blob: 0df20f07227b0e697ccc33073bf572742aafb865 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001 Linux kernel release 2.6.xx
2
3These are the release notes for Linux version 2.6. Read them carefully,
4as they tell you what this is all about, explain how to install the
5kernel, and what to do if something goes wrong.
6
7WHAT IS LINUX?
8
9 Linux is a Unix clone written from scratch by Linus Torvalds with
10 assistance from a loosely-knit team of hackers across the Net.
11 It aims towards POSIX compliance.
12
13 It has all the features you would expect in a modern fully-fledged
14 Unix, including true multitasking, virtual memory, shared libraries,
15 demand loading, shared copy-on-write executables, proper memory
16 management and TCP/IP networking.
17
18 It is distributed under the GNU General Public License - see the
19 accompanying COPYING file for more details.
20
21ON WHAT HARDWARE DOES IT RUN?
22
23 Linux was first developed for 386/486-based PCs. These days it also
24 runs on ARMs, DEC Alphas, SUN Sparcs, M68000 machines (like Atari and
25 Amiga), MIPS and PowerPC, and others.
26
27DOCUMENTATION:
28
29 - There is a lot of documentation available both in electronic form on
30 the Internet and in books, both Linux-specific and pertaining to
31 general UNIX questions. I'd recommend looking into the documentation
32 subdirectories on any Linux FTP site for the LDP (Linux Documentation
33 Project) books. This README is not meant to be documentation on the
34 system: there are much better sources available.
35
36 - There are various README files in the Documentation/ subdirectory:
37 these typically contain kernel-specific installation notes for some
38 drivers for example. See Documentation/00-INDEX for a list of what
39 is contained in each file. Please read the Changes file, as it
40 contains information about the problems, which may result by upgrading
41 your kernel.
42
43 - The Documentation/DocBook/ subdirectory contains several guides for
44 kernel developers and users. These guides can be rendered in a
45 number of formats: PostScript (.ps), PDF, and HTML, among others.
46 After installation, "make psdocs", "make pdfdocs", or "make htmldocs"
47 will render the documentation in the requested format.
48
49INSTALLING the kernel:
50
51 - If you install the full sources, put the kernel tarball in a
52 directory where you have permissions (eg. your home directory) and
53 unpack it:
54
55 gzip -cd linux-2.6.XX.tar.gz | tar xvf -
56
57 Replace "XX" with the version number of the latest kernel.
58
59 Do NOT use the /usr/src/linux area! This area has a (usually
60 incomplete) set of kernel headers that are used by the library header
61 files. They should match the library, and not get messed up by
62 whatever the kernel-du-jour happens to be.
63
64 - You can also upgrade between 2.6.xx releases by patching. Patches are
65 distributed in the traditional gzip and the new bzip2 format. To
66 install by patching, get all the newer patch files, enter the
67 top level directory of the kernel source (linux-2.6.xx) and execute:
68
69 gzip -cd ../patch-2.6.xx.gz | patch -p1
70
71 or
72 bzip2 -dc ../patch-2.6.xx.bz2 | patch -p1
73
74 (repeat xx for all versions bigger than the version of your current
75 source tree, _in_order_) and you should be ok. You may want to remove
76 the backup files (xxx~ or xxx.orig), and make sure that there are no
77 failed patches (xxx# or xxx.rej). If there are, either you or me has
78 made a mistake.
79
80 Alternatively, the script patch-kernel can be used to automate this
81 process. It determines the current kernel version and applies any
82 patches found.
83
84 linux/scripts/patch-kernel linux
85
86 The first argument in the command above is the location of the
87 kernel source. Patches are applied from the current directory, but
88 an alternative directory can be specified as the second argument.
89
90 - Make sure you have no stale .o files and dependencies lying around:
91
92 cd linux
93 make mrproper
94
95 You should now have the sources correctly installed.
96
97SOFTWARE REQUIREMENTS
98
99 Compiling and running the 2.6.xx kernels requires up-to-date
100 versions of various software packages. Consult
101 Documentation/Changes for the minimum version numbers required
102 and how to get updates for these packages. Beware that using
103 excessively old versions of these packages can cause indirect
104 errors that are very difficult to track down, so don't assume that
105 you can just update packages when obvious problems arise during
106 build or operation.
107
108BUILD directory for the kernel:
109
110 When compiling the kernel all output files will per default be
111 stored together with the kernel source code.
112 Using the option "make O=output/dir" allow you to specify an alternate
113 place for the output files (including .config).
114 Example:
115 kernel source code: /usr/src/linux-2.6.N
116 build directory: /home/name/build/kernel
117
118 To configure and build the kernel use:
119 cd /usr/src/linux-2.6.N
120 make O=/home/name/build/kernel menuconfig
121 make O=/home/name/build/kernel
122 sudo make O=/home/name/build/kernel modules_install install
123
124 Please note: If the 'O=output/dir' option is used then it must be
125 used for all invocations of make.
126
127CONFIGURING the kernel:
128
129 Do not skip this step even if you are only upgrading one minor
130 version. New configuration options are added in each release, and
131 odd problems will turn up if the configuration files are not set up
132 as expected. If you want to carry your existing configuration to a
133 new version with minimal work, use "make oldconfig", which will
134 only ask you for the answers to new questions.
135
136 - Alternate configuration commands are:
137 "make menuconfig" Text based color menus, radiolists & dialogs.
138 "make xconfig" X windows (Qt) based configuration tool.
139 "make gconfig" X windows (Gtk) based configuration tool.
140 "make oldconfig" Default all questions based on the contents of
141 your existing ./.config file.
142
143 NOTES on "make config":
144 - having unnecessary drivers will make the kernel bigger, and can
145 under some circumstances lead to problems: probing for a
146 nonexistent controller card may confuse your other controllers
147 - compiling the kernel with "Processor type" set higher than 386
148 will result in a kernel that does NOT work on a 386. The
149 kernel will detect this on bootup, and give up.
150 - A kernel with math-emulation compiled in will still use the
151 coprocessor if one is present: the math emulation will just
152 never get used in that case. The kernel will be slightly larger,
153 but will work on different machines regardless of whether they
154 have a math coprocessor or not.
155 - the "kernel hacking" configuration details usually result in a
156 bigger or slower kernel (or both), and can even make the kernel
157 less stable by configuring some routines to actively try to
158 break bad code to find kernel problems (kmalloc()). Thus you
159 should probably answer 'n' to the questions for
160 "development", "experimental", or "debugging" features.
161
162 - Check the top Makefile for further site-dependent configuration
163 (default SVGA mode etc).
164
165COMPILING the kernel:
166
167 - Make sure you have gcc 2.95.3 available.
168 gcc 2.91.66 (egcs-1.1.2), and gcc 2.7.2.3 are known to miscompile
169 some parts of the kernel, and are *no longer supported*.
170 Also remember to upgrade your binutils package (for as/ld/nm and company)
171 if necessary. For more information, refer to Documentation/Changes.
172
173 Please note that you can still run a.out user programs with this kernel.
174
175 - Do a "make" to create a compressed kernel image. It is also
176 possible to do "make install" if you have lilo installed to suit the
177 kernel makefiles, but you may want to check your particular lilo setup first.
178
179 To do the actual install you have to be root, but none of the normal
180 build should require that. Don't take the name of root in vain.
181
182 - If you configured any of the parts of the kernel as `modules', you
183 will also have to do "make modules_install".
184
185 - Keep a backup kernel handy in case something goes wrong. This is
186 especially true for the development releases, since each new release
187 contains new code which has not been debugged. Make sure you keep a
188 backup of the modules corresponding to that kernel, as well. If you
189 are installing a new kernel with the same version number as your
190 working kernel, make a backup of your modules directory before you
191 do a "make modules_install".
192
193 - In order to boot your new kernel, you'll need to copy the kernel
194 image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
195 to the place where your regular bootable kernel is found.
196
197 - Booting a kernel directly from a floppy without the assistance of a
198 bootloader such as LILO, is no longer supported.
199
200 If you boot Linux from the hard drive, chances are you use LILO which
201 uses the kernel image as specified in the file /etc/lilo.conf. The
202 kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
203 /boot/bzImage. To use the new kernel, save a copy of the old image
204 and copy the new image over the old one. Then, you MUST RERUN LILO
205 to update the loading map!! If you don't, you won't be able to boot
206 the new kernel image.
207
208 Reinstalling LILO is usually a matter of running /sbin/lilo.
209 You may wish to edit /etc/lilo.conf to specify an entry for your
210 old kernel image (say, /vmlinux.old) in case the new one does not
211 work. See the LILO docs for more information.
212
213 After reinstalling LILO, you should be all set. Shutdown the system,
214 reboot, and enjoy!
215
216 If you ever need to change the default root device, video mode,
217 ramdisk size, etc. in the kernel image, use the 'rdev' program (or
218 alternatively the LILO boot options when appropriate). No need to
219 recompile the kernel to change these parameters.
220
221 - Reboot with the new kernel and enjoy.
222
223IF SOMETHING GOES WRONG:
224
225 - If you have problems that seem to be due to kernel bugs, please check
226 the file MAINTAINERS to see if there is a particular person associated
227 with the part of the kernel that you are having trouble with. If there
228 isn't anyone listed there, then the second best thing is to mail
229 them to me (torvalds@osdl.org), and possibly to any other relevant
230 mailing-list or to the newsgroup.
231
232 - In all bug-reports, *please* tell what kernel you are talking about,
233 how to duplicate the problem, and what your setup is (use your common
234 sense). If the problem is new, tell me so, and if the problem is
235 old, please try to tell me when you first noticed it.
236
237 - If the bug results in a message like
238
239 unable to handle kernel paging request at address C0000010
240 Oops: 0002
241 EIP: 0010:XXXXXXXX
242 eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx
243 esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
244 ds: xxxx es: xxxx fs: xxxx gs: xxxx
245 Pid: xx, process nr: xx
246 xx xx xx xx xx xx xx xx xx xx
247
248 or similar kernel debugging information on your screen or in your
249 system log, please duplicate it *exactly*. The dump may look
250 incomprehensible to you, but it does contain information that may
251 help debugging the problem. The text above the dump is also
252 important: it tells something about why the kernel dumped code (in
253 the above example it's due to a bad kernel pointer). More information
254 on making sense of the dump is in Documentation/oops-tracing.txt
255
256 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
257 as is, otherwise you will have to use the "ksymoops" program to make
258 sense of the dump. This utility can be downloaded from
259 ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops.
260 Alternately you can do the dump lookup by hand:
261
262 - In debugging dumps like the above, it helps enormously if you can
263 look up what the EIP value means. The hex value as such doesn't help
264 me or anybody else very much: it will depend on your particular
265 kernel setup. What you should do is take the hex value from the EIP
266 line (ignore the "0010:"), and look it up in the kernel namelist to
267 see which kernel function contains the offending address.
268
269 To find out the kernel function name, you'll need to find the system
270 binary associated with the kernel that exhibited the symptom. This is
271 the file 'linux/vmlinux'. To extract the namelist and match it against
272 the EIP from the kernel crash, do:
273
274 nm vmlinux | sort | less
275
276 This will give you a list of kernel addresses sorted in ascending
277 order, from which it is simple to find the function that contains the
278 offending address. Note that the address given by the kernel
279 debugging messages will not necessarily match exactly with the
280 function addresses (in fact, that is very unlikely), so you can't
281 just 'grep' the list: the list will, however, give you the starting
282 point of each kernel function, so by looking for the function that
283 has a starting address lower than the one you are searching for but
284 is followed by a function with a higher address you will find the one
285 you want. In fact, it may be a good idea to include a bit of
286 "context" in your problem report, giving a few lines around the
287 interesting one.
288
289 If you for some reason cannot do the above (you have a pre-compiled
290 kernel image or similar), telling me as much about your setup as
291 possible will help.
292
293 - Alternately, you can use gdb on a running kernel. (read-only; i.e. you
294 cannot change values or set break points.) To do this, first compile the
295 kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
296 clean". You'll also need to enable CONFIG_PROC_FS (via "make config").
297
298 After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
299 You can now use all the usual gdb commands. The command to look up the
300 point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
301 with the EIP value.)
302
303 gdb'ing a non-running kernel currently fails because gdb (wrongly)
304 disregards the starting offset for which the kernel is compiled.
305