 "Could not alloc memory\n");
2105 return -ENOMEM;
2106 }
2107
2108 /* See NOTE in "Save Physical Address" comment above */
2109 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2110
2111 et131x_align_allocated_memory(adapter,
2112 &fbr0_tmp_physaddr,
2113 &fbr0_offset,
2114 rx_ring->fbr[1]->buffsize - 1);
2115
2116 for (j = 0; j < FBR_CHUNKS; j++) {
2117 u32 index = (i * FBR_CHUNKS) + j;
2118
2119 rx_ring->fbr[1]->virt[index] =
2120 (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2121 (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2122
2123 rx_ring->fbr[1]->bus_high[index] =
2124 (u32) (fbr0_tmp_physaddr >> 32);
2125 rx_ring->fbr[1]->bus_low[index] =
2126 (u32) fbr0_tmp_physaddr;
2127
2128 fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2129
2130 rx_ring->fbr[1]->buffer1[index] =
2131 rx_ring->fbr[1]->virt[index];
2132 rx_ring->fbr[1]->buffer2[index] =
2133 rx_ring->fbr[1]->virt[index] - 4;
2134 }
2135 }
Mark Einond2796742011-10-20 01:18:30 +01002136#endif
2137
2138 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2139 pktstat_ringsize =
2140 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2141
Mark Einon0d1b7a82011-10-20 01:18:43 +01002142 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
Mark Einond2796742011-10-20 01:18:30 +01002143 pktstat_ringsize,
Mark Einon0d1b7a82011-10-20 01:18:43 +01002144 &rx_ring->ps_ring_physaddr,
2145 GFP_KERNEL);
Mark Einond2796742011-10-20 01:18:30 +01002146
2147 if (!rx_ring->ps_ring_virtaddr) {
2148 dev_err(&adapter->pdev->dev,
2149 "Cannot alloc memory for Packet Status Ring\n");
2150 return -ENOMEM;
2151 }
2152 printk(KERN_INFO "Packet Status Ring %lx\n",
2153 (unsigned long) rx_ring->ps_ring_physaddr);
2154
2155 /*
2156 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
2157 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2158 * are ever returned, make sure the high part is retrieved here before
2159 * storing the adjusted address.
2160 */
2161
2162 /* Allocate an area of memory for writeback of status information */
Mark Einon0d1b7a82011-10-20 01:18:43 +01002163 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
Mark Einond2796742011-10-20 01:18:30 +01002164 sizeof(struct rx_status_block),
Mark Einon0d1b7a82011-10-20 01:18:43 +01002165 &rx_ring->rx_status_bus,
2166 GFP_KERNEL);
Mark Einond2796742011-10-20 01:18:30 +01002167 if (!rx_ring->rx_status_block) {
2168 dev_err(&adapter->pdev->dev,
2169 "Cannot alloc memory for Status Block\n");
2170 return -ENOMEM;
2171 }
2172 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2173 printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2174
2175 /* Recv
2176 * pci_pool_create initializes a lookaside list. After successful
2177 * creation, nonpaged fixed-size blocks can be allocated from and
2178 * freed to the lookaside list.
2179 * RFDs will be allocated from this pool.
2180 */
2181 rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2182 sizeof(struct rfd),
2183 0,
2184 SLAB_CACHE_DMA |
2185 SLAB_HWCACHE_ALIGN,
2186 NULL);
2187
2188 adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2189
2190 /* The RFDs are going to be put on lists later on, so initialize the
2191 * lists now.
2192 */
2193 INIT_LIST_HEAD(&rx_ring->recv_list);
2194 return 0;
2195}
2196
2197/**
2198 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2199 * @adapter: pointer to our private adapter structure
2200 */
2201void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2202{
2203 u32 index;
2204 u32 bufsize;
2205 u32 pktstat_ringsize;
2206 struct rfd *rfd;
2207 struct rx_ring *rx_ring;
2208
2209 /* Setup some convenience pointers */
2210 rx_ring = &adapter->rx_ring;
2211
2212 /* Free RFDs and associated packet descriptors */
2213 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2214
2215 while (!list_empty(&rx_ring->recv_list)) {
2216 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2217 struct rfd, list_node);
2218
2219 list_del(&rfd->list_node);
2220 rfd->skb = NULL;
2221 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2222 }
2223
2224 /* Free Free Buffer Ring 1 */
Mark Einon6abafc12011-10-20 01:18:41 +01002225 if (rx_ring->fbr[0]->ring_virtaddr) {
Mark Einond2796742011-10-20 01:18:30 +01002226 /* First the packet memory */
2227 for (index = 0; index <
Mark Einon6abafc12011-10-20 01:18:41 +01002228 (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2229 if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
Mark Einone592a9b2011-10-20 01:18:42 +01002230 u32 fbr1_align;
2231
2232 if (rx_ring->fbr[0]->buffsize > 4096)
2233 fbr1_align = 4096;
2234 else
2235 fbr1_align = rx_ring->fbr[0]->buffsize;
2236
Mark Einond2796742011-10-20 01:18:30 +01002237 bufsize =
Mark Einone592a9b2011-10-20 01:18:42 +01002238 (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2239 fbr1_align - 1;
Mark Einond2796742011-10-20 01:18:30 +01002240
2241 pci_free_consistent(adapter->pdev,
2242 bufsize,
Mark Einon6abafc12011-10-20 01:18:41 +01002243 rx_ring->fbr[0]->mem_virtaddrs[index],
2244 rx_ring->fbr[0]->mem_physaddrs[index]);
Mark Einond2796742011-10-20 01:18:30 +01002245
Mark Einon6abafc12011-10-20 01:18:41 +01002246 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
Mark Einond2796742011-10-20 01:18:30 +01002247 }
2248 }
2249
2250 /* Now the FIFO itself */
Mark Einon6abafc12011-10-20 01:18:41 +01002251 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2252 rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
Mark Einond2796742011-10-20 01:18:30 +01002253
Mark Einon6abafc12011-10-20 01:18:41 +01002254 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries)
Mark Einond2796742011-10-20 01:18:30 +01002255 + 0xfff;
2256
Mark Einone592a9b2011-10-20 01:18:42 +01002257 pci_free_consistent(adapter->pdev, bufsize,
Mark Einon6abafc12011-10-20 01:18:41 +01002258 rx_ring->fbr[0]->ring_virtaddr,
2259 rx_ring->fbr[0]->ring_physaddr);
Mark Einond2796742011-10-20 01:18:30 +01002260
Mark Einon6abafc12011-10-20 01:18:41 +01002261 rx_ring->fbr[0]->ring_virtaddr = NULL;
Mark Einond2796742011-10-20 01:18:30 +01002262 }
Mark Einone592a9b2011-10-20 01:18:42 +01002263
2264#ifdef USE_FBR0
2265 /* Now the same for Free Buffer Ring 0 */
2266 if (rx_ring->fbr[1]->ring_virtaddr) {
2267 /* First the packet memory */
2268 for (index = 0; index <
2269 (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2270 if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2271 bufsize =
2272 (rx_ring->fbr[1]->buffsize *
2273 (FBR_CHUNKS + 1)) - 1;
2274
2275 pci_free_consistent(adapter->pdev,
2276 bufsize,
2277 rx_ring->fbr[1]->mem_virtaddrs[index],
2278 rx_ring->fbr[1]->mem_physaddrs[index]);
2279
2280 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2281 }
2282 }
2283
2284 /* Now the FIFO itself */
2285 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2286 rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2287
2288 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries)
2289 + 0xfff;
2290
2291 pci_free_consistent(adapter->pdev,
2292 bufsize,
2293 rx_ring->fbr[1]->ring_virtaddr,
2294 rx_ring->fbr[1]->ring_physaddr);
2295
2296 rx_ring->fbr[1]->ring_virtaddr = NULL;
2297 }
Mark Einond2796742011-10-20 01:18:30 +01002298#endif
2299
2300 /* Free Packet Status Ring */
2301 if (rx_ring->ps_ring_virtaddr) {
2302 pktstat_ringsize =
2303 sizeof(struct pkt_stat_desc) *
2304 adapter->rx_ring.psr_num_entries;
2305
2306 pci_free_consistent(adapter->pdev, pktstat_ringsize,
2307 rx_ring->ps_ring_virtaddr,
2308 rx_ring->ps_ring_physaddr);
2309
2310 rx_ring->ps_ring_virtaddr = NULL;
2311 }
2312
2313 /* Free area of memory for the writeback of status information */
2314 if (rx_ring->rx_status_block) {
2315 pci_free_consistent(adapter->pdev,
2316 sizeof(struct rx_status_block),
2317 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2318 rx_ring->rx_status_block = NULL;
2319 }
2320
2321 /* Free receive buffer pool */
2322
2323 /* Free receive packet pool */
2324
2325 /* Destroy the lookaside (RFD) pool */
2326 if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2327 kmem_cache_destroy(rx_ring->recv_lookaside);
2328 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2329 }
2330
2331 /* Free the FBR Lookup Table */
2332#ifdef USE_FBR0
Mark Einone592a9b2011-10-20 01:18:42 +01002333 kfree(rx_ring->fbr[1]);
Mark Einond2796742011-10-20 01:18:30 +01002334#endif
2335
Mark Einone592a9b2011-10-20 01:18:42 +01002336 kfree(rx_ring->fbr[0]);
Mark Einond2796742011-10-20 01:18:30 +01002337
2338 /* Reset Counters */
2339 rx_ring->num_ready_recv = 0;
2340}
2341
2342/**
2343 * et131x_init_recv - Initialize receive data structures.
2344 * @adapter: pointer to our private adapter structure
2345 *
2346 * Returns 0 on success and errno on failure (as defined in errno.h)
2347 */
2348int et131x_init_recv(struct et131x_adapter *adapter)
2349{
2350 int status = -ENOMEM;
2351 struct rfd *rfd = NULL;
2352 u32 rfdct;
2353 u32 numrfd = 0;
2354 struct rx_ring *rx_ring;
2355
2356 /* Setup some convenience pointers */
2357 rx_ring = &adapter->rx_ring;
2358
2359 /* Setup each RFD */
2360 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2361 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2362 GFP_ATOMIC | GFP_DMA);
2363
2364 if (!rfd) {
2365 dev_err(&adapter->pdev->dev,
2366 "Couldn't alloc RFD out of kmem_cache\n");
2367 status = -ENOMEM;
2368 continue;
2369 }
2370
2371 rfd->skb = NULL;
2372
2373 /* Add this RFD to the recv_list */
2374 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2375
2376 /* Increment both the available RFD's, and the total RFD's. */
2377 rx_ring->num_ready_recv++;
2378 numrfd++;
2379 }
2380
2381 if (numrfd > NIC_MIN_NUM_RFD)
2382 status = 0;
2383
2384 rx_ring->num_rfd = numrfd;
2385
2386 if (status != 0) {
2387 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2388 dev_err(&adapter->pdev->dev,
2389 "Allocation problems in et131x_init_recv\n");
2390 }
2391 return status;
2392}
2393
2394/**
2395 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
2396 * @adapter: pointer to our adapter structure
2397 */
2398void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
2399{
2400 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2401 struct rx_ring *rx_local = &adapter->rx_ring;
2402 struct fbr_desc *fbr_entry;
2403 u32 entry;
2404 u32 psr_num_des;
2405 unsigned long flags;
2406
2407 /* Halt RXDMA to perform the reconfigure. */
2408 et131x_rx_dma_disable(adapter);
2409
2410 /* Load the completion writeback physical address
2411 *
2412 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
2413 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2414 * are ever returned, make sure the high part is retrieved here
2415 * before storing the adjusted address.
2416 */
2417 writel((u32) ((u64)rx_local->rx_status_bus >> 32),
2418 &rx_dma->dma_wb_base_hi);
2419 writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
2420
2421 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
2422
2423 /* Set the address and parameters of the packet status ring into the
2424 * 1310's registers
2425 */
2426 writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
2427 &rx_dma->psr_base_hi);
2428 writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
2429 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
2430 writel(0, &rx_dma->psr_full_offset);
2431
2432 psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
2433 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
2434 &rx_dma->psr_min_des);
2435
2436 spin_lock_irqsave(&adapter->rcv_lock, flags);
2437
2438 /* These local variables track the PSR in the adapter structure */
2439 rx_local->local_psr_full = 0;
2440
2441 /* Now's the best time to initialize FBR1 contents */
Mark Einon6abafc12011-10-20 01:18:41 +01002442 fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
2443 for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
Mark Einond2796742011-10-20 01:18:30 +01002444 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
2445 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
2446 fbr_entry->word2 = entry;
2447 fbr_entry++;
2448 }
2449
Mark Einone592a9b2011-10-20 01:18:42 +01002450 /* Set the address and parameters of Free buffer ring 1 (and 0 if
2451 * required) into the 1310's registers
2452 */
Mark Einon6abafc12011-10-20 01:18:41 +01002453 writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
Mark Einone592a9b2011-10-20 01:18:42 +01002454 &rx_dma->fbr1_base_hi);
2455 writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
2456 writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
2457 writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
Mark Einond2796742011-10-20 01:18:30 +01002458
Mark Einone592a9b2011-10-20 01:18:42 +01002459 /* This variable tracks the free buffer ring 1 full position, so it
Mark Einond2796742011-10-20 01:18:30 +01002460 * has to match the above.
2461 */
Mark Einon6abafc12011-10-20 01:18:41 +01002462 rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
Mark Einond2796742011-10-20 01:18:30 +01002463 writel(
Mark Einon6abafc12011-10-20 01:18:41 +01002464 ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
Mark Einone592a9b2011-10-20 01:18:42 +01002465 &rx_dma->fbr1_min_des);
2466
2467#ifdef USE_FBR0
2468 /* Now's the best time to initialize FBR0 contents */
2469 fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
2470 for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
2471 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
2472 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
2473 fbr_entry->word2 = entry;
2474 fbr_entry++;
2475 }
2476
2477 writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
2478 &rx_dma->fbr0_base_hi);
2479 writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
2480 writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
2481 writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
2482
2483 /* This variable tracks the free buffer ring 0 full position, so it
2484 * has to match the above.
2485 */
2486 rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
2487 writel(
2488 ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
Mark Einond2796742011-10-20 01:18:30 +01002489 &rx_dma->fbr0_min_des);
2490#endif
2491
2492 /* Program the number of packets we will receive before generating an
2493 * interrupt.
2494 * For version B silicon, this value gets updated once autoneg is
2495 *complete.
2496 */
2497 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
2498
2499 /* The "time_done" is not working correctly to coalesce interrupts
2500 * after a given time period, but rather is giving us an interrupt
2501 * regardless of whether we have received packets.
2502 * This value gets updated once autoneg is complete.
2503 */
2504 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
2505
2506 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2507}
2508
2509/**
2510 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2511 * @adapter: pointer to our adapter structure
2512 */
2513void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2514{
2515 struct phy_device *phydev = adapter->phydev;
2516
2517 if (!phydev)
2518 return;
2519
2520 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2521 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2522 */
2523 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2524 writel(0, &adapter->regs->rxdma.max_pkt_time);
2525 writel(1, &adapter->regs->rxdma.num_pkt_done);
2526 }
2527}
2528
2529/**
2530 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2531 * @adapter: pointer to our adapter
2532 * @rfd: pointer to the RFD
2533 */
2534static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2535{
2536 struct rx_ring *rx_local = &adapter->rx_ring;
2537 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2538 u16 buff_index = rfd->bufferindex;
2539 u8 ring_index = rfd->ringindex;
2540 unsigned long flags;
2541
2542 /* We don't use any of the OOB data besides status. Otherwise, we
2543 * need to clean up OOB data
2544 */
2545 if (
2546#ifdef USE_FBR0
Mark Einone592a9b2011-10-20 01:18:42 +01002547 (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
Mark Einond2796742011-10-20 01:18:30 +01002548#endif
Mark Einone592a9b2011-10-20 01:18:42 +01002549 (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
Mark Einond2796742011-10-20 01:18:30 +01002550 spin_lock_irqsave(&adapter->fbr_lock, flags);
2551
2552 if (ring_index == 1) {
2553 struct fbr_desc *next =
Mark Einone592a9b2011-10-20 01:18:42 +01002554 (struct fbr_desc *) (rx_local->fbr[0]->ring_virtaddr) +
2555 INDEX10(rx_local->fbr[0]->local_full);
Mark Einond2796742011-10-20 01:18:30 +01002556
2557 /* Handle the Free Buffer Ring advancement here. Write
2558 * the PA / Buffer Index for the returned buffer into
2559 * the oldest (next to be freed)FBR entry
2560 */
Mark Einone592a9b2011-10-20 01:18:42 +01002561 next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2562 next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
Mark Einond2796742011-10-20 01:18:30 +01002563 next->word2 = buff_index;
2564
Mark Einone592a9b2011-10-20 01:18:42 +01002565 writel(bump_free_buff_ring(&rx_local->fbr[0]->local_full,
2566 rx_local->fbr[0]->num_entries - 1),
Mark Einond2796742011-10-20 01:18:30 +01002567 &rx_dma->fbr1_full_offset);
2568 }
2569#ifdef USE_FBR0
2570 else {
2571 struct fbr_desc *next = (struct fbr_desc *)
Mark Einone592a9b2011-10-20 01:18:42 +01002572 rx_local->fbr[1]->ring_virtaddr +
2573 INDEX10(rx_local->fbr[1]->local_full);
Mark Einond2796742011-10-20 01:18:30 +01002574
2575 /* Handle the Free Buffer Ring advancement here. Write
2576 * the PA / Buffer Index for the returned buffer into
2577 * the oldest (next to be freed) FBR entry
2578 */
Mark Einone592a9b2011-10-20 01:18:42 +01002579 next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2580 next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
Mark Einond2796742011-10-20 01:18:30 +01002581 next->word2 = buff_index;
2582
Mark Einon6abafc12011-10-20 01:18:41 +01002583 writel(bump_free_buff_ring(
Mark Einone592a9b2011-10-20 01:18:42 +01002584 &rx_local->fbr[1]->local_full,
2585 rx_local->fbr[1]->num_entries - 1),
Mark Einond2796742011-10-20 01:18:30 +01002586 &rx_dma->fbr0_full_offset);
2587 }
2588#endif
2589 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2590 } else {
2591 dev_err(&adapter->pdev->dev,
2592 "%s illegal Buffer Index returned\n", __func__);
2593 }
2594
2595 /* The processing on this RFD is done, so put it back on the tail of
2596 * our list
2597 */
2598 spin_lock_irqsave(&adapter->rcv_lock, flags);
2599 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2600 rx_local->num_ready_recv++;
2601 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2602
2603 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2604}
2605
2606/**
2607 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
2608 * @adapter: pointer to our adapter structure
2609 */
2610void et131x_rx_dma_disable(struct et131x_adapter *adapter)
2611{
2612 u32 csr;
2613 /* Setup the receive dma configuration register */
2614 writel(0x00002001, &adapter->regs->rxdma.csr);
2615 csr = readl(&adapter->regs->rxdma.csr);
2616 if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */
2617 udelay(5);
2618 csr = readl(&adapter->regs->rxdma.csr);
2619 if ((csr & 0x00020000) == 0)
2620 dev_err(&adapter->pdev->dev,
2621 "RX Dma failed to enter halt state. CSR 0x%08x\n",
2622 csr);
2623 }
2624}
2625
2626/**
2627 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
2628 * @adapter: pointer to our adapter structure
2629 */
2630void et131x_rx_dma_enable(struct et131x_adapter *adapter)
2631{
2632 /* Setup the receive dma configuration register for normal operation */
2633 u32 csr = 0x2000; /* FBR1 enable */
2634
Mark Einone592a9b2011-10-20 01:18:42 +01002635 if (adapter->rx_ring.fbr[0]->buffsize == 4096)
Mark Einond2796742011-10-20 01:18:30 +01002636 csr |= 0x0800;
Mark Einone592a9b2011-10-20 01:18:42 +01002637 else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
Mark Einond2796742011-10-20 01:18:30 +01002638 csr |= 0x1000;
Mark Einone592a9b2011-10-20 01:18:42 +01002639 else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
Mark Einond2796742011-10-20 01:18:30 +01002640 csr |= 0x1800;
2641#ifdef USE_FBR0
2642 csr |= 0x0400; /* FBR0 enable */
Mark Einone592a9b2011-10-20 01:18:42 +01002643 if (adapter->rx_ring.fbr[1]->buffsize == 256)
Mark Einond2796742011-10-20 01:18:30 +01002644 csr |= 0x0100;
Mark Einone592a9b2011-10-20 01:18:42 +01002645 else if (adapter->rx_ring.fbr[1]->buffsize == 512)
Mark Einond2796742011-10-20 01:18:30 +01002646 csr |= 0x0200;
Mark Einone592a9b2011-10-20 01:18:42 +01002647 else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
Mark Einond2796742011-10-20 01:18:30 +01002648 csr |= 0x0300;
2649#endif
2650 writel(csr, &adapter->regs->rxdma.csr);
2651
2652 csr = readl(&adapter->regs->rxdma.csr);
2653 if ((csr & 0x00020000) != 0) {
2654 udelay(5);
2655 csr = readl(&adapter->regs->rxdma.csr);
2656 if ((csr & 0x00020000) != 0) {
2657 dev_err(&adapter->pdev->dev,
2658 "RX Dma failed to exit halt state. CSR 0x%08x\n",
2659 csr);
2660 }
2661 }
2662}
2663
Mark Einon920d74a2011-10-20 01:18:40 +01002664
2665static inline void add_10bit(u32 *v, int n)
2666{
2667 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
2668}
2669
2670static inline void add_12bit(u32 *v, int n)
2671{
2672 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
2673}
2674
Mark Einond2796742011-10-20 01:18:30 +01002675/**
2676 * nic_rx_pkts - Checks the hardware for available packets
2677 * @adapter: pointer to our adapter
2678 *
2679 * Returns rfd, a pointer to our MPRFD.
2680 *
2681 * Checks the hardware for available packets, using completion ring
2682 * If packets are available, it gets an RFD from the recv_list, attaches
2683 * the packet to it, puts the RFD in the RecvPendList, and also returns
2684 * the pointer to the RFD.
2685 */
2686static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2687{
2688 struct rx_ring *rx_local = &adapter->rx_ring;
2689 struct rx_status_block *status;
2690 struct pkt_stat_desc *psr;
2691 struct rfd *rfd;
2692 u32 i;
2693 u8 *buf;
2694 unsigned long flags;
2695 struct list_head *element;
2696 u8 ring_index;
2697 u16 buff_index;
2698 u32 len;
2699 u32 word0;
2700 u32 word1;
2701
2702 /* RX Status block is written by the DMA engine prior to every
2703 * interrupt. It contains the next to be used entry in the Packet
2704 * Status Ring, and also the two Free Buffer rings.
2705 */
2706 status = rx_local->rx_status_block;
2707 word1 = status->word1 >> 16; /* Get the useful bits */
2708
2709 /* Check the PSR and wrap bits do not match */
2710 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2711 /* Looks like this ring is not updated yet */
2712 return NULL;
2713
2714 /* The packet status ring indicates that data is available. */
2715 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2716 (rx_local->local_psr_full & 0xFFF);
2717
2718 /* Grab any information that is required once the PSR is
2719 * advanced, since we can no longer rely on the memory being
2720 * accurate
2721 */
2722 len = psr->word1 & 0xFFFF;
2723 ring_index = (psr->word1 >> 26) & 0x03;
2724 buff_index = (psr->word1 >> 16) & 0x3FF;
2725 word0 = psr->word0;
2726
2727 /* Indicate that we have used this PSR entry. */
2728 /* FIXME wrap 12 */
2729 add_12bit(&rx_local->local_psr_full, 1);
2730 if (
2731 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2732 /* Clear psr full and toggle the wrap bit */
2733 rx_local->local_psr_full &= ~0xFFF;
2734 rx_local->local_psr_full ^= 0x1000;
2735 }
2736
2737 writel(rx_local->local_psr_full,
2738 &adapter->regs->rxdma.psr_full_offset);
2739
2740#ifndef USE_FBR0
2741 if (ring_index != 1)
2742 return NULL;
2743#endif
2744
2745#ifdef USE_FBR0
2746 if (ring_index > 1 ||
2747 (ring_index == 0 &&
Mark Einone592a9b2011-10-20 01:18:42 +01002748 buff_index > rx_local->fbr[1]->num_entries - 1) ||
Mark Einond2796742011-10-20 01:18:30 +01002749 (ring_index == 1 &&
Mark Einone592a9b2011-10-20 01:18:42 +01002750 buff_index > rx_local->fbr[0]->num_entries - 1))
Mark Einond2796742011-10-20 01:18:30 +01002751#else
Mark Einone592a9b2011-10-20 01:18:42 +01002752 if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
Mark Einond2796742011-10-20 01:18:30 +01002753#endif
2754 {
2755 /* Illegal buffer or ring index cannot be used by S/W*/
2756 dev_err(&adapter->pdev->dev,
2757 "NICRxPkts PSR Entry %d indicates "
2758 "length of %d and/or bad bi(%d)\n",
2759 rx_local->local_psr_full & 0xFFF,
2760 len, buff_index);
2761 return NULL;
2762 }
2763
2764 /* Get and fill the RFD. */
2765 spin_lock_irqsave(&adapter->rcv_lock, flags);
2766
2767 rfd = NULL;
2768 element = rx_local->recv_list.next;
2769 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2770
2771 if (rfd == NULL) {
2772 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2773 return NULL;
2774 }
2775
2776 list_del(&rfd->list_node);
2777 rx_local->num_ready_recv--;
2778
2779 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2780
2781 rfd->bufferindex = buff_index;
2782 rfd->ringindex = ring_index;
2783
2784 /* In V1 silicon, there is a bug which screws up filtering of
2785 * runt packets. Therefore runt packet filtering is disabled
2786 * in the MAC and the packets are dropped here. They are
2787 * also counted here.
2788 */
2789 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2790 adapter->stats.rx_other_errs++;
2791 len = 0;
2792 }
2793
2794 if (len) {
2795 /* Determine if this is a multicast packet coming in */
2796 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2797 !(word0 & ALCATEL_BROADCAST_PKT)) {
2798 /* Promiscuous mode and Multicast mode are
2799 * not mutually exclusive as was first
2800 * thought. I guess Promiscuous is just
2801 * considered a super-set of the other
2802 * filters. Generally filter is 0x2b when in
2803 * promiscuous mode.
2804 */
2805 if ((adapter->packet_filter &
2806 ET131X_PACKET_TYPE_MULTICAST)
2807 && !(adapter->packet_filter &
2808 ET131X_PACKET_TYPE_PROMISCUOUS)
2809 && !(adapter->packet_filter &
2810 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
Mark Einone592a9b2011-10-20 01:18:42 +01002811 /*
2812 * Note - ring_index for fbr[] array is reversed
2813 * 1 for FBR0 etc
2814 */
2815 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
Mark Einond2796742011-10-20 01:18:30 +01002816 virt[buff_index];
2817
2818 /* Loop through our list to see if the
2819 * destination address of this packet
2820 * matches one in our list.
2821 */
2822 for (i = 0; i < adapter->multicast_addr_count;
2823 i++) {
2824 if (buf[0] ==
2825 adapter->multicast_list[i][0]
2826 && buf[1] ==
2827 adapter->multicast_list[i][1]
2828 && buf[2] ==
2829 adapter->multicast_list[i][2]
2830 && buf[3] ==
2831 adapter->multicast_list[i][3]
2832 && buf[4] ==
2833 adapter->multicast_list[i][4]
2834 && buf[5] ==
2835 adapter->multicast_list[i][5]) {
2836 break;
2837 }
2838 }
2839
2840 /* If our index is equal to the number
2841 * of Multicast address we have, then
2842 * this means we did not find this
2843 * packet's matching address in our
2844 * list. Set the len to zero,
2845 * so we free our RFD when we return
2846 * from this function.
2847 */
2848 if (i == adapter->multicast_addr_count)
2849 len = 0;
2850 }
2851
2852 if (len > 0)
2853 adapter->stats.multicast_pkts_rcvd++;
2854 } else if (word0 & ALCATEL_BROADCAST_PKT)
2855 adapter->stats.broadcast_pkts_rcvd++;
2856 else
2857 /* Not sure what this counter measures in
2858 * promiscuous mode. Perhaps we should check
2859 * the MAC address to see if it is directed
2860 * to us in promiscuous mode.
2861 */
2862 adapter->stats.unicast_pkts_rcvd++;
2863 }
2864
2865 if (len > 0) {
2866 struct sk_buff *skb = NULL;
2867
2868 /*rfd->len = len - 4; */
2869 rfd->len = len;
2870
2871 skb = dev_alloc_skb(rfd->len + 2);
2872 if (!skb) {
2873 dev_err(&adapter->pdev->dev,
2874 "Couldn't alloc an SKB for Rx\n");
2875 return NULL;
2876 }
2877
2878 adapter->net_stats.rx_bytes += rfd->len;
2879
Mark Einone592a9b2011-10-20 01:18:42 +01002880 /*
2881 * Note - ring_index for fbr[] array is reversed,
2882 * 1 for FBR0 etc
2883 */
Mark Einond2796742011-10-20 01:18:30 +01002884 memcpy(skb_put(skb, rfd->len),
Mark Einone592a9b2011-10-20 01:18:42 +01002885 rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
Mark Einond2796742011-10-20 01:18:30 +01002886 rfd->len);
2887
2888 skb->dev = adapter->netdev;
2889 skb->protocol = eth_type_trans(skb, adapter->netdev);
2890 skb->ip_summed = CHECKSUM_NONE;
2891
2892 netif_rx(skb);
2893 } else {
2894 rfd->len = 0;
2895 }
2896
2897 nic_return_rfd(adapter, rfd);
2898 return rfd;
2899}
2900
2901/**
2902 * et131x_reset_recv - Reset the receive list
2903 * @adapter: pointer to our adapter
2904 *
2905 * Assumption, Rcv spinlock has been acquired.
2906 */
2907void et131x_reset_recv(struct et131x_adapter *adapter)
2908{
2909 WARN_ON(list_empty(&adapter->rx_ring.recv_list));
2910}
2911
2912/**
2913 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
2914 * @adapter: pointer to our adapter
2915 *
2916 * Assumption, Rcv spinlock has been acquired.
2917 */
2918void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
2919{
2920 struct rfd *rfd = NULL;
2921 u32 count = 0;
2922 bool done = true;
2923
2924 /* Process up to available RFD's */
2925 while (count < NUM_PACKETS_HANDLED) {
2926 if (list_empty(&adapter->rx_ring.recv_list)) {
2927 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
2928 done = false;
2929 break;
2930 }
2931
2932 rfd = nic_rx_pkts(adapter);
2933
2934 if (rfd == NULL)
2935 break;
2936
2937 /* Do not receive any packets until a filter has been set.
2938 * Do not receive any packets until we have link.
2939 * If length is zero, return the RFD in order to advance the
2940 * Free buffer ring.
2941 */
2942 if (!adapter->packet_filter ||
2943 !netif_carrier_ok(adapter->netdev) ||
2944 rfd->len == 0)
2945 continue;
2946
2947 /* Increment the number of packets we received */
2948 adapter->net_stats.rx_packets++;
2949
2950 /* Set the status on the packet, either resources or success */
2951 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
2952 dev_warn(&adapter->pdev->dev,
2953 "RFD's are running out\n");
2954 }
2955 count++;
2956 }
2957
2958 if (count == NUM_PACKETS_HANDLED || !done) {
2959 adapter->rx_ring.unfinished_receives = true;
2960 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2961 &adapter->regs->global.watchdog_timer);
2962 } else
2963 /* Watchdog timer will disable itself if appropriate. */
2964 adapter->rx_ring.unfinished_receives = false;
2965}
2966
2967/* TX functions */
2968
2969/**
2970 * et131x_tx_dma_memory_alloc
2971 * @adapter: pointer to our private adapter structure
2972 *
2973 * Returns 0 on success and errno on failure (as defined in errno.h).
2974 *
2975 * Allocates memory that will be visible both to the device and to the CPU.
2976 * The OS will pass us packets, pointers to which we will insert in the Tx
2977 * Descriptor queue. The device will read this queue to find the packets in
2978 * memory. The device will update the "status" in memory each time it xmits a
2979 * packet.
2980 */
2981int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2982{
2983 int desc_size = 0;
2984 struct tx_ring *tx_ring = &adapter->tx_ring;
2985
2986 /* Allocate memory for the TCB's (Transmit Control Block) */
2987 adapter->tx_ring.tcb_ring =
2988 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
2989 if (!adapter->tx_ring.tcb_ring) {
2990 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
2991 return -ENOMEM;
2992 }
2993
2994 /* Allocate enough memory for the Tx descriptor ring, and allocate
2995 * some extra so that the ring can be aligned on a 4k boundary.
2996 */
2997 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
2998 tx_ring->tx_desc_ring =
Mark Einon0d1b7a82011-10-20 01:18:43 +01002999 (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev, desc_size,
3000 &tx_ring->tx_desc_ring_pa, GFP_KERNEL);
Mark Einond2796742011-10-20 01:18:30 +01003001 if (!adapter->tx_ring.tx_desc_ring) {
3002 dev_err(&adapter->pdev->dev,
3003 "Cannot alloc memory for Tx Ring\n");
3004 return -ENOMEM;
3005 }
3006
3007 /* Save physical address
3008 *
3009 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
3010 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3011 * are ever returned, make sure the high part is retrieved here before
3012 * storing the adjusted address.
3013 */
3014 /* Allocate memory for the Tx status block */
Mark Einon0d1b7a82011-10-20 01:18:43 +01003015 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
Mark Einond2796742011-10-20 01:18:30 +01003016 sizeof(u32),
Mark Einon0d1b7a82011-10-20 01:18:43 +01003017 &tx_ring->tx_status_pa,
3018 GFP_KERNEL);
Mark Einond2796742011-10-20 01:18:30 +01003019 if (!adapter->tx_ring.tx_status_pa) {
3020 dev_err(&adapter->pdev->dev,
3021 "Cannot alloc memory for Tx status block\n");
3022 return -ENOMEM;
3023 }
3024 return 0;
3025}
3026
3027/**
3028 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3029 * @adapter: pointer to our private adapter structure
3030 *
3031 * Returns 0 on success and errno on failure (as defined in errno.h).
3032 */
3033void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3034{
3035 int desc_size = 0;
3036
3037 if (adapter->tx_ring.tx_desc_ring) {
3038 /* Free memory relating to Tx rings here */
3039 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3040 + 4096 - 1;
3041 pci_free_consistent(adapter->pdev,
3042 desc_size,
3043 adapter->tx_ring.tx_desc_ring,
3044 adapter->tx_ring.tx_desc_ring_pa);
3045 adapter->tx_ring.tx_desc_ring = NULL;
3046 }
3047
3048 /* Free memory for the Tx status block */
3049 if (adapter->tx_ring.tx_status) {
3050 pci_free_consistent(adapter->pdev,
3051 sizeof(u32),
3052 adapter->tx_ring.tx_status,
3053 adapter->tx_ring.tx_status_pa);
3054
3055 adapter->tx_ring.tx_status = NULL;
3056 }
3057 /* Free the memory for the tcb structures */
3058 kfree(adapter->tx_ring.tcb_ring);
3059}
3060
3061/**
3062 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
3063 * @adapter: pointer to our private adapter structure
3064 *
3065 * Configure the transmit engine with the ring buffers we have created
3066 * and prepare it for use.
3067 */
3068void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
3069{
3070 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
3071
3072 /* Load the hardware with the start of the transmit descriptor ring. */
3073 writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
3074 &txdma->pr_base_hi);
3075 writel((u32) adapter->tx_ring.tx_desc_ring_pa,
3076 &txdma->pr_base_lo);
3077
3078 /* Initialise the transmit DMA engine */
3079 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
3080
3081 /* Load the completion writeback physical address */
3082 writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
3083 &txdma->dma_wb_base_hi);
3084 writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
3085
3086 *adapter->tx_ring.tx_status = 0;
3087
3088 writel(0, &txdma->service_request);
3089 adapter->tx_ring.send_idx = 0;
3090}
3091
3092/**
3093 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
3094 * @adapter: pointer to our adapter structure
3095 */
3096void et131x_tx_dma_disable(struct et131x_adapter *adapter)
3097{
3098 /* Setup the tramsmit dma configuration register */
3099 writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
3100 &adapter->regs->txdma.csr);
3101}
3102
3103/**
3104 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
3105 * @adapter: pointer to our adapter structure
3106 *
3107 * Mainly used after a return to the D0 (full-power) state from a lower state.
3108 */
3109void et131x_tx_dma_enable(struct et131x_adapter *adapter)
3110{
3111 /* Setup the transmit dma configuration register for normal
3112 * operation
3113 */
3114 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
3115 &adapter->regs->txdma.csr);
3116}
3117
3118/**
3119 * et131x_init_send - Initialize send data structures
3120 * @adapter: pointer to our private adapter structure
3121 */
3122void et131x_init_send(struct et131x_adapter *adapter)
3123{
3124 struct tcb *tcb;
3125 u32 ct;
3126 struct tx_ring *tx_ring;
3127
3128 /* Setup some convenience pointers */
3129 tx_ring = &adapter->tx_ring;
3130 tcb = adapter->tx_ring.tcb_ring;
3131
3132 tx_ring->tcb_qhead = tcb;
3133
3134 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
3135
3136 /* Go through and set up each TCB */
3137 for (ct = 0; ct++ < NUM_TCB; tcb++)
3138 /* Set the link pointer in HW TCB to the next TCB in the
3139 * chain
3140 */
3141 tcb->next = tcb + 1;
3142
3143 /* Set the tail pointer */
3144 tcb--;
3145 tx_ring->tcb_qtail = tcb;
3146 tcb->next = NULL;
3147 /* Curr send queue should now be empty */
3148 tx_ring->send_head = NULL;
3149 tx_ring->send_tail = NULL;
3150}
3151
3152/**
3153 * nic_send_packet - NIC specific send handler for version B silicon.
3154 * @adapter: pointer to our adapter
3155 * @tcb: pointer to struct tcb
3156 *
3157 * Returns 0 or errno.
3158 */
3159static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3160{
3161 u32 i;
3162 struct tx_desc desc[24]; /* 24 x 16 byte */
3163 u32 frag = 0;
3164 u32 thiscopy, remainder;
3165 struct sk_buff *skb = tcb->skb;
3166 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3167 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3168 unsigned long flags;
3169 struct phy_device *phydev = adapter->phydev;
3170
3171 /* Part of the optimizations of this send routine restrict us to
3172 * sending 24 fragments at a pass. In practice we should never see
3173 * more than 5 fragments.
3174 *
3175 * NOTE: The older version of this function (below) can handle any
3176 * number of fragments. If needed, we can call this function,
3177 * although it is less efficient.
3178 */
3179 if (nr_frags > 23)
3180 return -EIO;
3181
3182 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3183
3184 for (i = 0; i < nr_frags; i++) {
3185 /* If there is something in this element, lets get a
3186 * descriptor from the ring and get the necessary data
3187 */
3188 if (i == 0) {
3189 /* If the fragments are smaller than a standard MTU,
3190 * then map them to a single descriptor in the Tx
3191 * Desc ring. However, if they're larger, as is
3192 * possible with support for jumbo packets, then
3193 * split them each across 2 descriptors.
3194 *
3195 * This will work until we determine why the hardware
3196 * doesn't seem to like large fragments.
3197 */
3198 if ((skb->len - skb->data_len) <= 1514) {
3199 desc[frag].addr_hi = 0;
3200 /* Low 16bits are length, high is vlan and
3201 unused currently so zero */
3202 desc[frag].len_vlan =
3203 skb->len - skb->data_len;
3204
3205 /* NOTE: Here, the dma_addr_t returned from
3206 * pci_map_single() is implicitly cast as a
3207 * u32. Although dma_addr_t can be
3208 * 64-bit, the address returned by
3209 * pci_map_single() is always 32-bit
3210 * addressable (as defined by the pci/dma
3211 * subsystem)
3212 */
3213 desc[frag++].addr_lo =
3214 pci_map_single(adapter->pdev,
3215 skb->data,
3216 skb->len -
3217 skb->data_len,
3218 PCI_DMA_TODEVICE);
3219 } else {
3220 desc[frag].addr_hi = 0;
3221 desc[frag].len_vlan =
3222 (skb->len - skb->data_len) / 2;
3223
3224 /* NOTE: Here, the dma_addr_t returned from
3225 * pci_map_single() is implicitly cast as a
3226 * u32. Although dma_addr_t can be
3227 * 64-bit, the address returned by
3228 * pci_map_single() is always 32-bit
3229 * addressable (as defined by the pci/dma
3230 * subsystem)
3231 */
3232 desc[frag++].addr_lo =
3233 pci_map_single(adapter->pdev,
3234 skb->data,
3235 ((skb->len -
3236 skb->data_len) / 2),
3237 PCI_DMA_TODEVICE);
3238 desc[frag].addr_hi = 0;
3239
3240 desc[frag].len_vlan =
3241 (skb->len - skb->data_len) / 2;
3242
3243 /* NOTE: Here, the dma_addr_t returned from
3244 * pci_map_single() is implicitly cast as a
3245 * u32. Although dma_addr_t can be
3246 * 64-bit, the address returned by
3247 * pci_map_single() is always 32-bit
3248 * addressable (as defined by the pci/dma
3249 * subsystem)
3250 */
3251 desc[frag++].addr_lo =
3252 pci_map_single(adapter->pdev,
3253 skb->data +
3254 ((skb->len -
3255 skb->data_len) / 2),
3256 ((skb->len -
3257 skb->data_len) / 2),
3258 PCI_DMA_TODEVICE);
3259 }
3260 } else {
3261 desc[frag].addr_hi = 0;
3262 desc[frag].len_vlan =
3263 frags[i - 1].size;
3264
3265 /* NOTE: Here, the dma_addr_t returned from
3266 * pci_map_page() is implicitly cast as a u32.
3267 * Although dma_addr_t can be 64-bit, the address
3268 * returned by pci_map_page() is always 32-bit
3269 * addressable (as defined by the pci/dma subsystem)
3270 */
3271 desc[frag++].addr_lo =
3272 pci_map_page(adapter->pdev,
3273 frags[i - 1].page,
3274 frags[i - 1].page_offset,
3275 frags[i - 1].size,
3276 PCI_DMA_TODEVICE);
3277 }
3278 }
3279
3280 if (frag == 0)
3281 return -EIO;
3282
3283 if (phydev && phydev->speed == SPEED_1000) {
3284 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3285 /* Last element & Interrupt flag */
3286 desc[frag - 1].flags = 0x5;
3287 adapter->tx_ring.since_irq = 0;
3288 } else { /* Last element */
3289 desc[frag - 1].flags = 0x1;
3290 }
3291 } else
3292 desc[frag - 1].flags = 0x5;
3293
3294 desc[0].flags |= 2; /* First element flag */
3295
3296 tcb->index_start = adapter->tx_ring.send_idx;
3297 tcb->stale = 0;
3298
3299 spin_lock_irqsave(&adapter->send_hw_lock, flags);
3300
3301 thiscopy = NUM_DESC_PER_RING_TX -
3302 INDEX10(adapter->tx_ring.send_idx);
3303
3304 if (thiscopy >= frag) {
3305 remainder = 0;
3306 thiscopy = frag;
3307 } else {
3308 remainder = frag - thiscopy;
3309 }
3310
3311 memcpy(adapter->tx_ring.tx_desc_ring +
3312 INDEX10(adapter->tx_ring.send_idx), desc,
3313 sizeof(struct tx_desc) * thiscopy);
3314
3315 add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3316
3317 if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3318 INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3319 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3320 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3321 }
3322
3323 if (remainder) {
3324 memcpy(adapter->tx_ring.tx_desc_ring,
3325 desc + thiscopy,
3326 sizeof(struct tx_desc) * remainder);
3327
3328 add_10bit(&adapter->tx_ring.send_idx, remainder);
3329 }
3330
3331 if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3332 if (adapter->tx_ring.send_idx)
3333 tcb->index = NUM_DESC_PER_RING_TX - 1;
3334 else
3335 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3336 } else
3337 tcb->index = adapter->tx_ring.send_idx - 1;
3338
3339 spin_lock(&adapter->tcb_send_qlock);
3340
3341 if (adapter->tx_ring.send_tail)
3342 adapter->tx_ring.send_tail->next = tcb;
3343 else
3344 adapter->tx_ring.send_head = tcb;
3345
3346 adapter->tx_ring.send_tail = tcb;
3347
3348 WARN_ON(tcb->next != NULL);
3349
3350 adapter->tx_ring.used++;
3351
3352 spin_unlock(&adapter->tcb_send_qlock);
3353
3354 /* Write the new write pointer back to the device. */
3355 writel(adapter->tx_ring.send_idx,
3356 &adapter->regs->txdma.service_request);
3357
3358 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3359 * timer to wake us up if this packet isn't followed by N more.
3360 */
3361 if (phydev && phydev->speed == SPEED_1000) {
3362 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3363 &adapter->regs->global.watchdog_timer);
3364 }
3365 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3366
3367 return 0;
3368}
3369
3370/**
3371 * send_packet - Do the work to send a packet
3372 * @skb: the packet(s) to send
3373 * @adapter: a pointer to the device's private adapter structure
3374 *
3375 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3376 *
3377 * Assumption: Send spinlock has been acquired
3378 */
3379static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3380{
3381 int status;
3382 struct tcb *tcb = NULL;
3383 u16 *shbufva;
3384 unsigned long flags;
3385
3386 /* All packets must have at least a MAC address and a protocol type */
3387 if (skb->len < ETH_HLEN)
3388 return -EIO;
3389
3390 /* Get a TCB for this packet */
3391 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3392
3393 tcb = adapter->tx_ring.tcb_qhead;
3394
3395 if (tcb == NULL) {
3396 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3397 return -ENOMEM;
3398 }
3399
3400 adapter->tx_ring.tcb_qhead = tcb->next;
3401
3402 if (adapter->tx_ring.tcb_qhead == NULL)
3403 adapter->tx_ring.tcb_qtail = NULL;
3404
3405 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3406
3407 tcb->skb = skb;
3408
3409 if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3410 shbufva = (u16 *) skb->data;
3411
3412 if ((shbufva[0] == 0xffff) &&
3413 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3414 tcb->flags |= fMP_DEST_BROAD;
3415 } else if ((shbufva[0] & 0x3) == 0x0001) {
3416 tcb->flags |= fMP_DEST_MULTI;
3417 }
3418 }
3419
3420 tcb->next = NULL;
3421
3422 /* Call the NIC specific send handler. */
3423 status = nic_send_packet(adapter, tcb);
3424
3425 if (status != 0) {
3426 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3427
3428 if (adapter->tx_ring.tcb_qtail)
3429 adapter->tx_ring.tcb_qtail->next = tcb;
3430 else
3431 /* Apparently ready Q is empty. */
3432 adapter->tx_ring.tcb_qhead = tcb;
3433
3434 adapter->tx_ring.tcb_qtail = tcb;
3435 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3436 return status;
3437 }
3438 WARN_ON(adapter->tx_ring.used > NUM_TCB);
3439 return 0;
3440}
3441
3442/**
3443 * et131x_send_packets - This function is called by the OS to send packets
3444 * @skb: the packet(s) to send
3445 * @netdev:device on which to TX the above packet(s)
3446 *
3447 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3448 */
3449int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3450{
3451 int status = 0;
3452 struct et131x_adapter *adapter = NULL;
3453
3454 adapter = netdev_priv(netdev);
3455
3456 /* Send these packets
3457 *
3458 * NOTE: The Linux Tx entry point is only given one packet at a time
3459 * to Tx, so the PacketCount and it's array used makes no sense here
3460 */
3461
3462 /* TCB is not available */
3463 if (adapter->tx_ring.used >= NUM_TCB) {
3464 /* NOTE: If there's an error on send, no need to queue the
3465 * packet under Linux; if we just send an error up to the
3466 * netif layer, it will resend the skb to us.
3467 */
3468 status = -ENOMEM;
3469 } else {
3470 /* We need to see if the link is up; if it's not, make the
3471 * netif layer think we're good and drop the packet
3472 */
3473 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3474 !netif_carrier_ok(netdev)) {
3475 dev_kfree_skb_any(skb);
3476 skb = NULL;
3477
3478 adapter->net_stats.tx_dropped++;
3479 } else {
3480 status = send_packet(skb, adapter);
3481 if (status != 0 && status != -ENOMEM) {
3482 /* On any other error, make netif think we're
3483 * OK and drop the packet
3484 */
3485 dev_kfree_skb_any(skb);
3486 skb = NULL;
3487 adapter->net_stats.tx_dropped++;
3488 }
3489 }
3490 }
3491 return status;
3492}
3493
3494/**
3495 * free_send_packet - Recycle a struct tcb
3496 * @adapter: pointer to our adapter
3497 * @tcb: pointer to struct tcb
3498 *
3499 * Complete the packet if necessary
3500 * Assumption - Send spinlock has been acquired
3501 */
3502static inline void free_send_packet(struct et131x_adapter *adapter,
3503 struct tcb *tcb)
3504{
3505 unsigned long flags;
3506 struct tx_desc *desc = NULL;
3507 struct net_device_stats *stats = &adapter->net_stats;
3508
3509 if (tcb->flags & fMP_DEST_BROAD)
3510 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3511 else if (tcb->flags & fMP_DEST_MULTI)
3512 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3513 else
3514 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3515
3516 if (tcb->skb) {
3517 stats->tx_bytes += tcb->skb->len;
3518
3519 /* Iterate through the TX descriptors on the ring
3520 * corresponding to this packet and umap the fragments
3521 * they point to
3522 */
3523 do {
3524 desc = (struct tx_desc *)
3525 (adapter->tx_ring.tx_desc_ring +
3526 INDEX10(tcb->index_start));
3527
3528 pci_unmap_single(adapter->pdev,
3529 desc->addr_lo,
3530 desc->len_vlan, PCI_DMA_TODEVICE);
3531
3532 add_10bit(&tcb->index_start, 1);
3533 if (INDEX10(tcb->index_start) >=
3534 NUM_DESC_PER_RING_TX) {
3535 tcb->index_start &= ~ET_DMA10_MASK;
3536 tcb->index_start ^= ET_DMA10_WRAP;
3537 }
3538 } while (desc != (adapter->tx_ring.tx_desc_ring +
3539 INDEX10(tcb->index)));
3540
3541 dev_kfree_skb_any(tcb->skb);
3542 }
3543
3544 memset(tcb, 0, sizeof(struct tcb));
3545
3546 /* Add the TCB to the Ready Q */
3547 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3548
3549 adapter->net_stats.tx_packets++;
3550
3551 if (adapter->tx_ring.tcb_qtail)
3552 adapter->tx_ring.tcb_qtail->next = tcb;
3553 else
3554 /* Apparently ready Q is empty. */
3555 adapter->tx_ring.tcb_qhead = tcb;
3556
3557 adapter->tx_ring.tcb_qtail = tcb;
3558
3559 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3560 WARN_ON(adapter->tx_ring.used < 0);
3561}
3562
3563/**
3564 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3565 * @adapter: pointer to our adapter
3566 *
3567 * Assumption - Send spinlock has been acquired
3568 */
3569void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3570{
3571 struct tcb *tcb;
3572 unsigned long flags;
3573 u32 freed = 0;
3574
3575 /* Any packets being sent? Check the first TCB on the send list */
3576 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3577
3578 tcb = adapter->tx_ring.send_head;
3579
3580 while (tcb != NULL && freed < NUM_TCB) {
3581 struct tcb *next = tcb->next;
3582
3583 adapter->tx_ring.send_head = next;
3584
3585 if (next == NULL)
3586 adapter->tx_ring.send_tail = NULL;
3587
3588 adapter->tx_ring.used--;
3589
3590 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3591
3592 freed++;
3593 free_send_packet(adapter, tcb);
3594
3595 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3596
3597 tcb = adapter->tx_ring.send_head;
3598 }
3599
3600 WARN_ON(freed == NUM_TCB);
3601
3602 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3603
3604 adapter->tx_ring.used = 0;
3605}
3606
3607/**
3608 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3609 * @adapter: pointer to our adapter
3610 *
3611 * Re-claim the send resources, complete sends and get more to send from
3612 * the send wait queue.
3613 *
3614 * Assumption - Send spinlock has been acquired
3615 */
3616void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3617{
3618 unsigned long flags;
3619 u32 serviced;
3620 struct tcb *tcb;
3621 u32 index;
3622
3623 serviced = readl(&adapter->regs->txdma.new_service_complete);
3624 index = INDEX10(serviced);
3625
3626 /* Has the ring wrapped? Process any descriptors that do not have
3627 * the same "wrap" indicator as the current completion indicator
3628 */
3629 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3630
3631 tcb = adapter->tx_ring.send_head;
3632
3633 while (tcb &&
3634 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3635 index < INDEX10(tcb->index)) {
3636 adapter->tx_ring.used--;
3637 adapter->tx_ring.send_head = tcb->next;
3638 if (tcb->next == NULL)
3639 adapter->tx_ring.send_tail = NULL;
3640
3641 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3642 free_send_packet(adapter, tcb);
3643 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3644
3645 /* Goto the next packet */
3646 tcb = adapter->tx_ring.send_head;
3647 }
3648 while (tcb &&
3649 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3650 && index > (tcb->index & ET_DMA10_MASK)) {
3651 adapter->tx_ring.used--;
3652 adapter->tx_ring.send_head = tcb->next;
3653 if (tcb->next == NULL)
3654 adapter->tx_ring.send_tail = NULL;
3655
3656 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3657 free_send_packet(adapter, tcb);
3658 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3659
3660 /* Goto the next packet */
3661 tcb = adapter->tx_ring.send_head;
3662 }
3663
3664 /* Wake up the queue when we hit a low-water mark */
3665 if (adapter->tx_ring.used <= NUM_TCB / 3)
3666 netif_wake_queue(adapter->netdev);
3667
3668 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3669}
3670
3671/* ETHTOOL functions */
3672
3673static int et131x_get_settings(struct net_device *netdev,
3674 struct ethtool_cmd *cmd)
3675{
3676 struct et131x_adapter *adapter = netdev_priv(netdev);
3677
3678 return phy_ethtool_gset(adapter->phydev, cmd);
3679}
3680
3681static int et131x_set_settings(struct net_device *netdev,
3682 struct ethtool_cmd *cmd)
3683{
3684 struct et131x_adapter *adapter = netdev_priv(netdev);
3685
3686 return phy_ethtool_sset(adapter->phydev, cmd);
3687}
3688
3689static int et131x_get_regs_len(struct net_device *netdev)
3690{
3691#define ET131X_REGS_LEN 256
3692 return ET131X_REGS_LEN * sizeof(u32);
3693}
3694
3695static void et131x_get_regs(struct net_device *netdev,
3696 struct ethtool_regs *regs, void *regs_data)
3697{
3698 struct et131x_adapter *adapter = netdev_priv(netdev);
3699 struct address_map __iomem *aregs = adapter->regs;
3700 u32 *regs_buff = regs_data;
3701 u32 num = 0;
3702
3703 memset(regs_data, 0, et131x_get_regs_len(netdev));
3704
3705 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3706 adapter->pdev->device;
3707
3708 /* PHY regs */
3709 et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3710 et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3711 et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3712 et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3713 et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3714 et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3715 et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3716 /* Autoneg next page transmit reg */
3717 et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3718 /* Link partner next page reg */
3719 et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3720 et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3721 et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3722 et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3723 et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3724 et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3725 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3726 (u16 *)&regs_buff[num++]);
3727 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3728 (u16 *)&regs_buff[num++]);
3729 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3730 (u16 *)&regs_buff[num++]);
3731 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3732 (u16 *)&regs_buff[num++]);
3733 et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3734 et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3735 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3736 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3737 (u16 *)&regs_buff[num++]);
3738 et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3739 et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3740 et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3741
3742 /* Global regs */
3743 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3744 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3745 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3746 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3747 regs_buff[num++] = readl(&aregs->global.pm_csr);
3748 regs_buff[num++] = adapter->stats.interrupt_status;
3749 regs_buff[num++] = readl(&aregs->global.int_mask);
3750 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3751 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3752 regs_buff[num++] = readl(&aregs->global.sw_reset);
3753 regs_buff[num++] = readl(&aregs->global.slv_timer);
3754 regs_buff[num++] = readl(&aregs->global.msi_config);
3755 regs_buff[num++] = readl(&aregs->global.loopback);
3756 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3757
3758 /* TXDMA regs */
3759 regs_buff[num++] = readl(&aregs->txdma.csr);
3760 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3761 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3762 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3763 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3764 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3765 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3766 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3767 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3768 regs_buff[num++] = readl(&aregs->txdma.service_request);
3769 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3770 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3771 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3772 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3773 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3774 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3775 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3776 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3777 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3778 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3779 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3780 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3781 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3782 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3783 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3784 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3785
3786 /* RXDMA regs */
3787 regs_buff[num++] = readl(&aregs->rxdma.csr);
3788 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3789 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3790 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3791 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3792 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3793 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3794 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3795 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3796 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3797 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3798 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3799 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3800 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3801 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3802 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3803 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3804 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3805 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3806 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3807 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3808 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3809 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3810 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3811 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3812 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3813 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3814 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3815 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3816}
3817
3818#define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3819static void et131x_get_drvinfo(struct net_device *netdev,
3820 struct ethtool_drvinfo *info)
3821{
3822 struct et131x_adapter *adapter = netdev_priv(netdev);
3823
3824 strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3825 strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3826 strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3827}
3828
3829static struct ethtool_ops et131x_ethtool_ops = {
3830 .get_settings = et131x_get_settings,
3831 .set_settings = et131x_set_settings,
3832 .get_drvinfo = et131x_get_drvinfo,
3833 .get_regs_len = et131x_get_regs_len,
3834 .get_regs = et131x_get_regs,
3835 .get_link = ethtool_op_get_link,
3836};
3837
3838void et131x_set_ethtool_ops(struct net_device *netdev)
3839{
3840 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3841}
3842
3843/* PCI functions */
3844
3845/**
3846 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3847 * @adapter: pointer to our private adapter structure
3848 */
3849void et131x_hwaddr_init(struct et131x_adapter *adapter)
3850{
3851 /* If have our default mac from init and no mac address from
3852 * EEPROM then we need to generate the last octet and set it on the
3853 * device
3854 */
3855 if (adapter->rom_addr[0] == 0x00 &&
3856 adapter->rom_addr[1] == 0x00 &&
3857 adapter->rom_addr[2] == 0x00 &&
3858 adapter->rom_addr[3] == 0x00 &&
3859 adapter->rom_addr[4] == 0x00 &&
3860 adapter->rom_addr[5] == 0x00) {
3861 /*
3862 * We need to randomly generate the last octet so we
3863 * decrease our chances of setting the mac address to
3864 * same as another one of our cards in the system
3865 */
3866 get_random_bytes(&adapter->addr[5], 1);
3867 /*
3868 * We have the default value in the register we are
3869 * working with so we need to copy the current
3870 * address into the permanent address
3871 */
3872 memcpy(adapter->rom_addr,
3873 adapter->addr, ETH_ALEN);
3874 } else {
3875 /* We do not have an override address, so set the
3876 * current address to the permanent address and add
3877 * it to the device
3878 */
3879 memcpy(adapter->addr,
3880 adapter->rom_addr, ETH_ALEN);
3881 }
3882}
3883
3884/**
3885 * et131x_pci_init - initial PCI setup
3886 * @adapter: pointer to our private adapter structure
3887 * @pdev: our PCI device
3888 *
3889 * Perform the initial setup of PCI registers and if possible initialise
3890 * the MAC address. At this point the I/O registers have yet to be mapped
3891 */
3892static int et131x_pci_init(struct et131x_adapter *adapter,
3893 struct pci_dev *pdev)
3894{
3895 int i;
3896 u8 max_payload;
3897 u8 read_size_reg;
3898
3899 if (et131x_init_eeprom(adapter) < 0)
3900 return -EIO;
3901
3902 /* Let's set up the PORT LOGIC Register. First we need to know what
3903 * the max_payload_size is
3904 */
3905 if (pci_read_config_byte(pdev, ET1310_PCI_MAX_PYLD, &max_payload)) {
3906 dev_err(&pdev->dev,
3907 "Could not read PCI config space for Max Payload Size\n");
3908 return -EIO;
3909 }
3910
3911 /* Program the Ack/Nak latency and replay timers */
3912 max_payload &= 0x07; /* Only the lower 3 bits are valid */
3913
3914 if (max_payload < 2) {
3915 static const u16 acknak[2] = { 0x76, 0xD0 };
3916 static const u16 replay[2] = { 0x1E0, 0x2ED };
3917
3918 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3919 acknak[max_payload])) {
3920 dev_err(&pdev->dev,
3921 "Could not write PCI config space for ACK/NAK\n");
3922 return -EIO;
3923 }
3924 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3925 replay[max_payload])) {
3926 dev_err(&pdev->dev,
3927 "Could not write PCI config space for Replay Timer\n");
3928 return -EIO;
3929 }
3930 }
3931
3932 /* l0s and l1 latency timers. We are using default values.
3933 * Representing 001 for L0s and 010 for L1
3934 */
3935 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3936 dev_err(&pdev->dev,
3937 "Could not write PCI config space for Latency Timers\n");
3938 return -EIO;
3939 }
3940
3941 /* Change the max read size to 2k */
3942 if (pci_read_config_byte(pdev, 0x51, &read_size_reg)) {
3943 dev_err(&pdev->dev,
3944 "Could not read PCI config space for Max read size\n");
3945 return -EIO;
3946 }
3947
3948 read_size_reg &= 0x8f;
3949 read_size_reg |= 0x40;
3950
3951 if (pci_write_config_byte(pdev, 0x51, read_size_reg)) {
3952 dev_err(&pdev->dev,
3953 "Could not write PCI config space for Max read size\n");
3954 return -EIO;
3955 }
3956
3957 /* Get MAC address from config space if an eeprom exists, otherwise
3958 * the MAC address there will not be valid
3959 */
3960 if (!adapter->has_eeprom) {
3961 et131x_hwaddr_init(adapter);
3962 return 0;
3963 }
3964
3965 for (i = 0; i < ETH_ALEN; i++) {
3966 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3967 adapter->rom_addr + i)) {
3968 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3969 return -EIO;
3970 }
3971 }
3972 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
3973 return 0;
3974}
3975
3976/**
3977 * et131x_error_timer_handler
3978 * @data: timer-specific variable; here a pointer to our adapter structure
3979 *
3980 * The routine called when the error timer expires, to track the number of
3981 * recurring errors.
3982 */
3983void et131x_error_timer_handler(unsigned long data)
3984{
3985 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3986 struct phy_device *phydev = adapter->phydev;
3987
3988 if (et1310_in_phy_coma(adapter)) {
3989 /* Bring the device immediately out of coma, to
3990 * prevent it from sleeping indefinitely, this
3991 * mechanism could be improved! */
3992 et1310_disable_phy_coma(adapter);
3993 adapter->boot_coma = 20;
3994 } else {
3995 et1310_update_macstat_host_counters(adapter);
3996 }
3997
3998 if (!phydev->link && adapter->boot_coma < 11)
3999 adapter->boot_coma++;
4000
4001 if (adapter->boot_coma == 10) {
4002 if (!phydev->link) {
4003 if (!et1310_in_phy_coma(adapter)) {
4004 /* NOTE - This was originally a 'sync with
4005 * interrupt'. How to do that under Linux?
4006 */
4007 et131x_enable_interrupts(adapter);
4008 et1310_enable_phy_coma(adapter);
4009 }
4010 }
4011 }
4012
4013 /* This is a periodic timer, so reschedule */
4014 mod_timer(&adapter->error_timer, jiffies +
4015 TX_ERROR_PERIOD * HZ / 1000);
4016}
4017
4018/**
4019 * et131x_configure_global_regs - configure JAGCore global regs
4020 * @adapter: pointer to our adapter structure
4021 *
4022 * Used to configure the global registers on the JAGCore
4023 */
4024void et131x_configure_global_regs(struct et131x_adapter *adapter)
4025{
4026 struct global_regs __iomem *regs = &adapter->regs->global;
4027
4028 writel(0, &regs->rxq_start_addr);
4029 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
4030
4031 if (adapter->registry_jumbo_packet < 2048) {
4032 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
4033 * block of RAM that the driver can split between Tx
4034 * and Rx as it desires. Our default is to split it
4035 * 50/50:
4036 */
4037 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
4038 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
4039 } else if (adapter->registry_jumbo_packet < 8192) {
4040 /* For jumbo packets > 2k but < 8k, split 50-50. */
4041 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
4042 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
4043 } else {
4044 /* 9216 is the only packet size greater than 8k that
4045 * is available. The Tx buffer has to be big enough
4046 * for one whole packet on the Tx side. We'll make
4047 * the Tx 9408, and give the rest to Rx
4048 */
4049 writel(0x01b3, &regs->rxq_end_addr);
4050 writel(0x01b4, &regs->txq_start_addr);
4051 }
4052
4053 /* Initialize the loopback register. Disable all loopbacks. */
4054 writel(0, &regs->loopback);
4055
4056 /* MSI Register */
4057 writel(0, &regs->msi_config);
4058
4059 /* By default, disable the watchdog timer. It will be enabled when
4060 * a packet is queued.
4061 */
4062 writel(0, &regs->watchdog_timer);
4063}
4064
4065/**
4066 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
4067 * @adapter: pointer to our private adapter structure
4068 *
4069 * Returns 0 on success, errno on failure (as defined in errno.h)
4070 */
4071void et131x_adapter_setup(struct et131x_adapter *adapter)
4072{
4073 /* Configure the JAGCore */
4074 et131x_configure_global_regs(adapter);
4075
4076 et1310_config_mac_regs1(adapter);
4077
4078 /* Configure the MMC registers */
4079 /* All we need to do is initialize the Memory Control Register */
4080 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
4081
4082 et1310_config_rxmac_regs(adapter);
4083 et1310_config_txmac_regs(adapter);
4084
4085 et131x_config_rx_dma_regs(adapter);
4086 et131x_config_tx_dma_regs(adapter);
4087
4088 et1310_config_macstat_regs(adapter);
4089
4090 et1310_phy_power_down(adapter, 0);
4091 et131x_xcvr_init(adapter);
4092}
4093
4094/**
4095 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
4096 * @adapter: pointer to our private adapter structure
4097 */
4098void et131x_soft_reset(struct et131x_adapter *adapter)
4099{
4100 /* Disable MAC Core */
4101 writel(0xc00f0000, &adapter->regs->mac.cfg1);
4102
4103 /* Set everything to a reset value */
4104 writel(0x7F, &adapter->regs->global.sw_reset);
4105 writel(0x000f0000, &adapter->regs->mac.cfg1);
4106 writel(0x00000000, &adapter->regs->mac.cfg1);
4107}
4108
4109/**
4110 * et131x_align_allocated_memory - Align allocated memory on a given boundary
4111 * @adapter: pointer to our adapter structure
4112 * @phys_addr: pointer to Physical address
4113 * @offset: pointer to the offset variable
4114 * @mask: correct mask
4115 */
4116void et131x_align_allocated_memory(struct et131x_adapter *adapter,
4117 uint64_t *phys_addr,
4118 uint64_t *offset, uint64_t mask)
4119{
4120 uint64_t new_addr;
4121
4122 *offset = 0;
4123
4124 new_addr = *phys_addr & ~mask;
4125
4126 if (new_addr != *phys_addr) {
4127 /* Move to next aligned block */
4128 new_addr += mask + 1;
4129 /* Return offset for adjusting virt addr */
4130 *offset = new_addr - *phys_addr;
4131 /* Return new physical address */
4132 *phys_addr = new_addr;
4133 }
4134}
4135
4136/**
4137 * et131x_adapter_memory_alloc
4138 * @adapter: pointer to our private adapter structure
4139 *
4140 * Returns 0 on success, errno on failure (as defined in errno.h).
4141 *
4142 * Allocate all the memory blocks for send, receive and others.
4143 */
4144int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4145{
4146 int status;
4147
4148 /* Allocate memory for the Tx Ring */
4149 status = et131x_tx_dma_memory_alloc(adapter);
4150 if (status != 0) {
4151 dev_err(&adapter->pdev->dev,
4152 "et131x_tx_dma_memory_alloc FAILED\n");
4153 return status;
4154 }
4155 /* Receive buffer memory allocation */
4156 status = et131x_rx_dma_memory_alloc(adapter);
4157 if (status != 0) {
4158 dev_err(&adapter->pdev->dev,
4159 "et131x_rx_dma_memory_alloc FAILED\n");
4160 et131x_tx_dma_memory_free(adapter);
4161 return status;
4162 }
4163
4164 /* Init receive data structures */
4165 status = et131x_init_recv(adapter);
4166 if (status != 0) {
4167 dev_err(&adapter->pdev->dev,
4168 "et131x_init_recv FAILED\n");
4169 et131x_tx_dma_memory_free(adapter);
4170 et131x_rx_dma_memory_free(adapter);
4171 }
4172 return status;
4173}
4174
4175/**
4176 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4177 * @adapter: pointer to our private adapter structure
4178 */
4179void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4180{
4181 /* Free DMA memory */
4182 et131x_tx_dma_memory_free(adapter);
4183 et131x_rx_dma_memory_free(adapter);
4184}
4185
4186static void et131x_adjust_link(struct net_device *netdev)
4187{
4188 struct et131x_adapter *adapter = netdev_priv(netdev);
4189 struct phy_device *phydev = adapter->phydev;
4190
4191 if (netif_carrier_ok(netdev)) {
4192 adapter->boot_coma = 20;
4193
4194 if (phydev && phydev->speed == SPEED_10) {
4195 /*
4196 * NOTE - Is there a way to query this without
4197 * TruePHY?
4198 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4199 * EMI_TRUEPHY_A13O) {
4200 */
4201 u16 register18;
4202
4203 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4204 &register18);
4205 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4206 register18 | 0x4);
4207 et131x_mii_write(adapter, PHY_INDEX_REG,
4208 register18 | 0x8402);
4209 et131x_mii_write(adapter, PHY_DATA_REG,
4210 register18 | 511);
4211 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4212 register18);
4213 }
4214
4215 et1310_config_flow_control(adapter);
4216
4217 if (phydev && phydev->speed == SPEED_1000 &&
4218 adapter->registry_jumbo_packet > 2048) {
4219 u16 reg;
4220
4221 et131x_mii_read(adapter, PHY_CONFIG, &reg);
4222 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4223 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4224 et131x_mii_write(adapter, PHY_CONFIG, reg);
4225 }
4226
4227 et131x_set_rx_dma_timer(adapter);
4228 et1310_config_mac_regs2(adapter);
4229 }
4230
4231 if (phydev && phydev->link != adapter->link) {
4232 /*
4233 * Check to see if we are in coma mode and if
4234 * so, disable it because we will not be able
4235 * to read PHY values until we are out.
4236 */
4237 if (et1310_in_phy_coma(adapter))
4238 et1310_disable_phy_coma(adapter);
4239
4240 if (phydev->link) {
4241 adapter->boot_coma = 20;
4242 } else {
4243 dev_warn(&adapter->pdev->dev,
4244 "Link down - cable problem ?\n");
4245 adapter->boot_coma = 0;
4246
4247 if (phydev->speed == SPEED_10) {
4248 /* NOTE - Is there a way to query this without
4249 * TruePHY?
4250 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4251 * EMI_TRUEPHY_A13O)
4252 */
4253 u16 register18;
4254
4255 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4256 &register18);
4257 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4258 register18 | 0x4);
4259 et131x_mii_write(adapter, PHY_INDEX_REG,
4260 register18 | 0x8402);
4261 et131x_mii_write(adapter, PHY_DATA_REG,
4262 register18 | 511);
4263 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4264 register18);
4265 }
4266
4267 /* Free the packets being actively sent & stopped */
4268 et131x_free_busy_send_packets(adapter);
4269
4270 /* Re-initialize the send structures */
4271 et131x_init_send(adapter);
4272
4273 /* Reset the RFD list and re-start RU */
4274 et131x_reset_recv(adapter);
4275
4276 /*
4277 * Bring the device back to the state it was during
4278 * init prior to autonegotiation being complete. This
4279 * way, when we get the auto-neg complete interrupt,
4280 * we can complete init by calling config_mac_regs2.
4281 */
4282 et131x_soft_reset(adapter);
4283
4284 /* Setup ET1310 as per the documentation */
4285 et131x_adapter_setup(adapter);
4286
4287 /* perform reset of tx/rx */
4288 et131x_disable_txrx(netdev);
4289 et131x_enable_txrx(netdev);
4290 }
4291
4292 adapter->link = phydev->link;
4293
4294 phy_print_status(phydev);
4295 }
4296}
4297
4298static int et131x_mii_probe(struct net_device *netdev)
4299{
4300 struct et131x_adapter *adapter = netdev_priv(netdev);
4301 struct phy_device *phydev = NULL;
4302
4303 phydev = phy_find_first(adapter->mii_bus);
4304 if (!phydev) {
4305 dev_err(&adapter->pdev->dev, "no PHY found\n");
4306 return -ENODEV;
4307 }
4308
4309 phydev = phy_connect(netdev, dev_name(&phydev->dev),
4310 &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4311
4312 if (IS_ERR(phydev)) {
4313 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4314 return PTR_ERR(phydev);
4315 }
4316
4317 phydev->supported &= (SUPPORTED_10baseT_Half
4318 | SUPPORTED_10baseT_Full
4319 | SUPPORTED_100baseT_Half
4320 | SUPPORTED_100baseT_Full
4321 | SUPPORTED_Autoneg
4322 | SUPPORTED_MII
4323 | SUPPORTED_TP);
4324
4325 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4326 phydev->supported |= SUPPORTED_1000baseT_Full;
4327
4328 phydev->advertising = phydev->supported;
4329 adapter->phydev = phydev;
4330
4331 dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4332 "(mii_bus:phy_addr=%s)\n",
4333 phydev->drv->name, dev_name(&phydev->dev));
4334
4335 return 0;
4336}
4337
4338/**
4339 * et131x_adapter_init
4340 * @adapter: pointer to the private adapter struct
4341 * @pdev: pointer to the PCI device
4342 *
4343 * Initialize the data structures for the et131x_adapter object and link
4344 * them together with the platform provided device structures.
4345 */
4346static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4347 struct pci_dev *pdev)
4348{
4349 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4350
4351 struct et131x_adapter *adapter;
4352
4353 /* Allocate private adapter struct and copy in relevant information */
4354 adapter = netdev_priv(netdev);
4355 adapter->pdev = pci_dev_get(pdev);
4356 adapter->netdev = netdev;
4357
4358 /* Do the same for the netdev struct */
4359 netdev->irq = pdev->irq;
4360 netdev->base_addr = pci_resource_start(pdev, 0);
4361
4362 /* Initialize spinlocks here */
4363 spin_lock_init(&adapter->lock);
4364 spin_lock_init(&adapter->tcb_send_qlock);
4365 spin_lock_init(&adapter->tcb_ready_qlock);
4366 spin_lock_init(&adapter->send_hw_lock);
4367 spin_lock_init(&adapter->rcv_lock);
4368 spin_lock_init(&adapter->rcv_pend_lock);
4369 spin_lock_init(&adapter->fbr_lock);
4370 spin_lock_init(&adapter->phy_lock);
4371
4372 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
4373
4374 /* Set the MAC address to a default */
4375 memcpy(adapter->addr, default_mac, ETH_ALEN);
4376
4377 return adapter;
4378}
4379
4380/**
4381 * et131x_pci_setup - Perform device initialization
4382 * @pdev: a pointer to the device's pci_dev structure
4383 * @ent: this device's entry in the pci_device_id table
4384 *
4385 * Returns 0 on success, errno on failure (as defined in errno.h)
4386 *
4387 * Registered in the pci_driver structure, this function is called when the
4388 * PCI subsystem finds a new PCI device which matches the information
4389 * contained in the pci_device_id table. This routine is the equivalent to
4390 * a device insertion routine.
4391 */
4392static int __devinit et131x_pci_setup(struct pci_dev *pdev,
4393 const struct pci_device_id *ent)
4394{
4395 int result;
4396 int pm_cap;
4397 struct net_device *netdev;
4398 struct et131x_adapter *adapter;
4399 int ii;
4400
4401 result = pci_enable_device(pdev);
4402 if (result) {
4403 dev_err(&pdev->dev, "pci_enable_device() failed\n");
4404 goto err_out;
4405 }
4406
4407 /* Perform some basic PCI checks */
4408 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4409 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
4410 goto err_disable;
4411 }
4412
4413 if (pci_request_regions(pdev, DRIVER_NAME)) {
4414 dev_err(&pdev->dev, "Can't get PCI resources\n");
4415 goto err_disable;
4416 }
4417
4418 pci_set_master(pdev);
4419
4420 /* Query PCI for Power Mgmt Capabilities
4421 *
4422 * NOTE: Now reading PowerMgmt in another location; is this still
4423 * needed?
4424 */
4425 pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
4426 if (!pm_cap) {
4427 dev_err(&pdev->dev,
4428 "Cannot find Power Management capabilities\n");
4429 result = -EIO;
4430 goto err_release_res;
4431 }
4432
4433 /* Check the DMA addressing support of this device */
4434 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4435 result = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4436 if (result) {
4437 dev_err(&pdev->dev,
4438 "Unable to obtain 64 bit DMA for consistent allocations\n");
4439 goto err_release_res;
4440 }
4441 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
4442 result = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4443 if (result) {
4444 dev_err(&pdev->dev,
4445 "Unable to obtain 32 bit DMA for consistent allocations\n");
4446 goto err_release_res;
4447 }
4448 } else {
4449 dev_err(&pdev->dev, "No usable DMA addressing method\n");
4450 result = -EIO;
4451 goto err_release_res;
4452 }
4453
4454 /* Allocate netdev and private adapter structs */
4455 netdev = et131x_device_alloc();
4456 if (!netdev) {
4457 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
4458 result = -ENOMEM;
4459 goto err_release_res;
4460 }
4461
4462 SET_NETDEV_DEV(netdev, &pdev->dev);
4463 et131x_set_ethtool_ops(netdev);
4464
4465 adapter = et131x_adapter_init(netdev, pdev);
4466
4467 /* Initialise the PCI setup for the device */
4468 et131x_pci_init(adapter, pdev);
4469
4470 /* Map the bus-relative registers to system virtual memory */
4471 adapter->regs = pci_ioremap_bar(pdev, 0);
4472 if (!adapter->regs) {
4473 dev_err(&pdev->dev, "Cannot map device registers\n");
4474 result = -ENOMEM;
4475 goto err_free_dev;
4476 }
4477
4478 /* If Phy COMA mode was enabled when we went down, disable it here. */
4479 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4480
4481 /* Issue a global reset to the et1310 */
4482 et131x_soft_reset(adapter);
4483
4484 /* Disable all interrupts (paranoid) */
4485 et131x_disable_interrupts(adapter);
4486
4487 /* Allocate DMA memory */
4488 result = et131x_adapter_memory_alloc(adapter);
4489 if (result) {
4490 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4491 goto err_iounmap;
4492 }
4493
4494 /* Init send data structures */
4495 et131x_init_send(adapter);
4496
4497 /* Set up the task structure for the ISR's deferred handler */
4498 INIT_WORK(&adapter->task, et131x_isr_handler);
4499
4500 /* Copy address into the net_device struct */
4501 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4502
4503 /* Init variable for counting how long we do not have link status */
4504 adapter->boot_coma = 0;
4505 et1310_disable_phy_coma(adapter);
4506
4507 /* Setup the mii_bus struct */
4508 adapter->mii_bus = mdiobus_alloc();
4509 if (!adapter->mii_bus) {
4510 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4511 goto err_mem_free;
4512 }
4513
4514 adapter->mii_bus->name = "et131x_eth_mii";
4515 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4516 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4517 adapter->mii_bus->priv = netdev;
4518 adapter->mii_bus->read = et131x_mdio_read;
4519 adapter->mii_bus->write = et131x_mdio_write;
4520 adapter->mii_bus->reset = et131x_mdio_reset;
4521 adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
4522 if (!adapter->mii_bus->irq) {
4523 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
4524 goto err_mdio_free;
4525 }
4526
4527 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4528 adapter->mii_bus->irq[ii] = PHY_POLL;
4529
4530 if (mdiobus_register(adapter->mii_bus)) {
4531 dev_err(&pdev->dev, "failed to register MII bus\n");
4532 mdiobus_free(adapter->mii_bus);
4533 goto err_mdio_free_irq;
4534 }
4535
4536 if (et131x_mii_probe(netdev)) {
4537 dev_err(&pdev->dev, "failed to probe MII bus\n");
4538 goto err_mdio_unregister;
4539 }
4540
4541 /* Setup et1310 as per the documentation */
4542 et131x_adapter_setup(adapter);
4543
4544 /* We can enable interrupts now
4545 *
4546 * NOTE - Because registration of interrupt handler is done in the
4547 * device's open(), defer enabling device interrupts to that
4548 * point
4549 */
4550
4551 /* Register the net_device struct with the Linux network layer */
4552 result = register_netdev(netdev);
4553 if (result != 0) {
4554 dev_err(&pdev->dev, "register_netdev() failed\n");
4555 goto err_mdio_unregister;
4556 }
4557
4558 /* Register the net_device struct with the PCI subsystem. Save a copy
4559 * of the PCI config space for this device now that the device has
4560 * been initialized, just in case it needs to be quickly restored.
4561 */
4562 pci_set_drvdata(pdev, netdev);
4563 pci_save_state(adapter->pdev);
4564
4565 return result;
4566
4567err_mdio_unregister:
4568 mdiobus_unregister(adapter->mii_bus);
4569err_mdio_free_irq:
4570 kfree(adapter->mii_bus->irq);
4571err_mdio_free:
4572 mdiobus_free(adapter->mii_bus);
4573err_mem_free:
4574 et131x_adapter_memory_free(adapter);
4575err_iounmap:
4576 iounmap(adapter->regs);
4577err_free_dev:
4578 pci_dev_put(pdev);
4579 free_netdev(netdev);
4580err_release_res:
4581 pci_release_regions(pdev);
4582err_disable:
4583 pci_disable_device(pdev);
4584err_out:
4585 return result;
4586}
4587
4588/**
4589 * et131x_pci_remove
4590 * @pdev: a pointer to the device's pci_dev structure
4591 *
4592 * Registered in the pci_driver structure, this function is called when the
4593 * PCI subsystem detects that a PCI device which matches the information
4594 * contained in the pci_device_id table has been removed.
4595 */
4596static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4597{
4598 struct net_device *netdev = pci_get_drvdata(pdev);
4599 struct et131x_adapter *adapter = netdev_priv(netdev);
4600
4601 unregister_netdev(netdev);
4602 mdiobus_unregister(adapter->mii_bus);
4603 kfree(adapter->mii_bus->irq);
4604 mdiobus_free(adapter->mii_bus);
4605
4606 et131x_adapter_memory_free(adapter);
4607 iounmap(adapter->regs);
4608 pci_dev_put(pdev);
4609
4610 free_netdev(netdev);
4611 pci_release_regions(pdev);
4612 pci_disable_device(pdev);
4613}
4614
4615#ifdef CONFIG_PM_SLEEP
4616static int et131x_suspend(struct device *dev)
4617{
4618 struct pci_dev *pdev = to_pci_dev(dev);
4619 struct net_device *netdev = pci_get_drvdata(pdev);
4620
4621 if (netif_running(netdev)) {
4622 netif_device_detach(netdev);
4623 et131x_down(netdev);
4624 pci_save_state(pdev);
4625 }
4626
4627 return 0;
4628}
4629
4630static int et131x_resume(struct device *dev)
4631{
4632 struct pci_dev *pdev = to_pci_dev(dev);
4633 struct net_device *netdev = pci_get_drvdata(pdev);
4634
4635 if (netif_running(netdev)) {
4636 pci_restore_state(pdev);
4637 et131x_up(netdev);
4638 netif_device_attach(netdev);
4639 }
4640
4641 return 0;
4642}
4643
4644static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4645#define ET131X_PM_OPS (&et131x_pm_ops)
4646#else
4647#define ET131X_PM_OPS NULL
4648#endif
4649
4650static struct pci_device_id et131x_pci_table[] __devinitdata = {
4651 {ET131X_PCI_VENDOR_ID, ET131X_PCI_DEVICE_ID_GIG, PCI_ANY_ID,
4652 PCI_ANY_ID, 0, 0, 0UL},
4653 {ET131X_PCI_VENDOR_ID, ET131X_PCI_DEVICE_ID_FAST, PCI_ANY_ID,
4654 PCI_ANY_ID, 0, 0, 0UL},
4655 {0,}
4656};
4657
4658MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4659
4660static struct pci_driver et131x_driver = {
4661 .name = DRIVER_NAME,
4662 .id_table = et131x_pci_table,
4663 .probe = et131x_pci_setup,
4664 .remove = __devexit_p(et131x_pci_remove),
4665 .driver.pm = ET131X_PM_OPS,
4666};
4667
4668/**
4669 * et131x_init_module - The "main" entry point called on driver initialization
4670 *
4671 * Returns 0 on success, errno on failure (as defined in errno.h)
4672 */
4673static int __init et131x_init_module(void)
4674{
4675 return pci_register_driver(&et131x_driver);
4676}
4677
4678/**
4679 * et131x_cleanup_module - The entry point called on driver cleanup
4680 */
4681static void __exit et131x_cleanup_module(void)
4682{
4683 pci_unregister_driver(&et131x_driver);
4684}
4685
4686module_init(et131x_init_module);
4687module_exit(et131x_cleanup_module);
4688
4689/* ISR functions */
4690
4691/**
4692 * et131x_enable_interrupts - enable interrupt
4693 * @adapter: et131x device
4694 *
4695 * Enable the appropriate interrupts on the ET131x according to our
4696 * configuration
4697 */
4698void et131x_enable_interrupts(struct et131x_adapter *adapter)
4699{
4700 u32 mask;
4701
4702 /* Enable all global interrupts */
4703 if (adapter->flowcontrol == FLOW_TXONLY ||
4704 adapter->flowcontrol == FLOW_BOTH)
4705 mask = INT_MASK_ENABLE;
4706 else
4707 mask = INT_MASK_ENABLE_NO_FLOW;
4708
4709 writel(mask, &adapter->regs->global.int_mask);
4710}
4711
4712/**
4713 * et131x_disable_interrupts - interrupt disable
4714 * @adapter: et131x device
4715 *
4716 * Block all interrupts from the et131x device at the device itself
4717 */
4718void et131x_disable_interrupts(struct et131x_adapter *adapter)
4719{
4720 /* Disable all global interrupts */
4721 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
4722}
4723
4724
4725/**
4726 * et131x_isr - The Interrupt Service Routine for the driver.
4727 * @irq: the IRQ on which the interrupt was received.
4728 * @dev_id: device-specific info (here a pointer to a net_device struct)
4729 *
4730 * Returns a value indicating if the interrupt was handled.
4731 */
4732irqreturn_t et131x_isr(int irq, void *dev_id)
4733{
4734 bool handled = true;
4735 struct net_device *netdev = (struct net_device *)dev_id;
4736 struct et131x_adapter *adapter = NULL;
4737 u32 status;
4738
4739 if (!netif_device_present(netdev)) {
4740 handled = false;
4741 goto out;
4742 }
4743
4744 adapter = netdev_priv(netdev);
4745
4746 /* If the adapter is in low power state, then it should not
4747 * recognize any interrupt
4748 */
4749
4750 /* Disable Device Interrupts */
4751 et131x_disable_interrupts(adapter);
4752
4753 /* Get a copy of the value in the interrupt status register
4754 * so we can process the interrupting section
4755 */
4756 status = readl(&adapter->regs->global.int_status);
4757
4758 if (adapter->flowcontrol == FLOW_TXONLY ||
4759 adapter->flowcontrol == FLOW_BOTH) {
4760 status &= ~INT_MASK_ENABLE;
4761 } else {
4762 status &= ~INT_MASK_ENABLE_NO_FLOW;
4763 }
4764
4765 /* Make sure this is our interrupt */
4766 if (!status) {
4767 handled = false;
4768 et131x_enable_interrupts(adapter);
4769 goto out;
4770 }
4771
4772 /* This is our interrupt, so process accordingly */
4773
4774 if (status & ET_INTR_WATCHDOG) {
4775 struct tcb *tcb = adapter->tx_ring.send_head;
4776
4777 if (tcb)
4778 if (++tcb->stale > 1)
4779 status |= ET_INTR_TXDMA_ISR;
4780
4781 if (adapter->rx_ring.unfinished_receives)
4782 status |= ET_INTR_RXDMA_XFR_DONE;
4783 else if (tcb == NULL)
4784 writel(0, &adapter->regs->global.watchdog_timer);
4785
4786 status &= ~ET_INTR_WATCHDOG;
4787 }
4788
4789 if (status == 0) {
4790 /* This interrupt has in some way been "handled" by
4791 * the ISR. Either it was a spurious Rx interrupt, or
4792 * it was a Tx interrupt that has been filtered by
4793 * the ISR.
4794 */
4795 et131x_enable_interrupts(adapter);
4796 goto out;
4797 }
4798
4799 /* We need to save the interrupt status value for use in our
4800 * DPC. We will clear the software copy of that in that
4801 * routine.
4802 */
4803 adapter->stats.interrupt_status = status;
4804
4805 /* Schedule the ISR handler as a bottom-half task in the
4806 * kernel's tq_immediate queue, and mark the queue for
4807 * execution
4808 */
4809 schedule_work(&adapter->task);
4810out:
4811 return IRQ_RETVAL(handled);
4812}
4813
4814/**
4815 * et131x_isr_handler - The ISR handler
4816 * @p_adapter, a pointer to the device's private adapter structure
4817 *
4818 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4819 * work actually gets done.
4820 */
4821void et131x_isr_handler(struct work_struct *work)
4822{
4823 struct et131x_adapter *adapter =
4824 container_of(work, struct et131x_adapter, task);
4825 u32 status = adapter->stats.interrupt_status;
4826 struct address_map __iomem *iomem = adapter->regs;
4827
4828 /*
4829 * These first two are by far the most common. Once handled, we clear
4830 * their two bits in the status word. If the word is now zero, we
4831 * exit.
4832 */
4833 /* Handle all the completed Transmit interrupts */
4834 if (status & ET_INTR_TXDMA_ISR)
4835 et131x_handle_send_interrupt(adapter);
4836
4837 /* Handle all the completed Receives interrupts */
4838 if (status & ET_INTR_RXDMA_XFR_DONE)
4839 et131x_handle_recv_interrupt(adapter);
4840
4841 status &= 0xffffffd7;
4842
4843 if (status) {
4844 /* Handle the TXDMA Error interrupt */
4845 if (status & ET_INTR_TXDMA_ERR) {
4846 u32 txdma_err;
4847
4848 /* Following read also clears the register (COR) */
4849 txdma_err = readl(&iomem->txdma.tx_dma_error);
4850
4851 dev_warn(&adapter->pdev->dev,
4852 "TXDMA_ERR interrupt, error = %d\n",
4853 txdma_err);
4854 }
4855
4856 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4857 if (status &
4858 (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4859 /*
4860 * This indicates the number of unused buffers in
4861 * RXDMA free buffer ring 0 is <= the limit you
4862 * programmed. Free buffer resources need to be
4863 * returned. Free buffers are consumed as packets
4864 * are passed from the network to the host. The host
4865 * becomes aware of the packets from the contents of
4866 * the packet status ring. This ring is queried when
4867 * the packet done interrupt occurs. Packets are then
4868 * passed to the OS. When the OS is done with the
4869 * packets the resources can be returned to the
4870 * ET1310 for re-use. This interrupt is one method of
4871 * returning resources.
4872 */
4873
4874 /* If the user has flow control on, then we will
4875 * send a pause packet, otherwise just exit
4876 */
4877 if (adapter->flowcontrol == FLOW_TXONLY ||
4878 adapter->flowcontrol == FLOW_BOTH) {
4879 u32 pm_csr;
4880
4881 /* Tell the device to send a pause packet via
4882 * the back pressure register (bp req and
4883 * bp xon/xoff)
4884 */
4885 pm_csr = readl(&iomem->global.pm_csr);
4886 if (!et1310_in_phy_coma(adapter))
4887 writel(3, &iomem->txmac.bp_ctrl);
4888 }
4889 }
4890
4891 /* Handle Packet Status Ring Low Interrupt */
4892 if (status & ET_INTR_RXDMA_STAT_LOW) {
4893
4894 /*
4895 * Same idea as with the two Free Buffer Rings.
4896 * Packets going from the network to the host each
4897 * consume a free buffer resource and a packet status
4898 * resource. These resoures are passed to the OS.
4899 * When the OS is done with the resources, they need
4900 * to be returned to the ET1310. This is one method
4901 * of returning the resources.
4902 */
4903 }
4904
4905 /* Handle RXDMA Error Interrupt */
4906 if (status & ET_INTR_RXDMA_ERR) {
4907 /*
4908 * The rxdma_error interrupt is sent when a time-out
4909 * on a request issued by the JAGCore has occurred or
4910 * a completion is returned with an un-successful
4911 * status. In both cases the request is considered
4912 * complete. The JAGCore will automatically re-try the
4913 * request in question. Normally information on events
4914 * like these are sent to the host using the "Advanced
4915 * Error Reporting" capability. This interrupt is
4916 * another way of getting similar information. The
4917 * only thing required is to clear the interrupt by
4918 * reading the ISR in the global resources. The
4919 * JAGCore will do a re-try on the request. Normally
4920 * you should never see this interrupt. If you start
4921 * to see this interrupt occurring frequently then
4922 * something bad has occurred. A reset might be the
4923 * thing to do.
4924 */
4925 /* TRAP();*/
4926
4927 dev_warn(&adapter->pdev->dev,
4928 "RxDMA_ERR interrupt, error %x\n",
4929 readl(&iomem->txmac.tx_test));
4930 }
4931
4932 /* Handle the Wake on LAN Event */
4933 if (status & ET_INTR_WOL) {
4934 /*
4935 * This is a secondary interrupt for wake on LAN.
4936 * The driver should never see this, if it does,
4937 * something serious is wrong. We will TRAP the
4938 * message when we are in DBG mode, otherwise we
4939 * will ignore it.
4940 */
4941 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4942 }
4943
4944 /* Let's move on to the TxMac */
4945 if (status & ET_INTR_TXMAC) {
4946 u32 err = readl(&iomem->txmac.err);
4947
4948 /*
4949 * When any of the errors occur and TXMAC generates
4950 * an interrupt to report these errors, it usually
4951 * means that TXMAC has detected an error in the data
4952 * stream retrieved from the on-chip Tx Q. All of
4953 * these errors are catastrophic and TXMAC won't be
4954 * able to recover data when these errors occur. In
4955 * a nutshell, the whole Tx path will have to be reset
4956 * and re-configured afterwards.
4957 */
4958 dev_warn(&adapter->pdev->dev,
4959 "TXMAC interrupt, error 0x%08x\n",
4960 err);
4961
4962 /* If we are debugging, we want to see this error,
4963 * otherwise we just want the device to be reset and
4964 * continue
4965 */
4966 }
4967
4968 /* Handle RXMAC Interrupt */
4969 if (status & ET_INTR_RXMAC) {
4970 /*
4971 * These interrupts are catastrophic to the device,
4972 * what we need to do is disable the interrupts and
4973 * set the flag to cause us to reset so we can solve
4974 * this issue.
4975 */
4976 /* MP_SET_FLAG( adapter,
4977 fMP_ADAPTER_HARDWARE_ERROR); */
4978
4979 dev_warn(&adapter->pdev->dev,
4980 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4981 readl(&iomem->rxmac.err_reg));
4982
4983 dev_warn(&adapter->pdev->dev,
4984 "Enable 0x%08x, Diag 0x%08x\n",
4985 readl(&iomem->rxmac.ctrl),
4986 readl(&iomem->rxmac.rxq_diag));
4987
4988 /*
4989 * If we are debugging, we want to see this error,
4990 * otherwise we just want the device to be reset and
4991 * continue
4992 */
4993 }
4994
4995 /* Handle MAC_STAT Interrupt */
4996 if (status & ET_INTR_MAC_STAT) {
4997 /*
4998 * This means at least one of the un-masked counters
4999 * in the MAC_STAT block has rolled over. Use this
5000 * to maintain the top, software managed bits of the
5001 * counter(s).
5002 */
5003 et1310_handle_macstat_interrupt(adapter);
5004 }
5005
5006 /* Handle SLV Timeout Interrupt */
5007 if (status & ET_INTR_SLV_TIMEOUT) {
5008 /*
5009 * This means a timeout has occurred on a read or
5010 * write request to one of the JAGCore registers. The
5011 * Global Resources block has terminated the request
5012 * and on a read request, returned a "fake" value.
5013 * The most likely reasons are: Bad Address or the
5014 * addressed module is in a power-down state and
5015 * can't respond.
5016 */
5017 }
5018 }
5019 et131x_enable_interrupts(adapter);
5020}
5021
5022/* NETDEV functions */
5023
5024/**
5025 * et131x_stats - Return the current device statistics.
5026 * @netdev: device whose stats are being queried
5027 *
5028 * Returns 0 on success, errno on failure (as defined in errno.h)
5029 */
5030static struct net_device_stats *et131x_stats(struct net_device *netdev)
5031{
5032 struct et131x_adapter *adapter = netdev_priv(netdev);
5033 struct net_device_stats *stats = &adapter->net_stats;
5034 struct ce_stats *devstat = &adapter->stats;
5035
5036 stats->rx_errors = devstat->rx_length_errs +
5037 devstat->rx_align_errs +
5038 devstat->rx_crc_errs +
5039 devstat->rx_code_violations +
5040 devstat->rx_other_errs;
5041 stats->tx_errors = devstat->tx_max_pkt_errs;
5042 stats->multicast = devstat->multicast_pkts_rcvd;
5043 stats->collisions = devstat->tx_collisions;
5044
5045 stats->rx_length_errors = devstat->rx_length_errs;
5046 stats->rx_over_errors = devstat->rx_overflows;
5047 stats->rx_crc_errors = devstat->rx_crc_errs;
5048
5049 /* NOTE: These stats don't have corresponding values in CE_STATS,
5050 * so we're going to have to update these directly from within the
5051 * TX/RX code
5052 */
5053 /* stats->rx_bytes = 20; devstat->; */
5054 /* stats->tx_bytes = 20; devstat->; */
5055 /* stats->rx_dropped = devstat->; */
5056 /* stats->tx_dropped = devstat->; */
5057
5058 /* NOTE: Not used, can't find analogous statistics */
5059 /* stats->rx_frame_errors = devstat->; */
5060 /* stats->rx_fifo_errors = devstat->; */
5061 /* stats->rx_missed_errors = devstat->; */
5062
5063 /* stats->tx_aborted_errors = devstat->; */
5064 /* stats->tx_carrier_errors = devstat->; */
5065 /* stats->tx_fifo_errors = devstat->; */
5066 /* stats->tx_heartbeat_errors = devstat->; */
5067 /* stats->tx_window_errors = devstat->; */
5068 return stats;
5069}
5070
5071/**
5072 * et131x_enable_txrx - Enable tx/rx queues
5073 * @netdev: device to be enabled
5074 */
5075void et131x_enable_txrx(struct net_device *netdev)
5076{
5077 struct et131x_adapter *adapter = netdev_priv(netdev);
5078
5079 /* Enable the Tx and Rx DMA engines (if not already enabled) */
5080 et131x_rx_dma_enable(adapter);
5081 et131x_tx_dma_enable(adapter);
5082
5083 /* Enable device interrupts */
5084 if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
5085 et131x_enable_interrupts(adapter);
5086
5087 /* We're ready to move some data, so start the queue */
5088 netif_start_queue(netdev);
5089}
5090
5091/**
5092 * et131x_disable_txrx - Disable tx/rx queues
5093 * @netdev: device to be disabled
5094 */
5095void et131x_disable_txrx(struct net_device *netdev)
5096{
5097 struct et131x_adapter *adapter = netdev_priv(netdev);
5098
5099 /* First thing is to stop the queue */
5100 netif_stop_queue(netdev);
5101
5102 /* Stop the Tx and Rx DMA engines */
5103 et131x_rx_dma_disable(adapter);
5104 et131x_tx_dma_disable(adapter);
5105
5106 /* Disable device interrupts */
5107 et131x_disable_interrupts(adapter);
5108}
5109
5110/**
5111 * et131x_up - Bring up a device for use.
5112 * @netdev: device to be opened
5113 */
5114void et131x_up(struct net_device *netdev)
5115{
5116 struct et131x_adapter *adapter = netdev_priv(netdev);
5117
5118 et131x_enable_txrx(netdev);
5119 phy_start(adapter->phydev);
5120}
5121
5122/**
5123 * et131x_open - Open the device for use.
5124 * @netdev: device to be opened
5125 *
5126 * Returns 0 on success, errno on failure (as defined in errno.h)
5127 */
5128int et131x_open(struct net_device *netdev)
5129{
5130 int result = 0;
5131 struct et131x_adapter *adapter = netdev_priv(netdev);
5132
5133 /* Start the timer to track NIC errors */
5134 init_timer(&adapter->error_timer);
5135 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
5136 adapter->error_timer.function = et131x_error_timer_handler;
5137 adapter->error_timer.data = (unsigned long)adapter;
5138 add_timer(&adapter->error_timer);
5139
5140 /* Register our IRQ */
5141 result = request_irq(netdev->irq, et131x_isr, IRQF_SHARED,
5142 netdev->name, netdev);
5143 if (result) {
5144 dev_err(&adapter->pdev->dev, "could not register IRQ %d\n",
5145 netdev->irq);
5146 return result;
5147 }
5148
5149 adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
5150
5151 et131x_up(netdev);
5152
5153 return result;
5154}
5155
5156/**
5157 * et131x_down - Bring down the device
5158 * @netdev: device to be broght down
5159 */
5160void et131x_down(struct net_device *netdev)
5161{
5162 struct et131x_adapter *adapter = netdev_priv(netdev);
5163
5164 /* Save the timestamp for the TX watchdog, prevent a timeout */
5165 netdev->trans_start = jiffies;
5166
5167 phy_stop(adapter->phydev);
5168 et131x_disable_txrx(netdev);
5169}
5170
5171/**
5172 * et131x_close - Close the device
5173 * @netdev: device to be closed
5174 *
5175 * Returns 0 on success, errno on failure (as defined in errno.h)
5176 */
5177int et131x_close(struct net_device *netdev)
5178{
5179 struct et131x_adapter *adapter = netdev_priv(netdev);
5180
5181 et131x_down(netdev);
5182
5183 adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
5184 free_irq(netdev->irq, netdev);
5185
5186 /* Stop the error timer */
5187 return del_timer_sync(&adapter->error_timer);
5188}
5189
5190/**
5191 * et131x_ioctl - The I/O Control handler for the driver
5192 * @netdev: device on which the control request is being made
5193 * @reqbuf: a pointer to the IOCTL request buffer
5194 * @cmd: the IOCTL command code
5195 *
5196 * Returns 0 on success, errno on failure (as defined in errno.h)
5197 */
5198static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf, int cmd)
5199{
5200 struct et131x_adapter *adapter = netdev_priv(netdev);
5201
5202 if (!adapter->phydev)
5203 return -EINVAL;
5204
5205 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
5206}
5207
5208/**
5209 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
5210 * @adapter: pointer to our private adapter structure
5211 *
5212 * FIXME: lot of dups with MAC code
5213 *
5214 * Returns 0 on success, errno on failure
5215 */
5216static int et131x_set_packet_filter(struct et131x_adapter *adapter)
5217{
5218 int status = 0;
5219 uint32_t filter = adapter->packet_filter;
5220 u32 ctrl;
5221 u32 pf_ctrl;
5222
5223 ctrl = readl(&adapter->regs->rxmac.ctrl);
5224 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
5225
5226 /* Default to disabled packet filtering. Enable it in the individual
5227 * case statements that require the device to filter something
5228 */
5229 ctrl |= 0x04;
5230
5231 /* Set us to be in promiscuous mode so we receive everything, this
5232 * is also true when we get a packet filter of 0
5233 */
5234 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
5235 pf_ctrl &= ~7; /* Clear filter bits */
5236 else {
5237 /*
5238 * Set us up with Multicast packet filtering. Three cases are
5239 * possible - (1) we have a multi-cast list, (2) we receive ALL
5240 * multicast entries or (3) we receive none.
5241 */
5242 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
5243 pf_ctrl &= ~2; /* Multicast filter bit */
5244 else {
5245 et1310_setup_device_for_multicast(adapter);
5246 pf_ctrl |= 2;
5247 ctrl &= ~0x04;
5248 }
5249
5250 /* Set us up with Unicast packet filtering */
5251 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
5252 et1310_setup_device_for_unicast(adapter);
5253 pf_ctrl |= 4;
5254 ctrl &= ~0x04;
5255 }
5256
5257 /* Set us up with Broadcast packet filtering */
5258 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
5259 pf_ctrl |= 1; /* Broadcast filter bit */
5260 ctrl &= ~0x04;
5261 } else
5262 pf_ctrl &= ~1;
5263
5264 /* Setup the receive mac configuration registers - Packet
5265 * Filter control + the enable / disable for packet filter
5266 * in the control reg.
5267 */
5268 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
5269 writel(ctrl, &adapter->regs->rxmac.ctrl);
5270 }
5271 return status;
5272}
5273
5274/**
5275 * et131x_multicast - The handler to configure multicasting on the interface
5276 * @netdev: a pointer to a net_device struct representing the device
5277 */
5278static void et131x_multicast(struct net_device *netdev)
5279{
5280 struct et131x_adapter *adapter = netdev_priv(netdev);
5281 uint32_t packet_filter = 0;
5282 unsigned long flags;
5283 struct netdev_hw_addr *ha;
5284 int i;
5285
5286 spin_lock_irqsave(&adapter->lock, flags);
5287
5288 /* Before we modify the platform-independent filter flags, store them
5289 * locally. This allows us to determine if anything's changed and if
5290 * we even need to bother the hardware
5291 */
5292 packet_filter = adapter->packet_filter;
5293
5294 /* Clear the 'multicast' flag locally; because we only have a single
5295 * flag to check multicast, and multiple multicast addresses can be
5296 * set, this is the easiest way to determine if more than one
5297 * multicast address is being set.
5298 */
5299 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
5300
5301 /* Check the net_device flags and set the device independent flags
5302 * accordingly
5303 */
5304
5305 if (netdev->flags & IFF_PROMISC)
5306 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
5307 else
5308 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
5309
5310 if (netdev->flags & IFF_ALLMULTI)
5311 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
5312
5313 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
5314 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
5315
5316 if (netdev_mc_count(netdev) < 1) {
5317 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
5318 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
5319 } else
5320 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
5321
5322 /* Set values in the private adapter struct */
5323 i = 0;
5324 netdev_for_each_mc_addr(ha, netdev) {
5325 if (i == NIC_MAX_MCAST_LIST)
5326 break;
5327 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
5328 }
5329 adapter->multicast_addr_count = i;
5330
5331 /* Are the new flags different from the previous ones? If not, then no
5332 * action is required
5333 *
5334 * NOTE - This block will always update the multicast_list with the
5335 * hardware, even if the addresses aren't the same.
5336 */
5337 if (packet_filter != adapter->packet_filter) {
5338 /* Call the device's filter function */
5339 et131x_set_packet_filter(adapter);
5340 }
5341 spin_unlock_irqrestore(&adapter->lock, flags);
5342}
5343
5344/**
5345 * et131x_tx - The handler to tx a packet on the device
5346 * @skb: data to be Tx'd
5347 * @netdev: device on which data is to be Tx'd
5348 *
5349 * Returns 0 on success, errno on failure (as defined in errno.h)
5350 */
5351static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5352{
5353 int status = 0;
5354
5355 /* Save the timestamp for the TX timeout watchdog */
5356 netdev->trans_start = jiffies;
5357
5358 /* Call the device-specific data Tx routine */
5359 status = et131x_send_packets(skb, netdev);
5360
5361 /* Check status and manage the netif queue if necessary */
5362 if (status != 0) {
5363 if (status == -ENOMEM) {
5364 /* Put the queue to sleep until resources are
5365 * available
5366 */
5367 netif_stop_queue(netdev);
5368 status = NETDEV_TX_BUSY;
5369 } else {
5370 status = NETDEV_TX_OK;
5371 }
5372 }
5373 return status;
5374}
5375
5376/**
5377 * et131x_tx_timeout - Timeout handler
5378 * @netdev: a pointer to a net_device struct representing the device
5379 *
5380 * The handler called when a Tx request times out. The timeout period is
5381 * specified by the 'tx_timeo" element in the net_device structure (see
5382 * et131x_alloc_device() to see how this value is set).
5383 */
5384static void et131x_tx_timeout(struct net_device *netdev)
5385{
5386 struct et131x_adapter *adapter = netdev_priv(netdev);
5387 struct tcb *tcb;
5388 unsigned long flags;
5389
5390 /* If the device is closed, ignore the timeout */
5391 if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5392 return;
5393
5394 /* Any nonrecoverable hardware error?
5395 * Checks adapter->flags for any failure in phy reading
5396 */
5397 if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5398 return;
5399
5400 /* Hardware failure? */
5401 if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5402 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5403 return;
5404 }
5405
5406 /* Is send stuck? */
5407 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5408
5409 tcb = adapter->tx_ring.send_head;
5410
5411 if (tcb != NULL) {
5412 tcb->count++;
5413
5414 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5415 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5416 flags);
5417
5418 dev_warn(&adapter->pdev->dev,
5419 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
5420 tcb->index,
5421 tcb->flags);
5422
5423 adapter->net_stats.tx_errors++;
5424
5425 /* perform reset of tx/rx */
5426 et131x_disable_txrx(netdev);
5427 et131x_enable_txrx(netdev);
5428 return;
5429 }
5430 }
5431
5432 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5433}
5434
5435/**
5436 * et131x_change_mtu - The handler called to change the MTU for the device
5437 * @netdev: device whose MTU is to be changed
5438 * @new_mtu: the desired MTU
5439 *
5440 * Returns 0 on success, errno on failure (as defined in errno.h)
5441 */
5442static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5443{
5444 int result = 0;
5445 struct et131x_adapter *adapter = netdev_priv(netdev);
5446
5447 /* Make sure the requested MTU is valid */
5448 if (new_mtu < 64 || new_mtu > 9216)
5449 return -EINVAL;
5450
5451 et131x_disable_txrx(netdev);
5452 et131x_handle_send_interrupt(adapter);
5453 et131x_handle_recv_interrupt(adapter);
5454
5455 /* Set the new MTU */
5456 netdev->mtu = new_mtu;
5457
5458 /* Free Rx DMA memory */
5459 et131x_adapter_memory_free(adapter);
5460
5461 /* Set the config parameter for Jumbo Packet support */
5462 adapter->registry_jumbo_packet = new_mtu + 14;
5463 et131x_soft_reset(adapter);
5464
5465 /* Alloc and init Rx DMA memory */
5466 result = et131x_adapter_memory_alloc(adapter);
5467 if (result != 0) {
5468 dev_warn(&adapter->pdev->dev,
5469 "Change MTU failed; couldn't re-alloc DMA memory\n");
5470 return result;
5471 }
5472
5473 et131x_init_send(adapter);
5474
5475 et131x_hwaddr_init(adapter);
5476 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5477
5478 /* Init the device with the new settings */
5479 et131x_adapter_setup(adapter);
5480
5481 et131x_enable_txrx(netdev);
5482
5483 return result;
5484}
5485
5486/**
5487 * et131x_set_mac_addr - handler to change the MAC address for the device
5488 * @netdev: device whose MAC is to be changed
5489 * @new_mac: the desired MAC address
5490 *
5491 * Returns 0 on success, errno on failure (as defined in errno.h)
5492 *
5493 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5494 */
5495static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5496{
5497 int result = 0;
5498 struct et131x_adapter *adapter = netdev_priv(netdev);
5499 struct sockaddr *address = new_mac;
5500
5501 /* begin blux */
5502
5503 if (adapter == NULL)
5504 return -ENODEV;
5505
5506 /* Make sure the requested MAC is valid */
5507 if (!is_valid_ether_addr(address->sa_data))
5508 return -EINVAL;
5509
5510 et131x_disable_txrx(netdev);
5511 et131x_handle_send_interrupt(adapter);
5512 et131x_handle_recv_interrupt(adapter);
5513
5514 /* Set the new MAC */
5515 /* netdev->set_mac_address = &new_mac; */
5516
5517 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5518
5519 printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5520 netdev->name, netdev->dev_addr);
5521
5522 /* Free Rx DMA memory */
5523 et131x_adapter_memory_free(adapter);
5524
5525 et131x_soft_reset(adapter);
5526
5527 /* Alloc and init Rx DMA memory */
5528 result = et131x_adapter_memory_alloc(adapter);
5529 if (result != 0) {
5530 dev_err(&adapter->pdev->dev,
5531 "Change MAC failed; couldn't re-alloc DMA memory\n");
5532 return result;
5533 }
5534
5535 et131x_init_send(adapter);
5536
5537 et131x_hwaddr_init(adapter);
5538
5539 /* Init the device with the new settings */
5540 et131x_adapter_setup(adapter);
5541
5542 et131x_enable_txrx(netdev);
5543
5544 return result;
5545}
5546
5547static const struct net_device_ops et131x_netdev_ops = {
5548 .ndo_open = et131x_open,
5549 .ndo_stop = et131x_close,
5550 .ndo_start_xmit = et131x_tx,
5551 .ndo_set_multicast_list = et131x_multicast,
5552 .ndo_tx_timeout = et131x_tx_timeout,
5553 .ndo_change_mtu = et131x_change_mtu,
5554 .ndo_set_mac_address = et131x_set_mac_addr,
5555 .ndo_validate_addr = eth_validate_addr,
5556 .ndo_get_stats = et131x_stats,
5557 .ndo_do_ioctl = et131x_ioctl,
5558};
5559
5560/**
5561 * et131x_device_alloc
5562 *
5563 * Returns pointer to the allocated and initialized net_device struct for
5564 * this device.
5565 *
5566 * Create instances of net_device and wl_private for the new adapter and
5567 * register the device's entry points in the net_device structure.
5568 */
5569struct net_device *et131x_device_alloc(void)
5570{
5571 struct net_device *netdev;
5572
5573 /* Alloc net_device and adapter structs */
5574 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5575
5576 if (!netdev) {
5577 printk(KERN_ERR "et131x: Alloc of net_device struct failed\n");
5578 return NULL;
5579 }
5580
5581 /*
5582 * Setup the function registration table (and other data) for a
5583 * net_device
5584 */
5585 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5586 netdev->netdev_ops = &et131x_netdev_ops;
5587
5588 /* Poll? */
5589 /* netdev->poll = &et131x_poll; */
5590 /* netdev->poll_controller = &et131x_poll_controller; */
5591 return netdev;
5592}
5593