blob: 13bde9090537255a4e7758ffce8fab2b7060558d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/* Change Log
32 * 5.3.12 6/7/04
33 * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34 * - if_mii support and associated kcompat for older kernels
35 * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36 * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37 *
38 * 5.7.1 12/16/04
39 * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
40 * fix was removed as it caused system instability. The suspected cause of
41 * this is the called to e1000_irq_disable in e1000_intr. Inlined the
42 * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
43 * 5.7.0 12/10/04
44 * - include fix to the condition that determines when to quit NAPI - Robert Olsson
45 * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
46 * 5.6.5 11/01/04
47 * - Enabling NETIF_F_SG without checksum offload is illegal -
48 John Mason <jdmason@us.ibm.com>
49 * 5.6.3 10/26/04
50 * - Remove redundant initialization - Jamal Hadi
51 * - Reset buffer_info->dma in tx resource cleanup logic
52 * 5.6.2 10/12/04
53 * - Avoid filling tx_ring completely - shemminger@osdl.org
54 * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
55 * nacc@us.ibm.com
56 * - Sparse cleanup - shemminger@osdl.org
57 * - Fix tx resource cleanup logic
58 * - LLTX support - ak@suse.de and hadi@cyberus.ca
59 */
60
61char e1000_driver_name[] = "e1000";
62char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
63#ifndef CONFIG_E1000_NAPI
64#define DRIVERNAPI
65#else
66#define DRIVERNAPI "-NAPI"
67#endif
68#define DRV_VERSION "5.7.6-k2"DRIVERNAPI
69char e1000_driver_version[] = DRV_VERSION;
70char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
71
72/* e1000_pci_tbl - PCI Device ID Table
73 *
74 * Last entry must be all 0s
75 *
76 * Macro expands to...
77 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
78 */
79static struct pci_device_id e1000_pci_tbl[] = {
80 INTEL_E1000_ETHERNET_DEVICE(0x1000),
81 INTEL_E1000_ETHERNET_DEVICE(0x1001),
82 INTEL_E1000_ETHERNET_DEVICE(0x1004),
83 INTEL_E1000_ETHERNET_DEVICE(0x1008),
84 INTEL_E1000_ETHERNET_DEVICE(0x1009),
85 INTEL_E1000_ETHERNET_DEVICE(0x100C),
86 INTEL_E1000_ETHERNET_DEVICE(0x100D),
87 INTEL_E1000_ETHERNET_DEVICE(0x100E),
88 INTEL_E1000_ETHERNET_DEVICE(0x100F),
89 INTEL_E1000_ETHERNET_DEVICE(0x1010),
90 INTEL_E1000_ETHERNET_DEVICE(0x1011),
91 INTEL_E1000_ETHERNET_DEVICE(0x1012),
92 INTEL_E1000_ETHERNET_DEVICE(0x1013),
93 INTEL_E1000_ETHERNET_DEVICE(0x1014),
94 INTEL_E1000_ETHERNET_DEVICE(0x1015),
95 INTEL_E1000_ETHERNET_DEVICE(0x1016),
96 INTEL_E1000_ETHERNET_DEVICE(0x1017),
97 INTEL_E1000_ETHERNET_DEVICE(0x1018),
98 INTEL_E1000_ETHERNET_DEVICE(0x1019),
99 INTEL_E1000_ETHERNET_DEVICE(0x101D),
100 INTEL_E1000_ETHERNET_DEVICE(0x101E),
101 INTEL_E1000_ETHERNET_DEVICE(0x1026),
102 INTEL_E1000_ETHERNET_DEVICE(0x1027),
103 INTEL_E1000_ETHERNET_DEVICE(0x1028),
104 INTEL_E1000_ETHERNET_DEVICE(0x1075),
105 INTEL_E1000_ETHERNET_DEVICE(0x1076),
106 INTEL_E1000_ETHERNET_DEVICE(0x1077),
107 INTEL_E1000_ETHERNET_DEVICE(0x1078),
108 INTEL_E1000_ETHERNET_DEVICE(0x1079),
109 INTEL_E1000_ETHERNET_DEVICE(0x107A),
110 INTEL_E1000_ETHERNET_DEVICE(0x107B),
111 INTEL_E1000_ETHERNET_DEVICE(0x107C),
112 INTEL_E1000_ETHERNET_DEVICE(0x108A),
113 /* required last entry */
114 {0,}
115};
116
117MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
118
119int e1000_up(struct e1000_adapter *adapter);
120void e1000_down(struct e1000_adapter *adapter);
121void e1000_reset(struct e1000_adapter *adapter);
122int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
123int e1000_setup_tx_resources(struct e1000_adapter *adapter);
124int e1000_setup_rx_resources(struct e1000_adapter *adapter);
125void e1000_free_tx_resources(struct e1000_adapter *adapter);
126void e1000_free_rx_resources(struct e1000_adapter *adapter);
127void e1000_update_stats(struct e1000_adapter *adapter);
128
129/* Local Function Prototypes */
130
131static int e1000_init_module(void);
132static void e1000_exit_module(void);
133static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134static void __devexit e1000_remove(struct pci_dev *pdev);
135static int e1000_sw_init(struct e1000_adapter *adapter);
136static int e1000_open(struct net_device *netdev);
137static int e1000_close(struct net_device *netdev);
138static void e1000_configure_tx(struct e1000_adapter *adapter);
139static void e1000_configure_rx(struct e1000_adapter *adapter);
140static void e1000_setup_rctl(struct e1000_adapter *adapter);
141static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
142static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
143static void e1000_set_multi(struct net_device *netdev);
144static void e1000_update_phy_info(unsigned long data);
145static void e1000_watchdog(unsigned long data);
146static void e1000_watchdog_task(struct e1000_adapter *adapter);
147static void e1000_82547_tx_fifo_stall(unsigned long data);
148static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
149static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
150static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
151static int e1000_set_mac(struct net_device *netdev, void *p);
152static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
153static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
154#ifdef CONFIG_E1000_NAPI
155static int e1000_clean(struct net_device *netdev, int *budget);
156static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
157 int *work_done, int work_to_do);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700158static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
159 int *work_done, int work_to_do);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160#else
161static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700162static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163#endif
164static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700165static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
167static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
168 int cmd);
169void e1000_set_ethtool_ops(struct net_device *netdev);
170static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
171static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
172static void e1000_tx_timeout(struct net_device *dev);
173static void e1000_tx_timeout_task(struct net_device *dev);
174static void e1000_smartspeed(struct e1000_adapter *adapter);
175static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
176 struct sk_buff *skb);
177
178static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
179static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
180static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
181static void e1000_restore_vlan(struct e1000_adapter *adapter);
182
183static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
184static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
185#ifdef CONFIG_PM
186static int e1000_resume(struct pci_dev *pdev);
187#endif
188
189#ifdef CONFIG_NET_POLL_CONTROLLER
190/* for netdump / net console */
191static void e1000_netpoll (struct net_device *netdev);
192#endif
193
194struct notifier_block e1000_notifier_reboot = {
195 .notifier_call = e1000_notify_reboot,
196 .next = NULL,
197 .priority = 0
198};
199
200/* Exported from other modules */
201
202extern void e1000_check_options(struct e1000_adapter *adapter);
203
204static struct pci_driver e1000_driver = {
205 .name = e1000_driver_name,
206 .id_table = e1000_pci_tbl,
207 .probe = e1000_probe,
208 .remove = __devexit_p(e1000_remove),
209 /* Power Managment Hooks */
210#ifdef CONFIG_PM
211 .suspend = e1000_suspend,
212 .resume = e1000_resume
213#endif
214};
215
216MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
217MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
218MODULE_LICENSE("GPL");
219MODULE_VERSION(DRV_VERSION);
220
221static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
222module_param(debug, int, 0);
223MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225/**
226 * e1000_init_module - Driver Registration Routine
227 *
228 * e1000_init_module is the first routine called when the driver is
229 * loaded. All it does is register with the PCI subsystem.
230 **/
231
232static int __init
233e1000_init_module(void)
234{
235 int ret;
236 printk(KERN_INFO "%s - version %s\n",
237 e1000_driver_string, e1000_driver_version);
238
239 printk(KERN_INFO "%s\n", e1000_copyright);
240
241 ret = pci_module_init(&e1000_driver);
242 if(ret >= 0) {
243 register_reboot_notifier(&e1000_notifier_reboot);
244 }
245 return ret;
246}
247
248module_init(e1000_init_module);
249
250/**
251 * e1000_exit_module - Driver Exit Cleanup Routine
252 *
253 * e1000_exit_module is called just before the driver is removed
254 * from memory.
255 **/
256
257static void __exit
258e1000_exit_module(void)
259{
260 unregister_reboot_notifier(&e1000_notifier_reboot);
261 pci_unregister_driver(&e1000_driver);
262}
263
264module_exit(e1000_exit_module);
265
266/**
267 * e1000_irq_disable - Mask off interrupt generation on the NIC
268 * @adapter: board private structure
269 **/
270
271static inline void
272e1000_irq_disable(struct e1000_adapter *adapter)
273{
274 atomic_inc(&adapter->irq_sem);
275 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
276 E1000_WRITE_FLUSH(&adapter->hw);
277 synchronize_irq(adapter->pdev->irq);
278}
279
280/**
281 * e1000_irq_enable - Enable default interrupt generation settings
282 * @adapter: board private structure
283 **/
284
285static inline void
286e1000_irq_enable(struct e1000_adapter *adapter)
287{
288 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
289 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
290 E1000_WRITE_FLUSH(&adapter->hw);
291 }
292}
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700293void
294e1000_update_mng_vlan(struct e1000_adapter *adapter)
295{
296 struct net_device *netdev = adapter->netdev;
297 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
298 uint16_t old_vid = adapter->mng_vlan_id;
299 if(adapter->vlgrp) {
300 if(!adapter->vlgrp->vlan_devices[vid]) {
301 if(adapter->hw.mng_cookie.status &
302 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
303 e1000_vlan_rx_add_vid(netdev, vid);
304 adapter->mng_vlan_id = vid;
305 } else
306 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
307
308 if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
309 (vid != old_vid) &&
310 !adapter->vlgrp->vlan_devices[old_vid])
311 e1000_vlan_rx_kill_vid(netdev, old_vid);
312 }
313 }
314}
315
Linus Torvalds1da177e2005-04-16 15:20:36 -0700316int
317e1000_up(struct e1000_adapter *adapter)
318{
319 struct net_device *netdev = adapter->netdev;
320 int err;
321
322 /* hardware has been reset, we need to reload some things */
323
324 /* Reset the PHY if it was previously powered down */
325 if(adapter->hw.media_type == e1000_media_type_copper) {
326 uint16_t mii_reg;
327 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
328 if(mii_reg & MII_CR_POWER_DOWN)
329 e1000_phy_reset(&adapter->hw);
330 }
331
332 e1000_set_multi(netdev);
333
334 e1000_restore_vlan(adapter);
335
336 e1000_configure_tx(adapter);
337 e1000_setup_rctl(adapter);
338 e1000_configure_rx(adapter);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700339 adapter->alloc_rx_buf(adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700340
Malli Chilakalafa4f7ef2005-04-28 19:39:13 -0700341#ifdef CONFIG_PCI_MSI
342 if(adapter->hw.mac_type > e1000_82547_rev_2) {
343 adapter->have_msi = TRUE;
344 if((err = pci_enable_msi(adapter->pdev))) {
345 DPRINTK(PROBE, ERR,
346 "Unable to allocate MSI interrupt Error: %d\n", err);
347 adapter->have_msi = FALSE;
348 }
349 }
350#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700351 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
352 SA_SHIRQ | SA_SAMPLE_RANDOM,
353 netdev->name, netdev)))
354 return err;
355
356 mod_timer(&adapter->watchdog_timer, jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700357
358#ifdef CONFIG_E1000_NAPI
359 netif_poll_enable(netdev);
360#endif
Malli Chilakala5de55622005-04-28 19:39:30 -0700361 e1000_irq_enable(adapter);
362
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363 return 0;
364}
365
366void
367e1000_down(struct e1000_adapter *adapter)
368{
369 struct net_device *netdev = adapter->netdev;
370
371 e1000_irq_disable(adapter);
372 free_irq(adapter->pdev->irq, netdev);
Malli Chilakalafa4f7ef2005-04-28 19:39:13 -0700373#ifdef CONFIG_PCI_MSI
374 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
375 adapter->have_msi == TRUE)
376 pci_disable_msi(adapter->pdev);
377#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378 del_timer_sync(&adapter->tx_fifo_stall_timer);
379 del_timer_sync(&adapter->watchdog_timer);
380 del_timer_sync(&adapter->phy_info_timer);
381
382#ifdef CONFIG_E1000_NAPI
383 netif_poll_disable(netdev);
384#endif
385 adapter->link_speed = 0;
386 adapter->link_duplex = 0;
387 netif_carrier_off(netdev);
388 netif_stop_queue(netdev);
389
390 e1000_reset(adapter);
391 e1000_clean_tx_ring(adapter);
392 e1000_clean_rx_ring(adapter);
393
394 /* If WoL is not enabled
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700395 * and management mode is not IAMT
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396 * Power down the PHY so no link is implied when interface is down */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700397 if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
398 adapter->hw.media_type == e1000_media_type_copper &&
399 !e1000_check_mng_mode(&adapter->hw) &&
400 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401 uint16_t mii_reg;
402 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
403 mii_reg |= MII_CR_POWER_DOWN;
404 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
Malli Chilakala4e48a2b2005-04-28 19:39:53 -0700405 mdelay(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700406 }
407}
408
409void
410e1000_reset(struct e1000_adapter *adapter)
411{
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700412 uint32_t pba, manc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413
414 /* Repartition Pba for greater than 9k mtu
415 * To take effect CTRL.RST is required.
416 */
417
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700418 switch (adapter->hw.mac_type) {
419 case e1000_82547:
Malli Chilakala0e6ef3e2005-04-28 19:44:14 -0700420 case e1000_82547_rev_2:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700421 pba = E1000_PBA_30K;
422 break;
423 case e1000_82573:
424 pba = E1000_PBA_12K;
425 break;
426 default:
427 pba = E1000_PBA_48K;
428 break;
429 }
430
431
432
433 if(adapter->hw.mac_type == e1000_82547) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434 adapter->tx_fifo_head = 0;
435 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
436 adapter->tx_fifo_size =
437 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
438 atomic_set(&adapter->tx_fifo_stall, 0);
439 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700440
Linus Torvalds1da177e2005-04-16 15:20:36 -0700441 E1000_WRITE_REG(&adapter->hw, PBA, pba);
442
443 /* flow control settings */
444 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
445 E1000_FC_HIGH_DIFF;
446 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
447 E1000_FC_LOW_DIFF;
448 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
449 adapter->hw.fc_send_xon = 1;
450 adapter->hw.fc = adapter->hw.original_fc;
451
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700452 /* Allow time for pending master requests to run */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700453 e1000_reset_hw(&adapter->hw);
454 if(adapter->hw.mac_type >= e1000_82544)
455 E1000_WRITE_REG(&adapter->hw, WUC, 0);
456 if(e1000_init_hw(&adapter->hw))
457 DPRINTK(PROBE, ERR, "Hardware Error\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700458 e1000_update_mng_vlan(adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
460 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
461
462 e1000_reset_adaptive(&adapter->hw);
463 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700464 if (adapter->en_mng_pt) {
465 manc = E1000_READ_REG(&adapter->hw, MANC);
466 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
467 E1000_WRITE_REG(&adapter->hw, MANC, manc);
468 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469}
470
471/**
472 * e1000_probe - Device Initialization Routine
473 * @pdev: PCI device information struct
474 * @ent: entry in e1000_pci_tbl
475 *
476 * Returns 0 on success, negative on failure
477 *
478 * e1000_probe initializes an adapter identified by a pci_dev structure.
479 * The OS initialization, configuring of the adapter private structure,
480 * and a hardware reset occur.
481 **/
482
483static int __devinit
484e1000_probe(struct pci_dev *pdev,
485 const struct pci_device_id *ent)
486{
487 struct net_device *netdev;
488 struct e1000_adapter *adapter;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700489 unsigned long mmio_start, mmio_len;
490 uint32_t swsm;
491
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492 static int cards_found = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700493 int i, err, pci_using_dac;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700494 uint16_t eeprom_data;
495 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700496 if((err = pci_enable_device(pdev)))
497 return err;
498
499 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
500 pci_using_dac = 1;
501 } else {
502 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
503 E1000_ERR("No usable DMA configuration, aborting\n");
504 return err;
505 }
506 pci_using_dac = 0;
507 }
508
509 if((err = pci_request_regions(pdev, e1000_driver_name)))
510 return err;
511
512 pci_set_master(pdev);
513
514 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
515 if(!netdev) {
516 err = -ENOMEM;
517 goto err_alloc_etherdev;
518 }
519
520 SET_MODULE_OWNER(netdev);
521 SET_NETDEV_DEV(netdev, &pdev->dev);
522
523 pci_set_drvdata(pdev, netdev);
524 adapter = netdev->priv;
525 adapter->netdev = netdev;
526 adapter->pdev = pdev;
527 adapter->hw.back = adapter;
528 adapter->msg_enable = (1 << debug) - 1;
529
530 mmio_start = pci_resource_start(pdev, BAR_0);
531 mmio_len = pci_resource_len(pdev, BAR_0);
532
533 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
534 if(!adapter->hw.hw_addr) {
535 err = -EIO;
536 goto err_ioremap;
537 }
538
539 for(i = BAR_1; i <= BAR_5; i++) {
540 if(pci_resource_len(pdev, i) == 0)
541 continue;
542 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
543 adapter->hw.io_base = pci_resource_start(pdev, i);
544 break;
545 }
546 }
547
548 netdev->open = &e1000_open;
549 netdev->stop = &e1000_close;
550 netdev->hard_start_xmit = &e1000_xmit_frame;
551 netdev->get_stats = &e1000_get_stats;
552 netdev->set_multicast_list = &e1000_set_multi;
553 netdev->set_mac_address = &e1000_set_mac;
554 netdev->change_mtu = &e1000_change_mtu;
555 netdev->do_ioctl = &e1000_ioctl;
556 e1000_set_ethtool_ops(netdev);
557 netdev->tx_timeout = &e1000_tx_timeout;
558 netdev->watchdog_timeo = 5 * HZ;
559#ifdef CONFIG_E1000_NAPI
560 netdev->poll = &e1000_clean;
561 netdev->weight = 64;
562#endif
563 netdev->vlan_rx_register = e1000_vlan_rx_register;
564 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
565 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
566#ifdef CONFIG_NET_POLL_CONTROLLER
567 netdev->poll_controller = e1000_netpoll;
568#endif
569 strcpy(netdev->name, pci_name(pdev));
570
571 netdev->mem_start = mmio_start;
572 netdev->mem_end = mmio_start + mmio_len;
573 netdev->base_addr = adapter->hw.io_base;
574
575 adapter->bd_number = cards_found;
576
577 /* setup the private structure */
578
579 if((err = e1000_sw_init(adapter)))
580 goto err_sw_init;
581
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700582 if((err = e1000_check_phy_reset_block(&adapter->hw)))
583 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
584
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 if(adapter->hw.mac_type >= e1000_82543) {
586 netdev->features = NETIF_F_SG |
587 NETIF_F_HW_CSUM |
588 NETIF_F_HW_VLAN_TX |
589 NETIF_F_HW_VLAN_RX |
590 NETIF_F_HW_VLAN_FILTER;
591 }
592
593#ifdef NETIF_F_TSO
594 if((adapter->hw.mac_type >= e1000_82544) &&
595 (adapter->hw.mac_type != e1000_82547))
596 netdev->features |= NETIF_F_TSO;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700597
598#ifdef NETIF_F_TSO_IPV6
599 if(adapter->hw.mac_type > e1000_82547_rev_2)
600 netdev->features |= NETIF_F_TSO_IPV6;
601#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602#endif
603 if(pci_using_dac)
604 netdev->features |= NETIF_F_HIGHDMA;
605
606 /* hard_start_xmit is safe against parallel locking */
607 netdev->features |= NETIF_F_LLTX;
608
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700609 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
610
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611 /* before reading the EEPROM, reset the controller to
612 * put the device in a known good starting state */
613
614 e1000_reset_hw(&adapter->hw);
615
616 /* make sure the EEPROM is good */
617
618 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
619 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
620 err = -EIO;
621 goto err_eeprom;
622 }
623
624 /* copy the MAC address out of the EEPROM */
625
626 if (e1000_read_mac_addr(&adapter->hw))
627 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
628 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
629
630 if(!is_valid_ether_addr(netdev->dev_addr)) {
631 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
632 err = -EIO;
633 goto err_eeprom;
634 }
635
636 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
637
638 e1000_get_bus_info(&adapter->hw);
639
640 init_timer(&adapter->tx_fifo_stall_timer);
641 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
642 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
643
644 init_timer(&adapter->watchdog_timer);
645 adapter->watchdog_timer.function = &e1000_watchdog;
646 adapter->watchdog_timer.data = (unsigned long) adapter;
647
648 INIT_WORK(&adapter->watchdog_task,
649 (void (*)(void *))e1000_watchdog_task, adapter);
650
651 init_timer(&adapter->phy_info_timer);
652 adapter->phy_info_timer.function = &e1000_update_phy_info;
653 adapter->phy_info_timer.data = (unsigned long) adapter;
654
655 INIT_WORK(&adapter->tx_timeout_task,
656 (void (*)(void *))e1000_tx_timeout_task, netdev);
657
658 /* we're going to reset, so assume we have no link for now */
659
660 netif_carrier_off(netdev);
661 netif_stop_queue(netdev);
662
663 e1000_check_options(adapter);
664
665 /* Initial Wake on LAN setting
666 * If APM wake is enabled in the EEPROM,
667 * enable the ACPI Magic Packet filter
668 */
669
670 switch(adapter->hw.mac_type) {
671 case e1000_82542_rev2_0:
672 case e1000_82542_rev2_1:
673 case e1000_82543:
674 break;
675 case e1000_82544:
676 e1000_read_eeprom(&adapter->hw,
677 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
678 eeprom_apme_mask = E1000_EEPROM_82544_APM;
679 break;
680 case e1000_82546:
681 case e1000_82546_rev_3:
682 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
683 && (adapter->hw.media_type == e1000_media_type_copper)) {
684 e1000_read_eeprom(&adapter->hw,
685 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
686 break;
687 }
688 /* Fall Through */
689 default:
690 e1000_read_eeprom(&adapter->hw,
691 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
692 break;
693 }
694 if(eeprom_data & eeprom_apme_mask)
695 adapter->wol |= E1000_WUFC_MAG;
696
697 /* reset the hardware with the new settings */
698 e1000_reset(adapter);
699
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700700 /* Let firmware know the driver has taken over */
701 switch(adapter->hw.mac_type) {
702 case e1000_82573:
703 swsm = E1000_READ_REG(&adapter->hw, SWSM);
704 E1000_WRITE_REG(&adapter->hw, SWSM,
705 swsm | E1000_SWSM_DRV_LOAD);
706 break;
707 default:
708 break;
709 }
710
Linus Torvalds1da177e2005-04-16 15:20:36 -0700711 strcpy(netdev->name, "eth%d");
712 if((err = register_netdev(netdev)))
713 goto err_register;
714
715 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
716
717 cards_found++;
718 return 0;
719
720err_register:
721err_sw_init:
722err_eeprom:
723 iounmap(adapter->hw.hw_addr);
724err_ioremap:
725 free_netdev(netdev);
726err_alloc_etherdev:
727 pci_release_regions(pdev);
728 return err;
729}
730
731/**
732 * e1000_remove - Device Removal Routine
733 * @pdev: PCI device information struct
734 *
735 * e1000_remove is called by the PCI subsystem to alert the driver
736 * that it should release a PCI device. The could be caused by a
737 * Hot-Plug event, or because the driver is going to be removed from
738 * memory.
739 **/
740
741static void __devexit
742e1000_remove(struct pci_dev *pdev)
743{
744 struct net_device *netdev = pci_get_drvdata(pdev);
745 struct e1000_adapter *adapter = netdev->priv;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700746 uint32_t manc, swsm;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700747
748 flush_scheduled_work();
749
750 if(adapter->hw.mac_type >= e1000_82540 &&
751 adapter->hw.media_type == e1000_media_type_copper) {
752 manc = E1000_READ_REG(&adapter->hw, MANC);
753 if(manc & E1000_MANC_SMBUS_EN) {
754 manc |= E1000_MANC_ARP_EN;
755 E1000_WRITE_REG(&adapter->hw, MANC, manc);
756 }
757 }
758
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700759 switch(adapter->hw.mac_type) {
760 case e1000_82573:
761 swsm = E1000_READ_REG(&adapter->hw, SWSM);
762 E1000_WRITE_REG(&adapter->hw, SWSM,
763 swsm & ~E1000_SWSM_DRV_LOAD);
764 break;
765
766 default:
767 break;
768 }
769
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 unregister_netdev(netdev);
771
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700772 if(!e1000_check_phy_reset_block(&adapter->hw))
773 e1000_phy_hw_reset(&adapter->hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700774
775 iounmap(adapter->hw.hw_addr);
776 pci_release_regions(pdev);
777
778 free_netdev(netdev);
779
780 pci_disable_device(pdev);
781}
782
783/**
784 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
785 * @adapter: board private structure to initialize
786 *
787 * e1000_sw_init initializes the Adapter private data structure.
788 * Fields are initialized based on PCI device information and
789 * OS network device settings (MTU size).
790 **/
791
792static int __devinit
793e1000_sw_init(struct e1000_adapter *adapter)
794{
795 struct e1000_hw *hw = &adapter->hw;
796 struct net_device *netdev = adapter->netdev;
797 struct pci_dev *pdev = adapter->pdev;
798
799 /* PCI config space info */
800
801 hw->vendor_id = pdev->vendor;
802 hw->device_id = pdev->device;
803 hw->subsystem_vendor_id = pdev->subsystem_vendor;
804 hw->subsystem_id = pdev->subsystem_device;
805
806 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
807
808 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
809
810 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700811 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700812 hw->max_frame_size = netdev->mtu +
813 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
814 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
815
816 /* identify the MAC */
817
818 if(e1000_set_mac_type(hw)) {
819 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
820 return -EIO;
821 }
822
823 /* initialize eeprom parameters */
824
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700825 if(e1000_init_eeprom_params(hw)) {
826 E1000_ERR("EEPROM initialization failed\n");
827 return -EIO;
828 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700829
830 switch(hw->mac_type) {
831 default:
832 break;
833 case e1000_82541:
834 case e1000_82547:
835 case e1000_82541_rev_2:
836 case e1000_82547_rev_2:
837 hw->phy_init_script = 1;
838 break;
839 }
840
841 e1000_set_media_type(hw);
842
843 hw->wait_autoneg_complete = FALSE;
844 hw->tbi_compatibility_en = TRUE;
845 hw->adaptive_ifs = TRUE;
846
847 /* Copper options */
848
849 if(hw->media_type == e1000_media_type_copper) {
850 hw->mdix = AUTO_ALL_MODES;
851 hw->disable_polarity_correction = FALSE;
852 hw->master_slave = E1000_MASTER_SLAVE;
853 }
854
855 atomic_set(&adapter->irq_sem, 1);
856 spin_lock_init(&adapter->stats_lock);
857 spin_lock_init(&adapter->tx_lock);
858
859 return 0;
860}
861
862/**
863 * e1000_open - Called when a network interface is made active
864 * @netdev: network interface device structure
865 *
866 * Returns 0 on success, negative value on failure
867 *
868 * The open entry point is called when a network interface is made
869 * active by the system (IFF_UP). At this point all resources needed
870 * for transmit and receive operations are allocated, the interrupt
871 * handler is registered with the OS, the watchdog timer is started,
872 * and the stack is notified that the interface is ready.
873 **/
874
875static int
876e1000_open(struct net_device *netdev)
877{
878 struct e1000_adapter *adapter = netdev->priv;
879 int err;
880
881 /* allocate transmit descriptors */
882
883 if((err = e1000_setup_tx_resources(adapter)))
884 goto err_setup_tx;
885
886 /* allocate receive descriptors */
887
888 if((err = e1000_setup_rx_resources(adapter)))
889 goto err_setup_rx;
890
891 if((err = e1000_up(adapter)))
892 goto err_up;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700893 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
894 if((adapter->hw.mng_cookie.status &
895 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
896 e1000_update_mng_vlan(adapter);
897 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898
899 return E1000_SUCCESS;
900
901err_up:
902 e1000_free_rx_resources(adapter);
903err_setup_rx:
904 e1000_free_tx_resources(adapter);
905err_setup_tx:
906 e1000_reset(adapter);
907
908 return err;
909}
910
911/**
912 * e1000_close - Disables a network interface
913 * @netdev: network interface device structure
914 *
915 * Returns 0, this is not allowed to fail
916 *
917 * The close entry point is called when an interface is de-activated
918 * by the OS. The hardware is still under the drivers control, but
919 * needs to be disabled. A global MAC reset is issued to stop the
920 * hardware, and all transmit and receive resources are freed.
921 **/
922
923static int
924e1000_close(struct net_device *netdev)
925{
926 struct e1000_adapter *adapter = netdev->priv;
927
928 e1000_down(adapter);
929
930 e1000_free_tx_resources(adapter);
931 e1000_free_rx_resources(adapter);
932
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700933 if((adapter->hw.mng_cookie.status &
934 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
935 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
936 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937 return 0;
938}
939
940/**
941 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
942 * @adapter: address of board private structure
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700943 * @start: address of beginning of memory
944 * @len: length of memory
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945 **/
946static inline boolean_t
947e1000_check_64k_bound(struct e1000_adapter *adapter,
948 void *start, unsigned long len)
949{
950 unsigned long begin = (unsigned long) start;
951 unsigned long end = begin + len;
952
953 /* first rev 82545 and 82546 need to not allow any memory
954 * write location to cross a 64k boundary due to errata 23 */
955 if (adapter->hw.mac_type == e1000_82545 ||
956 adapter->hw.mac_type == e1000_82546 ) {
957
958 /* check buffer doesn't cross 64kB */
959 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
960 }
961
962 return TRUE;
963}
964
965/**
966 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
967 * @adapter: board private structure
968 *
969 * Return 0 on success, negative on failure
970 **/
971
972int
973e1000_setup_tx_resources(struct e1000_adapter *adapter)
974{
975 struct e1000_desc_ring *txdr = &adapter->tx_ring;
976 struct pci_dev *pdev = adapter->pdev;
977 int size;
978
979 size = sizeof(struct e1000_buffer) * txdr->count;
980 txdr->buffer_info = vmalloc(size);
981 if(!txdr->buffer_info) {
982 DPRINTK(PROBE, ERR,
983 "Unable to Allocate Memory for the Transmit descriptor ring\n");
984 return -ENOMEM;
985 }
986 memset(txdr->buffer_info, 0, size);
987
988 /* round up to nearest 4K */
989
990 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
991 E1000_ROUNDUP(txdr->size, 4096);
992
993 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
994 if(!txdr->desc) {
995setup_tx_desc_die:
996 DPRINTK(PROBE, ERR,
997 "Unable to Allocate Memory for the Transmit descriptor ring\n");
998 vfree(txdr->buffer_info);
999 return -ENOMEM;
1000 }
1001
1002 /* fix for errata 23, cant cross 64kB boundary */
1003 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1004 void *olddesc = txdr->desc;
1005 dma_addr_t olddma = txdr->dma;
1006 DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
1007 txdr->size, txdr->desc);
1008 /* try again, without freeing the previous */
1009 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1010 /* failed allocation, critial failure */
1011 if(!txdr->desc) {
1012 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1013 goto setup_tx_desc_die;
1014 }
1015
1016 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1017 /* give up */
1018 pci_free_consistent(pdev, txdr->size,
1019 txdr->desc, txdr->dma);
1020 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1021 DPRINTK(PROBE, ERR,
1022 "Unable to Allocate aligned Memory for the Transmit"
1023 " descriptor ring\n");
1024 vfree(txdr->buffer_info);
1025 return -ENOMEM;
1026 } else {
1027 /* free old, move on with the new one since its okay */
1028 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1029 }
1030 }
1031 memset(txdr->desc, 0, txdr->size);
1032
1033 txdr->next_to_use = 0;
1034 txdr->next_to_clean = 0;
1035
1036 return 0;
1037}
1038
1039/**
1040 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1041 * @adapter: board private structure
1042 *
1043 * Configure the Tx unit of the MAC after a reset.
1044 **/
1045
1046static void
1047e1000_configure_tx(struct e1000_adapter *adapter)
1048{
1049 uint64_t tdba = adapter->tx_ring.dma;
1050 uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
1051 uint32_t tctl, tipg;
1052
1053 E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1054 E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
1055
1056 E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
1057
1058 /* Setup the HW Tx Head and Tail descriptor pointers */
1059
1060 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1061 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1062
1063 /* Set the default values for the Tx Inter Packet Gap timer */
1064
1065 switch (adapter->hw.mac_type) {
1066 case e1000_82542_rev2_0:
1067 case e1000_82542_rev2_1:
1068 tipg = DEFAULT_82542_TIPG_IPGT;
1069 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1070 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1071 break;
1072 default:
1073 if(adapter->hw.media_type == e1000_media_type_fiber ||
1074 adapter->hw.media_type == e1000_media_type_internal_serdes)
1075 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1076 else
1077 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1078 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1079 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1080 }
1081 E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
1082
1083 /* Set the Tx Interrupt Delay register */
1084
1085 E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
1086 if(adapter->hw.mac_type >= e1000_82540)
1087 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
1088
1089 /* Program the Transmit Control Register */
1090
1091 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1092
1093 tctl &= ~E1000_TCTL_CT;
1094 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1095 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1096
1097 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1098
1099 e1000_config_collision_dist(&adapter->hw);
1100
1101 /* Setup Transmit Descriptor Settings for eop descriptor */
1102 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1103 E1000_TXD_CMD_IFCS;
1104
1105 if(adapter->hw.mac_type < e1000_82543)
1106 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1107 else
1108 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1109
1110 /* Cache if we're 82544 running in PCI-X because we'll
1111 * need this to apply a workaround later in the send path. */
1112 if(adapter->hw.mac_type == e1000_82544 &&
1113 adapter->hw.bus_type == e1000_bus_type_pcix)
1114 adapter->pcix_82544 = 1;
1115}
1116
1117/**
1118 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1119 * @adapter: board private structure
1120 *
1121 * Returns 0 on success, negative on failure
1122 **/
1123
1124int
1125e1000_setup_rx_resources(struct e1000_adapter *adapter)
1126{
1127 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1128 struct pci_dev *pdev = adapter->pdev;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001129 int size, desc_len;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130
1131 size = sizeof(struct e1000_buffer) * rxdr->count;
1132 rxdr->buffer_info = vmalloc(size);
1133 if(!rxdr->buffer_info) {
1134 DPRINTK(PROBE, ERR,
1135 "Unable to Allocate Memory for the Recieve descriptor ring\n");
1136 return -ENOMEM;
1137 }
1138 memset(rxdr->buffer_info, 0, size);
1139
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001140 size = sizeof(struct e1000_ps_page) * rxdr->count;
1141 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1142 if(!rxdr->ps_page) {
1143 vfree(rxdr->buffer_info);
1144 DPRINTK(PROBE, ERR,
1145 "Unable to allocate memory for the receive descriptor ring\n");
1146 return -ENOMEM;
1147 }
1148 memset(rxdr->ps_page, 0, size);
1149
1150 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1151 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1152 if(!rxdr->ps_page_dma) {
1153 vfree(rxdr->buffer_info);
1154 kfree(rxdr->ps_page);
1155 DPRINTK(PROBE, ERR,
1156 "Unable to allocate memory for the receive descriptor ring\n");
1157 return -ENOMEM;
1158 }
1159 memset(rxdr->ps_page_dma, 0, size);
1160
1161 if(adapter->hw.mac_type <= e1000_82547_rev_2)
1162 desc_len = sizeof(struct e1000_rx_desc);
1163 else
1164 desc_len = sizeof(union e1000_rx_desc_packet_split);
1165
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166 /* Round up to nearest 4K */
1167
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001168 rxdr->size = rxdr->count * desc_len;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001169 E1000_ROUNDUP(rxdr->size, 4096);
1170
1171 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1172
1173 if(!rxdr->desc) {
1174setup_rx_desc_die:
1175 DPRINTK(PROBE, ERR,
1176 "Unble to Allocate Memory for the Recieve descriptor ring\n");
1177 vfree(rxdr->buffer_info);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001178 kfree(rxdr->ps_page);
1179 kfree(rxdr->ps_page_dma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001180 return -ENOMEM;
1181 }
1182
1183 /* fix for errata 23, cant cross 64kB boundary */
1184 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1185 void *olddesc = rxdr->desc;
1186 dma_addr_t olddma = rxdr->dma;
1187 DPRINTK(RX_ERR,ERR,
1188 "rxdr align check failed: %u bytes at %p\n",
1189 rxdr->size, rxdr->desc);
1190 /* try again, without freeing the previous */
1191 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1192 /* failed allocation, critial failure */
1193 if(!rxdr->desc) {
1194 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1195 goto setup_rx_desc_die;
1196 }
1197
1198 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1199 /* give up */
1200 pci_free_consistent(pdev, rxdr->size,
1201 rxdr->desc, rxdr->dma);
1202 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1203 DPRINTK(PROBE, ERR,
1204 "Unable to Allocate aligned Memory for the"
1205 " Receive descriptor ring\n");
1206 vfree(rxdr->buffer_info);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001207 kfree(rxdr->ps_page);
1208 kfree(rxdr->ps_page_dma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209 return -ENOMEM;
1210 } else {
1211 /* free old, move on with the new one since its okay */
1212 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1213 }
1214 }
1215 memset(rxdr->desc, 0, rxdr->size);
1216
1217 rxdr->next_to_clean = 0;
1218 rxdr->next_to_use = 0;
1219
1220 return 0;
1221}
1222
1223/**
1224 * e1000_setup_rctl - configure the receive control register
1225 * @adapter: Board private structure
1226 **/
1227
1228static void
1229e1000_setup_rctl(struct e1000_adapter *adapter)
1230{
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001231 uint32_t rctl, rfctl;
1232 uint32_t psrctl = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001233
1234 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1235
1236 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1237
1238 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1239 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1240 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1241
1242 if(adapter->hw.tbi_compatibility_on == 1)
1243 rctl |= E1000_RCTL_SBP;
1244 else
1245 rctl &= ~E1000_RCTL_SBP;
1246
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001247 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1248 rctl &= ~E1000_RCTL_LPE;
1249 else
1250 rctl |= E1000_RCTL_LPE;
1251
Linus Torvalds1da177e2005-04-16 15:20:36 -07001252 /* Setup buffer sizes */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001253 if(adapter->hw.mac_type == e1000_82573) {
1254 /* We can now specify buffers in 1K increments.
1255 * BSIZE and BSEX are ignored in this case. */
1256 rctl |= adapter->rx_buffer_len << 0x11;
1257 } else {
1258 rctl &= ~E1000_RCTL_SZ_4096;
1259 rctl |= E1000_RCTL_BSEX;
1260 switch (adapter->rx_buffer_len) {
1261 case E1000_RXBUFFER_2048:
1262 default:
1263 rctl |= E1000_RCTL_SZ_2048;
1264 rctl &= ~E1000_RCTL_BSEX;
1265 break;
1266 case E1000_RXBUFFER_4096:
1267 rctl |= E1000_RCTL_SZ_4096;
1268 break;
1269 case E1000_RXBUFFER_8192:
1270 rctl |= E1000_RCTL_SZ_8192;
1271 break;
1272 case E1000_RXBUFFER_16384:
1273 rctl |= E1000_RCTL_SZ_16384;
1274 break;
1275 }
1276 }
1277
1278#ifdef CONFIG_E1000_PACKET_SPLIT
1279 /* 82571 and greater support packet-split where the protocol
1280 * header is placed in skb->data and the packet data is
1281 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1282 * In the case of a non-split, skb->data is linearly filled,
1283 * followed by the page buffers. Therefore, skb->data is
1284 * sized to hold the largest protocol header.
1285 */
1286 adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
1287 && (adapter->netdev->mtu
1288 < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
1289#endif
1290 if(adapter->rx_ps) {
1291 /* Configure extra packet-split registers */
1292 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1293 rfctl |= E1000_RFCTL_EXTEN;
1294 /* disable IPv6 packet split support */
1295 rfctl |= E1000_RFCTL_IPV6_DIS;
1296 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1297
1298 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1299
1300 psrctl |= adapter->rx_ps_bsize0 >>
1301 E1000_PSRCTL_BSIZE0_SHIFT;
1302 psrctl |= PAGE_SIZE >>
1303 E1000_PSRCTL_BSIZE1_SHIFT;
1304 psrctl |= PAGE_SIZE <<
1305 E1000_PSRCTL_BSIZE2_SHIFT;
1306 psrctl |= PAGE_SIZE <<
1307 E1000_PSRCTL_BSIZE3_SHIFT;
1308
1309 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310 }
1311
1312 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1313}
1314
1315/**
1316 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1317 * @adapter: board private structure
1318 *
1319 * Configure the Rx unit of the MAC after a reset.
1320 **/
1321
1322static void
1323e1000_configure_rx(struct e1000_adapter *adapter)
1324{
1325 uint64_t rdba = adapter->rx_ring.dma;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001326 uint32_t rdlen, rctl, rxcsum;
1327
1328 if(adapter->rx_ps) {
1329 rdlen = adapter->rx_ring.count *
1330 sizeof(union e1000_rx_desc_packet_split);
1331 adapter->clean_rx = e1000_clean_rx_irq_ps;
1332 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1333 } else {
1334 rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1335 adapter->clean_rx = e1000_clean_rx_irq;
1336 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1337 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001338
1339 /* disable receives while setting up the descriptors */
1340 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1341 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1342
1343 /* set the Receive Delay Timer Register */
1344 E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1345
1346 if(adapter->hw.mac_type >= e1000_82540) {
1347 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1348 if(adapter->itr > 1)
1349 E1000_WRITE_REG(&adapter->hw, ITR,
1350 1000000000 / (adapter->itr * 256));
1351 }
1352
1353 /* Setup the Base and Length of the Rx Descriptor Ring */
1354 E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1355 E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1356
1357 E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1358
1359 /* Setup the HW Rx Head and Tail Descriptor Pointers */
1360 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1361 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1362
1363 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001364 if(adapter->hw.mac_type >= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001365 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001366 if(adapter->rx_csum == TRUE) {
1367 rxcsum |= E1000_RXCSUM_TUOFL;
1368
1369 /* Enable 82573 IPv4 payload checksum for UDP fragments
1370 * Must be used in conjunction with packet-split. */
1371 if((adapter->hw.mac_type > e1000_82547_rev_2) &&
1372 (adapter->rx_ps)) {
1373 rxcsum |= E1000_RXCSUM_IPPCSE;
1374 }
1375 } else {
1376 rxcsum &= ~E1000_RXCSUM_TUOFL;
1377 /* don't need to clear IPPCSE as it defaults to 0 */
1378 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1380 }
1381
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001382 if (adapter->hw.mac_type == e1000_82573)
1383 E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
1384
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385 /* Enable Receives */
1386 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1387}
1388
1389/**
1390 * e1000_free_tx_resources - Free Tx Resources
1391 * @adapter: board private structure
1392 *
1393 * Free all transmit software resources
1394 **/
1395
1396void
1397e1000_free_tx_resources(struct e1000_adapter *adapter)
1398{
1399 struct pci_dev *pdev = adapter->pdev;
1400
1401 e1000_clean_tx_ring(adapter);
1402
1403 vfree(adapter->tx_ring.buffer_info);
1404 adapter->tx_ring.buffer_info = NULL;
1405
1406 pci_free_consistent(pdev, adapter->tx_ring.size,
1407 adapter->tx_ring.desc, adapter->tx_ring.dma);
1408
1409 adapter->tx_ring.desc = NULL;
1410}
1411
1412static inline void
1413e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1414 struct e1000_buffer *buffer_info)
1415{
1416 struct pci_dev *pdev = adapter->pdev;
1417
1418 if(buffer_info->dma) {
1419 pci_unmap_page(pdev,
1420 buffer_info->dma,
1421 buffer_info->length,
1422 PCI_DMA_TODEVICE);
1423 buffer_info->dma = 0;
1424 }
1425 if(buffer_info->skb) {
1426 dev_kfree_skb_any(buffer_info->skb);
1427 buffer_info->skb = NULL;
1428 }
1429}
1430
1431/**
1432 * e1000_clean_tx_ring - Free Tx Buffers
1433 * @adapter: board private structure
1434 **/
1435
1436static void
1437e1000_clean_tx_ring(struct e1000_adapter *adapter)
1438{
1439 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1440 struct e1000_buffer *buffer_info;
1441 unsigned long size;
1442 unsigned int i;
1443
1444 /* Free all the Tx ring sk_buffs */
1445
1446 if (likely(adapter->previous_buffer_info.skb != NULL)) {
1447 e1000_unmap_and_free_tx_resource(adapter,
1448 &adapter->previous_buffer_info);
1449 }
1450
1451 for(i = 0; i < tx_ring->count; i++) {
1452 buffer_info = &tx_ring->buffer_info[i];
1453 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1454 }
1455
1456 size = sizeof(struct e1000_buffer) * tx_ring->count;
1457 memset(tx_ring->buffer_info, 0, size);
1458
1459 /* Zero out the descriptor ring */
1460
1461 memset(tx_ring->desc, 0, tx_ring->size);
1462
1463 tx_ring->next_to_use = 0;
1464 tx_ring->next_to_clean = 0;
1465
1466 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1467 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1468}
1469
1470/**
1471 * e1000_free_rx_resources - Free Rx Resources
1472 * @adapter: board private structure
1473 *
1474 * Free all receive software resources
1475 **/
1476
1477void
1478e1000_free_rx_resources(struct e1000_adapter *adapter)
1479{
1480 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1481 struct pci_dev *pdev = adapter->pdev;
1482
1483 e1000_clean_rx_ring(adapter);
1484
1485 vfree(rx_ring->buffer_info);
1486 rx_ring->buffer_info = NULL;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001487 kfree(rx_ring->ps_page);
1488 rx_ring->ps_page = NULL;
1489 kfree(rx_ring->ps_page_dma);
1490 rx_ring->ps_page_dma = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001491
1492 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1493
1494 rx_ring->desc = NULL;
1495}
1496
1497/**
1498 * e1000_clean_rx_ring - Free Rx Buffers
1499 * @adapter: board private structure
1500 **/
1501
1502static void
1503e1000_clean_rx_ring(struct e1000_adapter *adapter)
1504{
1505 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1506 struct e1000_buffer *buffer_info;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001507 struct e1000_ps_page *ps_page;
1508 struct e1000_ps_page_dma *ps_page_dma;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001509 struct pci_dev *pdev = adapter->pdev;
1510 unsigned long size;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001511 unsigned int i, j;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001512
1513 /* Free all the Rx ring sk_buffs */
1514
1515 for(i = 0; i < rx_ring->count; i++) {
1516 buffer_info = &rx_ring->buffer_info[i];
1517 if(buffer_info->skb) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001518 ps_page = &rx_ring->ps_page[i];
1519 ps_page_dma = &rx_ring->ps_page_dma[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001520 pci_unmap_single(pdev,
1521 buffer_info->dma,
1522 buffer_info->length,
1523 PCI_DMA_FROMDEVICE);
1524
1525 dev_kfree_skb(buffer_info->skb);
1526 buffer_info->skb = NULL;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001527
1528 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
1529 if(!ps_page->ps_page[j]) break;
1530 pci_unmap_single(pdev,
1531 ps_page_dma->ps_page_dma[j],
1532 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1533 ps_page_dma->ps_page_dma[j] = 0;
1534 put_page(ps_page->ps_page[j]);
1535 ps_page->ps_page[j] = NULL;
1536 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537 }
1538 }
1539
1540 size = sizeof(struct e1000_buffer) * rx_ring->count;
1541 memset(rx_ring->buffer_info, 0, size);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001542 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1543 memset(rx_ring->ps_page, 0, size);
1544 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1545 memset(rx_ring->ps_page_dma, 0, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001546
1547 /* Zero out the descriptor ring */
1548
1549 memset(rx_ring->desc, 0, rx_ring->size);
1550
1551 rx_ring->next_to_clean = 0;
1552 rx_ring->next_to_use = 0;
1553
1554 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1555 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1556}
1557
1558/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1559 * and memory write and invalidate disabled for certain operations
1560 */
1561static void
1562e1000_enter_82542_rst(struct e1000_adapter *adapter)
1563{
1564 struct net_device *netdev = adapter->netdev;
1565 uint32_t rctl;
1566
1567 e1000_pci_clear_mwi(&adapter->hw);
1568
1569 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1570 rctl |= E1000_RCTL_RST;
1571 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1572 E1000_WRITE_FLUSH(&adapter->hw);
1573 mdelay(5);
1574
1575 if(netif_running(netdev))
1576 e1000_clean_rx_ring(adapter);
1577}
1578
1579static void
1580e1000_leave_82542_rst(struct e1000_adapter *adapter)
1581{
1582 struct net_device *netdev = adapter->netdev;
1583 uint32_t rctl;
1584
1585 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1586 rctl &= ~E1000_RCTL_RST;
1587 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1588 E1000_WRITE_FLUSH(&adapter->hw);
1589 mdelay(5);
1590
1591 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1592 e1000_pci_set_mwi(&adapter->hw);
1593
1594 if(netif_running(netdev)) {
1595 e1000_configure_rx(adapter);
1596 e1000_alloc_rx_buffers(adapter);
1597 }
1598}
1599
1600/**
1601 * e1000_set_mac - Change the Ethernet Address of the NIC
1602 * @netdev: network interface device structure
1603 * @p: pointer to an address structure
1604 *
1605 * Returns 0 on success, negative on failure
1606 **/
1607
1608static int
1609e1000_set_mac(struct net_device *netdev, void *p)
1610{
1611 struct e1000_adapter *adapter = netdev->priv;
1612 struct sockaddr *addr = p;
1613
1614 if(!is_valid_ether_addr(addr->sa_data))
1615 return -EADDRNOTAVAIL;
1616
1617 /* 82542 2.0 needs to be in reset to write receive address registers */
1618
1619 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1620 e1000_enter_82542_rst(adapter);
1621
1622 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1623 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1624
1625 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1626
1627 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1628 e1000_leave_82542_rst(adapter);
1629
1630 return 0;
1631}
1632
1633/**
1634 * e1000_set_multi - Multicast and Promiscuous mode set
1635 * @netdev: network interface device structure
1636 *
1637 * The set_multi entry point is called whenever the multicast address
1638 * list or the network interface flags are updated. This routine is
1639 * responsible for configuring the hardware for proper multicast,
1640 * promiscuous mode, and all-multi behavior.
1641 **/
1642
1643static void
1644e1000_set_multi(struct net_device *netdev)
1645{
1646 struct e1000_adapter *adapter = netdev->priv;
1647 struct e1000_hw *hw = &adapter->hw;
1648 struct dev_mc_list *mc_ptr;
1649 uint32_t rctl;
1650 uint32_t hash_value;
1651 int i;
1652 unsigned long flags;
1653
1654 /* Check for Promiscuous and All Multicast modes */
1655
1656 spin_lock_irqsave(&adapter->tx_lock, flags);
1657
1658 rctl = E1000_READ_REG(hw, RCTL);
1659
1660 if(netdev->flags & IFF_PROMISC) {
1661 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1662 } else if(netdev->flags & IFF_ALLMULTI) {
1663 rctl |= E1000_RCTL_MPE;
1664 rctl &= ~E1000_RCTL_UPE;
1665 } else {
1666 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1667 }
1668
1669 E1000_WRITE_REG(hw, RCTL, rctl);
1670
1671 /* 82542 2.0 needs to be in reset to write receive address registers */
1672
1673 if(hw->mac_type == e1000_82542_rev2_0)
1674 e1000_enter_82542_rst(adapter);
1675
1676 /* load the first 14 multicast address into the exact filters 1-14
1677 * RAR 0 is used for the station MAC adddress
1678 * if there are not 14 addresses, go ahead and clear the filters
1679 */
1680 mc_ptr = netdev->mc_list;
1681
1682 for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1683 if(mc_ptr) {
1684 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1685 mc_ptr = mc_ptr->next;
1686 } else {
1687 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1688 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1689 }
1690 }
1691
1692 /* clear the old settings from the multicast hash table */
1693
1694 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1695 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1696
1697 /* load any remaining addresses into the hash table */
1698
1699 for(; mc_ptr; mc_ptr = mc_ptr->next) {
1700 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1701 e1000_mta_set(hw, hash_value);
1702 }
1703
1704 if(hw->mac_type == e1000_82542_rev2_0)
1705 e1000_leave_82542_rst(adapter);
1706
1707 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1708}
1709
1710/* Need to wait a few seconds after link up to get diagnostic information from
1711 * the phy */
1712
1713static void
1714e1000_update_phy_info(unsigned long data)
1715{
1716 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1717 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1718}
1719
1720/**
1721 * e1000_82547_tx_fifo_stall - Timer Call-back
1722 * @data: pointer to adapter cast into an unsigned long
1723 **/
1724
1725static void
1726e1000_82547_tx_fifo_stall(unsigned long data)
1727{
1728 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1729 struct net_device *netdev = adapter->netdev;
1730 uint32_t tctl;
1731
1732 if(atomic_read(&adapter->tx_fifo_stall)) {
1733 if((E1000_READ_REG(&adapter->hw, TDT) ==
1734 E1000_READ_REG(&adapter->hw, TDH)) &&
1735 (E1000_READ_REG(&adapter->hw, TDFT) ==
1736 E1000_READ_REG(&adapter->hw, TDFH)) &&
1737 (E1000_READ_REG(&adapter->hw, TDFTS) ==
1738 E1000_READ_REG(&adapter->hw, TDFHS))) {
1739 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1740 E1000_WRITE_REG(&adapter->hw, TCTL,
1741 tctl & ~E1000_TCTL_EN);
1742 E1000_WRITE_REG(&adapter->hw, TDFT,
1743 adapter->tx_head_addr);
1744 E1000_WRITE_REG(&adapter->hw, TDFH,
1745 adapter->tx_head_addr);
1746 E1000_WRITE_REG(&adapter->hw, TDFTS,
1747 adapter->tx_head_addr);
1748 E1000_WRITE_REG(&adapter->hw, TDFHS,
1749 adapter->tx_head_addr);
1750 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1751 E1000_WRITE_FLUSH(&adapter->hw);
1752
1753 adapter->tx_fifo_head = 0;
1754 atomic_set(&adapter->tx_fifo_stall, 0);
1755 netif_wake_queue(netdev);
1756 } else {
1757 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1758 }
1759 }
1760}
1761
1762/**
1763 * e1000_watchdog - Timer Call-back
1764 * @data: pointer to adapter cast into an unsigned long
1765 **/
1766static void
1767e1000_watchdog(unsigned long data)
1768{
1769 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1770
1771 /* Do the rest outside of interrupt context */
1772 schedule_work(&adapter->watchdog_task);
1773}
1774
1775static void
1776e1000_watchdog_task(struct e1000_adapter *adapter)
1777{
1778 struct net_device *netdev = adapter->netdev;
1779 struct e1000_desc_ring *txdr = &adapter->tx_ring;
1780 uint32_t link;
1781
1782 e1000_check_for_link(&adapter->hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001783 if (adapter->hw.mac_type == e1000_82573) {
1784 e1000_enable_tx_pkt_filtering(&adapter->hw);
1785 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
1786 e1000_update_mng_vlan(adapter);
1787 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788
1789 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1790 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1791 link = !adapter->hw.serdes_link_down;
1792 else
1793 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1794
1795 if(link) {
1796 if(!netif_carrier_ok(netdev)) {
1797 e1000_get_speed_and_duplex(&adapter->hw,
1798 &adapter->link_speed,
1799 &adapter->link_duplex);
1800
1801 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1802 adapter->link_speed,
1803 adapter->link_duplex == FULL_DUPLEX ?
1804 "Full Duplex" : "Half Duplex");
1805
1806 netif_carrier_on(netdev);
1807 netif_wake_queue(netdev);
1808 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1809 adapter->smartspeed = 0;
1810 }
1811 } else {
1812 if(netif_carrier_ok(netdev)) {
1813 adapter->link_speed = 0;
1814 adapter->link_duplex = 0;
1815 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1816 netif_carrier_off(netdev);
1817 netif_stop_queue(netdev);
1818 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1819 }
1820
1821 e1000_smartspeed(adapter);
1822 }
1823
1824 e1000_update_stats(adapter);
1825
1826 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1827 adapter->tpt_old = adapter->stats.tpt;
1828 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1829 adapter->colc_old = adapter->stats.colc;
1830
1831 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1832 adapter->gorcl_old = adapter->stats.gorcl;
1833 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1834 adapter->gotcl_old = adapter->stats.gotcl;
1835
1836 e1000_update_adaptive(&adapter->hw);
1837
1838 if(!netif_carrier_ok(netdev)) {
1839 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1840 /* We've lost link, so the controller stops DMA,
1841 * but we've got queued Tx work that's never going
1842 * to get done, so reset controller to flush Tx.
1843 * (Do the reset outside of interrupt context). */
1844 schedule_work(&adapter->tx_timeout_task);
1845 }
1846 }
1847
1848 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1849 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1850 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1851 * asymmetrical Tx or Rx gets ITR=8000; everyone
1852 * else is between 2000-8000. */
1853 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1854 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
1855 adapter->gotcl - adapter->gorcl :
1856 adapter->gorcl - adapter->gotcl) / 10000;
1857 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1858 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1859 }
1860
1861 /* Cause software interrupt to ensure rx ring is cleaned */
1862 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1863
1864 /* Force detection of hung controller every watchdog period*/
1865 adapter->detect_tx_hung = TRUE;
1866
1867 /* Reset the timer */
1868 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1869}
1870
1871#define E1000_TX_FLAGS_CSUM 0x00000001
1872#define E1000_TX_FLAGS_VLAN 0x00000002
1873#define E1000_TX_FLAGS_TSO 0x00000004
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001874#define E1000_TX_FLAGS_IPV4 0x00000008
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
1876#define E1000_TX_FLAGS_VLAN_SHIFT 16
1877
1878static inline int
1879e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1880{
1881#ifdef NETIF_F_TSO
1882 struct e1000_context_desc *context_desc;
1883 unsigned int i;
1884 uint32_t cmd_length = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001885 uint16_t ipcse = 0, tucse, mss;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1887 int err;
1888
1889 if(skb_shinfo(skb)->tso_size) {
1890 if (skb_header_cloned(skb)) {
1891 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1892 if (err)
1893 return err;
1894 }
1895
1896 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1897 mss = skb_shinfo(skb)->tso_size;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001898 if(skb->protocol == ntohs(ETH_P_IP)) {
1899 skb->nh.iph->tot_len = 0;
1900 skb->nh.iph->check = 0;
1901 skb->h.th->check =
1902 ~csum_tcpudp_magic(skb->nh.iph->saddr,
1903 skb->nh.iph->daddr,
1904 0,
1905 IPPROTO_TCP,
1906 0);
1907 cmd_length = E1000_TXD_CMD_IP;
1908 ipcse = skb->h.raw - skb->data - 1;
1909#ifdef NETIF_F_TSO_IPV6
1910 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
1911 skb->nh.ipv6h->payload_len = 0;
1912 skb->h.th->check =
1913 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
1914 &skb->nh.ipv6h->daddr,
1915 0,
1916 IPPROTO_TCP,
1917 0);
1918 ipcse = 0;
1919#endif
1920 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001921 ipcss = skb->nh.raw - skb->data;
1922 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001923 tucss = skb->h.raw - skb->data;
1924 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1925 tucse = 0;
1926
1927 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001928 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929
1930 i = adapter->tx_ring.next_to_use;
1931 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1932
1933 context_desc->lower_setup.ip_fields.ipcss = ipcss;
1934 context_desc->lower_setup.ip_fields.ipcso = ipcso;
1935 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
1936 context_desc->upper_setup.tcp_fields.tucss = tucss;
1937 context_desc->upper_setup.tcp_fields.tucso = tucso;
1938 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1939 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
1940 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1941 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1942
1943 if(++i == adapter->tx_ring.count) i = 0;
1944 adapter->tx_ring.next_to_use = i;
1945
1946 return 1;
1947 }
1948#endif
1949
1950 return 0;
1951}
1952
1953static inline boolean_t
1954e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1955{
1956 struct e1000_context_desc *context_desc;
1957 unsigned int i;
1958 uint8_t css;
1959
1960 if(likely(skb->ip_summed == CHECKSUM_HW)) {
1961 css = skb->h.raw - skb->data;
1962
1963 i = adapter->tx_ring.next_to_use;
1964 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1965
1966 context_desc->upper_setup.tcp_fields.tucss = css;
1967 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1968 context_desc->upper_setup.tcp_fields.tucse = 0;
1969 context_desc->tcp_seg_setup.data = 0;
1970 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1971
1972 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1973 adapter->tx_ring.next_to_use = i;
1974
1975 return TRUE;
1976 }
1977
1978 return FALSE;
1979}
1980
1981#define E1000_MAX_TXD_PWR 12
1982#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
1983
1984static inline int
1985e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1986 unsigned int first, unsigned int max_per_txd,
1987 unsigned int nr_frags, unsigned int mss)
1988{
1989 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1990 struct e1000_buffer *buffer_info;
1991 unsigned int len = skb->len;
1992 unsigned int offset = 0, size, count = 0, i;
1993 unsigned int f;
1994 len -= skb->data_len;
1995
1996 i = tx_ring->next_to_use;
1997
1998 while(len) {
1999 buffer_info = &tx_ring->buffer_info[i];
2000 size = min(len, max_per_txd);
2001#ifdef NETIF_F_TSO
2002 /* Workaround for premature desc write-backs
2003 * in TSO mode. Append 4-byte sentinel desc */
2004 if(unlikely(mss && !nr_frags && size == len && size > 8))
2005 size -= 4;
2006#endif
Malli Chilakala97338bd2005-04-28 19:41:46 -07002007 /* work-around for errata 10 and it applies
2008 * to all controllers in PCI-X mode
2009 * The fix is to make sure that the first descriptor of a
2010 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2011 */
2012 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2013 (size > 2015) && count == 0))
2014 size = 2015;
2015
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 /* Workaround for potential 82544 hang in PCI-X. Avoid
2017 * terminating buffers within evenly-aligned dwords. */
2018 if(unlikely(adapter->pcix_82544 &&
2019 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2020 size > 4))
2021 size -= 4;
2022
2023 buffer_info->length = size;
2024 buffer_info->dma =
2025 pci_map_single(adapter->pdev,
2026 skb->data + offset,
2027 size,
2028 PCI_DMA_TODEVICE);
2029 buffer_info->time_stamp = jiffies;
2030
2031 len -= size;
2032 offset += size;
2033 count++;
2034 if(unlikely(++i == tx_ring->count)) i = 0;
2035 }
2036
2037 for(f = 0; f < nr_frags; f++) {
2038 struct skb_frag_struct *frag;
2039
2040 frag = &skb_shinfo(skb)->frags[f];
2041 len = frag->size;
2042 offset = frag->page_offset;
2043
2044 while(len) {
2045 buffer_info = &tx_ring->buffer_info[i];
2046 size = min(len, max_per_txd);
2047#ifdef NETIF_F_TSO
2048 /* Workaround for premature desc write-backs
2049 * in TSO mode. Append 4-byte sentinel desc */
2050 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2051 size -= 4;
2052#endif
2053 /* Workaround for potential 82544 hang in PCI-X.
2054 * Avoid terminating buffers within evenly-aligned
2055 * dwords. */
2056 if(unlikely(adapter->pcix_82544 &&
2057 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2058 size > 4))
2059 size -= 4;
2060
2061 buffer_info->length = size;
2062 buffer_info->dma =
2063 pci_map_page(adapter->pdev,
2064 frag->page,
2065 offset,
2066 size,
2067 PCI_DMA_TODEVICE);
2068 buffer_info->time_stamp = jiffies;
2069
2070 len -= size;
2071 offset += size;
2072 count++;
2073 if(unlikely(++i == tx_ring->count)) i = 0;
2074 }
2075 }
2076
2077 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2078 tx_ring->buffer_info[i].skb = skb;
2079 tx_ring->buffer_info[first].next_to_watch = i;
2080
2081 return count;
2082}
2083
2084static inline void
2085e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
2086{
2087 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2088 struct e1000_tx_desc *tx_desc = NULL;
2089 struct e1000_buffer *buffer_info;
2090 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2091 unsigned int i;
2092
2093 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2094 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2095 E1000_TXD_CMD_TSE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002096 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2097
2098 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2099 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002100 }
2101
2102 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2103 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2104 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2105 }
2106
2107 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2108 txd_lower |= E1000_TXD_CMD_VLE;
2109 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2110 }
2111
2112 i = tx_ring->next_to_use;
2113
2114 while(count--) {
2115 buffer_info = &tx_ring->buffer_info[i];
2116 tx_desc = E1000_TX_DESC(*tx_ring, i);
2117 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2118 tx_desc->lower.data =
2119 cpu_to_le32(txd_lower | buffer_info->length);
2120 tx_desc->upper.data = cpu_to_le32(txd_upper);
2121 if(unlikely(++i == tx_ring->count)) i = 0;
2122 }
2123
2124 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2125
2126 /* Force memory writes to complete before letting h/w
2127 * know there are new descriptors to fetch. (Only
2128 * applicable for weak-ordered memory model archs,
2129 * such as IA-64). */
2130 wmb();
2131
2132 tx_ring->next_to_use = i;
2133 E1000_WRITE_REG(&adapter->hw, TDT, i);
2134}
2135
2136/**
2137 * 82547 workaround to avoid controller hang in half-duplex environment.
2138 * The workaround is to avoid queuing a large packet that would span
2139 * the internal Tx FIFO ring boundary by notifying the stack to resend
2140 * the packet at a later time. This gives the Tx FIFO an opportunity to
2141 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2142 * to the beginning of the Tx FIFO.
2143 **/
2144
2145#define E1000_FIFO_HDR 0x10
2146#define E1000_82547_PAD_LEN 0x3E0
2147
2148static inline int
2149e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2150{
2151 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2152 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2153
2154 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2155
2156 if(adapter->link_duplex != HALF_DUPLEX)
2157 goto no_fifo_stall_required;
2158
2159 if(atomic_read(&adapter->tx_fifo_stall))
2160 return 1;
2161
2162 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2163 atomic_set(&adapter->tx_fifo_stall, 1);
2164 return 1;
2165 }
2166
2167no_fifo_stall_required:
2168 adapter->tx_fifo_head += skb_fifo_len;
2169 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2170 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2171 return 0;
2172}
2173
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002174#define MINIMUM_DHCP_PACKET_SIZE 282
2175static inline int
2176e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2177{
2178 struct e1000_hw *hw = &adapter->hw;
2179 uint16_t length, offset;
2180 if(vlan_tx_tag_present(skb)) {
2181 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2182 ( adapter->hw.mng_cookie.status &
2183 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2184 return 0;
2185 }
2186 if(htons(ETH_P_IP) == skb->protocol) {
2187 const struct iphdr *ip = skb->nh.iph;
2188 if(IPPROTO_UDP == ip->protocol) {
2189 struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2190 if(ntohs(udp->dest) == 67) {
2191 offset = (uint8_t *)udp + 8 - skb->data;
2192 length = skb->len - offset;
2193
2194 return e1000_mng_write_dhcp_info(hw,
2195 (uint8_t *)udp + 8, length);
2196 }
2197 }
2198 } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2199 struct ethhdr *eth = (struct ethhdr *) skb->data;
2200 if((htons(ETH_P_IP) == eth->h_proto)) {
2201 const struct iphdr *ip =
2202 (struct iphdr *)((uint8_t *)skb->data+14);
2203 if(IPPROTO_UDP == ip->protocol) {
2204 struct udphdr *udp =
2205 (struct udphdr *)((uint8_t *)ip +
2206 (ip->ihl << 2));
2207 if(ntohs(udp->dest) == 67) {
2208 offset = (uint8_t *)udp + 8 - skb->data;
2209 length = skb->len - offset;
2210
2211 return e1000_mng_write_dhcp_info(hw,
2212 (uint8_t *)udp + 8,
2213 length);
2214 }
2215 }
2216 }
2217 }
2218 return 0;
2219}
2220
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2222static int
2223e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2224{
2225 struct e1000_adapter *adapter = netdev->priv;
2226 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2227 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2228 unsigned int tx_flags = 0;
2229 unsigned int len = skb->len;
2230 unsigned long flags;
2231 unsigned int nr_frags = 0;
2232 unsigned int mss = 0;
2233 int count = 0;
2234 int tso;
2235 unsigned int f;
2236 len -= skb->data_len;
2237
2238 if(unlikely(skb->len <= 0)) {
2239 dev_kfree_skb_any(skb);
2240 return NETDEV_TX_OK;
2241 }
2242
2243#ifdef NETIF_F_TSO
2244 mss = skb_shinfo(skb)->tso_size;
2245 /* The controller does a simple calculation to
2246 * make sure there is enough room in the FIFO before
2247 * initiating the DMA for each buffer. The calc is:
2248 * 4 = ceil(buffer len/mss). To make sure we don't
2249 * overrun the FIFO, adjust the max buffer len if mss
2250 * drops. */
2251 if(mss) {
2252 max_per_txd = min(mss << 2, max_per_txd);
2253 max_txd_pwr = fls(max_per_txd) - 1;
2254 }
2255
2256 if((mss) || (skb->ip_summed == CHECKSUM_HW))
2257 count++;
2258 count++; /* for sentinel desc */
2259#else
2260 if(skb->ip_summed == CHECKSUM_HW)
2261 count++;
2262#endif
2263 count += TXD_USE_COUNT(len, max_txd_pwr);
2264
2265 if(adapter->pcix_82544)
2266 count++;
2267
Malli Chilakala97338bd2005-04-28 19:41:46 -07002268 /* work-around for errata 10 and it applies to all controllers
2269 * in PCI-X mode, so add one more descriptor to the count
2270 */
2271 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2272 (len > 2015)))
2273 count++;
2274
Linus Torvalds1da177e2005-04-16 15:20:36 -07002275 nr_frags = skb_shinfo(skb)->nr_frags;
2276 for(f = 0; f < nr_frags; f++)
2277 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2278 max_txd_pwr);
2279 if(adapter->pcix_82544)
2280 count += nr_frags;
2281
2282 local_irq_save(flags);
2283 if (!spin_trylock(&adapter->tx_lock)) {
2284 /* Collision - tell upper layer to requeue */
2285 local_irq_restore(flags);
2286 return NETDEV_TX_LOCKED;
2287 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002288 if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2289 e1000_transfer_dhcp_info(adapter, skb);
2290
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291
2292 /* need: count + 2 desc gap to keep tail from touching
2293 * head, otherwise try next time */
2294 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
2295 netif_stop_queue(netdev);
2296 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2297 return NETDEV_TX_BUSY;
2298 }
2299
2300 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2301 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2302 netif_stop_queue(netdev);
2303 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2304 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2305 return NETDEV_TX_BUSY;
2306 }
2307 }
2308
2309 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2310 tx_flags |= E1000_TX_FLAGS_VLAN;
2311 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2312 }
2313
2314 first = adapter->tx_ring.next_to_use;
2315
2316 tso = e1000_tso(adapter, skb);
2317 if (tso < 0) {
2318 dev_kfree_skb_any(skb);
2319 return NETDEV_TX_OK;
2320 }
2321
2322 if (likely(tso))
2323 tx_flags |= E1000_TX_FLAGS_TSO;
2324 else if(likely(e1000_tx_csum(adapter, skb)))
2325 tx_flags |= E1000_TX_FLAGS_CSUM;
2326
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002327 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2328 * 82573 hardware supports TSO capabilities for IPv6 as well...
2329 * no longer assume, we must. */
2330 if(likely(skb->protocol == ntohs(ETH_P_IP)))
2331 tx_flags |= E1000_TX_FLAGS_IPV4;
2332
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333 e1000_tx_queue(adapter,
2334 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2335 tx_flags);
2336
2337 netdev->trans_start = jiffies;
2338
2339 /* Make sure there is space in the ring for the next send. */
2340 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2341 netif_stop_queue(netdev);
2342
2343 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2344 return NETDEV_TX_OK;
2345}
2346
2347/**
2348 * e1000_tx_timeout - Respond to a Tx Hang
2349 * @netdev: network interface device structure
2350 **/
2351
2352static void
2353e1000_tx_timeout(struct net_device *netdev)
2354{
2355 struct e1000_adapter *adapter = netdev->priv;
2356
2357 /* Do the reset outside of interrupt context */
2358 schedule_work(&adapter->tx_timeout_task);
2359}
2360
2361static void
2362e1000_tx_timeout_task(struct net_device *netdev)
2363{
2364 struct e1000_adapter *adapter = netdev->priv;
2365
2366 e1000_down(adapter);
2367 e1000_up(adapter);
2368}
2369
2370/**
2371 * e1000_get_stats - Get System Network Statistics
2372 * @netdev: network interface device structure
2373 *
2374 * Returns the address of the device statistics structure.
2375 * The statistics are actually updated from the timer callback.
2376 **/
2377
2378static struct net_device_stats *
2379e1000_get_stats(struct net_device *netdev)
2380{
2381 struct e1000_adapter *adapter = netdev->priv;
2382
2383 e1000_update_stats(adapter);
2384 return &adapter->net_stats;
2385}
2386
2387/**
2388 * e1000_change_mtu - Change the Maximum Transfer Unit
2389 * @netdev: network interface device structure
2390 * @new_mtu: new value for maximum frame size
2391 *
2392 * Returns 0 on success, negative on failure
2393 **/
2394
2395static int
2396e1000_change_mtu(struct net_device *netdev, int new_mtu)
2397{
2398 struct e1000_adapter *adapter = netdev->priv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002399 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2400
2401 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2402 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2403 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2404 return -EINVAL;
2405 }
2406
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002407#define MAX_STD_JUMBO_FRAME_SIZE 9216
2408 /* might want this to be bigger enum check... */
2409 if (adapter->hw.mac_type == e1000_82573 &&
2410 max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2411 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2412 "on 82573\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002413 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002414 }
2415
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002416 if(adapter->hw.mac_type > e1000_82547_rev_2) {
2417 adapter->rx_buffer_len = max_frame;
2418 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2419 } else {
2420 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2421 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2422 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2423 "on 82542\n");
2424 return -EINVAL;
2425
2426 } else {
2427 if(max_frame <= E1000_RXBUFFER_2048) {
2428 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2429 } else if(max_frame <= E1000_RXBUFFER_4096) {
2430 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2431 } else if(max_frame <= E1000_RXBUFFER_8192) {
2432 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2433 } else if(max_frame <= E1000_RXBUFFER_16384) {
2434 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2435 }
2436 }
2437 }
2438
2439 netdev->mtu = new_mtu;
2440
2441 if(netif_running(netdev)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442 e1000_down(adapter);
2443 e1000_up(adapter);
2444 }
2445
Linus Torvalds1da177e2005-04-16 15:20:36 -07002446 adapter->hw.max_frame_size = max_frame;
2447
2448 return 0;
2449}
2450
2451/**
2452 * e1000_update_stats - Update the board statistics counters
2453 * @adapter: board private structure
2454 **/
2455
2456void
2457e1000_update_stats(struct e1000_adapter *adapter)
2458{
2459 struct e1000_hw *hw = &adapter->hw;
2460 unsigned long flags;
2461 uint16_t phy_tmp;
2462
2463#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2464
2465 spin_lock_irqsave(&adapter->stats_lock, flags);
2466
2467 /* these counters are modified from e1000_adjust_tbi_stats,
2468 * called from the interrupt context, so they must only
2469 * be written while holding adapter->stats_lock
2470 */
2471
2472 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2473 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2474 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2475 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2476 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2477 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2478 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2479 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2480 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2481 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2482 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2483 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2484 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2485
2486 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2487 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2488 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2489 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2490 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2491 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2492 adapter->stats.dc += E1000_READ_REG(hw, DC);
2493 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2494 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2495 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2496 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2497 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2498 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2499 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2500 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2501 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2502 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2503 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2504 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2505 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2506 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2507 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2508 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2509 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2510 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2511 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2512 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2513 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2514 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2515 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2516 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2517 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2518 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2519 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2520
2521 /* used for adaptive IFS */
2522
2523 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2524 adapter->stats.tpt += hw->tx_packet_delta;
2525 hw->collision_delta = E1000_READ_REG(hw, COLC);
2526 adapter->stats.colc += hw->collision_delta;
2527
2528 if(hw->mac_type >= e1000_82543) {
2529 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2530 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2531 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2532 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2533 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2534 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2535 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002536 if(hw->mac_type > e1000_82547_rev_2) {
2537 adapter->stats.iac += E1000_READ_REG(hw, IAC);
2538 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
2539 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
2540 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
2541 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
2542 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
2543 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
2544 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
2545 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
2546 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002547
2548 /* Fill out the OS statistics structure */
2549
2550 adapter->net_stats.rx_packets = adapter->stats.gprc;
2551 adapter->net_stats.tx_packets = adapter->stats.gptc;
2552 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2553 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2554 adapter->net_stats.multicast = adapter->stats.mprc;
2555 adapter->net_stats.collisions = adapter->stats.colc;
2556
2557 /* Rx Errors */
2558
2559 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2560 adapter->stats.crcerrs + adapter->stats.algnerrc +
Malli Chilakala6d915752005-04-28 19:41:11 -07002561 adapter->stats.rlec + adapter->stats.mpc +
2562 adapter->stats.cexterr;
2563 adapter->net_stats.rx_dropped = adapter->stats.mpc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002564 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2565 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2566 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2567 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2568 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2569
2570 /* Tx Errors */
2571
2572 adapter->net_stats.tx_errors = adapter->stats.ecol +
2573 adapter->stats.latecol;
2574 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2575 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2576 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2577
2578 /* Tx Dropped needs to be maintained elsewhere */
2579
2580 /* Phy Stats */
2581
2582 if(hw->media_type == e1000_media_type_copper) {
2583 if((adapter->link_speed == SPEED_1000) &&
2584 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2585 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2586 adapter->phy_stats.idle_errors += phy_tmp;
2587 }
2588
2589 if((hw->mac_type <= e1000_82546) &&
2590 (hw->phy_type == e1000_phy_m88) &&
2591 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2592 adapter->phy_stats.receive_errors += phy_tmp;
2593 }
2594
2595 spin_unlock_irqrestore(&adapter->stats_lock, flags);
2596}
2597
2598/**
2599 * e1000_intr - Interrupt Handler
2600 * @irq: interrupt number
2601 * @data: pointer to a network interface device structure
2602 * @pt_regs: CPU registers structure
2603 **/
2604
2605static irqreturn_t
2606e1000_intr(int irq, void *data, struct pt_regs *regs)
2607{
2608 struct net_device *netdev = data;
2609 struct e1000_adapter *adapter = netdev->priv;
2610 struct e1000_hw *hw = &adapter->hw;
2611 uint32_t icr = E1000_READ_REG(hw, ICR);
2612#ifndef CONFIG_E1000_NAPI
2613 unsigned int i;
2614#endif
2615
2616 if(unlikely(!icr))
2617 return IRQ_NONE; /* Not our interrupt */
2618
2619 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2620 hw->get_link_status = 1;
2621 mod_timer(&adapter->watchdog_timer, jiffies);
2622 }
2623
2624#ifdef CONFIG_E1000_NAPI
2625 if(likely(netif_rx_schedule_prep(netdev))) {
2626
2627 /* Disable interrupts and register for poll. The flush
2628 of the posted write is intentionally left out.
2629 */
2630
2631 atomic_inc(&adapter->irq_sem);
2632 E1000_WRITE_REG(hw, IMC, ~0);
2633 __netif_rx_schedule(netdev);
2634 }
2635#else
2636 /* Writing IMC and IMS is needed for 82547.
2637 Due to Hub Link bus being occupied, an interrupt
2638 de-assertion message is not able to be sent.
2639 When an interrupt assertion message is generated later,
2640 two messages are re-ordered and sent out.
2641 That causes APIC to think 82547 is in de-assertion
2642 state, while 82547 is in assertion state, resulting
2643 in dead lock. Writing IMC forces 82547 into
2644 de-assertion state.
2645 */
2646 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2647 atomic_inc(&adapter->irq_sem);
2648 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2649 }
2650
2651 for(i = 0; i < E1000_MAX_INTR; i++)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002652 if(unlikely(!adapter->clean_rx(adapter) &
Linus Torvalds1da177e2005-04-16 15:20:36 -07002653 !e1000_clean_tx_irq(adapter)))
2654 break;
2655
2656 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2657 e1000_irq_enable(adapter);
2658#endif
2659
2660 return IRQ_HANDLED;
2661}
2662
2663#ifdef CONFIG_E1000_NAPI
2664/**
2665 * e1000_clean - NAPI Rx polling callback
2666 * @adapter: board private structure
2667 **/
2668
2669static int
2670e1000_clean(struct net_device *netdev, int *budget)
2671{
2672 struct e1000_adapter *adapter = netdev->priv;
2673 int work_to_do = min(*budget, netdev->quota);
2674 int tx_cleaned;
2675 int work_done = 0;
2676
2677 tx_cleaned = e1000_clean_tx_irq(adapter);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002678 adapter->clean_rx(adapter, &work_done, work_to_do);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679
2680 *budget -= work_done;
2681 netdev->quota -= work_done;
2682
Malli Chilakalaf0d11ed2005-04-28 19:43:28 -07002683 /* If no Tx and no Rx work done, exit the polling mode */
2684 if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 netif_rx_complete(netdev);
2686 e1000_irq_enable(adapter);
2687 return 0;
2688 }
2689
2690 return 1;
2691}
2692
2693#endif
2694/**
2695 * e1000_clean_tx_irq - Reclaim resources after transmit completes
2696 * @adapter: board private structure
2697 **/
2698
2699static boolean_t
2700e1000_clean_tx_irq(struct e1000_adapter *adapter)
2701{
2702 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2703 struct net_device *netdev = adapter->netdev;
2704 struct e1000_tx_desc *tx_desc, *eop_desc;
2705 struct e1000_buffer *buffer_info;
2706 unsigned int i, eop;
2707 boolean_t cleaned = FALSE;
2708
2709 i = tx_ring->next_to_clean;
2710 eop = tx_ring->buffer_info[i].next_to_watch;
2711 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2712
2713 while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
Malli Chilakala27012342005-04-28 19:40:28 -07002714 /* Premature writeback of Tx descriptors clear (free buffers
2715 * and unmap pci_mapping) previous_buffer_info */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 if (likely(adapter->previous_buffer_info.skb != NULL)) {
Malli Chilakala27012342005-04-28 19:40:28 -07002717 e1000_unmap_and_free_tx_resource(adapter,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002718 &adapter->previous_buffer_info);
2719 }
2720
2721 for(cleaned = FALSE; !cleaned; ) {
2722 tx_desc = E1000_TX_DESC(*tx_ring, i);
2723 buffer_info = &tx_ring->buffer_info[i];
2724 cleaned = (i == eop);
2725
Malli Chilakala27012342005-04-28 19:40:28 -07002726#ifdef NETIF_F_TSO
2727 if (!(netdev->features & NETIF_F_TSO)) {
2728#endif
2729 e1000_unmap_and_free_tx_resource(adapter,
2730 buffer_info);
2731#ifdef NETIF_F_TSO
Linus Torvalds1da177e2005-04-16 15:20:36 -07002732 } else {
Malli Chilakala27012342005-04-28 19:40:28 -07002733 if (cleaned) {
2734 memcpy(&adapter->previous_buffer_info,
2735 buffer_info,
2736 sizeof(struct e1000_buffer));
2737 memset(buffer_info, 0,
2738 sizeof(struct e1000_buffer));
2739 } else {
2740 e1000_unmap_and_free_tx_resource(
2741 adapter, buffer_info);
2742 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743 }
Malli Chilakala27012342005-04-28 19:40:28 -07002744#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002745
2746 tx_desc->buffer_addr = 0;
2747 tx_desc->lower.data = 0;
2748 tx_desc->upper.data = 0;
2749
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 if(unlikely(++i == tx_ring->count)) i = 0;
2751 }
2752
2753 eop = tx_ring->buffer_info[i].next_to_watch;
2754 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2755 }
2756
2757 tx_ring->next_to_clean = i;
2758
2759 spin_lock(&adapter->tx_lock);
2760
2761 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2762 netif_carrier_ok(netdev)))
2763 netif_wake_queue(netdev);
2764
2765 spin_unlock(&adapter->tx_lock);
2766
2767 if(adapter->detect_tx_hung) {
2768 /* detect a transmit hang in hardware, this serializes the
2769 * check with the clearing of time_stamp and movement of i */
2770 adapter->detect_tx_hung = FALSE;
Malli Chilakala70b8f1e2005-04-28 19:40:40 -07002771 if (tx_ring->buffer_info[i].dma &&
2772 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
2773 && !(E1000_READ_REG(&adapter->hw, STATUS) &
2774 E1000_STATUS_TXOFF)) {
2775
2776 /* detected Tx unit hang */
2777 i = tx_ring->next_to_clean;
2778 eop = tx_ring->buffer_info[i].next_to_watch;
2779 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2780 DPRINTK(TX_ERR, ERR, "Detected Tx Unit Hang\n"
2781 " TDH <%x>\n"
2782 " TDT <%x>\n"
2783 " next_to_use <%x>\n"
2784 " next_to_clean <%x>\n"
2785 "buffer_info[next_to_clean]\n"
2786 " dma <%llx>\n"
2787 " time_stamp <%lx>\n"
2788 " next_to_watch <%x>\n"
2789 " jiffies <%lx>\n"
2790 " next_to_watch.status <%x>\n",
2791 E1000_READ_REG(&adapter->hw, TDH),
2792 E1000_READ_REG(&adapter->hw, TDT),
2793 tx_ring->next_to_use,
2794 i,
2795 tx_ring->buffer_info[i].dma,
2796 tx_ring->buffer_info[i].time_stamp,
2797 eop,
2798 jiffies,
2799 eop_desc->upper.fields.status);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002800 netif_stop_queue(netdev);
Malli Chilakala70b8f1e2005-04-28 19:40:40 -07002801 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002802 }
Malli Chilakala27012342005-04-28 19:40:28 -07002803#ifdef NETIF_F_TSO
Linus Torvalds1da177e2005-04-16 15:20:36 -07002804
Malli Chilakala27012342005-04-28 19:40:28 -07002805 if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
2806 time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
2807 e1000_unmap_and_free_tx_resource(
2808 adapter, &adapter->previous_buffer_info);
2809
2810#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002811 return cleaned;
2812}
2813
2814/**
2815 * e1000_rx_checksum - Receive Checksum Offload for 82543
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002816 * @adapter: board private structure
2817 * @status_err: receive descriptor status and error fields
2818 * @csum: receive descriptor csum field
2819 * @sk_buff: socket buffer with received data
Linus Torvalds1da177e2005-04-16 15:20:36 -07002820 **/
2821
2822static inline void
2823e1000_rx_checksum(struct e1000_adapter *adapter,
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002824 uint32_t status_err, uint32_t csum,
2825 struct sk_buff *skb)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826{
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002827 uint16_t status = (uint16_t)status_err;
2828 uint8_t errors = (uint8_t)(status_err >> 24);
2829 skb->ip_summed = CHECKSUM_NONE;
2830
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831 /* 82543 or newer only */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002832 if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002833 /* Ignore Checksum bit is set */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002834 if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
2835 /* TCP/UDP checksum error bit is set */
2836 if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
2837 /* let the stack verify checksum errors */
2838 adapter->hw_csum_err++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839 return;
2840 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002841 /* TCP/UDP Checksum has not been calculated */
2842 if(adapter->hw.mac_type <= e1000_82547_rev_2) {
2843 if(!(status & E1000_RXD_STAT_TCPCS))
2844 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002846 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
2847 return;
2848 }
2849 /* It must be a TCP or UDP packet with a valid checksum */
2850 if (likely(status & E1000_RXD_STAT_TCPCS)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002851 /* TCP checksum is good */
2852 skb->ip_summed = CHECKSUM_UNNECESSARY;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002853 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
2854 /* IP fragment with UDP payload */
2855 /* Hardware complements the payload checksum, so we undo it
2856 * and then put the value in host order for further stack use.
2857 */
2858 csum = ntohl(csum ^ 0xFFFF);
2859 skb->csum = csum;
2860 skb->ip_summed = CHECKSUM_HW;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002861 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002862 adapter->hw_csum_good++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863}
2864
2865/**
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002866 * e1000_clean_rx_irq - Send received data up the network stack; legacy
Linus Torvalds1da177e2005-04-16 15:20:36 -07002867 * @adapter: board private structure
2868 **/
2869
2870static boolean_t
2871#ifdef CONFIG_E1000_NAPI
2872e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2873 int work_to_do)
2874#else
2875e1000_clean_rx_irq(struct e1000_adapter *adapter)
2876#endif
2877{
2878 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2879 struct net_device *netdev = adapter->netdev;
2880 struct pci_dev *pdev = adapter->pdev;
2881 struct e1000_rx_desc *rx_desc;
2882 struct e1000_buffer *buffer_info;
2883 struct sk_buff *skb;
2884 unsigned long flags;
2885 uint32_t length;
2886 uint8_t last_byte;
2887 unsigned int i;
2888 boolean_t cleaned = FALSE;
2889
2890 i = rx_ring->next_to_clean;
2891 rx_desc = E1000_RX_DESC(*rx_ring, i);
2892
2893 while(rx_desc->status & E1000_RXD_STAT_DD) {
2894 buffer_info = &rx_ring->buffer_info[i];
2895#ifdef CONFIG_E1000_NAPI
2896 if(*work_done >= work_to_do)
2897 break;
2898 (*work_done)++;
2899#endif
2900 cleaned = TRUE;
2901
2902 pci_unmap_single(pdev,
2903 buffer_info->dma,
2904 buffer_info->length,
2905 PCI_DMA_FROMDEVICE);
2906
2907 skb = buffer_info->skb;
2908 length = le16_to_cpu(rx_desc->length);
2909
2910 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2911 /* All receives must fit into a single buffer */
2912 E1000_DBG("%s: Receive packet consumed multiple"
2913 " buffers\n", netdev->name);
2914 dev_kfree_skb_irq(skb);
2915 goto next_desc;
2916 }
2917
2918 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2919 last_byte = *(skb->data + length - 1);
2920 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2921 rx_desc->errors, length, last_byte)) {
2922 spin_lock_irqsave(&adapter->stats_lock, flags);
2923 e1000_tbi_adjust_stats(&adapter->hw,
2924 &adapter->stats,
2925 length, skb->data);
2926 spin_unlock_irqrestore(&adapter->stats_lock,
2927 flags);
2928 length--;
2929 } else {
2930 dev_kfree_skb_irq(skb);
2931 goto next_desc;
2932 }
2933 }
2934
2935 /* Good Receive */
2936 skb_put(skb, length - ETHERNET_FCS_SIZE);
2937
2938 /* Receive Checksum Offload */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002939 e1000_rx_checksum(adapter,
2940 (uint32_t)(rx_desc->status) |
2941 ((uint32_t)(rx_desc->errors) << 24),
2942 rx_desc->csum, skb);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943 skb->protocol = eth_type_trans(skb, netdev);
2944#ifdef CONFIG_E1000_NAPI
2945 if(unlikely(adapter->vlgrp &&
2946 (rx_desc->status & E1000_RXD_STAT_VP))) {
2947 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002948 le16_to_cpu(rx_desc->special) &
2949 E1000_RXD_SPC_VLAN_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002950 } else {
2951 netif_receive_skb(skb);
2952 }
2953#else /* CONFIG_E1000_NAPI */
2954 if(unlikely(adapter->vlgrp &&
2955 (rx_desc->status & E1000_RXD_STAT_VP))) {
2956 vlan_hwaccel_rx(skb, adapter->vlgrp,
2957 le16_to_cpu(rx_desc->special) &
2958 E1000_RXD_SPC_VLAN_MASK);
2959 } else {
2960 netif_rx(skb);
2961 }
2962#endif /* CONFIG_E1000_NAPI */
2963 netdev->last_rx = jiffies;
2964
2965next_desc:
2966 rx_desc->status = 0;
2967 buffer_info->skb = NULL;
2968 if(unlikely(++i == rx_ring->count)) i = 0;
2969
2970 rx_desc = E1000_RX_DESC(*rx_ring, i);
2971 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002972 rx_ring->next_to_clean = i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002973 adapter->alloc_rx_buf(adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974
2975 return cleaned;
2976}
2977
2978/**
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002979 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
2980 * @adapter: board private structure
2981 **/
2982
2983static boolean_t
2984#ifdef CONFIG_E1000_NAPI
2985e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
2986 int work_to_do)
2987#else
2988e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
2989#endif
2990{
2991 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2992 union e1000_rx_desc_packet_split *rx_desc;
2993 struct net_device *netdev = adapter->netdev;
2994 struct pci_dev *pdev = adapter->pdev;
2995 struct e1000_buffer *buffer_info;
2996 struct e1000_ps_page *ps_page;
2997 struct e1000_ps_page_dma *ps_page_dma;
2998 struct sk_buff *skb;
2999 unsigned int i, j;
3000 uint32_t length, staterr;
3001 boolean_t cleaned = FALSE;
3002
3003 i = rx_ring->next_to_clean;
3004 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3005 staterr = rx_desc->wb.middle.status_error;
3006
3007 while(staterr & E1000_RXD_STAT_DD) {
3008 buffer_info = &rx_ring->buffer_info[i];
3009 ps_page = &rx_ring->ps_page[i];
3010 ps_page_dma = &rx_ring->ps_page_dma[i];
3011#ifdef CONFIG_E1000_NAPI
3012 if(unlikely(*work_done >= work_to_do))
3013 break;
3014 (*work_done)++;
3015#endif
3016 cleaned = TRUE;
3017 pci_unmap_single(pdev, buffer_info->dma,
3018 buffer_info->length,
3019 PCI_DMA_FROMDEVICE);
3020
3021 skb = buffer_info->skb;
3022
3023 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3024 E1000_DBG("%s: Packet Split buffers didn't pick up"
3025 " the full packet\n", netdev->name);
3026 dev_kfree_skb_irq(skb);
3027 goto next_desc;
3028 }
3029
3030 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3031 dev_kfree_skb_irq(skb);
3032 goto next_desc;
3033 }
3034
3035 length = le16_to_cpu(rx_desc->wb.middle.length0);
3036
3037 if(unlikely(!length)) {
3038 E1000_DBG("%s: Last part of the packet spanning"
3039 " multiple descriptors\n", netdev->name);
3040 dev_kfree_skb_irq(skb);
3041 goto next_desc;
3042 }
3043
3044 /* Good Receive */
3045 skb_put(skb, length);
3046
3047 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3048 if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3049 break;
3050
3051 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3052 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3053 ps_page_dma->ps_page_dma[j] = 0;
3054 skb_shinfo(skb)->frags[j].page =
3055 ps_page->ps_page[j];
3056 ps_page->ps_page[j] = NULL;
3057 skb_shinfo(skb)->frags[j].page_offset = 0;
3058 skb_shinfo(skb)->frags[j].size = length;
3059 skb_shinfo(skb)->nr_frags++;
3060 skb->len += length;
3061 skb->data_len += length;
3062 }
3063
3064 e1000_rx_checksum(adapter, staterr,
3065 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3066 skb->protocol = eth_type_trans(skb, netdev);
3067
3068#ifdef HAVE_RX_ZERO_COPY
3069 if(likely(rx_desc->wb.upper.header_status &
3070 E1000_RXDPS_HDRSTAT_HDRSP))
3071 skb_shinfo(skb)->zero_copy = TRUE;
3072#endif
3073#ifdef CONFIG_E1000_NAPI
3074 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3075 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3076 le16_to_cpu(rx_desc->wb.middle.vlan &
3077 E1000_RXD_SPC_VLAN_MASK));
3078 } else {
3079 netif_receive_skb(skb);
3080 }
3081#else /* CONFIG_E1000_NAPI */
3082 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3083 vlan_hwaccel_rx(skb, adapter->vlgrp,
3084 le16_to_cpu(rx_desc->wb.middle.vlan &
3085 E1000_RXD_SPC_VLAN_MASK));
3086 } else {
3087 netif_rx(skb);
3088 }
3089#endif /* CONFIG_E1000_NAPI */
3090 netdev->last_rx = jiffies;
3091
3092next_desc:
3093 rx_desc->wb.middle.status_error &= ~0xFF;
3094 buffer_info->skb = NULL;
3095 if(unlikely(++i == rx_ring->count)) i = 0;
3096
3097 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3098 staterr = rx_desc->wb.middle.status_error;
3099 }
3100 rx_ring->next_to_clean = i;
3101 adapter->alloc_rx_buf(adapter);
3102
3103 return cleaned;
3104}
3105
3106/**
3107 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
Linus Torvalds1da177e2005-04-16 15:20:36 -07003108 * @adapter: address of board private structure
3109 **/
3110
3111static void
3112e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
3113{
3114 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3115 struct net_device *netdev = adapter->netdev;
3116 struct pci_dev *pdev = adapter->pdev;
3117 struct e1000_rx_desc *rx_desc;
3118 struct e1000_buffer *buffer_info;
3119 struct sk_buff *skb;
3120 unsigned int i, bufsz;
3121
3122 i = rx_ring->next_to_use;
3123 buffer_info = &rx_ring->buffer_info[i];
3124
3125 while(!buffer_info->skb) {
3126 bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3127
3128 skb = dev_alloc_skb(bufsz);
3129 if(unlikely(!skb)) {
3130 /* Better luck next round */
3131 break;
3132 }
3133
3134 /* fix for errata 23, cant cross 64kB boundary */
3135 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3136 struct sk_buff *oldskb = skb;
3137 DPRINTK(RX_ERR,ERR,
3138 "skb align check failed: %u bytes at %p\n",
3139 bufsz, skb->data);
3140 /* try again, without freeing the previous */
3141 skb = dev_alloc_skb(bufsz);
3142 if (!skb) {
3143 dev_kfree_skb(oldskb);
3144 break;
3145 }
3146 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3147 /* give up */
3148 dev_kfree_skb(skb);
3149 dev_kfree_skb(oldskb);
3150 break; /* while !buffer_info->skb */
3151 } else {
3152 /* move on with the new one */
3153 dev_kfree_skb(oldskb);
3154 }
3155 }
3156
3157 /* Make buffer alignment 2 beyond a 16 byte boundary
3158 * this will result in a 16 byte aligned IP header after
3159 * the 14 byte MAC header is removed
3160 */
3161 skb_reserve(skb, NET_IP_ALIGN);
3162
3163 skb->dev = netdev;
3164
3165 buffer_info->skb = skb;
3166 buffer_info->length = adapter->rx_buffer_len;
3167 buffer_info->dma = pci_map_single(pdev,
3168 skb->data,
3169 adapter->rx_buffer_len,
3170 PCI_DMA_FROMDEVICE);
3171
3172 /* fix for errata 23, cant cross 64kB boundary */
3173 if(!e1000_check_64k_bound(adapter,
3174 (void *)(unsigned long)buffer_info->dma,
3175 adapter->rx_buffer_len)) {
3176 DPRINTK(RX_ERR,ERR,
3177 "dma align check failed: %u bytes at %ld\n",
3178 adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
3179
3180 dev_kfree_skb(skb);
3181 buffer_info->skb = NULL;
3182
3183 pci_unmap_single(pdev,
3184 buffer_info->dma,
3185 adapter->rx_buffer_len,
3186 PCI_DMA_FROMDEVICE);
3187
3188 break; /* while !buffer_info->skb */
3189 }
3190
3191 rx_desc = E1000_RX_DESC(*rx_ring, i);
3192 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3193
3194 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3195 /* Force memory writes to complete before letting h/w
3196 * know there are new descriptors to fetch. (Only
3197 * applicable for weak-ordered memory model archs,
3198 * such as IA-64). */
3199 wmb();
3200
3201 E1000_WRITE_REG(&adapter->hw, RDT, i);
3202 }
3203
3204 if(unlikely(++i == rx_ring->count)) i = 0;
3205 buffer_info = &rx_ring->buffer_info[i];
3206 }
3207
3208 rx_ring->next_to_use = i;
3209}
3210
3211/**
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003212 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3213 * @adapter: address of board private structure
3214 **/
3215
3216static void
3217e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
3218{
3219 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3220 struct net_device *netdev = adapter->netdev;
3221 struct pci_dev *pdev = adapter->pdev;
3222 union e1000_rx_desc_packet_split *rx_desc;
3223 struct e1000_buffer *buffer_info;
3224 struct e1000_ps_page *ps_page;
3225 struct e1000_ps_page_dma *ps_page_dma;
3226 struct sk_buff *skb;
3227 unsigned int i, j;
3228
3229 i = rx_ring->next_to_use;
3230 buffer_info = &rx_ring->buffer_info[i];
3231 ps_page = &rx_ring->ps_page[i];
3232 ps_page_dma = &rx_ring->ps_page_dma[i];
3233
3234 while(!buffer_info->skb) {
3235 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3236
3237 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3238 if(unlikely(!ps_page->ps_page[j])) {
3239 ps_page->ps_page[j] =
3240 alloc_page(GFP_ATOMIC);
3241 if(unlikely(!ps_page->ps_page[j]))
3242 goto no_buffers;
3243 ps_page_dma->ps_page_dma[j] =
3244 pci_map_page(pdev,
3245 ps_page->ps_page[j],
3246 0, PAGE_SIZE,
3247 PCI_DMA_FROMDEVICE);
3248 }
3249 /* Refresh the desc even if buffer_addrs didn't
3250 * change because each write-back erases this info.
3251 */
3252 rx_desc->read.buffer_addr[j+1] =
3253 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3254 }
3255
3256 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3257
3258 if(unlikely(!skb))
3259 break;
3260
3261 /* Make buffer alignment 2 beyond a 16 byte boundary
3262 * this will result in a 16 byte aligned IP header after
3263 * the 14 byte MAC header is removed
3264 */
3265 skb_reserve(skb, NET_IP_ALIGN);
3266
3267 skb->dev = netdev;
3268
3269 buffer_info->skb = skb;
3270 buffer_info->length = adapter->rx_ps_bsize0;
3271 buffer_info->dma = pci_map_single(pdev, skb->data,
3272 adapter->rx_ps_bsize0,
3273 PCI_DMA_FROMDEVICE);
3274
3275 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3276
3277 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3278 /* Force memory writes to complete before letting h/w
3279 * know there are new descriptors to fetch. (Only
3280 * applicable for weak-ordered memory model archs,
3281 * such as IA-64). */
3282 wmb();
3283 /* Hardware increments by 16 bytes, but packet split
3284 * descriptors are 32 bytes...so we increment tail
3285 * twice as much.
3286 */
3287 E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
3288 }
3289
3290 if(unlikely(++i == rx_ring->count)) i = 0;
3291 buffer_info = &rx_ring->buffer_info[i];
3292 ps_page = &rx_ring->ps_page[i];
3293 ps_page_dma = &rx_ring->ps_page_dma[i];
3294 }
3295
3296no_buffers:
3297 rx_ring->next_to_use = i;
3298}
3299
3300/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003301 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3302 * @adapter:
3303 **/
3304
3305static void
3306e1000_smartspeed(struct e1000_adapter *adapter)
3307{
3308 uint16_t phy_status;
3309 uint16_t phy_ctrl;
3310
3311 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3312 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3313 return;
3314
3315 if(adapter->smartspeed == 0) {
3316 /* If Master/Slave config fault is asserted twice,
3317 * we assume back-to-back */
3318 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3319 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3320 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3321 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3322 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3323 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3324 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3325 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3326 phy_ctrl);
3327 adapter->smartspeed++;
3328 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3329 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3330 &phy_ctrl)) {
3331 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3332 MII_CR_RESTART_AUTO_NEG);
3333 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3334 phy_ctrl);
3335 }
3336 }
3337 return;
3338 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3339 /* If still no link, perhaps using 2/3 pair cable */
3340 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3341 phy_ctrl |= CR_1000T_MS_ENABLE;
3342 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3343 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3344 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3345 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3346 MII_CR_RESTART_AUTO_NEG);
3347 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3348 }
3349 }
3350 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3351 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3352 adapter->smartspeed = 0;
3353}
3354
3355/**
3356 * e1000_ioctl -
3357 * @netdev:
3358 * @ifreq:
3359 * @cmd:
3360 **/
3361
3362static int
3363e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3364{
3365 switch (cmd) {
3366 case SIOCGMIIPHY:
3367 case SIOCGMIIREG:
3368 case SIOCSMIIREG:
3369 return e1000_mii_ioctl(netdev, ifr, cmd);
3370 default:
3371 return -EOPNOTSUPP;
3372 }
3373}
3374
3375/**
3376 * e1000_mii_ioctl -
3377 * @netdev:
3378 * @ifreq:
3379 * @cmd:
3380 **/
3381
3382static int
3383e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3384{
3385 struct e1000_adapter *adapter = netdev->priv;
3386 struct mii_ioctl_data *data = if_mii(ifr);
3387 int retval;
3388 uint16_t mii_reg;
3389 uint16_t spddplx;
3390
3391 if(adapter->hw.media_type != e1000_media_type_copper)
3392 return -EOPNOTSUPP;
3393
3394 switch (cmd) {
3395 case SIOCGMIIPHY:
3396 data->phy_id = adapter->hw.phy_addr;
3397 break;
3398 case SIOCGMIIREG:
3399 if (!capable(CAP_NET_ADMIN))
3400 return -EPERM;
3401 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3402 &data->val_out))
3403 return -EIO;
3404 break;
3405 case SIOCSMIIREG:
3406 if (!capable(CAP_NET_ADMIN))
3407 return -EPERM;
3408 if (data->reg_num & ~(0x1F))
3409 return -EFAULT;
3410 mii_reg = data->val_in;
3411 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
3412 mii_reg))
3413 return -EIO;
3414 if (adapter->hw.phy_type == e1000_phy_m88) {
3415 switch (data->reg_num) {
3416 case PHY_CTRL:
3417 if(mii_reg & MII_CR_POWER_DOWN)
3418 break;
3419 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3420 adapter->hw.autoneg = 1;
3421 adapter->hw.autoneg_advertised = 0x2F;
3422 } else {
3423 if (mii_reg & 0x40)
3424 spddplx = SPEED_1000;
3425 else if (mii_reg & 0x2000)
3426 spddplx = SPEED_100;
3427 else
3428 spddplx = SPEED_10;
3429 spddplx += (mii_reg & 0x100)
3430 ? FULL_DUPLEX :
3431 HALF_DUPLEX;
3432 retval = e1000_set_spd_dplx(adapter,
3433 spddplx);
3434 if(retval)
3435 return retval;
3436 }
3437 if(netif_running(adapter->netdev)) {
3438 e1000_down(adapter);
3439 e1000_up(adapter);
3440 } else
3441 e1000_reset(adapter);
3442 break;
3443 case M88E1000_PHY_SPEC_CTRL:
3444 case M88E1000_EXT_PHY_SPEC_CTRL:
3445 if (e1000_phy_reset(&adapter->hw))
3446 return -EIO;
3447 break;
3448 }
3449 } else {
3450 switch (data->reg_num) {
3451 case PHY_CTRL:
3452 if(mii_reg & MII_CR_POWER_DOWN)
3453 break;
3454 if(netif_running(adapter->netdev)) {
3455 e1000_down(adapter);
3456 e1000_up(adapter);
3457 } else
3458 e1000_reset(adapter);
3459 break;
3460 }
3461 }
3462 break;
3463 default:
3464 return -EOPNOTSUPP;
3465 }
3466 return E1000_SUCCESS;
3467}
3468
3469void
3470e1000_pci_set_mwi(struct e1000_hw *hw)
3471{
3472 struct e1000_adapter *adapter = hw->back;
3473
3474 int ret;
3475 ret = pci_set_mwi(adapter->pdev);
3476}
3477
3478void
3479e1000_pci_clear_mwi(struct e1000_hw *hw)
3480{
3481 struct e1000_adapter *adapter = hw->back;
3482
3483 pci_clear_mwi(adapter->pdev);
3484}
3485
3486void
3487e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3488{
3489 struct e1000_adapter *adapter = hw->back;
3490
3491 pci_read_config_word(adapter->pdev, reg, value);
3492}
3493
3494void
3495e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3496{
3497 struct e1000_adapter *adapter = hw->back;
3498
3499 pci_write_config_word(adapter->pdev, reg, *value);
3500}
3501
3502uint32_t
3503e1000_io_read(struct e1000_hw *hw, unsigned long port)
3504{
3505 return inl(port);
3506}
3507
3508void
3509e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
3510{
3511 outl(value, port);
3512}
3513
3514static void
3515e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
3516{
3517 struct e1000_adapter *adapter = netdev->priv;
3518 uint32_t ctrl, rctl;
3519
3520 e1000_irq_disable(adapter);
3521 adapter->vlgrp = grp;
3522
3523 if(grp) {
3524 /* enable VLAN tag insert/strip */
3525 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3526 ctrl |= E1000_CTRL_VME;
3527 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3528
3529 /* enable VLAN receive filtering */
3530 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3531 rctl |= E1000_RCTL_VFE;
3532 rctl &= ~E1000_RCTL_CFIEN;
3533 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003534 e1000_update_mng_vlan(adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 } else {
3536 /* disable VLAN tag insert/strip */
3537 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3538 ctrl &= ~E1000_CTRL_VME;
3539 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3540
3541 /* disable VLAN filtering */
3542 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3543 rctl &= ~E1000_RCTL_VFE;
3544 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003545 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
3546 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3547 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3548 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549 }
3550
3551 e1000_irq_enable(adapter);
3552}
3553
3554static void
3555e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
3556{
3557 struct e1000_adapter *adapter = netdev->priv;
3558 uint32_t vfta, index;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003559 if((adapter->hw.mng_cookie.status &
3560 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3561 (vid == adapter->mng_vlan_id))
3562 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003563 /* add VID to filter table */
3564 index = (vid >> 5) & 0x7F;
3565 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3566 vfta |= (1 << (vid & 0x1F));
3567 e1000_write_vfta(&adapter->hw, index, vfta);
3568}
3569
3570static void
3571e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
3572{
3573 struct e1000_adapter *adapter = netdev->priv;
3574 uint32_t vfta, index;
3575
3576 e1000_irq_disable(adapter);
3577
3578 if(adapter->vlgrp)
3579 adapter->vlgrp->vlan_devices[vid] = NULL;
3580
3581 e1000_irq_enable(adapter);
3582
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003583 if((adapter->hw.mng_cookie.status &
3584 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3585 (vid == adapter->mng_vlan_id))
3586 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003587 /* remove VID from filter table */
3588 index = (vid >> 5) & 0x7F;
3589 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3590 vfta &= ~(1 << (vid & 0x1F));
3591 e1000_write_vfta(&adapter->hw, index, vfta);
3592}
3593
3594static void
3595e1000_restore_vlan(struct e1000_adapter *adapter)
3596{
3597 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3598
3599 if(adapter->vlgrp) {
3600 uint16_t vid;
3601 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3602 if(!adapter->vlgrp->vlan_devices[vid])
3603 continue;
3604 e1000_vlan_rx_add_vid(adapter->netdev, vid);
3605 }
3606 }
3607}
3608
3609int
3610e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3611{
3612 adapter->hw.autoneg = 0;
3613
3614 switch(spddplx) {
3615 case SPEED_10 + DUPLEX_HALF:
3616 adapter->hw.forced_speed_duplex = e1000_10_half;
3617 break;
3618 case SPEED_10 + DUPLEX_FULL:
3619 adapter->hw.forced_speed_duplex = e1000_10_full;
3620 break;
3621 case SPEED_100 + DUPLEX_HALF:
3622 adapter->hw.forced_speed_duplex = e1000_100_half;
3623 break;
3624 case SPEED_100 + DUPLEX_FULL:
3625 adapter->hw.forced_speed_duplex = e1000_100_full;
3626 break;
3627 case SPEED_1000 + DUPLEX_FULL:
3628 adapter->hw.autoneg = 1;
3629 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3630 break;
3631 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3632 default:
3633 DPRINTK(PROBE, ERR,
3634 "Unsupported Speed/Duplexity configuration\n");
3635 return -EINVAL;
3636 }
3637 return 0;
3638}
3639
3640static int
3641e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
3642{
3643 struct pci_dev *pdev = NULL;
3644
3645 switch(event) {
3646 case SYS_DOWN:
3647 case SYS_HALT:
3648 case SYS_POWER_OFF:
3649 while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
3650 if(pci_dev_driver(pdev) == &e1000_driver)
3651 e1000_suspend(pdev, 3);
3652 }
3653 }
3654 return NOTIFY_DONE;
3655}
3656
3657static int
3658e1000_suspend(struct pci_dev *pdev, uint32_t state)
3659{
3660 struct net_device *netdev = pci_get_drvdata(pdev);
3661 struct e1000_adapter *adapter = netdev->priv;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003662 uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003663 uint32_t wufc = adapter->wol;
3664
3665 netif_device_detach(netdev);
3666
3667 if(netif_running(netdev))
3668 e1000_down(adapter);
3669
3670 status = E1000_READ_REG(&adapter->hw, STATUS);
3671 if(status & E1000_STATUS_LU)
3672 wufc &= ~E1000_WUFC_LNKC;
3673
3674 if(wufc) {
3675 e1000_setup_rctl(adapter);
3676 e1000_set_multi(netdev);
3677
3678 /* turn on all-multi mode if wake on multicast is enabled */
3679 if(adapter->wol & E1000_WUFC_MC) {
3680 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3681 rctl |= E1000_RCTL_MPE;
3682 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3683 }
3684
3685 if(adapter->hw.mac_type >= e1000_82540) {
3686 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3687 /* advertise wake from D3Cold */
3688 #define E1000_CTRL_ADVD3WUC 0x00100000
3689 /* phy power management enable */
3690 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3691 ctrl |= E1000_CTRL_ADVD3WUC |
3692 E1000_CTRL_EN_PHY_PWR_MGMT;
3693 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3694 }
3695
3696 if(adapter->hw.media_type == e1000_media_type_fiber ||
3697 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3698 /* keep the laser running in D3 */
3699 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3700 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3701 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3702 }
3703
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003704 /* Allow time for pending master requests to run */
3705 e1000_disable_pciex_master(&adapter->hw);
3706
Linus Torvalds1da177e2005-04-16 15:20:36 -07003707 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3708 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3709 pci_enable_wake(pdev, 3, 1);
3710 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3711 } else {
3712 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3713 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3714 pci_enable_wake(pdev, 3, 0);
3715 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3716 }
3717
3718 pci_save_state(pdev);
3719
3720 if(adapter->hw.mac_type >= e1000_82540 &&
3721 adapter->hw.media_type == e1000_media_type_copper) {
3722 manc = E1000_READ_REG(&adapter->hw, MANC);
3723 if(manc & E1000_MANC_SMBUS_EN) {
3724 manc |= E1000_MANC_ARP_EN;
3725 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3726 pci_enable_wake(pdev, 3, 1);
3727 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3728 }
3729 }
3730
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003731 switch(adapter->hw.mac_type) {
3732 case e1000_82573:
3733 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3734 E1000_WRITE_REG(&adapter->hw, SWSM,
3735 swsm & ~E1000_SWSM_DRV_LOAD);
3736 break;
3737 default:
3738 break;
3739 }
3740
Linus Torvalds1da177e2005-04-16 15:20:36 -07003741 pci_disable_device(pdev);
3742
3743 state = (state > 0) ? 3 : 0;
3744 pci_set_power_state(pdev, state);
3745
3746 return 0;
3747}
3748
3749#ifdef CONFIG_PM
3750static int
3751e1000_resume(struct pci_dev *pdev)
3752{
3753 struct net_device *netdev = pci_get_drvdata(pdev);
3754 struct e1000_adapter *adapter = netdev->priv;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003755 uint32_t manc, ret, swsm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003756
3757 pci_set_power_state(pdev, 0);
3758 pci_restore_state(pdev);
3759 ret = pci_enable_device(pdev);
Malli Chilakalaa4cb8472005-04-28 19:41:28 -07003760 pci_set_master(pdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003761
3762 pci_enable_wake(pdev, 3, 0);
3763 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3764
3765 e1000_reset(adapter);
3766 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3767
3768 if(netif_running(netdev))
3769 e1000_up(adapter);
3770
3771 netif_device_attach(netdev);
3772
3773 if(adapter->hw.mac_type >= e1000_82540 &&
3774 adapter->hw.media_type == e1000_media_type_copper) {
3775 manc = E1000_READ_REG(&adapter->hw, MANC);
3776 manc &= ~(E1000_MANC_ARP_EN);
3777 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3778 }
3779
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003780 switch(adapter->hw.mac_type) {
3781 case e1000_82573:
3782 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3783 E1000_WRITE_REG(&adapter->hw, SWSM,
3784 swsm | E1000_SWSM_DRV_LOAD);
3785 break;
3786 default:
3787 break;
3788 }
3789
Linus Torvalds1da177e2005-04-16 15:20:36 -07003790 return 0;
3791}
3792#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003793#ifdef CONFIG_NET_POLL_CONTROLLER
3794/*
3795 * Polling 'interrupt' - used by things like netconsole to send skbs
3796 * without having to re-enable interrupts. It's not called while
3797 * the interrupt routine is executing.
3798 */
3799static void
3800e1000_netpoll (struct net_device *netdev)
3801{
3802 struct e1000_adapter *adapter = netdev->priv;
3803 disable_irq(adapter->pdev->irq);
3804 e1000_intr(adapter->pdev->irq, netdev, NULL);
3805 enable_irq(adapter->pdev->irq);
3806}
3807#endif
3808
3809/* e1000_main.c */