blob: db9ae6e18154d851126d9b9ca4785af012893a2d [file] [log] [blame]
Michael Halcrowb30ab0e2015-04-12 00:43:56 -04001/*
2 * linux/fs/ext4/crypto.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains encryption functions for ext4
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 *
15 * This has not yet undergone a rigorous security audit.
16 *
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
19 */
20
Herbert Xu3f32a5b2016-01-24 21:17:38 +080021#include <crypto/skcipher.h>
Michael Halcrowb30ab0e2015-04-12 00:43:56 -040022#include <keys/user-type.h>
23#include <keys/encrypted-type.h>
Michael Halcrowb30ab0e2015-04-12 00:43:56 -040024#include <linux/ecryptfs.h>
25#include <linux/gfp.h>
26#include <linux/kernel.h>
27#include <linux/key.h>
28#include <linux/list.h>
29#include <linux/mempool.h>
30#include <linux/module.h>
31#include <linux/mutex.h>
32#include <linux/random.h>
33#include <linux/scatterlist.h>
34#include <linux/spinlock_types.h>
35
36#include "ext4_extents.h"
37#include "xattr.h"
38
39/* Encryption added and removed here! (L: */
40
41static unsigned int num_prealloc_crypto_pages = 32;
42static unsigned int num_prealloc_crypto_ctxs = 128;
43
44module_param(num_prealloc_crypto_pages, uint, 0444);
45MODULE_PARM_DESC(num_prealloc_crypto_pages,
46 "Number of crypto pages to preallocate");
47module_param(num_prealloc_crypto_ctxs, uint, 0444);
48MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
49 "Number of crypto contexts to preallocate");
50
51static mempool_t *ext4_bounce_page_pool;
52
53static LIST_HEAD(ext4_free_crypto_ctxs);
54static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
55
Theodore Ts'o8ee037142015-05-18 13:19:47 -040056static struct kmem_cache *ext4_crypto_ctx_cachep;
57struct kmem_cache *ext4_crypt_info_cachep;
58
Michael Halcrowb30ab0e2015-04-12 00:43:56 -040059/**
60 * ext4_release_crypto_ctx() - Releases an encryption context
61 * @ctx: The encryption context to release.
62 *
63 * If the encryption context was allocated from the pre-allocated pool, returns
64 * it to that pool. Else, frees it.
65 *
66 * If there's a bounce page in the context, this frees that.
67 */
68void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
69{
70 unsigned long flags;
71
Theodore Ts'o3dbb5eb2015-06-03 09:32:39 -040072 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
73 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
Theodore Ts'o614def72015-05-31 13:31:34 -040074 ctx->w.bounce_page = NULL;
75 ctx->w.control_page = NULL;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -040076 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
Theodore Ts'o8ee037142015-05-18 13:19:47 -040077 kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -040078 } else {
79 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
80 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
81 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
82 }
83}
84
85/**
Michael Halcrowb30ab0e2015-04-12 00:43:56 -040086 * ext4_get_crypto_ctx() - Gets an encryption context
87 * @inode: The inode for which we are doing the crypto
88 *
89 * Allocates and initializes an encryption context.
90 *
91 * Return: An allocated and initialized encryption context on success; error
92 * value or NULL otherwise.
93 */
Theodore Ts'oc9af28f2016-03-26 16:14:34 -040094struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode,
95 gfp_t gfp_flags)
Michael Halcrowb30ab0e2015-04-12 00:43:56 -040096{
97 struct ext4_crypto_ctx *ctx = NULL;
98 int res = 0;
99 unsigned long flags;
Theodore Ts'ob7236e22015-05-18 13:17:47 -0400100 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400101
Theodore Ts'oabdd4382015-05-31 13:35:39 -0400102 if (ci == NULL)
103 return ERR_PTR(-ENOKEY);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400104
105 /*
106 * We first try getting the ctx from a free list because in
107 * the common case the ctx will have an allocated and
108 * initialized crypto tfm, so it's probably a worthwhile
109 * optimization. For the bounce page, we first try getting it
110 * from the kernel allocator because that's just about as fast
111 * as getting it from a list and because a cache of free pages
112 * should generally be a "last resort" option for a filesystem
113 * to be able to do its job.
114 */
115 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
116 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
117 struct ext4_crypto_ctx, free_list);
118 if (ctx)
119 list_del(&ctx->free_list);
120 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
121 if (!ctx) {
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400122 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags);
Theodore Ts'o8ee037142015-05-18 13:19:47 -0400123 if (!ctx) {
124 res = -ENOMEM;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400125 goto out;
126 }
127 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 } else {
129 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 }
Theodore Ts'o614def72015-05-31 13:31:34 -0400131 ctx->flags &= ~EXT4_WRITE_PATH_FL;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400132
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400133out:
134 if (res) {
135 if (!IS_ERR_OR_NULL(ctx))
136 ext4_release_crypto_ctx(ctx);
137 ctx = ERR_PTR(res);
138 }
139 return ctx;
140}
141
142struct workqueue_struct *ext4_read_workqueue;
143static DEFINE_MUTEX(crypto_init);
144
145/**
146 * ext4_exit_crypto() - Shutdown the ext4 encryption system
147 */
148void ext4_exit_crypto(void)
149{
150 struct ext4_crypto_ctx *pos, *n;
151
Theodore Ts'oc936e1e2015-05-31 13:34:22 -0400152 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
Theodore Ts'o8ee037142015-05-18 13:19:47 -0400153 kmem_cache_free(ext4_crypto_ctx_cachep, pos);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400154 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
155 if (ext4_bounce_page_pool)
156 mempool_destroy(ext4_bounce_page_pool);
157 ext4_bounce_page_pool = NULL;
158 if (ext4_read_workqueue)
159 destroy_workqueue(ext4_read_workqueue);
160 ext4_read_workqueue = NULL;
Theodore Ts'o8ee037142015-05-18 13:19:47 -0400161 if (ext4_crypto_ctx_cachep)
162 kmem_cache_destroy(ext4_crypto_ctx_cachep);
163 ext4_crypto_ctx_cachep = NULL;
164 if (ext4_crypt_info_cachep)
165 kmem_cache_destroy(ext4_crypt_info_cachep);
166 ext4_crypt_info_cachep = NULL;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400167}
168
169/**
170 * ext4_init_crypto() - Set up for ext4 encryption.
171 *
172 * We only call this when we start accessing encrypted files, since it
173 * results in memory getting allocated that wouldn't otherwise be used.
174 *
175 * Return: Zero on success, non-zero otherwise.
176 */
177int ext4_init_crypto(void)
178{
Theodore Ts'o8ee037142015-05-18 13:19:47 -0400179 int i, res = -ENOMEM;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400180
181 mutex_lock(&crypto_init);
182 if (ext4_read_workqueue)
183 goto already_initialized;
184 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
Theodore Ts'o8ee037142015-05-18 13:19:47 -0400185 if (!ext4_read_workqueue)
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400186 goto fail;
Theodore Ts'o8ee037142015-05-18 13:19:47 -0400187
188 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
189 SLAB_RECLAIM_ACCOUNT);
190 if (!ext4_crypto_ctx_cachep)
191 goto fail;
192
193 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
194 SLAB_RECLAIM_ACCOUNT);
195 if (!ext4_crypt_info_cachep)
196 goto fail;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400197
198 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
199 struct ext4_crypto_ctx *ctx;
200
Theodore Ts'o8ee037142015-05-18 13:19:47 -0400201 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
202 if (!ctx) {
203 res = -ENOMEM;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400204 goto fail;
205 }
206 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
207 }
208
209 ext4_bounce_page_pool =
210 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
211 if (!ext4_bounce_page_pool) {
212 res = -ENOMEM;
213 goto fail;
214 }
215already_initialized:
216 mutex_unlock(&crypto_init);
217 return 0;
218fail:
219 ext4_exit_crypto();
220 mutex_unlock(&crypto_init);
221 return res;
222}
223
224void ext4_restore_control_page(struct page *data_page)
225{
226 struct ext4_crypto_ctx *ctx =
227 (struct ext4_crypto_ctx *)page_private(data_page);
228
229 set_page_private(data_page, (unsigned long)NULL);
230 ClearPagePrivate(data_page);
231 unlock_page(data_page);
232 ext4_release_crypto_ctx(ctx);
233}
234
235/**
236 * ext4_crypt_complete() - The completion callback for page encryption
237 * @req: The asynchronous encryption request context
238 * @res: The result of the encryption operation
239 */
240static void ext4_crypt_complete(struct crypto_async_request *req, int res)
241{
242 struct ext4_completion_result *ecr = req->data;
243
244 if (res == -EINPROGRESS)
245 return;
246 ecr->res = res;
247 complete(&ecr->completion);
248}
249
250typedef enum {
251 EXT4_DECRYPT = 0,
252 EXT4_ENCRYPT,
253} ext4_direction_t;
254
Theodore Ts'o3684de82015-10-03 10:49:26 -0400255static int ext4_page_crypto(struct inode *inode,
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400256 ext4_direction_t rw,
257 pgoff_t index,
258 struct page *src_page,
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400259 struct page *dest_page,
260 gfp_t gfp_flags)
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400261
262{
263 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
Herbert Xu3f32a5b2016-01-24 21:17:38 +0800264 struct skcipher_request *req = NULL;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400265 DECLARE_EXT4_COMPLETION_RESULT(ecr);
266 struct scatterlist dst, src;
Theodore Ts'oc936e1e2015-05-31 13:34:22 -0400267 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
Herbert Xu3f32a5b2016-01-24 21:17:38 +0800268 struct crypto_skcipher *tfm = ci->ci_ctfm;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400269 int res = 0;
270
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400271 req = skcipher_request_alloc(tfm, gfp_flags);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400272 if (!req) {
273 printk_ratelimited(KERN_ERR
274 "%s: crypto_request_alloc() failed\n",
275 __func__);
276 return -ENOMEM;
277 }
Herbert Xu3f32a5b2016-01-24 21:17:38 +0800278 skcipher_request_set_callback(
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400279 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
280 ext4_crypt_complete, &ecr);
281
282 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
283 memcpy(xts_tweak, &index, sizeof(index));
284 memset(&xts_tweak[sizeof(index)], 0,
285 EXT4_XTS_TWEAK_SIZE - sizeof(index));
286
287 sg_init_table(&dst, 1);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300288 sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400289 sg_init_table(&src, 1);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300290 sg_set_page(&src, src_page, PAGE_SIZE, 0);
291 skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
Herbert Xu3f32a5b2016-01-24 21:17:38 +0800292 xts_tweak);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400293 if (rw == EXT4_DECRYPT)
Herbert Xu3f32a5b2016-01-24 21:17:38 +0800294 res = crypto_skcipher_decrypt(req);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400295 else
Herbert Xu3f32a5b2016-01-24 21:17:38 +0800296 res = crypto_skcipher_encrypt(req);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400297 if (res == -EINPROGRESS || res == -EBUSY) {
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400298 wait_for_completion(&ecr.completion);
299 res = ecr.res;
300 }
Herbert Xu3f32a5b2016-01-24 21:17:38 +0800301 skcipher_request_free(req);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400302 if (res) {
303 printk_ratelimited(
304 KERN_ERR
Herbert Xu3f32a5b2016-01-24 21:17:38 +0800305 "%s: crypto_skcipher_encrypt() returned %d\n",
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400306 __func__, res);
307 return res;
308 }
309 return 0;
310}
311
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400312static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx,
313 gfp_t gfp_flags)
Theodore Ts'o95ea68b2015-05-31 13:34:24 -0400314{
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400315 ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags);
Theodore Ts'o3dbb5eb2015-06-03 09:32:39 -0400316 if (ctx->w.bounce_page == NULL)
317 return ERR_PTR(-ENOMEM);
Theodore Ts'o95ea68b2015-05-31 13:34:24 -0400318 ctx->flags |= EXT4_WRITE_PATH_FL;
Theodore Ts'o3dbb5eb2015-06-03 09:32:39 -0400319 return ctx->w.bounce_page;
Theodore Ts'o95ea68b2015-05-31 13:34:24 -0400320}
321
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400322/**
323 * ext4_encrypt() - Encrypts a page
324 * @inode: The inode for which the encryption should take place
325 * @plaintext_page: The page to encrypt. Must be locked.
326 *
327 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
328 * encryption context.
329 *
330 * Called on the page write path. The caller must call
331 * ext4_restore_control_page() on the returned ciphertext page to
332 * release the bounce buffer and the encryption context.
333 *
334 * Return: An allocated page with the encrypted content on success. Else, an
335 * error value or NULL.
336 */
337struct page *ext4_encrypt(struct inode *inode,
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400338 struct page *plaintext_page,
339 gfp_t gfp_flags)
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400340{
341 struct ext4_crypto_ctx *ctx;
342 struct page *ciphertext_page = NULL;
343 int err;
344
345 BUG_ON(!PageLocked(plaintext_page));
346
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400347 ctx = ext4_get_crypto_ctx(inode, gfp_flags);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400348 if (IS_ERR(ctx))
349 return (struct page *) ctx;
350
351 /* The encryption operation will require a bounce page. */
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400352 ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
Theodore Ts'o95ea68b2015-05-31 13:34:24 -0400353 if (IS_ERR(ciphertext_page))
354 goto errout;
Theodore Ts'o614def72015-05-31 13:31:34 -0400355 ctx->w.control_page = plaintext_page;
Theodore Ts'o3684de82015-10-03 10:49:26 -0400356 err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400357 plaintext_page, ciphertext_page, gfp_flags);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400358 if (err) {
Theodore Ts'o95ea68b2015-05-31 13:34:24 -0400359 ciphertext_page = ERR_PTR(err);
360 errout:
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400361 ext4_release_crypto_ctx(ctx);
Theodore Ts'o95ea68b2015-05-31 13:34:24 -0400362 return ciphertext_page;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400363 }
364 SetPagePrivate(ciphertext_page);
365 set_page_private(ciphertext_page, (unsigned long)ctx);
366 lock_page(ciphertext_page);
367 return ciphertext_page;
368}
369
370/**
371 * ext4_decrypt() - Decrypts a page in-place
372 * @ctx: The encryption context.
373 * @page: The page to decrypt. Must be locked.
374 *
375 * Decrypts page in-place using the ctx encryption context.
376 *
377 * Called from the read completion callback.
378 *
379 * Return: Zero on success, non-zero otherwise.
380 */
Theodore Ts'o3684de82015-10-03 10:49:26 -0400381int ext4_decrypt(struct page *page)
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400382{
383 BUG_ON(!PageLocked(page));
384
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400385 return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT,
386 page->index, page, page, GFP_NOFS);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400387}
388
Jan Kara53085fa2015-12-07 15:09:35 -0500389int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk,
390 ext4_fsblk_t pblk, ext4_lblk_t len)
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400391{
392 struct ext4_crypto_ctx *ctx;
393 struct page *ciphertext_page = NULL;
394 struct bio *bio;
Theodore Ts'o36086d42015-10-03 10:49:29 -0400395 int ret, err = 0;
396
397#if 0
398 ext4_msg(inode->i_sb, KERN_CRIT,
399 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
400 (unsigned long) inode->i_ino, lblk, len);
401#endif
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400402
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300403 BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400404
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400405 ctx = ext4_get_crypto_ctx(inode, GFP_NOFS);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400406 if (IS_ERR(ctx))
407 return PTR_ERR(ctx);
408
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400409 ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
Theodore Ts'o95ea68b2015-05-31 13:34:24 -0400410 if (IS_ERR(ciphertext_page)) {
411 err = PTR_ERR(ciphertext_page);
412 goto errout;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400413 }
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400414
415 while (len--) {
Theodore Ts'o3684de82015-10-03 10:49:26 -0400416 err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400417 ZERO_PAGE(0), ciphertext_page,
418 GFP_NOFS);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400419 if (err)
420 goto errout;
421
Theodore Ts'oc9af28f2016-03-26 16:14:34 -0400422 bio = bio_alloc(GFP_NOWAIT, 1);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400423 if (!bio) {
424 err = -ENOMEM;
425 goto errout;
426 }
427 bio->bi_bdev = inode->i_sb->s_bdev;
Theodore Ts'o36086d42015-10-03 10:49:29 -0400428 bio->bi_iter.bi_sector =
429 pblk << (inode->i_sb->s_blocksize_bits - 9);
430 ret = bio_add_page(bio, ciphertext_page,
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400431 inode->i_sb->s_blocksize, 0);
Theodore Ts'o36086d42015-10-03 10:49:29 -0400432 if (ret != inode->i_sb->s_blocksize) {
433 /* should never happen! */
434 ext4_msg(inode->i_sb, KERN_ERR,
435 "bio_add_page failed: %d", ret);
436 WARN_ON(1);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400437 bio_put(bio);
Theodore Ts'o36086d42015-10-03 10:49:29 -0400438 err = -EIO;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400439 goto errout;
440 }
441 err = submit_bio_wait(WRITE, bio);
Theodore Ts'o36086d42015-10-03 10:49:29 -0400442 if ((err == 0) && bio->bi_error)
443 err = -EIO;
Theodore Ts'o95ea68b2015-05-31 13:34:24 -0400444 bio_put(bio);
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400445 if (err)
446 goto errout;
Theodore Ts'o36086d42015-10-03 10:49:29 -0400447 lblk++; pblk++;
Michael Halcrowb30ab0e2015-04-12 00:43:56 -0400448 }
449 err = 0;
450errout:
451 ext4_release_crypto_ctx(ctx);
452 return err;
453}
454
455bool ext4_valid_contents_enc_mode(uint32_t mode)
456{
457 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
458}
459
460/**
461 * ext4_validate_encryption_key_size() - Validate the encryption key size
462 * @mode: The key mode.
463 * @size: The key size to validate.
464 *
465 * Return: The validated key size for @mode. Zero if invalid.
466 */
467uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
468{
469 if (size == ext4_encryption_key_size(mode))
470 return size;
471 return 0;
472}
Theodore Ts'o28b4c262016-02-07 19:35:05 -0500473
474/*
475 * Validate dentries for encrypted directories to make sure we aren't
476 * potentially caching stale data after a key has been added or
477 * removed.
478 */
479static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags)
480{
Theodore Ts'o3d43bcf2016-03-26 16:15:42 -0400481 struct dentry *dir;
482 struct ext4_crypt_info *ci;
Theodore Ts'o28b4c262016-02-07 19:35:05 -0500483 int dir_has_key, cached_with_key;
484
Theodore Ts'o3d43bcf2016-03-26 16:15:42 -0400485 dir = dget_parent(dentry);
486 if (!ext4_encrypted_inode(d_inode(dir))) {
487 dput(dir);
Theodore Ts'o28b4c262016-02-07 19:35:05 -0500488 return 0;
Theodore Ts'o3d43bcf2016-03-26 16:15:42 -0400489 }
490 ci = EXT4_I(d_inode(dir))->i_crypt_info;
Theodore Ts'o28b4c262016-02-07 19:35:05 -0500491 if (ci && ci->ci_keyring_key &&
492 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
493 (1 << KEY_FLAG_REVOKED) |
494 (1 << KEY_FLAG_DEAD))))
495 ci = NULL;
496
497 /* this should eventually be an flag in d_flags */
498 cached_with_key = dentry->d_fsdata != NULL;
499 dir_has_key = (ci != NULL);
Theodore Ts'o3d43bcf2016-03-26 16:15:42 -0400500 dput(dir);
Theodore Ts'o28b4c262016-02-07 19:35:05 -0500501
502 /*
503 * If the dentry was cached without the key, and it is a
504 * negative dentry, it might be a valid name. We can't check
505 * if the key has since been made available due to locking
506 * reasons, so we fail the validation so ext4_lookup() can do
507 * this check.
508 *
509 * We also fail the validation if the dentry was created with
510 * the key present, but we no longer have the key, or vice versa.
511 */
512 if ((!cached_with_key && d_is_negative(dentry)) ||
513 (!cached_with_key && dir_has_key) ||
514 (cached_with_key && !dir_has_key)) {
515#if 0 /* Revalidation debug */
516 char buf[80];
517 char *cp = simple_dname(dentry, buf, sizeof(buf));
518
519 if (IS_ERR(cp))
520 cp = (char *) "???";
521 pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata,
522 cached_with_key, d_is_negative(dentry),
523 dir_has_key);
524#endif
525 return 0;
526 }
527 return 1;
528}
529
530const struct dentry_operations ext4_encrypted_d_ops = {
531 .d_revalidate = ext4_d_revalidate,
532};