blob: 90ba5521c189d691b099e93de51ba996cd1b39ab [file] [log] [blame]
Mark Brown70771482014-10-28 22:15:31 +00001/*
2 * soc-ops.c -- Generic ASoC operations
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 */
18
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/pm.h>
24#include <linux/bitops.h>
25#include <linux/ctype.h>
26#include <linux/slab.h>
27#include <sound/core.h>
28#include <sound/jack.h>
29#include <sound/pcm.h>
30#include <sound/pcm_params.h>
31#include <sound/soc.h>
32#include <sound/soc-dpcm.h>
33#include <sound/initval.h>
34
35/**
36 * snd_soc_info_enum_double - enumerated double mixer info callback
37 * @kcontrol: mixer control
38 * @uinfo: control element information
39 *
40 * Callback to provide information about a double enumerated
41 * mixer control.
42 *
43 * Returns 0 for success.
44 */
45int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
46 struct snd_ctl_elem_info *uinfo)
47{
48 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
49
50 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
51 e->items, e->texts);
52}
53EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
54
55/**
56 * snd_soc_get_enum_double - enumerated double mixer get callback
57 * @kcontrol: mixer control
58 * @ucontrol: control element information
59 *
60 * Callback to get the value of a double enumerated mixer.
61 *
62 * Returns 0 for success.
63 */
64int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
65 struct snd_ctl_elem_value *ucontrol)
66{
67 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
68 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
69 unsigned int val, item;
70 unsigned int reg_val;
71 int ret;
72
73 ret = snd_soc_component_read(component, e->reg, &reg_val);
74 if (ret)
75 return ret;
76 val = (reg_val >> e->shift_l) & e->mask;
77 item = snd_soc_enum_val_to_item(e, val);
78 ucontrol->value.enumerated.item[0] = item;
79 if (e->shift_l != e->shift_r) {
Jaswinder Jassal189f06c2016-08-29 16:06:58 +010080 val = (reg_val >> e->shift_r) & e->mask;
Mark Brown70771482014-10-28 22:15:31 +000081 item = snd_soc_enum_val_to_item(e, val);
82 ucontrol->value.enumerated.item[1] = item;
83 }
84
85 return 0;
86}
87EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
88
89/**
90 * snd_soc_put_enum_double - enumerated double mixer put callback
91 * @kcontrol: mixer control
92 * @ucontrol: control element information
93 *
94 * Callback to set the value of a double enumerated mixer.
95 *
96 * Returns 0 for success.
97 */
98int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
99 struct snd_ctl_elem_value *ucontrol)
100{
101 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
102 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
103 unsigned int *item = ucontrol->value.enumerated.item;
104 unsigned int val;
105 unsigned int mask;
106
107 if (item[0] >= e->items)
108 return -EINVAL;
109 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
110 mask = e->mask << e->shift_l;
111 if (e->shift_l != e->shift_r) {
112 if (item[1] >= e->items)
113 return -EINVAL;
114 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
115 mask |= e->mask << e->shift_r;
116 }
117
118 return snd_soc_component_update_bits(component, e->reg, mask, val);
119}
120EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
121
122/**
123 * snd_soc_read_signed - Read a codec register and interprete as signed value
124 * @component: component
125 * @reg: Register to read
126 * @mask: Mask to use after shifting the register value
127 * @shift: Right shift of register value
128 * @sign_bit: Bit that describes if a number is negative or not.
129 * @signed_val: Pointer to where the read value should be stored
130 *
131 * This functions reads a codec register. The register value is shifted right
132 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
133 * the given registervalue into a signed integer if sign_bit is non-zero.
134 *
135 * Returns 0 on sucess, otherwise an error value
136 */
137static int snd_soc_read_signed(struct snd_soc_component *component,
138 unsigned int reg, unsigned int mask, unsigned int shift,
139 unsigned int sign_bit, int *signed_val)
140{
141 int ret;
142 unsigned int val;
143
144 ret = snd_soc_component_read(component, reg, &val);
145 if (ret < 0)
146 return ret;
147
148 val = (val >> shift) & mask;
149
150 if (!sign_bit) {
151 *signed_val = val;
152 return 0;
153 }
154
155 /* non-negative number */
156 if (!(val & BIT(sign_bit))) {
157 *signed_val = val;
158 return 0;
159 }
160
161 ret = val;
162
163 /*
164 * The register most probably does not contain a full-sized int.
165 * Instead we have an arbitrary number of bits in a signed
166 * representation which has to be translated into a full-sized int.
167 * This is done by filling up all bits above the sign-bit.
168 */
169 ret |= ~((int)(BIT(sign_bit) - 1));
170
171 *signed_val = ret;
172
173 return 0;
174}
175
176/**
177 * snd_soc_info_volsw - single mixer info callback
178 * @kcontrol: mixer control
179 * @uinfo: control element information
180 *
181 * Callback to provide information about a single mixer control, or a double
182 * mixer control that spans 2 registers.
183 *
184 * Returns 0 for success.
185 */
186int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
187 struct snd_ctl_elem_info *uinfo)
188{
189 struct soc_mixer_control *mc =
190 (struct soc_mixer_control *)kcontrol->private_value;
191 int platform_max;
192
193 if (!mc->platform_max)
194 mc->platform_max = mc->max;
195 platform_max = mc->platform_max;
196
197 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
198 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
199 else
200 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
201
202 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
203 uinfo->value.integer.min = 0;
204 uinfo->value.integer.max = platform_max - mc->min;
205 return 0;
206}
207EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
208
209/**
Charles Keepax34198712015-10-14 13:31:24 +0100210 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
211 * @kcontrol: mixer control
212 * @uinfo: control element information
213 *
214 * Callback to provide information about a single mixer control, or a double
215 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
216 * have a range that represents both positive and negative values either side
217 * of zero but without a sign bit.
218 *
219 * Returns 0 for success.
220 */
221int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
222 struct snd_ctl_elem_info *uinfo)
223{
224 struct soc_mixer_control *mc =
225 (struct soc_mixer_control *)kcontrol->private_value;
226
227 snd_soc_info_volsw(kcontrol, uinfo);
228 /* Max represents the number of levels in an SX control not the
229 * maximum value, so add the minimum value back on
230 */
231 uinfo->value.integer.max += mc->min;
232
233 return 0;
234}
235EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
236
237/**
Mark Brown70771482014-10-28 22:15:31 +0000238 * snd_soc_get_volsw - single mixer get callback
239 * @kcontrol: mixer control
240 * @ucontrol: control element information
241 *
242 * Callback to get the value of a single mixer control, or a double mixer
243 * control that spans 2 registers.
244 *
245 * Returns 0 for success.
246 */
247int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
248 struct snd_ctl_elem_value *ucontrol)
249{
250 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
251 struct soc_mixer_control *mc =
252 (struct soc_mixer_control *)kcontrol->private_value;
253 unsigned int reg = mc->reg;
254 unsigned int reg2 = mc->rreg;
255 unsigned int shift = mc->shift;
256 unsigned int rshift = mc->rshift;
257 int max = mc->max;
258 int min = mc->min;
259 int sign_bit = mc->sign_bit;
260 unsigned int mask = (1 << fls(max)) - 1;
261 unsigned int invert = mc->invert;
262 int val;
263 int ret;
264
265 if (sign_bit)
266 mask = BIT(sign_bit + 1) - 1;
267
268 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
269 if (ret)
270 return ret;
271
272 ucontrol->value.integer.value[0] = val - min;
273 if (invert)
274 ucontrol->value.integer.value[0] =
275 max - ucontrol->value.integer.value[0];
276
277 if (snd_soc_volsw_is_stereo(mc)) {
278 if (reg == reg2)
279 ret = snd_soc_read_signed(component, reg, mask, rshift,
280 sign_bit, &val);
281 else
282 ret = snd_soc_read_signed(component, reg2, mask, shift,
283 sign_bit, &val);
284 if (ret)
285 return ret;
286
287 ucontrol->value.integer.value[1] = val - min;
288 if (invert)
289 ucontrol->value.integer.value[1] =
290 max - ucontrol->value.integer.value[1];
291 }
292
293 return 0;
294}
295EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
296
297/**
298 * snd_soc_put_volsw - single mixer put callback
299 * @kcontrol: mixer control
300 * @ucontrol: control element information
301 *
302 * Callback to set the value of a single mixer control, or a double mixer
303 * control that spans 2 registers.
304 *
305 * Returns 0 for success.
306 */
307int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
308 struct snd_ctl_elem_value *ucontrol)
309{
310 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
311 struct soc_mixer_control *mc =
312 (struct soc_mixer_control *)kcontrol->private_value;
313 unsigned int reg = mc->reg;
314 unsigned int reg2 = mc->rreg;
315 unsigned int shift = mc->shift;
316 unsigned int rshift = mc->rshift;
317 int max = mc->max;
318 int min = mc->min;
319 unsigned int sign_bit = mc->sign_bit;
320 unsigned int mask = (1 << fls(max)) - 1;
321 unsigned int invert = mc->invert;
Mark Brownf22abf42022-02-01 15:56:26 +0000322 int err, ret;
Mark Brown70771482014-10-28 22:15:31 +0000323 bool type_2r = false;
324 unsigned int val2 = 0;
325 unsigned int val, val_mask;
326
327 if (sign_bit)
328 mask = BIT(sign_bit + 1) - 1;
329
Mark Brown40f59862022-01-24 15:32:51 +0000330 val = ucontrol->value.integer.value[0];
Marek Vasut69f42e42022-02-15 14:06:45 +0100331 if (mc->platform_max && ((int)val + min) > mc->platform_max)
Mark Brown40f59862022-01-24 15:32:51 +0000332 return -EINVAL;
333 if (val > max - min)
334 return -EINVAL;
335 if (val < 0)
336 return -EINVAL;
337 val = (val + min) & mask;
Mark Brown70771482014-10-28 22:15:31 +0000338 if (invert)
339 val = max - val;
340 val_mask = mask << shift;
341 val = val << shift;
342 if (snd_soc_volsw_is_stereo(mc)) {
Mark Brown40f59862022-01-24 15:32:51 +0000343 val2 = ucontrol->value.integer.value[1];
Marek Vasut69f42e42022-02-15 14:06:45 +0100344 if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
Mark Brown40f59862022-01-24 15:32:51 +0000345 return -EINVAL;
346 if (val2 > max - min)
347 return -EINVAL;
348 if (val2 < 0)
349 return -EINVAL;
350 val2 = (val2 + min) & mask;
Mark Brown70771482014-10-28 22:15:31 +0000351 if (invert)
352 val2 = max - val2;
353 if (reg == reg2) {
354 val_mask |= mask << rshift;
355 val |= val2 << rshift;
356 } else {
357 val2 = val2 << shift;
358 type_2r = true;
359 }
360 }
361 err = snd_soc_component_update_bits(component, reg, val_mask, val);
362 if (err < 0)
363 return err;
Mark Brownf22abf42022-02-01 15:56:26 +0000364 ret = err;
Mark Brown70771482014-10-28 22:15:31 +0000365
Mark Brownf22abf42022-02-01 15:56:26 +0000366 if (type_2r) {
Mark Brown70771482014-10-28 22:15:31 +0000367 err = snd_soc_component_update_bits(component, reg2, val_mask,
Mark Brownf22abf42022-02-01 15:56:26 +0000368 val2);
369 /* Don't discard any error code or drop change flag */
370 if (ret == 0 || err < 0) {
371 ret = err;
372 }
373 }
Mark Brown70771482014-10-28 22:15:31 +0000374
Mark Brownf22abf42022-02-01 15:56:26 +0000375 return ret;
Mark Brown70771482014-10-28 22:15:31 +0000376}
377EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
378
379/**
380 * snd_soc_get_volsw_sx - single mixer get callback
381 * @kcontrol: mixer control
382 * @ucontrol: control element information
383 *
384 * Callback to get the value of a single mixer control, or a double mixer
385 * control that spans 2 registers.
386 *
387 * Returns 0 for success.
388 */
389int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
390 struct snd_ctl_elem_value *ucontrol)
391{
392 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
393 struct soc_mixer_control *mc =
394 (struct soc_mixer_control *)kcontrol->private_value;
395 unsigned int reg = mc->reg;
396 unsigned int reg2 = mc->rreg;
397 unsigned int shift = mc->shift;
398 unsigned int rshift = mc->rshift;
399 int max = mc->max;
400 int min = mc->min;
401 int mask = (1 << (fls(min + max) - 1)) - 1;
402 unsigned int val;
403 int ret;
404
405 ret = snd_soc_component_read(component, reg, &val);
406 if (ret < 0)
407 return ret;
408
409 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
410
411 if (snd_soc_volsw_is_stereo(mc)) {
412 ret = snd_soc_component_read(component, reg2, &val);
413 if (ret < 0)
414 return ret;
415
416 val = ((val >> rshift) - min) & mask;
417 ucontrol->value.integer.value[1] = val;
418 }
419
420 return 0;
421}
422EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
423
424/**
425 * snd_soc_put_volsw_sx - double mixer set callback
426 * @kcontrol: mixer control
Randy Dunlap9a11ef7f2015-11-23 17:37:54 -0800427 * @ucontrol: control element information
Mark Brown70771482014-10-28 22:15:31 +0000428 *
429 * Callback to set the value of a double mixer control that spans 2 registers.
430 *
431 * Returns 0 for success.
432 */
433int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
434 struct snd_ctl_elem_value *ucontrol)
435{
436 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
437 struct soc_mixer_control *mc =
438 (struct soc_mixer_control *)kcontrol->private_value;
439
440 unsigned int reg = mc->reg;
441 unsigned int reg2 = mc->rreg;
442 unsigned int shift = mc->shift;
443 unsigned int rshift = mc->rshift;
444 int max = mc->max;
445 int min = mc->min;
446 int mask = (1 << (fls(min + max) - 1)) - 1;
447 int err = 0;
448 unsigned int val, val_mask, val2 = 0;
449
Mark Brown9e5c40b2022-01-24 15:32:52 +0000450 val = ucontrol->value.integer.value[0];
451 if (mc->platform_max && val > mc->platform_max)
452 return -EINVAL;
453 if (val > max - min)
454 return -EINVAL;
455 if (val < 0)
456 return -EINVAL;
Mark Brown70771482014-10-28 22:15:31 +0000457 val_mask = mask << shift;
Mark Brown9e5c40b2022-01-24 15:32:52 +0000458 val = (val + min) & mask;
Mark Brown70771482014-10-28 22:15:31 +0000459 val = val << shift;
460
461 err = snd_soc_component_update_bits(component, reg, val_mask, val);
462 if (err < 0)
463 return err;
464
465 if (snd_soc_volsw_is_stereo(mc)) {
466 val_mask = mask << rshift;
467 val2 = (ucontrol->value.integer.value[1] + min) & mask;
468 val2 = val2 << rshift;
469
470 err = snd_soc_component_update_bits(component, reg2, val_mask,
471 val2);
472 }
473 return err;
474}
475EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
476
477/**
478 * snd_soc_info_volsw_range - single mixer info callback with range.
479 * @kcontrol: mixer control
480 * @uinfo: control element information
481 *
482 * Callback to provide information, within a range, about a single
483 * mixer control.
484 *
485 * returns 0 for success.
486 */
487int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
488 struct snd_ctl_elem_info *uinfo)
489{
490 struct soc_mixer_control *mc =
491 (struct soc_mixer_control *)kcontrol->private_value;
492 int platform_max;
493 int min = mc->min;
494
495 if (!mc->platform_max)
496 mc->platform_max = mc->max;
497 platform_max = mc->platform_max;
498
499 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
500 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
501 uinfo->value.integer.min = 0;
502 uinfo->value.integer.max = platform_max - min;
503
504 return 0;
505}
506EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
507
508/**
509 * snd_soc_put_volsw_range - single mixer put value callback with range.
510 * @kcontrol: mixer control
511 * @ucontrol: control element information
512 *
513 * Callback to set the value, within a range, for a single mixer control.
514 *
515 * Returns 0 for success.
516 */
517int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
518 struct snd_ctl_elem_value *ucontrol)
519{
520 struct soc_mixer_control *mc =
521 (struct soc_mixer_control *)kcontrol->private_value;
522 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
523 unsigned int reg = mc->reg;
524 unsigned int rreg = mc->rreg;
525 unsigned int shift = mc->shift;
526 int min = mc->min;
527 int max = mc->max;
528 unsigned int mask = (1 << fls(max)) - 1;
529 unsigned int invert = mc->invert;
530 unsigned int val, val_mask;
Mark Brown0e47cde2022-04-23 14:12:39 +0100531 int err, ret, tmp;
532
533 tmp = ucontrol->value.integer.value[0];
534 if (tmp < 0)
535 return -EINVAL;
536 if (mc->platform_max && tmp > mc->platform_max)
537 return -EINVAL;
538 if (tmp > mc->max - mc->min + 1)
539 return -EINVAL;
Mark Brown70771482014-10-28 22:15:31 +0000540
541 if (invert)
542 val = (max - ucontrol->value.integer.value[0]) & mask;
543 else
544 val = ((ucontrol->value.integer.value[0] + min) & mask);
545 val_mask = mask << shift;
546 val = val << shift;
547
Mark Brown48849952022-02-01 15:56:28 +0000548 err = snd_soc_component_update_bits(component, reg, val_mask, val);
549 if (err < 0)
550 return err;
551 ret = err;
Mark Brown70771482014-10-28 22:15:31 +0000552
553 if (snd_soc_volsw_is_stereo(mc)) {
Mark Brown0e47cde2022-04-23 14:12:39 +0100554 tmp = ucontrol->value.integer.value[1];
555 if (tmp < 0)
556 return -EINVAL;
557 if (mc->platform_max && tmp > mc->platform_max)
558 return -EINVAL;
559 if (tmp > mc->max - mc->min + 1)
560 return -EINVAL;
561
Mark Brown70771482014-10-28 22:15:31 +0000562 if (invert)
563 val = (max - ucontrol->value.integer.value[1]) & mask;
564 else
565 val = ((ucontrol->value.integer.value[1] + min) & mask);
566 val_mask = mask << shift;
567 val = val << shift;
568
Mark Brown48849952022-02-01 15:56:28 +0000569 err = snd_soc_component_update_bits(component, rreg, val_mask,
Mark Brown70771482014-10-28 22:15:31 +0000570 val);
Mark Brown48849952022-02-01 15:56:28 +0000571 /* Don't discard any error code or drop change flag */
572 if (ret == 0 || err < 0) {
573 ret = err;
574 }
Mark Brown70771482014-10-28 22:15:31 +0000575 }
576
577 return ret;
578}
579EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
580
581/**
582 * snd_soc_get_volsw_range - single mixer get callback with range
583 * @kcontrol: mixer control
584 * @ucontrol: control element information
585 *
586 * Callback to get the value, within a range, of a single mixer control.
587 *
588 * Returns 0 for success.
589 */
590int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
591 struct snd_ctl_elem_value *ucontrol)
592{
593 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
594 struct soc_mixer_control *mc =
595 (struct soc_mixer_control *)kcontrol->private_value;
596 unsigned int reg = mc->reg;
597 unsigned int rreg = mc->rreg;
598 unsigned int shift = mc->shift;
599 int min = mc->min;
600 int max = mc->max;
601 unsigned int mask = (1 << fls(max)) - 1;
602 unsigned int invert = mc->invert;
603 unsigned int val;
604 int ret;
605
606 ret = snd_soc_component_read(component, reg, &val);
607 if (ret)
608 return ret;
609
610 ucontrol->value.integer.value[0] = (val >> shift) & mask;
611 if (invert)
612 ucontrol->value.integer.value[0] =
613 max - ucontrol->value.integer.value[0];
614 else
615 ucontrol->value.integer.value[0] =
616 ucontrol->value.integer.value[0] - min;
617
618 if (snd_soc_volsw_is_stereo(mc)) {
619 ret = snd_soc_component_read(component, rreg, &val);
620 if (ret)
621 return ret;
622
623 ucontrol->value.integer.value[1] = (val >> shift) & mask;
624 if (invert)
625 ucontrol->value.integer.value[1] =
626 max - ucontrol->value.integer.value[1];
627 else
628 ucontrol->value.integer.value[1] =
629 ucontrol->value.integer.value[1] - min;
630 }
631
632 return 0;
633}
634EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
635
636/**
637 * snd_soc_limit_volume - Set new limit to an existing volume control.
638 *
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200639 * @card: where to look for the control
Mark Brown70771482014-10-28 22:15:31 +0000640 * @name: Name of the control
641 * @max: new maximum limit
642 *
643 * Return 0 for success, else error.
644 */
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200645int snd_soc_limit_volume(struct snd_soc_card *card,
Mark Brown70771482014-10-28 22:15:31 +0000646 const char *name, int max)
647{
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200648 struct snd_card *snd_card = card->snd_card;
Mark Brown70771482014-10-28 22:15:31 +0000649 struct snd_kcontrol *kctl;
650 struct soc_mixer_control *mc;
651 int found = 0;
652 int ret = -EINVAL;
653
654 /* Sanity check for name and max */
655 if (unlikely(!name || max <= 0))
656 return -EINVAL;
657
Lars-Peter Clausen26d9ca32015-10-18 17:04:33 +0200658 list_for_each_entry(kctl, &snd_card->controls, list) {
Mark Brown70771482014-10-28 22:15:31 +0000659 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
660 found = 1;
661 break;
662 }
663 }
664 if (found) {
665 mc = (struct soc_mixer_control *)kctl->private_value;
666 if (max <= mc->max) {
667 mc->platform_max = max;
668 ret = 0;
669 }
670 }
671 return ret;
672}
673EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
674
675int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
676 struct snd_ctl_elem_info *uinfo)
677{
678 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
679 struct soc_bytes *params = (void *)kcontrol->private_value;
680
681 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
682 uinfo->count = params->num_regs * component->val_bytes;
683
684 return 0;
685}
686EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
687
688int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
689 struct snd_ctl_elem_value *ucontrol)
690{
691 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
692 struct soc_bytes *params = (void *)kcontrol->private_value;
693 int ret;
694
695 if (component->regmap)
696 ret = regmap_raw_read(component->regmap, params->base,
697 ucontrol->value.bytes.data,
698 params->num_regs * component->val_bytes);
699 else
700 ret = -EINVAL;
701
702 /* Hide any masked bytes to ensure consistent data reporting */
703 if (ret == 0 && params->mask) {
704 switch (component->val_bytes) {
705 case 1:
706 ucontrol->value.bytes.data[0] &= ~params->mask;
707 break;
708 case 2:
709 ((u16 *)(&ucontrol->value.bytes.data))[0]
710 &= cpu_to_be16(~params->mask);
711 break;
712 case 4:
713 ((u32 *)(&ucontrol->value.bytes.data))[0]
714 &= cpu_to_be32(~params->mask);
715 break;
716 default:
717 return -EINVAL;
718 }
719 }
720
721 return ret;
722}
723EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
724
725int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
726 struct snd_ctl_elem_value *ucontrol)
727{
728 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
729 struct soc_bytes *params = (void *)kcontrol->private_value;
730 int ret, len;
731 unsigned int val, mask;
732 void *data;
733
734 if (!component->regmap || !params->num_regs)
735 return -EINVAL;
736
737 len = params->num_regs * component->val_bytes;
738
739 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
740 if (!data)
741 return -ENOMEM;
742
743 /*
744 * If we've got a mask then we need to preserve the register
745 * bits. We shouldn't modify the incoming data so take a
746 * copy.
747 */
748 if (params->mask) {
749 ret = regmap_read(component->regmap, params->base, &val);
750 if (ret != 0)
751 goto out;
752
753 val &= params->mask;
754
755 switch (component->val_bytes) {
756 case 1:
757 ((u8 *)data)[0] &= ~params->mask;
758 ((u8 *)data)[0] |= val;
759 break;
760 case 2:
761 mask = ~params->mask;
762 ret = regmap_parse_val(component->regmap,
763 &mask, &mask);
764 if (ret != 0)
765 goto out;
766
767 ((u16 *)data)[0] &= mask;
768
769 ret = regmap_parse_val(component->regmap,
770 &val, &val);
771 if (ret != 0)
772 goto out;
773
774 ((u16 *)data)[0] |= val;
775 break;
776 case 4:
777 mask = ~params->mask;
778 ret = regmap_parse_val(component->regmap,
779 &mask, &mask);
780 if (ret != 0)
781 goto out;
782
783 ((u32 *)data)[0] &= mask;
784
785 ret = regmap_parse_val(component->regmap,
786 &val, &val);
787 if (ret != 0)
788 goto out;
789
790 ((u32 *)data)[0] |= val;
791 break;
792 default:
793 ret = -EINVAL;
794 goto out;
795 }
796 }
797
798 ret = regmap_raw_write(component->regmap, params->base,
799 data, len);
800
801out:
802 kfree(data);
803
804 return ret;
805}
806EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
807
808int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
809 struct snd_ctl_elem_info *ucontrol)
810{
811 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
812
813 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
814 ucontrol->count = params->max;
815
816 return 0;
817}
818EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
819
820int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
821 unsigned int size, unsigned int __user *tlv)
822{
823 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
824 unsigned int count = size < params->max ? size : params->max;
825 int ret = -ENXIO;
826
827 switch (op_flag) {
828 case SNDRV_CTL_TLV_OP_READ:
829 if (params->get)
Mythri P Ka1e5e7e92015-11-09 23:20:00 +0530830 ret = params->get(kcontrol, tlv, count);
Mark Brown70771482014-10-28 22:15:31 +0000831 break;
832 case SNDRV_CTL_TLV_OP_WRITE:
833 if (params->put)
Mythri P Ka1e5e7e92015-11-09 23:20:00 +0530834 ret = params->put(kcontrol, tlv, count);
Mark Brown70771482014-10-28 22:15:31 +0000835 break;
836 }
837 return ret;
838}
839EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
840
841/**
842 * snd_soc_info_xr_sx - signed multi register info callback
843 * @kcontrol: mreg control
844 * @uinfo: control element information
845 *
846 * Callback to provide information of a control that can
847 * span multiple codec registers which together
848 * forms a single signed value in a MSB/LSB manner.
849 *
850 * Returns 0 for success.
851 */
852int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
853 struct snd_ctl_elem_info *uinfo)
854{
855 struct soc_mreg_control *mc =
856 (struct soc_mreg_control *)kcontrol->private_value;
857 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
858 uinfo->count = 1;
859 uinfo->value.integer.min = mc->min;
860 uinfo->value.integer.max = mc->max;
861
862 return 0;
863}
864EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
865
866/**
867 * snd_soc_get_xr_sx - signed multi register get callback
868 * @kcontrol: mreg control
869 * @ucontrol: control element information
870 *
871 * Callback to get the value of a control that can span
872 * multiple codec registers which together forms a single
873 * signed value in a MSB/LSB manner. The control supports
874 * specifying total no of bits used to allow for bitfields
875 * across the multiple codec registers.
876 *
877 * Returns 0 for success.
878 */
879int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
880 struct snd_ctl_elem_value *ucontrol)
881{
882 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
883 struct soc_mreg_control *mc =
884 (struct soc_mreg_control *)kcontrol->private_value;
885 unsigned int regbase = mc->regbase;
886 unsigned int regcount = mc->regcount;
887 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
이경택eef86092020-03-30 16:35:59 +0900888 unsigned int regwmask = (1UL<<regwshift)-1;
Mark Brown70771482014-10-28 22:15:31 +0000889 unsigned int invert = mc->invert;
890 unsigned long mask = (1UL<<mc->nbits)-1;
891 long min = mc->min;
892 long max = mc->max;
893 long val = 0;
894 unsigned int regval;
895 unsigned int i;
896 int ret;
897
898 for (i = 0; i < regcount; i++) {
899 ret = snd_soc_component_read(component, regbase+i, &regval);
900 if (ret)
901 return ret;
902 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
903 }
904 val &= mask;
905 if (min < 0 && val > max)
906 val |= ~mask;
907 if (invert)
908 val = max - val;
909 ucontrol->value.integer.value[0] = val;
910
911 return 0;
912}
913EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
914
915/**
916 * snd_soc_put_xr_sx - signed multi register get callback
917 * @kcontrol: mreg control
918 * @ucontrol: control element information
919 *
920 * Callback to set the value of a control that can span
921 * multiple codec registers which together forms a single
922 * signed value in a MSB/LSB manner. The control supports
923 * specifying total no of bits used to allow for bitfields
924 * across the multiple codec registers.
925 *
926 * Returns 0 for success.
927 */
928int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
929 struct snd_ctl_elem_value *ucontrol)
930{
931 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
932 struct soc_mreg_control *mc =
933 (struct soc_mreg_control *)kcontrol->private_value;
934 unsigned int regbase = mc->regbase;
935 unsigned int regcount = mc->regcount;
936 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
이경택eef86092020-03-30 16:35:59 +0900937 unsigned int regwmask = (1UL<<regwshift)-1;
Mark Brown70771482014-10-28 22:15:31 +0000938 unsigned int invert = mc->invert;
939 unsigned long mask = (1UL<<mc->nbits)-1;
940 long max = mc->max;
941 long val = ucontrol->value.integer.value[0];
942 unsigned int i, regval, regmask;
943 int err;
944
Mark Brown17e16a62022-01-24 15:32:53 +0000945 if (val < mc->min || val > mc->max)
946 return -EINVAL;
Mark Brown70771482014-10-28 22:15:31 +0000947 if (invert)
948 val = max - val;
949 val &= mask;
950 for (i = 0; i < regcount; i++) {
951 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
952 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
953 err = snd_soc_component_update_bits(component, regbase+i,
954 regmask, regval);
955 if (err < 0)
956 return err;
957 }
958
959 return 0;
960}
961EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
962
963/**
964 * snd_soc_get_strobe - strobe get callback
965 * @kcontrol: mixer control
966 * @ucontrol: control element information
967 *
968 * Callback get the value of a strobe mixer control.
969 *
970 * Returns 0 for success.
971 */
972int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
973 struct snd_ctl_elem_value *ucontrol)
974{
975 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
976 struct soc_mixer_control *mc =
977 (struct soc_mixer_control *)kcontrol->private_value;
978 unsigned int reg = mc->reg;
979 unsigned int shift = mc->shift;
980 unsigned int mask = 1 << shift;
981 unsigned int invert = mc->invert != 0;
982 unsigned int val;
983 int ret;
984
985 ret = snd_soc_component_read(component, reg, &val);
986 if (ret)
987 return ret;
988
989 val &= mask;
990
991 if (shift != 0 && val != 0)
992 val = val >> shift;
993 ucontrol->value.enumerated.item[0] = val ^ invert;
994
995 return 0;
996}
997EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
998
999/**
1000 * snd_soc_put_strobe - strobe put callback
1001 * @kcontrol: mixer control
1002 * @ucontrol: control element information
1003 *
1004 * Callback strobe a register bit to high then low (or the inverse)
1005 * in one pass of a single mixer enum control.
1006 *
1007 * Returns 1 for success.
1008 */
1009int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
1010 struct snd_ctl_elem_value *ucontrol)
1011{
1012 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
1013 struct soc_mixer_control *mc =
1014 (struct soc_mixer_control *)kcontrol->private_value;
1015 unsigned int reg = mc->reg;
1016 unsigned int shift = mc->shift;
1017 unsigned int mask = 1 << shift;
1018 unsigned int invert = mc->invert != 0;
1019 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1020 unsigned int val1 = (strobe ^ invert) ? mask : 0;
1021 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1022 int err;
1023
1024 err = snd_soc_component_update_bits(component, reg, mask, val1);
1025 if (err < 0)
1026 return err;
1027
1028 return snd_soc_component_update_bits(component, reg, mask, val2);
1029}
1030EXPORT_SYMBOL_GPL(snd_soc_put_strobe);