Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 1 | /* |
Eric Anholt | 41691b8 | 2015-10-08 18:37:24 -0700 | [diff] [blame] | 2 | * Copyright (C) 2010,2015 Broadcom |
Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 3 | * Copyright (C) 2012 Stephen Warren |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | */ |
| 19 | |
Eric Anholt | 41691b8 | 2015-10-08 18:37:24 -0700 | [diff] [blame] | 20 | /** |
| 21 | * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) |
| 22 | * |
| 23 | * The clock tree on the 2835 has several levels. There's a root |
| 24 | * oscillator running at 19.2Mhz. After the oscillator there are 5 |
| 25 | * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", |
| 26 | * and "HDMI displays". Those 5 PLLs each can divide their output to |
| 27 | * produce up to 4 channels. Finally, there is the level of clocks to |
| 28 | * be consumed by other hardware components (like "H264" or "HDMI |
| 29 | * state machine"), which divide off of some subset of the PLL |
| 30 | * channels. |
| 31 | * |
| 32 | * All of the clocks in the tree are exposed in the DT, because the DT |
| 33 | * may want to make assignments of the final layer of clocks to the |
| 34 | * PLL channels, and some components of the hardware will actually |
| 35 | * skip layers of the tree (for example, the pixel clock comes |
| 36 | * directly from the PLLH PIX channel without using a CM_*CTL clock |
| 37 | * generator). |
| 38 | */ |
| 39 | |
Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 40 | #include <linux/clk-provider.h> |
| 41 | #include <linux/clkdev.h> |
| 42 | #include <linux/clk/bcm2835.h> |
Eric Anholt | 41691b8 | 2015-10-08 18:37:24 -0700 | [diff] [blame] | 43 | #include <linux/module.h> |
Stephen Warren | 526d239 | 2012-12-24 21:55:01 -0700 | [diff] [blame] | 44 | #include <linux/of.h> |
Eric Anholt | 41691b8 | 2015-10-08 18:37:24 -0700 | [diff] [blame] | 45 | #include <linux/platform_device.h> |
| 46 | #include <linux/slab.h> |
| 47 | #include <dt-bindings/clock/bcm2835.h> |
| 48 | |
| 49 | #define CM_PASSWORD 0x5a000000 |
| 50 | |
| 51 | #define CM_GNRICCTL 0x000 |
| 52 | #define CM_GNRICDIV 0x004 |
| 53 | # define CM_DIV_FRAC_BITS 12 |
| 54 | |
| 55 | #define CM_VPUCTL 0x008 |
| 56 | #define CM_VPUDIV 0x00c |
| 57 | #define CM_SYSCTL 0x010 |
| 58 | #define CM_SYSDIV 0x014 |
| 59 | #define CM_PERIACTL 0x018 |
| 60 | #define CM_PERIADIV 0x01c |
| 61 | #define CM_PERIICTL 0x020 |
| 62 | #define CM_PERIIDIV 0x024 |
| 63 | #define CM_H264CTL 0x028 |
| 64 | #define CM_H264DIV 0x02c |
| 65 | #define CM_ISPCTL 0x030 |
| 66 | #define CM_ISPDIV 0x034 |
| 67 | #define CM_V3DCTL 0x038 |
| 68 | #define CM_V3DDIV 0x03c |
| 69 | #define CM_CAM0CTL 0x040 |
| 70 | #define CM_CAM0DIV 0x044 |
| 71 | #define CM_CAM1CTL 0x048 |
| 72 | #define CM_CAM1DIV 0x04c |
| 73 | #define CM_CCP2CTL 0x050 |
| 74 | #define CM_CCP2DIV 0x054 |
| 75 | #define CM_DSI0ECTL 0x058 |
| 76 | #define CM_DSI0EDIV 0x05c |
| 77 | #define CM_DSI0PCTL 0x060 |
| 78 | #define CM_DSI0PDIV 0x064 |
| 79 | #define CM_DPICTL 0x068 |
| 80 | #define CM_DPIDIV 0x06c |
| 81 | #define CM_GP0CTL 0x070 |
| 82 | #define CM_GP0DIV 0x074 |
| 83 | #define CM_GP1CTL 0x078 |
| 84 | #define CM_GP1DIV 0x07c |
| 85 | #define CM_GP2CTL 0x080 |
| 86 | #define CM_GP2DIV 0x084 |
| 87 | #define CM_HSMCTL 0x088 |
| 88 | #define CM_HSMDIV 0x08c |
| 89 | #define CM_OTPCTL 0x090 |
| 90 | #define CM_OTPDIV 0x094 |
| 91 | #define CM_PWMCTL 0x0a0 |
| 92 | #define CM_PWMDIV 0x0a4 |
| 93 | #define CM_SMICTL 0x0b0 |
| 94 | #define CM_SMIDIV 0x0b4 |
| 95 | #define CM_TSENSCTL 0x0e0 |
| 96 | #define CM_TSENSDIV 0x0e4 |
| 97 | #define CM_TIMERCTL 0x0e8 |
| 98 | #define CM_TIMERDIV 0x0ec |
| 99 | #define CM_UARTCTL 0x0f0 |
| 100 | #define CM_UARTDIV 0x0f4 |
| 101 | #define CM_VECCTL 0x0f8 |
| 102 | #define CM_VECDIV 0x0fc |
| 103 | #define CM_PULSECTL 0x190 |
| 104 | #define CM_PULSEDIV 0x194 |
| 105 | #define CM_SDCCTL 0x1a8 |
| 106 | #define CM_SDCDIV 0x1ac |
| 107 | #define CM_ARMCTL 0x1b0 |
| 108 | #define CM_EMMCCTL 0x1c0 |
| 109 | #define CM_EMMCDIV 0x1c4 |
| 110 | |
| 111 | /* General bits for the CM_*CTL regs */ |
| 112 | # define CM_ENABLE BIT(4) |
| 113 | # define CM_KILL BIT(5) |
| 114 | # define CM_GATE_BIT 6 |
| 115 | # define CM_GATE BIT(CM_GATE_BIT) |
| 116 | # define CM_BUSY BIT(7) |
| 117 | # define CM_BUSYD BIT(8) |
| 118 | # define CM_SRC_SHIFT 0 |
| 119 | # define CM_SRC_BITS 4 |
| 120 | # define CM_SRC_MASK 0xf |
| 121 | # define CM_SRC_GND 0 |
| 122 | # define CM_SRC_OSC 1 |
| 123 | # define CM_SRC_TESTDEBUG0 2 |
| 124 | # define CM_SRC_TESTDEBUG1 3 |
| 125 | # define CM_SRC_PLLA_CORE 4 |
| 126 | # define CM_SRC_PLLA_PER 4 |
| 127 | # define CM_SRC_PLLC_CORE0 5 |
| 128 | # define CM_SRC_PLLC_PER 5 |
| 129 | # define CM_SRC_PLLC_CORE1 8 |
| 130 | # define CM_SRC_PLLD_CORE 6 |
| 131 | # define CM_SRC_PLLD_PER 6 |
| 132 | # define CM_SRC_PLLH_AUX 7 |
| 133 | # define CM_SRC_PLLC_CORE1 8 |
| 134 | # define CM_SRC_PLLC_CORE2 9 |
| 135 | |
| 136 | #define CM_OSCCOUNT 0x100 |
| 137 | |
| 138 | #define CM_PLLA 0x104 |
| 139 | # define CM_PLL_ANARST BIT(8) |
| 140 | # define CM_PLLA_HOLDPER BIT(7) |
| 141 | # define CM_PLLA_LOADPER BIT(6) |
| 142 | # define CM_PLLA_HOLDCORE BIT(5) |
| 143 | # define CM_PLLA_LOADCORE BIT(4) |
| 144 | # define CM_PLLA_HOLDCCP2 BIT(3) |
| 145 | # define CM_PLLA_LOADCCP2 BIT(2) |
| 146 | # define CM_PLLA_HOLDDSI0 BIT(1) |
| 147 | # define CM_PLLA_LOADDSI0 BIT(0) |
| 148 | |
| 149 | #define CM_PLLC 0x108 |
| 150 | # define CM_PLLC_HOLDPER BIT(7) |
| 151 | # define CM_PLLC_LOADPER BIT(6) |
| 152 | # define CM_PLLC_HOLDCORE2 BIT(5) |
| 153 | # define CM_PLLC_LOADCORE2 BIT(4) |
| 154 | # define CM_PLLC_HOLDCORE1 BIT(3) |
| 155 | # define CM_PLLC_LOADCORE1 BIT(2) |
| 156 | # define CM_PLLC_HOLDCORE0 BIT(1) |
| 157 | # define CM_PLLC_LOADCORE0 BIT(0) |
| 158 | |
| 159 | #define CM_PLLD 0x10c |
| 160 | # define CM_PLLD_HOLDPER BIT(7) |
| 161 | # define CM_PLLD_LOADPER BIT(6) |
| 162 | # define CM_PLLD_HOLDCORE BIT(5) |
| 163 | # define CM_PLLD_LOADCORE BIT(4) |
| 164 | # define CM_PLLD_HOLDDSI1 BIT(3) |
| 165 | # define CM_PLLD_LOADDSI1 BIT(2) |
| 166 | # define CM_PLLD_HOLDDSI0 BIT(1) |
| 167 | # define CM_PLLD_LOADDSI0 BIT(0) |
| 168 | |
| 169 | #define CM_PLLH 0x110 |
| 170 | # define CM_PLLH_LOADRCAL BIT(2) |
| 171 | # define CM_PLLH_LOADAUX BIT(1) |
| 172 | # define CM_PLLH_LOADPIX BIT(0) |
| 173 | |
| 174 | #define CM_LOCK 0x114 |
| 175 | # define CM_LOCK_FLOCKH BIT(12) |
| 176 | # define CM_LOCK_FLOCKD BIT(11) |
| 177 | # define CM_LOCK_FLOCKC BIT(10) |
| 178 | # define CM_LOCK_FLOCKB BIT(9) |
| 179 | # define CM_LOCK_FLOCKA BIT(8) |
| 180 | |
| 181 | #define CM_EVENT 0x118 |
| 182 | #define CM_DSI1ECTL 0x158 |
| 183 | #define CM_DSI1EDIV 0x15c |
| 184 | #define CM_DSI1PCTL 0x160 |
| 185 | #define CM_DSI1PDIV 0x164 |
| 186 | #define CM_DFTCTL 0x168 |
| 187 | #define CM_DFTDIV 0x16c |
| 188 | |
| 189 | #define CM_PLLB 0x170 |
| 190 | # define CM_PLLB_HOLDARM BIT(1) |
| 191 | # define CM_PLLB_LOADARM BIT(0) |
| 192 | |
| 193 | #define A2W_PLLA_CTRL 0x1100 |
| 194 | #define A2W_PLLC_CTRL 0x1120 |
| 195 | #define A2W_PLLD_CTRL 0x1140 |
| 196 | #define A2W_PLLH_CTRL 0x1160 |
| 197 | #define A2W_PLLB_CTRL 0x11e0 |
| 198 | # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) |
| 199 | # define A2W_PLL_CTRL_PWRDN BIT(16) |
| 200 | # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 |
| 201 | # define A2W_PLL_CTRL_PDIV_SHIFT 12 |
| 202 | # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff |
| 203 | # define A2W_PLL_CTRL_NDIV_SHIFT 0 |
| 204 | |
| 205 | #define A2W_PLLA_ANA0 0x1010 |
| 206 | #define A2W_PLLC_ANA0 0x1030 |
| 207 | #define A2W_PLLD_ANA0 0x1050 |
| 208 | #define A2W_PLLH_ANA0 0x1070 |
| 209 | #define A2W_PLLB_ANA0 0x10f0 |
| 210 | |
| 211 | #define A2W_PLL_KA_SHIFT 7 |
| 212 | #define A2W_PLL_KA_MASK GENMASK(9, 7) |
| 213 | #define A2W_PLL_KI_SHIFT 19 |
| 214 | #define A2W_PLL_KI_MASK GENMASK(21, 19) |
| 215 | #define A2W_PLL_KP_SHIFT 15 |
| 216 | #define A2W_PLL_KP_MASK GENMASK(18, 15) |
| 217 | |
| 218 | #define A2W_PLLH_KA_SHIFT 19 |
| 219 | #define A2W_PLLH_KA_MASK GENMASK(21, 19) |
| 220 | #define A2W_PLLH_KI_LOW_SHIFT 22 |
| 221 | #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) |
| 222 | #define A2W_PLLH_KI_HIGH_SHIFT 0 |
| 223 | #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) |
| 224 | #define A2W_PLLH_KP_SHIFT 1 |
| 225 | #define A2W_PLLH_KP_MASK GENMASK(4, 1) |
| 226 | |
| 227 | #define A2W_XOSC_CTRL 0x1190 |
| 228 | # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) |
| 229 | # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) |
| 230 | # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) |
| 231 | # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) |
| 232 | # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) |
| 233 | # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) |
| 234 | # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) |
| 235 | # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) |
| 236 | |
| 237 | #define A2W_PLLA_FRAC 0x1200 |
| 238 | #define A2W_PLLC_FRAC 0x1220 |
| 239 | #define A2W_PLLD_FRAC 0x1240 |
| 240 | #define A2W_PLLH_FRAC 0x1260 |
| 241 | #define A2W_PLLB_FRAC 0x12e0 |
| 242 | # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) |
| 243 | # define A2W_PLL_FRAC_BITS 20 |
| 244 | |
| 245 | #define A2W_PLL_CHANNEL_DISABLE BIT(8) |
| 246 | #define A2W_PLL_DIV_BITS 8 |
| 247 | #define A2W_PLL_DIV_SHIFT 0 |
| 248 | |
| 249 | #define A2W_PLLA_DSI0 0x1300 |
| 250 | #define A2W_PLLA_CORE 0x1400 |
| 251 | #define A2W_PLLA_PER 0x1500 |
| 252 | #define A2W_PLLA_CCP2 0x1600 |
| 253 | |
| 254 | #define A2W_PLLC_CORE2 0x1320 |
| 255 | #define A2W_PLLC_CORE1 0x1420 |
| 256 | #define A2W_PLLC_PER 0x1520 |
| 257 | #define A2W_PLLC_CORE0 0x1620 |
| 258 | |
| 259 | #define A2W_PLLD_DSI0 0x1340 |
| 260 | #define A2W_PLLD_CORE 0x1440 |
| 261 | #define A2W_PLLD_PER 0x1540 |
| 262 | #define A2W_PLLD_DSI1 0x1640 |
| 263 | |
| 264 | #define A2W_PLLH_AUX 0x1360 |
| 265 | #define A2W_PLLH_RCAL 0x1460 |
| 266 | #define A2W_PLLH_PIX 0x1560 |
| 267 | #define A2W_PLLH_STS 0x1660 |
| 268 | |
| 269 | #define A2W_PLLH_CTRLR 0x1960 |
| 270 | #define A2W_PLLH_FRACR 0x1a60 |
| 271 | #define A2W_PLLH_AUXR 0x1b60 |
| 272 | #define A2W_PLLH_RCALR 0x1c60 |
| 273 | #define A2W_PLLH_PIXR 0x1d60 |
| 274 | #define A2W_PLLH_STSR 0x1e60 |
| 275 | |
| 276 | #define A2W_PLLB_ARM 0x13e0 |
| 277 | #define A2W_PLLB_SP0 0x14e0 |
| 278 | #define A2W_PLLB_SP1 0x15e0 |
| 279 | #define A2W_PLLB_SP2 0x16e0 |
| 280 | |
| 281 | #define LOCK_TIMEOUT_NS 100000000 |
| 282 | #define BCM2835_MAX_FB_RATE 1750000000u |
| 283 | |
| 284 | struct bcm2835_cprman { |
| 285 | struct device *dev; |
| 286 | void __iomem *regs; |
| 287 | spinlock_t regs_lock; |
| 288 | const char *osc_name; |
| 289 | |
| 290 | struct clk_onecell_data onecell; |
| 291 | struct clk *clks[BCM2835_CLOCK_COUNT]; |
| 292 | }; |
| 293 | |
| 294 | static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) |
| 295 | { |
| 296 | writel(CM_PASSWORD | val, cprman->regs + reg); |
| 297 | } |
| 298 | |
| 299 | static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) |
| 300 | { |
| 301 | return readl(cprman->regs + reg); |
| 302 | } |
Stephen Warren | 526d239 | 2012-12-24 21:55:01 -0700 | [diff] [blame] | 303 | |
Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 304 | /* |
| 305 | * These are fixed clocks. They're probably not all root clocks and it may |
| 306 | * be possible to turn them on and off but until this is mapped out better |
| 307 | * it's the only way they can be used. |
| 308 | */ |
| 309 | void __init bcm2835_init_clocks(void) |
| 310 | { |
| 311 | struct clk *clk; |
| 312 | int ret; |
| 313 | |
Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 314 | clk = clk_register_fixed_rate(NULL, "apb_pclk", NULL, CLK_IS_ROOT, |
| 315 | 126000000); |
Wei Yongjun | 0de9f23 | 2012-10-09 10:46:00 +0800 | [diff] [blame] | 316 | if (IS_ERR(clk)) |
Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 317 | pr_err("apb_pclk not registered\n"); |
| 318 | |
| 319 | clk = clk_register_fixed_rate(NULL, "uart0_pclk", NULL, CLK_IS_ROOT, |
| 320 | 3000000); |
Wei Yongjun | 0de9f23 | 2012-10-09 10:46:00 +0800 | [diff] [blame] | 321 | if (IS_ERR(clk)) |
Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 322 | pr_err("uart0_pclk not registered\n"); |
| 323 | ret = clk_register_clkdev(clk, NULL, "20201000.uart"); |
| 324 | if (ret) |
| 325 | pr_err("uart0_pclk alias not registered\n"); |
| 326 | |
| 327 | clk = clk_register_fixed_rate(NULL, "uart1_pclk", NULL, CLK_IS_ROOT, |
| 328 | 125000000); |
Wei Yongjun | 0de9f23 | 2012-10-09 10:46:00 +0800 | [diff] [blame] | 329 | if (IS_ERR(clk)) |
Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 330 | pr_err("uart1_pclk not registered\n"); |
| 331 | ret = clk_register_clkdev(clk, NULL, "20215000.uart"); |
| 332 | if (ret) |
Domenico Andreoli | 686ea585 | 2012-10-20 03:35:28 +0200 | [diff] [blame] | 333 | pr_err("uart1_pclk alias not registered\n"); |
Simon Arlott | 75fabc3 | 2012-09-10 23:26:15 -0600 | [diff] [blame] | 334 | } |
Eric Anholt | 41691b8 | 2015-10-08 18:37:24 -0700 | [diff] [blame] | 335 | |
| 336 | struct bcm2835_pll_data { |
| 337 | const char *name; |
| 338 | u32 cm_ctrl_reg; |
| 339 | u32 a2w_ctrl_reg; |
| 340 | u32 frac_reg; |
| 341 | u32 ana_reg_base; |
| 342 | u32 reference_enable_mask; |
| 343 | /* Bit in CM_LOCK to indicate when the PLL has locked. */ |
| 344 | u32 lock_mask; |
| 345 | |
| 346 | const struct bcm2835_pll_ana_bits *ana; |
| 347 | |
| 348 | unsigned long min_rate; |
| 349 | unsigned long max_rate; |
| 350 | /* |
| 351 | * Highest rate for the VCO before we have to use the |
| 352 | * pre-divide-by-2. |
| 353 | */ |
| 354 | unsigned long max_fb_rate; |
| 355 | }; |
| 356 | |
| 357 | struct bcm2835_pll_ana_bits { |
| 358 | u32 mask0; |
| 359 | u32 set0; |
| 360 | u32 mask1; |
| 361 | u32 set1; |
| 362 | u32 mask3; |
| 363 | u32 set3; |
| 364 | u32 fb_prediv_mask; |
| 365 | }; |
| 366 | |
| 367 | static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { |
| 368 | .mask0 = 0, |
| 369 | .set0 = 0, |
| 370 | .mask1 = ~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK), |
| 371 | .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), |
| 372 | .mask3 = ~A2W_PLL_KA_MASK, |
| 373 | .set3 = (2 << A2W_PLL_KA_SHIFT), |
| 374 | .fb_prediv_mask = BIT(14), |
| 375 | }; |
| 376 | |
| 377 | static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { |
| 378 | .mask0 = ~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK), |
| 379 | .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), |
| 380 | .mask1 = ~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK), |
| 381 | .set1 = (6 << A2W_PLLH_KP_SHIFT), |
| 382 | .mask3 = 0, |
| 383 | .set3 = 0, |
| 384 | .fb_prediv_mask = BIT(11), |
| 385 | }; |
| 386 | |
| 387 | /* |
| 388 | * PLLA is the auxiliary PLL, used to drive the CCP2 (Compact Camera |
| 389 | * Port 2) transmitter clock. |
| 390 | * |
| 391 | * It is in the PX LDO power domain, which is on when the AUDIO domain |
| 392 | * is on. |
| 393 | */ |
| 394 | static const struct bcm2835_pll_data bcm2835_plla_data = { |
| 395 | .name = "plla", |
| 396 | .cm_ctrl_reg = CM_PLLA, |
| 397 | .a2w_ctrl_reg = A2W_PLLA_CTRL, |
| 398 | .frac_reg = A2W_PLLA_FRAC, |
| 399 | .ana_reg_base = A2W_PLLA_ANA0, |
| 400 | .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, |
| 401 | .lock_mask = CM_LOCK_FLOCKA, |
| 402 | |
| 403 | .ana = &bcm2835_ana_default, |
| 404 | |
| 405 | .min_rate = 600000000u, |
| 406 | .max_rate = 2400000000u, |
| 407 | .max_fb_rate = BCM2835_MAX_FB_RATE, |
| 408 | }; |
| 409 | |
| 410 | /* PLLB is used for the ARM's clock. */ |
| 411 | static const struct bcm2835_pll_data bcm2835_pllb_data = { |
| 412 | .name = "pllb", |
| 413 | .cm_ctrl_reg = CM_PLLB, |
| 414 | .a2w_ctrl_reg = A2W_PLLB_CTRL, |
| 415 | .frac_reg = A2W_PLLB_FRAC, |
| 416 | .ana_reg_base = A2W_PLLB_ANA0, |
| 417 | .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE, |
| 418 | .lock_mask = CM_LOCK_FLOCKB, |
| 419 | |
| 420 | .ana = &bcm2835_ana_default, |
| 421 | |
| 422 | .min_rate = 600000000u, |
| 423 | .max_rate = 3000000000u, |
| 424 | .max_fb_rate = BCM2835_MAX_FB_RATE, |
| 425 | }; |
| 426 | |
| 427 | /* |
| 428 | * PLLC is the core PLL, used to drive the core VPU clock. |
| 429 | * |
| 430 | * It is in the PX LDO power domain, which is on when the AUDIO domain |
| 431 | * is on. |
| 432 | */ |
| 433 | static const struct bcm2835_pll_data bcm2835_pllc_data = { |
| 434 | .name = "pllc", |
| 435 | .cm_ctrl_reg = CM_PLLC, |
| 436 | .a2w_ctrl_reg = A2W_PLLC_CTRL, |
| 437 | .frac_reg = A2W_PLLC_FRAC, |
| 438 | .ana_reg_base = A2W_PLLC_ANA0, |
| 439 | .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, |
| 440 | .lock_mask = CM_LOCK_FLOCKC, |
| 441 | |
| 442 | .ana = &bcm2835_ana_default, |
| 443 | |
| 444 | .min_rate = 600000000u, |
| 445 | .max_rate = 3000000000u, |
| 446 | .max_fb_rate = BCM2835_MAX_FB_RATE, |
| 447 | }; |
| 448 | |
| 449 | /* |
| 450 | * PLLD is the display PLL, used to drive DSI display panels. |
| 451 | * |
| 452 | * It is in the PX LDO power domain, which is on when the AUDIO domain |
| 453 | * is on. |
| 454 | */ |
| 455 | static const struct bcm2835_pll_data bcm2835_plld_data = { |
| 456 | .name = "plld", |
| 457 | .cm_ctrl_reg = CM_PLLD, |
| 458 | .a2w_ctrl_reg = A2W_PLLD_CTRL, |
| 459 | .frac_reg = A2W_PLLD_FRAC, |
| 460 | .ana_reg_base = A2W_PLLD_ANA0, |
| 461 | .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, |
| 462 | .lock_mask = CM_LOCK_FLOCKD, |
| 463 | |
| 464 | .ana = &bcm2835_ana_default, |
| 465 | |
| 466 | .min_rate = 600000000u, |
| 467 | .max_rate = 2400000000u, |
| 468 | .max_fb_rate = BCM2835_MAX_FB_RATE, |
| 469 | }; |
| 470 | |
| 471 | /* |
| 472 | * PLLH is used to supply the pixel clock or the AUX clock for the TV |
| 473 | * encoder. |
| 474 | * |
| 475 | * It is in the HDMI power domain. |
| 476 | */ |
| 477 | static const struct bcm2835_pll_data bcm2835_pllh_data = { |
| 478 | "pllh", |
| 479 | .cm_ctrl_reg = CM_PLLH, |
| 480 | .a2w_ctrl_reg = A2W_PLLH_CTRL, |
| 481 | .frac_reg = A2W_PLLH_FRAC, |
| 482 | .ana_reg_base = A2W_PLLH_ANA0, |
| 483 | .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, |
| 484 | .lock_mask = CM_LOCK_FLOCKH, |
| 485 | |
| 486 | .ana = &bcm2835_ana_pllh, |
| 487 | |
| 488 | .min_rate = 600000000u, |
| 489 | .max_rate = 3000000000u, |
| 490 | .max_fb_rate = BCM2835_MAX_FB_RATE, |
| 491 | }; |
| 492 | |
| 493 | struct bcm2835_pll_divider_data { |
| 494 | const char *name; |
| 495 | const struct bcm2835_pll_data *source_pll; |
| 496 | u32 cm_reg; |
| 497 | u32 a2w_reg; |
| 498 | |
| 499 | u32 load_mask; |
| 500 | u32 hold_mask; |
| 501 | u32 fixed_divider; |
| 502 | }; |
| 503 | |
| 504 | static const struct bcm2835_pll_divider_data bcm2835_plla_core_data = { |
| 505 | .name = "plla_core", |
| 506 | .source_pll = &bcm2835_plla_data, |
| 507 | .cm_reg = CM_PLLA, |
| 508 | .a2w_reg = A2W_PLLA_CORE, |
| 509 | .load_mask = CM_PLLA_LOADCORE, |
| 510 | .hold_mask = CM_PLLA_HOLDCORE, |
| 511 | .fixed_divider = 1, |
| 512 | }; |
| 513 | |
| 514 | static const struct bcm2835_pll_divider_data bcm2835_plla_per_data = { |
| 515 | .name = "plla_per", |
| 516 | .source_pll = &bcm2835_plla_data, |
| 517 | .cm_reg = CM_PLLA, |
| 518 | .a2w_reg = A2W_PLLA_PER, |
| 519 | .load_mask = CM_PLLA_LOADPER, |
| 520 | .hold_mask = CM_PLLA_HOLDPER, |
| 521 | .fixed_divider = 1, |
| 522 | }; |
| 523 | |
| 524 | static const struct bcm2835_pll_divider_data bcm2835_pllb_arm_data = { |
| 525 | .name = "pllb_arm", |
| 526 | .source_pll = &bcm2835_pllb_data, |
| 527 | .cm_reg = CM_PLLB, |
| 528 | .a2w_reg = A2W_PLLB_ARM, |
| 529 | .load_mask = CM_PLLB_LOADARM, |
| 530 | .hold_mask = CM_PLLB_HOLDARM, |
| 531 | .fixed_divider = 1, |
| 532 | }; |
| 533 | |
| 534 | static const struct bcm2835_pll_divider_data bcm2835_pllc_core0_data = { |
| 535 | .name = "pllc_core0", |
| 536 | .source_pll = &bcm2835_pllc_data, |
| 537 | .cm_reg = CM_PLLC, |
| 538 | .a2w_reg = A2W_PLLC_CORE0, |
| 539 | .load_mask = CM_PLLC_LOADCORE0, |
| 540 | .hold_mask = CM_PLLC_HOLDCORE0, |
| 541 | .fixed_divider = 1, |
| 542 | }; |
| 543 | |
| 544 | static const struct bcm2835_pll_divider_data bcm2835_pllc_core1_data = { |
| 545 | .name = "pllc_core1", .source_pll = &bcm2835_pllc_data, |
| 546 | .cm_reg = CM_PLLC, A2W_PLLC_CORE1, |
| 547 | .load_mask = CM_PLLC_LOADCORE1, |
| 548 | .hold_mask = CM_PLLC_HOLDCORE1, |
| 549 | .fixed_divider = 1, |
| 550 | }; |
| 551 | |
| 552 | static const struct bcm2835_pll_divider_data bcm2835_pllc_core2_data = { |
| 553 | .name = "pllc_core2", |
| 554 | .source_pll = &bcm2835_pllc_data, |
| 555 | .cm_reg = CM_PLLC, |
| 556 | .a2w_reg = A2W_PLLC_CORE2, |
| 557 | .load_mask = CM_PLLC_LOADCORE2, |
| 558 | .hold_mask = CM_PLLC_HOLDCORE2, |
| 559 | .fixed_divider = 1, |
| 560 | }; |
| 561 | |
| 562 | static const struct bcm2835_pll_divider_data bcm2835_pllc_per_data = { |
| 563 | .name = "pllc_per", |
| 564 | .source_pll = &bcm2835_pllc_data, |
| 565 | .cm_reg = CM_PLLC, |
| 566 | .a2w_reg = A2W_PLLC_PER, |
| 567 | .load_mask = CM_PLLC_LOADPER, |
| 568 | .hold_mask = CM_PLLC_HOLDPER, |
| 569 | .fixed_divider = 1, |
| 570 | }; |
| 571 | |
| 572 | static const struct bcm2835_pll_divider_data bcm2835_plld_core_data = { |
| 573 | .name = "plld_core", |
| 574 | .source_pll = &bcm2835_plld_data, |
| 575 | .cm_reg = CM_PLLD, |
| 576 | .a2w_reg = A2W_PLLD_CORE, |
| 577 | .load_mask = CM_PLLD_LOADCORE, |
| 578 | .hold_mask = CM_PLLD_HOLDCORE, |
| 579 | .fixed_divider = 1, |
| 580 | }; |
| 581 | |
| 582 | static const struct bcm2835_pll_divider_data bcm2835_plld_per_data = { |
| 583 | .name = "plld_per", |
| 584 | .source_pll = &bcm2835_plld_data, |
| 585 | .cm_reg = CM_PLLD, |
| 586 | .a2w_reg = A2W_PLLD_PER, |
| 587 | .load_mask = CM_PLLD_LOADPER, |
| 588 | .hold_mask = CM_PLLD_HOLDPER, |
| 589 | .fixed_divider = 1, |
| 590 | }; |
| 591 | |
| 592 | static const struct bcm2835_pll_divider_data bcm2835_pllh_rcal_data = { |
| 593 | .name = "pllh_rcal", |
| 594 | .source_pll = &bcm2835_pllh_data, |
| 595 | .cm_reg = CM_PLLH, |
| 596 | .a2w_reg = A2W_PLLH_RCAL, |
| 597 | .load_mask = CM_PLLH_LOADRCAL, |
| 598 | .hold_mask = 0, |
| 599 | .fixed_divider = 10, |
| 600 | }; |
| 601 | |
| 602 | static const struct bcm2835_pll_divider_data bcm2835_pllh_aux_data = { |
| 603 | .name = "pllh_aux", |
| 604 | .source_pll = &bcm2835_pllh_data, |
| 605 | .cm_reg = CM_PLLH, |
| 606 | .a2w_reg = A2W_PLLH_AUX, |
| 607 | .load_mask = CM_PLLH_LOADAUX, |
| 608 | .hold_mask = 0, |
| 609 | .fixed_divider = 10, |
| 610 | }; |
| 611 | |
| 612 | static const struct bcm2835_pll_divider_data bcm2835_pllh_pix_data = { |
| 613 | .name = "pllh_pix", |
| 614 | .source_pll = &bcm2835_pllh_data, |
| 615 | .cm_reg = CM_PLLH, |
| 616 | .a2w_reg = A2W_PLLH_PIX, |
| 617 | .load_mask = CM_PLLH_LOADPIX, |
| 618 | .hold_mask = 0, |
| 619 | .fixed_divider = 10, |
| 620 | }; |
| 621 | |
| 622 | struct bcm2835_clock_data { |
| 623 | const char *name; |
| 624 | |
| 625 | const char *const *parents; |
| 626 | int num_mux_parents; |
| 627 | |
| 628 | u32 ctl_reg; |
| 629 | u32 div_reg; |
| 630 | |
| 631 | /* Number of integer bits in the divider */ |
| 632 | u32 int_bits; |
| 633 | /* Number of fractional bits in the divider */ |
| 634 | u32 frac_bits; |
| 635 | |
| 636 | bool is_vpu_clock; |
| 637 | }; |
| 638 | |
| 639 | static const char *const bcm2835_clock_per_parents[] = { |
| 640 | "gnd", |
| 641 | "xosc", |
| 642 | "testdebug0", |
| 643 | "testdebug1", |
| 644 | "plla_per", |
| 645 | "pllc_per", |
| 646 | "plld_per", |
| 647 | "pllh_aux", |
| 648 | }; |
| 649 | |
| 650 | static const char *const bcm2835_clock_vpu_parents[] = { |
| 651 | "gnd", |
| 652 | "xosc", |
| 653 | "testdebug0", |
| 654 | "testdebug1", |
| 655 | "plla_core", |
| 656 | "pllc_core0", |
| 657 | "plld_core", |
| 658 | "pllh_aux", |
| 659 | "pllc_core1", |
| 660 | "pllc_core2", |
| 661 | }; |
| 662 | |
| 663 | static const char *const bcm2835_clock_osc_parents[] = { |
| 664 | "gnd", |
| 665 | "xosc", |
| 666 | "testdebug0", |
| 667 | "testdebug1" |
| 668 | }; |
| 669 | |
| 670 | /* |
| 671 | * Used for a 1Mhz clock for the system clocksource, and also used by |
| 672 | * the watchdog timer and the camera pulse generator. |
| 673 | */ |
| 674 | static const struct bcm2835_clock_data bcm2835_clock_timer_data = { |
| 675 | .name = "timer", |
| 676 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), |
| 677 | .parents = bcm2835_clock_osc_parents, |
| 678 | .ctl_reg = CM_TIMERCTL, |
| 679 | .div_reg = CM_TIMERDIV, |
| 680 | .int_bits = 6, |
| 681 | .frac_bits = 12, |
| 682 | }; |
| 683 | |
| 684 | /* One Time Programmable Memory clock. Maximum 10Mhz. */ |
| 685 | static const struct bcm2835_clock_data bcm2835_clock_otp_data = { |
| 686 | .name = "otp", |
| 687 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), |
| 688 | .parents = bcm2835_clock_osc_parents, |
| 689 | .ctl_reg = CM_OTPCTL, |
| 690 | .div_reg = CM_OTPDIV, |
| 691 | .int_bits = 4, |
| 692 | .frac_bits = 0, |
| 693 | }; |
| 694 | |
| 695 | /* |
| 696 | * VPU clock. This doesn't have an enable bit, since it drives the |
| 697 | * bus for everything else, and is special so it doesn't need to be |
| 698 | * gated for rate changes. It is also known as "clk_audio" in various |
| 699 | * hardware documentation. |
| 700 | */ |
| 701 | static const struct bcm2835_clock_data bcm2835_clock_vpu_data = { |
| 702 | .name = "vpu", |
| 703 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), |
| 704 | .parents = bcm2835_clock_vpu_parents, |
| 705 | .ctl_reg = CM_VPUCTL, |
| 706 | .div_reg = CM_VPUDIV, |
| 707 | .int_bits = 12, |
| 708 | .frac_bits = 8, |
| 709 | .is_vpu_clock = true, |
| 710 | }; |
| 711 | |
| 712 | static const struct bcm2835_clock_data bcm2835_clock_v3d_data = { |
| 713 | .name = "v3d", |
| 714 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), |
| 715 | .parents = bcm2835_clock_vpu_parents, |
| 716 | .ctl_reg = CM_V3DCTL, |
| 717 | .div_reg = CM_V3DDIV, |
| 718 | .int_bits = 4, |
| 719 | .frac_bits = 8, |
| 720 | }; |
| 721 | |
| 722 | static const struct bcm2835_clock_data bcm2835_clock_isp_data = { |
| 723 | .name = "isp", |
| 724 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), |
| 725 | .parents = bcm2835_clock_vpu_parents, |
| 726 | .ctl_reg = CM_ISPCTL, |
| 727 | .div_reg = CM_ISPDIV, |
| 728 | .int_bits = 4, |
| 729 | .frac_bits = 8, |
| 730 | }; |
| 731 | |
| 732 | static const struct bcm2835_clock_data bcm2835_clock_h264_data = { |
| 733 | .name = "h264", |
| 734 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), |
| 735 | .parents = bcm2835_clock_vpu_parents, |
| 736 | .ctl_reg = CM_H264CTL, |
| 737 | .div_reg = CM_H264DIV, |
| 738 | .int_bits = 4, |
| 739 | .frac_bits = 8, |
| 740 | }; |
| 741 | |
| 742 | /* TV encoder clock. Only operating frequency is 108Mhz. */ |
| 743 | static const struct bcm2835_clock_data bcm2835_clock_vec_data = { |
| 744 | .name = "vec", |
| 745 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), |
| 746 | .parents = bcm2835_clock_per_parents, |
| 747 | .ctl_reg = CM_VECCTL, |
| 748 | .div_reg = CM_VECDIV, |
| 749 | .int_bits = 4, |
| 750 | .frac_bits = 0, |
| 751 | }; |
| 752 | |
| 753 | static const struct bcm2835_clock_data bcm2835_clock_uart_data = { |
| 754 | .name = "uart", |
| 755 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), |
| 756 | .parents = bcm2835_clock_per_parents, |
| 757 | .ctl_reg = CM_UARTCTL, |
| 758 | .div_reg = CM_UARTDIV, |
| 759 | .int_bits = 10, |
| 760 | .frac_bits = 12, |
| 761 | }; |
| 762 | |
| 763 | /* HDMI state machine */ |
| 764 | static const struct bcm2835_clock_data bcm2835_clock_hsm_data = { |
| 765 | .name = "hsm", |
| 766 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), |
| 767 | .parents = bcm2835_clock_per_parents, |
| 768 | .ctl_reg = CM_HSMCTL, |
| 769 | .div_reg = CM_HSMDIV, |
| 770 | .int_bits = 4, |
| 771 | .frac_bits = 8, |
| 772 | }; |
| 773 | |
| 774 | /* |
| 775 | * Secondary SDRAM clock. Used for low-voltage modes when the PLL in |
| 776 | * the SDRAM controller can't be used. |
| 777 | */ |
| 778 | static const struct bcm2835_clock_data bcm2835_clock_sdram_data = { |
| 779 | .name = "sdram", |
| 780 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), |
| 781 | .parents = bcm2835_clock_vpu_parents, |
| 782 | .ctl_reg = CM_SDCCTL, |
| 783 | .div_reg = CM_SDCDIV, |
| 784 | .int_bits = 6, |
| 785 | .frac_bits = 0, |
| 786 | }; |
| 787 | |
| 788 | /* Clock for the temperature sensor. Generally run at 2Mhz, max 5Mhz. */ |
| 789 | static const struct bcm2835_clock_data bcm2835_clock_tsens_data = { |
| 790 | .name = "tsens", |
| 791 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), |
| 792 | .parents = bcm2835_clock_osc_parents, |
| 793 | .ctl_reg = CM_TSENSCTL, |
| 794 | .div_reg = CM_TSENSDIV, |
| 795 | .int_bits = 5, |
| 796 | .frac_bits = 0, |
| 797 | }; |
| 798 | |
| 799 | /* Arasan EMMC clock */ |
| 800 | static const struct bcm2835_clock_data bcm2835_clock_emmc_data = { |
| 801 | .name = "emmc", |
| 802 | .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), |
| 803 | .parents = bcm2835_clock_per_parents, |
| 804 | .ctl_reg = CM_EMMCCTL, |
| 805 | .div_reg = CM_EMMCDIV, |
| 806 | .int_bits = 4, |
| 807 | .frac_bits = 8, |
| 808 | }; |
| 809 | |
| 810 | struct bcm2835_pll { |
| 811 | struct clk_hw hw; |
| 812 | struct bcm2835_cprman *cprman; |
| 813 | const struct bcm2835_pll_data *data; |
| 814 | }; |
| 815 | |
| 816 | static int bcm2835_pll_is_on(struct clk_hw *hw) |
| 817 | { |
| 818 | struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| 819 | struct bcm2835_cprman *cprman = pll->cprman; |
| 820 | const struct bcm2835_pll_data *data = pll->data; |
| 821 | |
| 822 | return cprman_read(cprman, data->a2w_ctrl_reg) & |
| 823 | A2W_PLL_CTRL_PRST_DISABLE; |
| 824 | } |
| 825 | |
| 826 | static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, |
| 827 | unsigned long parent_rate, |
| 828 | u32 *ndiv, u32 *fdiv) |
| 829 | { |
| 830 | u64 div; |
| 831 | |
| 832 | div = (u64)rate << A2W_PLL_FRAC_BITS; |
| 833 | do_div(div, parent_rate); |
| 834 | |
| 835 | *ndiv = div >> A2W_PLL_FRAC_BITS; |
| 836 | *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); |
| 837 | } |
| 838 | |
| 839 | static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, |
| 840 | u32 ndiv, u32 fdiv, u32 pdiv) |
| 841 | { |
| 842 | u64 rate; |
| 843 | |
| 844 | if (pdiv == 0) |
| 845 | return 0; |
| 846 | |
| 847 | rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); |
| 848 | do_div(rate, pdiv); |
| 849 | return rate >> A2W_PLL_FRAC_BITS; |
| 850 | } |
| 851 | |
| 852 | static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, |
| 853 | unsigned long *parent_rate) |
| 854 | { |
| 855 | u32 ndiv, fdiv; |
| 856 | |
| 857 | bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); |
| 858 | |
| 859 | return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); |
| 860 | } |
| 861 | |
| 862 | static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, |
| 863 | unsigned long parent_rate) |
| 864 | { |
| 865 | struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| 866 | struct bcm2835_cprman *cprman = pll->cprman; |
| 867 | const struct bcm2835_pll_data *data = pll->data; |
| 868 | u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); |
| 869 | u32 ndiv, pdiv, fdiv; |
| 870 | bool using_prediv; |
| 871 | |
| 872 | if (parent_rate == 0) |
| 873 | return 0; |
| 874 | |
| 875 | fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; |
| 876 | ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; |
| 877 | pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; |
| 878 | using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & |
| 879 | data->ana->fb_prediv_mask; |
| 880 | |
| 881 | if (using_prediv) |
| 882 | ndiv *= 2; |
| 883 | |
| 884 | return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); |
| 885 | } |
| 886 | |
| 887 | static void bcm2835_pll_off(struct clk_hw *hw) |
| 888 | { |
| 889 | struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| 890 | struct bcm2835_cprman *cprman = pll->cprman; |
| 891 | const struct bcm2835_pll_data *data = pll->data; |
| 892 | |
| 893 | cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST); |
| 894 | cprman_write(cprman, data->a2w_ctrl_reg, A2W_PLL_CTRL_PWRDN); |
| 895 | } |
| 896 | |
| 897 | static int bcm2835_pll_on(struct clk_hw *hw) |
| 898 | { |
| 899 | struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| 900 | struct bcm2835_cprman *cprman = pll->cprman; |
| 901 | const struct bcm2835_pll_data *data = pll->data; |
| 902 | ktime_t timeout; |
| 903 | |
| 904 | /* Take the PLL out of reset. */ |
| 905 | cprman_write(cprman, data->cm_ctrl_reg, |
| 906 | cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); |
| 907 | |
| 908 | /* Wait for the PLL to lock. */ |
| 909 | timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); |
| 910 | while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { |
| 911 | if (ktime_after(ktime_get(), timeout)) { |
| 912 | dev_err(cprman->dev, "%s: couldn't lock PLL\n", |
| 913 | clk_hw_get_name(hw)); |
| 914 | return -ETIMEDOUT; |
| 915 | } |
| 916 | |
| 917 | cpu_relax(); |
| 918 | } |
| 919 | |
| 920 | return 0; |
| 921 | } |
| 922 | |
| 923 | static void |
| 924 | bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) |
| 925 | { |
| 926 | int i; |
| 927 | |
| 928 | /* |
| 929 | * ANA register setup is done as a series of writes to |
| 930 | * ANA3-ANA0, in that order. This lets us write all 4 |
| 931 | * registers as a single cycle of the serdes interface (taking |
| 932 | * 100 xosc clocks), whereas if we were to update ana0, 1, and |
| 933 | * 3 individually through their partial-write registers, each |
| 934 | * would be their own serdes cycle. |
| 935 | */ |
| 936 | for (i = 3; i >= 0; i--) |
| 937 | cprman_write(cprman, ana_reg_base + i * 4, ana[i]); |
| 938 | } |
| 939 | |
| 940 | static int bcm2835_pll_set_rate(struct clk_hw *hw, |
| 941 | unsigned long rate, unsigned long parent_rate) |
| 942 | { |
| 943 | struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); |
| 944 | struct bcm2835_cprman *cprman = pll->cprman; |
| 945 | const struct bcm2835_pll_data *data = pll->data; |
| 946 | bool was_using_prediv, use_fb_prediv, do_ana_setup_first; |
| 947 | u32 ndiv, fdiv, a2w_ctl; |
| 948 | u32 ana[4]; |
| 949 | int i; |
| 950 | |
| 951 | if (rate < data->min_rate || rate > data->max_rate) { |
| 952 | dev_err(cprman->dev, "%s: rate out of spec: %lu vs (%lu, %lu)\n", |
| 953 | clk_hw_get_name(hw), rate, |
| 954 | data->min_rate, data->max_rate); |
| 955 | return -EINVAL; |
| 956 | } |
| 957 | |
| 958 | if (rate > data->max_fb_rate) { |
| 959 | use_fb_prediv = true; |
| 960 | rate /= 2; |
| 961 | } else { |
| 962 | use_fb_prediv = false; |
| 963 | } |
| 964 | |
| 965 | bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); |
| 966 | |
| 967 | for (i = 3; i >= 0; i--) |
| 968 | ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); |
| 969 | |
| 970 | was_using_prediv = ana[1] & data->ana->fb_prediv_mask; |
| 971 | |
| 972 | ana[0] &= ~data->ana->mask0; |
| 973 | ana[0] |= data->ana->set0; |
| 974 | ana[1] &= ~data->ana->mask1; |
| 975 | ana[1] |= data->ana->set1; |
| 976 | ana[3] &= ~data->ana->mask3; |
| 977 | ana[3] |= data->ana->set3; |
| 978 | |
| 979 | if (was_using_prediv && !use_fb_prediv) { |
| 980 | ana[1] &= ~data->ana->fb_prediv_mask; |
| 981 | do_ana_setup_first = true; |
| 982 | } else if (!was_using_prediv && use_fb_prediv) { |
| 983 | ana[1] |= data->ana->fb_prediv_mask; |
| 984 | do_ana_setup_first = false; |
| 985 | } else { |
| 986 | do_ana_setup_first = true; |
| 987 | } |
| 988 | |
| 989 | /* Unmask the reference clock from the oscillator. */ |
| 990 | cprman_write(cprman, A2W_XOSC_CTRL, |
| 991 | cprman_read(cprman, A2W_XOSC_CTRL) | |
| 992 | data->reference_enable_mask); |
| 993 | |
| 994 | if (do_ana_setup_first) |
| 995 | bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); |
| 996 | |
| 997 | /* Set the PLL multiplier from the oscillator. */ |
| 998 | cprman_write(cprman, data->frac_reg, fdiv); |
| 999 | |
| 1000 | a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); |
| 1001 | a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; |
| 1002 | a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; |
| 1003 | a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; |
| 1004 | a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; |
| 1005 | cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); |
| 1006 | |
| 1007 | if (!do_ana_setup_first) |
| 1008 | bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); |
| 1009 | |
| 1010 | return 0; |
| 1011 | } |
| 1012 | |
| 1013 | static const struct clk_ops bcm2835_pll_clk_ops = { |
| 1014 | .is_prepared = bcm2835_pll_is_on, |
| 1015 | .prepare = bcm2835_pll_on, |
| 1016 | .unprepare = bcm2835_pll_off, |
| 1017 | .recalc_rate = bcm2835_pll_get_rate, |
| 1018 | .set_rate = bcm2835_pll_set_rate, |
| 1019 | .round_rate = bcm2835_pll_round_rate, |
| 1020 | }; |
| 1021 | |
| 1022 | struct bcm2835_pll_divider { |
| 1023 | struct clk_divider div; |
| 1024 | struct bcm2835_cprman *cprman; |
| 1025 | const struct bcm2835_pll_divider_data *data; |
| 1026 | }; |
| 1027 | |
| 1028 | static struct bcm2835_pll_divider * |
| 1029 | bcm2835_pll_divider_from_hw(struct clk_hw *hw) |
| 1030 | { |
| 1031 | return container_of(hw, struct bcm2835_pll_divider, div.hw); |
| 1032 | } |
| 1033 | |
| 1034 | static int bcm2835_pll_divider_is_on(struct clk_hw *hw) |
| 1035 | { |
| 1036 | struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| 1037 | struct bcm2835_cprman *cprman = divider->cprman; |
| 1038 | const struct bcm2835_pll_divider_data *data = divider->data; |
| 1039 | |
| 1040 | return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); |
| 1041 | } |
| 1042 | |
| 1043 | static long bcm2835_pll_divider_round_rate(struct clk_hw *hw, |
| 1044 | unsigned long rate, |
| 1045 | unsigned long *parent_rate) |
| 1046 | { |
| 1047 | return clk_divider_ops.round_rate(hw, rate, parent_rate); |
| 1048 | } |
| 1049 | |
| 1050 | static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, |
| 1051 | unsigned long parent_rate) |
| 1052 | { |
| 1053 | struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| 1054 | struct bcm2835_cprman *cprman = divider->cprman; |
| 1055 | const struct bcm2835_pll_divider_data *data = divider->data; |
| 1056 | u32 div = cprman_read(cprman, data->a2w_reg); |
| 1057 | |
| 1058 | div &= (1 << A2W_PLL_DIV_BITS) - 1; |
| 1059 | if (div == 0) |
| 1060 | div = 256; |
| 1061 | |
| 1062 | return parent_rate / div; |
| 1063 | } |
| 1064 | |
| 1065 | static void bcm2835_pll_divider_off(struct clk_hw *hw) |
| 1066 | { |
| 1067 | struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| 1068 | struct bcm2835_cprman *cprman = divider->cprman; |
| 1069 | const struct bcm2835_pll_divider_data *data = divider->data; |
| 1070 | |
| 1071 | cprman_write(cprman, data->cm_reg, |
| 1072 | (cprman_read(cprman, data->cm_reg) & |
| 1073 | ~data->load_mask) | data->hold_mask); |
| 1074 | cprman_write(cprman, data->a2w_reg, A2W_PLL_CHANNEL_DISABLE); |
| 1075 | } |
| 1076 | |
| 1077 | static int bcm2835_pll_divider_on(struct clk_hw *hw) |
| 1078 | { |
| 1079 | struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| 1080 | struct bcm2835_cprman *cprman = divider->cprman; |
| 1081 | const struct bcm2835_pll_divider_data *data = divider->data; |
| 1082 | |
| 1083 | cprman_write(cprman, data->a2w_reg, |
| 1084 | cprman_read(cprman, data->a2w_reg) & |
| 1085 | ~A2W_PLL_CHANNEL_DISABLE); |
| 1086 | |
| 1087 | cprman_write(cprman, data->cm_reg, |
| 1088 | cprman_read(cprman, data->cm_reg) & ~data->hold_mask); |
| 1089 | |
| 1090 | return 0; |
| 1091 | } |
| 1092 | |
| 1093 | static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, |
| 1094 | unsigned long rate, |
| 1095 | unsigned long parent_rate) |
| 1096 | { |
| 1097 | struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); |
| 1098 | struct bcm2835_cprman *cprman = divider->cprman; |
| 1099 | const struct bcm2835_pll_divider_data *data = divider->data; |
| 1100 | u32 cm; |
| 1101 | int ret; |
| 1102 | |
| 1103 | ret = clk_divider_ops.set_rate(hw, rate, parent_rate); |
| 1104 | if (ret) |
| 1105 | return ret; |
| 1106 | |
| 1107 | cm = cprman_read(cprman, data->cm_reg); |
| 1108 | cprman_write(cprman, data->cm_reg, cm | data->load_mask); |
| 1109 | cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); |
| 1110 | |
| 1111 | return 0; |
| 1112 | } |
| 1113 | |
| 1114 | static const struct clk_ops bcm2835_pll_divider_clk_ops = { |
| 1115 | .is_prepared = bcm2835_pll_divider_is_on, |
| 1116 | .prepare = bcm2835_pll_divider_on, |
| 1117 | .unprepare = bcm2835_pll_divider_off, |
| 1118 | .recalc_rate = bcm2835_pll_divider_get_rate, |
| 1119 | .set_rate = bcm2835_pll_divider_set_rate, |
| 1120 | .round_rate = bcm2835_pll_divider_round_rate, |
| 1121 | }; |
| 1122 | |
| 1123 | /* |
| 1124 | * The CM dividers do fixed-point division, so we can't use the |
| 1125 | * generic integer divider code like the PLL dividers do (and we can't |
| 1126 | * fake it by having some fixed shifts preceding it in the clock tree, |
| 1127 | * because we'd run out of bits in a 32-bit unsigned long). |
| 1128 | */ |
| 1129 | struct bcm2835_clock { |
| 1130 | struct clk_hw hw; |
| 1131 | struct bcm2835_cprman *cprman; |
| 1132 | const struct bcm2835_clock_data *data; |
| 1133 | }; |
| 1134 | |
| 1135 | static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) |
| 1136 | { |
| 1137 | return container_of(hw, struct bcm2835_clock, hw); |
| 1138 | } |
| 1139 | |
| 1140 | static int bcm2835_clock_is_on(struct clk_hw *hw) |
| 1141 | { |
| 1142 | struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| 1143 | struct bcm2835_cprman *cprman = clock->cprman; |
| 1144 | const struct bcm2835_clock_data *data = clock->data; |
| 1145 | |
| 1146 | return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; |
| 1147 | } |
| 1148 | |
| 1149 | static u32 bcm2835_clock_choose_div(struct clk_hw *hw, |
| 1150 | unsigned long rate, |
| 1151 | unsigned long parent_rate) |
| 1152 | { |
| 1153 | struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| 1154 | const struct bcm2835_clock_data *data = clock->data; |
| 1155 | u32 unused_frac_mask = GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0); |
| 1156 | u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; |
| 1157 | u32 div; |
| 1158 | |
| 1159 | do_div(temp, rate); |
| 1160 | div = temp; |
| 1161 | |
| 1162 | /* Round and mask off the unused bits */ |
| 1163 | if (unused_frac_mask != 0) { |
| 1164 | div += unused_frac_mask >> 1; |
| 1165 | div &= ~unused_frac_mask; |
| 1166 | } |
| 1167 | |
| 1168 | /* Clamp to the limits. */ |
| 1169 | div = max(div, unused_frac_mask + 1); |
| 1170 | div = min_t(u32, div, GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, |
| 1171 | CM_DIV_FRAC_BITS - data->frac_bits)); |
| 1172 | |
| 1173 | return div; |
| 1174 | } |
| 1175 | |
| 1176 | static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, |
| 1177 | unsigned long parent_rate, |
| 1178 | u32 div) |
| 1179 | { |
| 1180 | const struct bcm2835_clock_data *data = clock->data; |
| 1181 | u64 temp; |
| 1182 | |
| 1183 | /* |
| 1184 | * The divisor is a 12.12 fixed point field, but only some of |
| 1185 | * the bits are populated in any given clock. |
| 1186 | */ |
| 1187 | div >>= CM_DIV_FRAC_BITS - data->frac_bits; |
| 1188 | div &= (1 << (data->int_bits + data->frac_bits)) - 1; |
| 1189 | |
| 1190 | if (div == 0) |
| 1191 | return 0; |
| 1192 | |
| 1193 | temp = (u64)parent_rate << data->frac_bits; |
| 1194 | |
| 1195 | do_div(temp, div); |
| 1196 | |
| 1197 | return temp; |
| 1198 | } |
| 1199 | |
| 1200 | static long bcm2835_clock_round_rate(struct clk_hw *hw, |
| 1201 | unsigned long rate, |
| 1202 | unsigned long *parent_rate) |
| 1203 | { |
| 1204 | struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| 1205 | u32 div = bcm2835_clock_choose_div(hw, rate, *parent_rate); |
| 1206 | |
| 1207 | return bcm2835_clock_rate_from_divisor(clock, *parent_rate, div); |
| 1208 | } |
| 1209 | |
| 1210 | static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, |
| 1211 | unsigned long parent_rate) |
| 1212 | { |
| 1213 | struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| 1214 | struct bcm2835_cprman *cprman = clock->cprman; |
| 1215 | const struct bcm2835_clock_data *data = clock->data; |
| 1216 | u32 div = cprman_read(cprman, data->div_reg); |
| 1217 | |
| 1218 | return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); |
| 1219 | } |
| 1220 | |
| 1221 | static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) |
| 1222 | { |
| 1223 | struct bcm2835_cprman *cprman = clock->cprman; |
| 1224 | const struct bcm2835_clock_data *data = clock->data; |
| 1225 | ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); |
| 1226 | |
| 1227 | while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { |
| 1228 | if (ktime_after(ktime_get(), timeout)) { |
| 1229 | dev_err(cprman->dev, "%s: couldn't lock PLL\n", |
| 1230 | clk_hw_get_name(&clock->hw)); |
| 1231 | return; |
| 1232 | } |
| 1233 | cpu_relax(); |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | static void bcm2835_clock_off(struct clk_hw *hw) |
| 1238 | { |
| 1239 | struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| 1240 | struct bcm2835_cprman *cprman = clock->cprman; |
| 1241 | const struct bcm2835_clock_data *data = clock->data; |
| 1242 | |
| 1243 | spin_lock(&cprman->regs_lock); |
| 1244 | cprman_write(cprman, data->ctl_reg, |
| 1245 | cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); |
| 1246 | spin_unlock(&cprman->regs_lock); |
| 1247 | |
| 1248 | /* BUSY will remain high until the divider completes its cycle. */ |
| 1249 | bcm2835_clock_wait_busy(clock); |
| 1250 | } |
| 1251 | |
| 1252 | static int bcm2835_clock_on(struct clk_hw *hw) |
| 1253 | { |
| 1254 | struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| 1255 | struct bcm2835_cprman *cprman = clock->cprman; |
| 1256 | const struct bcm2835_clock_data *data = clock->data; |
| 1257 | |
| 1258 | spin_lock(&cprman->regs_lock); |
| 1259 | cprman_write(cprman, data->ctl_reg, |
| 1260 | cprman_read(cprman, data->ctl_reg) | |
| 1261 | CM_ENABLE | |
| 1262 | CM_GATE); |
| 1263 | spin_unlock(&cprman->regs_lock); |
| 1264 | |
| 1265 | return 0; |
| 1266 | } |
| 1267 | |
| 1268 | static int bcm2835_clock_set_rate(struct clk_hw *hw, |
| 1269 | unsigned long rate, unsigned long parent_rate) |
| 1270 | { |
| 1271 | struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); |
| 1272 | struct bcm2835_cprman *cprman = clock->cprman; |
| 1273 | const struct bcm2835_clock_data *data = clock->data; |
| 1274 | u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate); |
| 1275 | |
| 1276 | cprman_write(cprman, data->div_reg, div); |
| 1277 | |
| 1278 | return 0; |
| 1279 | } |
| 1280 | |
| 1281 | static const struct clk_ops bcm2835_clock_clk_ops = { |
| 1282 | .is_prepared = bcm2835_clock_is_on, |
| 1283 | .prepare = bcm2835_clock_on, |
| 1284 | .unprepare = bcm2835_clock_off, |
| 1285 | .recalc_rate = bcm2835_clock_get_rate, |
| 1286 | .set_rate = bcm2835_clock_set_rate, |
| 1287 | .round_rate = bcm2835_clock_round_rate, |
| 1288 | }; |
| 1289 | |
| 1290 | static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) |
| 1291 | { |
| 1292 | return true; |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * The VPU clock can never be disabled (it doesn't have an ENABLE |
| 1297 | * bit), so it gets its own set of clock ops. |
| 1298 | */ |
| 1299 | static const struct clk_ops bcm2835_vpu_clock_clk_ops = { |
| 1300 | .is_prepared = bcm2835_vpu_clock_is_on, |
| 1301 | .recalc_rate = bcm2835_clock_get_rate, |
| 1302 | .set_rate = bcm2835_clock_set_rate, |
| 1303 | .round_rate = bcm2835_clock_round_rate, |
| 1304 | }; |
| 1305 | |
| 1306 | static struct clk *bcm2835_register_pll(struct bcm2835_cprman *cprman, |
| 1307 | const struct bcm2835_pll_data *data) |
| 1308 | { |
| 1309 | struct bcm2835_pll *pll; |
| 1310 | struct clk_init_data init; |
| 1311 | |
| 1312 | memset(&init, 0, sizeof(init)); |
| 1313 | |
| 1314 | /* All of the PLLs derive from the external oscillator. */ |
| 1315 | init.parent_names = &cprman->osc_name; |
| 1316 | init.num_parents = 1; |
| 1317 | init.name = data->name; |
| 1318 | init.ops = &bcm2835_pll_clk_ops; |
| 1319 | init.flags = CLK_IGNORE_UNUSED; |
| 1320 | |
| 1321 | pll = kzalloc(sizeof(*pll), GFP_KERNEL); |
| 1322 | if (!pll) |
| 1323 | return NULL; |
| 1324 | |
| 1325 | pll->cprman = cprman; |
| 1326 | pll->data = data; |
| 1327 | pll->hw.init = &init; |
| 1328 | |
| 1329 | return devm_clk_register(cprman->dev, &pll->hw); |
| 1330 | } |
| 1331 | |
| 1332 | static struct clk * |
| 1333 | bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, |
| 1334 | const struct bcm2835_pll_divider_data *data) |
| 1335 | { |
| 1336 | struct bcm2835_pll_divider *divider; |
| 1337 | struct clk_init_data init; |
| 1338 | struct clk *clk; |
| 1339 | const char *divider_name; |
| 1340 | |
| 1341 | if (data->fixed_divider != 1) { |
| 1342 | divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, |
| 1343 | "%s_prediv", data->name); |
| 1344 | if (!divider_name) |
| 1345 | return NULL; |
| 1346 | } else { |
| 1347 | divider_name = data->name; |
| 1348 | } |
| 1349 | |
| 1350 | memset(&init, 0, sizeof(init)); |
| 1351 | |
| 1352 | init.parent_names = &data->source_pll->name; |
| 1353 | init.num_parents = 1; |
| 1354 | init.name = divider_name; |
| 1355 | init.ops = &bcm2835_pll_divider_clk_ops; |
| 1356 | init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED; |
| 1357 | |
| 1358 | divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); |
| 1359 | if (!divider) |
| 1360 | return NULL; |
| 1361 | |
| 1362 | divider->div.reg = cprman->regs + data->a2w_reg; |
| 1363 | divider->div.shift = A2W_PLL_DIV_SHIFT; |
| 1364 | divider->div.width = A2W_PLL_DIV_BITS; |
| 1365 | divider->div.flags = 0; |
| 1366 | divider->div.lock = &cprman->regs_lock; |
| 1367 | divider->div.hw.init = &init; |
| 1368 | divider->div.table = NULL; |
| 1369 | |
| 1370 | divider->cprman = cprman; |
| 1371 | divider->data = data; |
| 1372 | |
| 1373 | clk = devm_clk_register(cprman->dev, ÷r->div.hw); |
| 1374 | if (IS_ERR(clk)) |
| 1375 | return clk; |
| 1376 | |
| 1377 | /* |
| 1378 | * PLLH's channels have a fixed divide by 10 afterwards, which |
| 1379 | * is what our consumers are actually using. |
| 1380 | */ |
| 1381 | if (data->fixed_divider != 1) { |
| 1382 | return clk_register_fixed_factor(cprman->dev, data->name, |
| 1383 | divider_name, |
| 1384 | CLK_SET_RATE_PARENT, |
| 1385 | 1, |
| 1386 | data->fixed_divider); |
| 1387 | } |
| 1388 | |
| 1389 | return clk; |
| 1390 | } |
| 1391 | |
| 1392 | static struct clk *bcm2835_register_clock(struct bcm2835_cprman *cprman, |
| 1393 | const struct bcm2835_clock_data *data) |
| 1394 | { |
| 1395 | struct bcm2835_clock *clock; |
| 1396 | struct clk_init_data init; |
| 1397 | const char *parent; |
| 1398 | |
| 1399 | /* |
| 1400 | * Most of the clock generators have a mux field, so we |
| 1401 | * instantiate a generic mux as our parent to handle it. |
| 1402 | */ |
| 1403 | if (data->num_mux_parents) { |
| 1404 | const char *parents[1 << CM_SRC_BITS]; |
| 1405 | int i; |
| 1406 | |
| 1407 | parent = devm_kasprintf(cprman->dev, GFP_KERNEL, |
| 1408 | "mux_%s", data->name); |
| 1409 | if (!parent) |
| 1410 | return NULL; |
| 1411 | |
| 1412 | /* |
| 1413 | * Replace our "xosc" references with the oscillator's |
| 1414 | * actual name. |
| 1415 | */ |
| 1416 | for (i = 0; i < data->num_mux_parents; i++) { |
| 1417 | if (strcmp(data->parents[i], "xosc") == 0) |
| 1418 | parents[i] = cprman->osc_name; |
| 1419 | else |
| 1420 | parents[i] = data->parents[i]; |
| 1421 | } |
| 1422 | |
| 1423 | clk_register_mux(cprman->dev, parent, |
| 1424 | parents, data->num_mux_parents, |
| 1425 | CLK_SET_RATE_PARENT, |
| 1426 | cprman->regs + data->ctl_reg, |
| 1427 | CM_SRC_SHIFT, CM_SRC_BITS, |
| 1428 | 0, &cprman->regs_lock); |
| 1429 | } else { |
| 1430 | parent = data->parents[0]; |
| 1431 | } |
| 1432 | |
| 1433 | memset(&init, 0, sizeof(init)); |
| 1434 | init.parent_names = &parent; |
| 1435 | init.num_parents = 1; |
| 1436 | init.name = data->name; |
| 1437 | init.flags = CLK_IGNORE_UNUSED; |
| 1438 | |
| 1439 | if (data->is_vpu_clock) { |
| 1440 | init.ops = &bcm2835_vpu_clock_clk_ops; |
| 1441 | } else { |
| 1442 | init.ops = &bcm2835_clock_clk_ops; |
| 1443 | init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; |
| 1444 | } |
| 1445 | |
| 1446 | clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); |
| 1447 | if (!clock) |
| 1448 | return NULL; |
| 1449 | |
| 1450 | clock->cprman = cprman; |
| 1451 | clock->data = data; |
| 1452 | clock->hw.init = &init; |
| 1453 | |
| 1454 | return devm_clk_register(cprman->dev, &clock->hw); |
| 1455 | } |
| 1456 | |
| 1457 | static int bcm2835_clk_probe(struct platform_device *pdev) |
| 1458 | { |
| 1459 | struct device *dev = &pdev->dev; |
| 1460 | struct clk **clks; |
| 1461 | struct bcm2835_cprman *cprman; |
| 1462 | struct resource *res; |
| 1463 | |
| 1464 | cprman = devm_kzalloc(dev, sizeof(*cprman), GFP_KERNEL); |
| 1465 | if (!cprman) |
| 1466 | return -ENOMEM; |
| 1467 | |
| 1468 | spin_lock_init(&cprman->regs_lock); |
| 1469 | cprman->dev = dev; |
| 1470 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1471 | cprman->regs = devm_ioremap_resource(dev, res); |
| 1472 | if (IS_ERR(cprman->regs)) |
| 1473 | return PTR_ERR(cprman->regs); |
| 1474 | |
| 1475 | cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0); |
| 1476 | if (!cprman->osc_name) |
| 1477 | return -ENODEV; |
| 1478 | |
| 1479 | platform_set_drvdata(pdev, cprman); |
| 1480 | |
| 1481 | cprman->onecell.clk_num = BCM2835_CLOCK_COUNT; |
| 1482 | cprman->onecell.clks = cprman->clks; |
| 1483 | clks = cprman->clks; |
| 1484 | |
| 1485 | clks[BCM2835_PLLA] = bcm2835_register_pll(cprman, &bcm2835_plla_data); |
| 1486 | clks[BCM2835_PLLB] = bcm2835_register_pll(cprman, &bcm2835_pllb_data); |
| 1487 | clks[BCM2835_PLLC] = bcm2835_register_pll(cprman, &bcm2835_pllc_data); |
| 1488 | clks[BCM2835_PLLD] = bcm2835_register_pll(cprman, &bcm2835_plld_data); |
| 1489 | clks[BCM2835_PLLH] = bcm2835_register_pll(cprman, &bcm2835_pllh_data); |
| 1490 | |
| 1491 | clks[BCM2835_PLLA_CORE] = |
| 1492 | bcm2835_register_pll_divider(cprman, &bcm2835_plla_core_data); |
| 1493 | clks[BCM2835_PLLA_PER] = |
| 1494 | bcm2835_register_pll_divider(cprman, &bcm2835_plla_per_data); |
| 1495 | clks[BCM2835_PLLC_CORE0] = |
| 1496 | bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core0_data); |
| 1497 | clks[BCM2835_PLLC_CORE1] = |
| 1498 | bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core1_data); |
| 1499 | clks[BCM2835_PLLC_CORE2] = |
| 1500 | bcm2835_register_pll_divider(cprman, &bcm2835_pllc_core2_data); |
| 1501 | clks[BCM2835_PLLC_PER] = |
| 1502 | bcm2835_register_pll_divider(cprman, &bcm2835_pllc_per_data); |
| 1503 | clks[BCM2835_PLLD_CORE] = |
| 1504 | bcm2835_register_pll_divider(cprman, &bcm2835_plld_core_data); |
| 1505 | clks[BCM2835_PLLD_PER] = |
| 1506 | bcm2835_register_pll_divider(cprman, &bcm2835_plld_per_data); |
| 1507 | clks[BCM2835_PLLH_RCAL] = |
| 1508 | bcm2835_register_pll_divider(cprman, &bcm2835_pllh_rcal_data); |
| 1509 | clks[BCM2835_PLLH_AUX] = |
| 1510 | bcm2835_register_pll_divider(cprman, &bcm2835_pllh_aux_data); |
| 1511 | clks[BCM2835_PLLH_PIX] = |
| 1512 | bcm2835_register_pll_divider(cprman, &bcm2835_pllh_pix_data); |
| 1513 | |
| 1514 | clks[BCM2835_CLOCK_TIMER] = |
| 1515 | bcm2835_register_clock(cprman, &bcm2835_clock_timer_data); |
| 1516 | clks[BCM2835_CLOCK_OTP] = |
| 1517 | bcm2835_register_clock(cprman, &bcm2835_clock_otp_data); |
| 1518 | clks[BCM2835_CLOCK_TSENS] = |
| 1519 | bcm2835_register_clock(cprman, &bcm2835_clock_tsens_data); |
| 1520 | clks[BCM2835_CLOCK_VPU] = |
| 1521 | bcm2835_register_clock(cprman, &bcm2835_clock_vpu_data); |
| 1522 | clks[BCM2835_CLOCK_V3D] = |
| 1523 | bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data); |
| 1524 | clks[BCM2835_CLOCK_ISP] = |
| 1525 | bcm2835_register_clock(cprman, &bcm2835_clock_isp_data); |
| 1526 | clks[BCM2835_CLOCK_H264] = |
| 1527 | bcm2835_register_clock(cprman, &bcm2835_clock_h264_data); |
| 1528 | clks[BCM2835_CLOCK_V3D] = |
| 1529 | bcm2835_register_clock(cprman, &bcm2835_clock_v3d_data); |
| 1530 | clks[BCM2835_CLOCK_SDRAM] = |
| 1531 | bcm2835_register_clock(cprman, &bcm2835_clock_sdram_data); |
| 1532 | clks[BCM2835_CLOCK_UART] = |
| 1533 | bcm2835_register_clock(cprman, &bcm2835_clock_uart_data); |
| 1534 | clks[BCM2835_CLOCK_VEC] = |
| 1535 | bcm2835_register_clock(cprman, &bcm2835_clock_vec_data); |
| 1536 | clks[BCM2835_CLOCK_HSM] = |
| 1537 | bcm2835_register_clock(cprman, &bcm2835_clock_hsm_data); |
| 1538 | clks[BCM2835_CLOCK_EMMC] = |
| 1539 | bcm2835_register_clock(cprman, &bcm2835_clock_emmc_data); |
| 1540 | |
| 1541 | /* |
| 1542 | * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if |
| 1543 | * you have the debug bit set in the power manager, which we |
| 1544 | * don't bother exposing) are individual gates off of the |
| 1545 | * non-stop vpu clock. |
| 1546 | */ |
| 1547 | clks[BCM2835_CLOCK_PERI_IMAGE] = |
| 1548 | clk_register_gate(dev, "peri_image", "vpu", |
| 1549 | CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, |
| 1550 | cprman->regs + CM_PERIICTL, CM_GATE_BIT, |
| 1551 | 0, &cprman->regs_lock); |
| 1552 | |
| 1553 | return of_clk_add_provider(dev->of_node, of_clk_src_onecell_get, |
| 1554 | &cprman->onecell); |
| 1555 | } |
| 1556 | |
| 1557 | static const struct of_device_id bcm2835_clk_of_match[] = { |
| 1558 | { .compatible = "brcm,bcm2835-cprman", }, |
| 1559 | {} |
| 1560 | }; |
| 1561 | MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); |
| 1562 | |
| 1563 | static struct platform_driver bcm2835_clk_driver = { |
| 1564 | .driver = { |
| 1565 | .name = "bcm2835-clk", |
| 1566 | .of_match_table = bcm2835_clk_of_match, |
| 1567 | }, |
| 1568 | .probe = bcm2835_clk_probe, |
| 1569 | }; |
| 1570 | |
| 1571 | builtin_platform_driver(bcm2835_clk_driver); |
| 1572 | |
| 1573 | MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); |
| 1574 | MODULE_DESCRIPTION("BCM2835 clock driver"); |
| 1575 | MODULE_LICENSE("GPL v2"); |