Chris Metcalf | e5a0693 | 2010-11-01 17:00:37 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/moduleparam.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/kernel.h> /* printk() */ |
| 20 | #include <linux/slab.h> /* kmalloc() */ |
| 21 | #include <linux/errno.h> /* error codes */ |
| 22 | #include <linux/types.h> /* size_t */ |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/in.h> |
| 25 | #include <linux/netdevice.h> /* struct device, and other headers */ |
| 26 | #include <linux/etherdevice.h> /* eth_type_trans */ |
| 27 | #include <linux/skbuff.h> |
| 28 | #include <linux/ioctl.h> |
| 29 | #include <linux/cdev.h> |
| 30 | #include <linux/hugetlb.h> |
| 31 | #include <linux/in6.h> |
| 32 | #include <linux/timer.h> |
| 33 | #include <linux/io.h> |
| 34 | #include <asm/checksum.h> |
| 35 | #include <asm/homecache.h> |
| 36 | |
| 37 | #include <hv/drv_xgbe_intf.h> |
| 38 | #include <hv/drv_xgbe_impl.h> |
| 39 | #include <hv/hypervisor.h> |
| 40 | #include <hv/netio_intf.h> |
| 41 | |
| 42 | /* For TSO */ |
| 43 | #include <linux/ip.h> |
| 44 | #include <linux/tcp.h> |
| 45 | |
| 46 | |
| 47 | /* There is no singlethread_cpu, so schedule work on the current cpu. */ |
| 48 | #define singlethread_cpu -1 |
| 49 | |
| 50 | |
| 51 | /* |
| 52 | * First, "tile_net_init_module()" initializes all four "devices" which |
| 53 | * can be used by linux. |
| 54 | * |
| 55 | * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes |
| 56 | * the network cpus, then uses "tile_net_open_aux()" to initialize |
| 57 | * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all |
| 58 | * the tiles, provide buffers to LIPP, allow ingress to start, and |
| 59 | * turn on hypervisor interrupt handling (and NAPI) on all tiles. |
| 60 | * |
| 61 | * If registration fails due to the link being down, then "retry_work" |
| 62 | * is used to keep calling "tile_net_open_inner()" until it succeeds. |
| 63 | * |
| 64 | * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to |
| 65 | * stop egress, drain the LIPP buffers, unregister all the tiles, stop |
| 66 | * LIPP/LEPP, and wipe the LEPP queue. |
| 67 | * |
| 68 | * We start out with the ingress interrupt enabled on each CPU. When |
| 69 | * this interrupt fires, we disable it, and call "napi_schedule()". |
| 70 | * This will cause "tile_net_poll()" to be called, which will pull |
| 71 | * packets from the netio queue, filtering them out, or passing them |
| 72 | * to "netif_receive_skb()". If our budget is exhausted, we will |
| 73 | * return, knowing we will be called again later. Otherwise, we |
| 74 | * reenable the ingress interrupt, and call "napi_complete()". |
| 75 | * |
| 76 | * |
| 77 | * NOTE: The use of "native_driver" ensures that EPP exists, and that |
| 78 | * "epp_sendv" is legal, and that "LIPP" is being used. |
| 79 | * |
| 80 | * NOTE: Failing to free completions for an arbitrarily long time |
| 81 | * (which is defined to be illegal) does in fact cause bizarre |
| 82 | * problems. The "egress_timer" helps prevent this from happening. |
| 83 | * |
| 84 | * NOTE: The egress code can be interrupted by the interrupt handler. |
| 85 | */ |
| 86 | |
| 87 | |
| 88 | /* HACK: Allow use of "jumbo" packets. */ |
| 89 | /* This should be 1500 if "jumbo" is not set in LIPP. */ |
| 90 | /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */ |
| 91 | /* ISSUE: This has not been thoroughly tested (except at 1500). */ |
| 92 | #define TILE_NET_MTU 1500 |
| 93 | |
| 94 | /* HACK: Define to support GSO. */ |
| 95 | /* ISSUE: This may actually hurt performance of the TCP blaster. */ |
| 96 | /* #define TILE_NET_GSO */ |
| 97 | |
| 98 | /* Define this to collapse "duplicate" acks. */ |
| 99 | /* #define IGNORE_DUP_ACKS */ |
| 100 | |
| 101 | /* HACK: Define this to verify incoming packets. */ |
| 102 | /* #define TILE_NET_VERIFY_INGRESS */ |
| 103 | |
| 104 | /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */ |
| 105 | #define TILE_NET_TX_QUEUE_LEN 0 |
| 106 | |
| 107 | /* Define to dump packets (prints out the whole packet on tx and rx). */ |
| 108 | /* #define TILE_NET_DUMP_PACKETS */ |
| 109 | |
| 110 | /* Define to enable debug spew (all PDEBUG's are enabled). */ |
| 111 | /* #define TILE_NET_DEBUG */ |
| 112 | |
| 113 | |
| 114 | /* Define to activate paranoia checks. */ |
| 115 | /* #define TILE_NET_PARANOIA */ |
| 116 | |
| 117 | /* Default transmit lockup timeout period, in jiffies. */ |
| 118 | #define TILE_NET_TIMEOUT (5 * HZ) |
| 119 | |
| 120 | /* Default retry interval for bringing up the NetIO interface, in jiffies. */ |
| 121 | #define TILE_NET_RETRY_INTERVAL (5 * HZ) |
| 122 | |
| 123 | /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */ |
| 124 | #define TILE_NET_DEVS 4 |
| 125 | |
| 126 | |
| 127 | |
| 128 | /* Paranoia. */ |
| 129 | #if NET_IP_ALIGN != LIPP_PACKET_PADDING |
| 130 | #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING." |
| 131 | #endif |
| 132 | |
| 133 | |
| 134 | /* Debug print. */ |
| 135 | #ifdef TILE_NET_DEBUG |
| 136 | #define PDEBUG(fmt, args...) net_printk(fmt, ## args) |
| 137 | #else |
| 138 | #define PDEBUG(fmt, args...) |
| 139 | #endif |
| 140 | |
| 141 | |
| 142 | MODULE_AUTHOR("Tilera"); |
| 143 | MODULE_LICENSE("GPL"); |
| 144 | |
| 145 | |
| 146 | #define IS_MULTICAST(mac_addr) \ |
| 147 | (((u8 *)(mac_addr))[0] & 0x01) |
| 148 | |
| 149 | #define IS_BROADCAST(mac_addr) \ |
| 150 | (((u16 *)(mac_addr))[0] == 0xffff) |
| 151 | |
| 152 | |
| 153 | /* |
| 154 | * Queue of incoming packets for a specific cpu and device. |
| 155 | * |
| 156 | * Includes a pointer to the "system" data, and the actual "user" data. |
| 157 | */ |
| 158 | struct tile_netio_queue { |
| 159 | netio_queue_impl_t *__system_part; |
| 160 | netio_queue_user_impl_t __user_part; |
| 161 | |
| 162 | }; |
| 163 | |
| 164 | |
| 165 | /* |
| 166 | * Statistics counters for a specific cpu and device. |
| 167 | */ |
| 168 | struct tile_net_stats_t { |
| 169 | u32 rx_packets; |
| 170 | u32 rx_bytes; |
| 171 | u32 tx_packets; |
| 172 | u32 tx_bytes; |
| 173 | }; |
| 174 | |
| 175 | |
| 176 | /* |
| 177 | * Info for a specific cpu and device. |
| 178 | * |
| 179 | * ISSUE: There is a "dev" pointer in "napi" as well. |
| 180 | */ |
| 181 | struct tile_net_cpu { |
| 182 | /* The NAPI struct. */ |
| 183 | struct napi_struct napi; |
| 184 | /* Packet queue. */ |
| 185 | struct tile_netio_queue queue; |
| 186 | /* Statistics. */ |
| 187 | struct tile_net_stats_t stats; |
| 188 | /* ISSUE: Is this needed? */ |
| 189 | bool napi_enabled; |
| 190 | /* True if this tile has succcessfully registered with the IPP. */ |
| 191 | bool registered; |
| 192 | /* True if the link was down last time we tried to register. */ |
| 193 | bool link_down; |
| 194 | /* True if "egress_timer" is scheduled. */ |
| 195 | bool egress_timer_scheduled; |
| 196 | /* Number of small sk_buffs which must still be provided. */ |
| 197 | unsigned int num_needed_small_buffers; |
| 198 | /* Number of large sk_buffs which must still be provided. */ |
| 199 | unsigned int num_needed_large_buffers; |
| 200 | /* A timer for handling egress completions. */ |
| 201 | struct timer_list egress_timer; |
| 202 | }; |
| 203 | |
| 204 | |
| 205 | /* |
| 206 | * Info for a specific device. |
| 207 | */ |
| 208 | struct tile_net_priv { |
| 209 | /* Our network device. */ |
| 210 | struct net_device *dev; |
| 211 | /* The actual egress queue. */ |
| 212 | lepp_queue_t *epp_queue; |
| 213 | /* Protects "epp_queue->cmd_tail" and "epp_queue->comp_tail" */ |
| 214 | spinlock_t cmd_lock; |
| 215 | /* Protects "epp_queue->comp_head". */ |
| 216 | spinlock_t comp_lock; |
| 217 | /* The hypervisor handle for this interface. */ |
| 218 | int hv_devhdl; |
| 219 | /* The intr bit mask that IDs this device. */ |
| 220 | u32 intr_id; |
| 221 | /* True iff "tile_net_open_aux()" has succeeded. */ |
| 222 | int partly_opened; |
| 223 | /* True iff "tile_net_open_inner()" has succeeded. */ |
| 224 | int fully_opened; |
| 225 | /* Effective network cpus. */ |
| 226 | struct cpumask network_cpus_map; |
| 227 | /* Number of network cpus. */ |
| 228 | int network_cpus_count; |
| 229 | /* Credits per network cpu. */ |
| 230 | int network_cpus_credits; |
| 231 | /* Network stats. */ |
| 232 | struct net_device_stats stats; |
| 233 | /* For NetIO bringup retries. */ |
| 234 | struct delayed_work retry_work; |
| 235 | /* Quick access to per cpu data. */ |
| 236 | struct tile_net_cpu *cpu[NR_CPUS]; |
| 237 | }; |
| 238 | |
| 239 | |
| 240 | /* |
| 241 | * The actual devices (xgbe0, xgbe1, gbe0, gbe1). |
| 242 | */ |
| 243 | static struct net_device *tile_net_devs[TILE_NET_DEVS]; |
| 244 | |
| 245 | /* |
| 246 | * The "tile_net_cpu" structures for each device. |
| 247 | */ |
| 248 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0); |
| 249 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1); |
| 250 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0); |
| 251 | static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1); |
| 252 | |
| 253 | |
| 254 | /* |
| 255 | * True if "network_cpus" was specified. |
| 256 | */ |
| 257 | static bool network_cpus_used; |
| 258 | |
| 259 | /* |
| 260 | * The actual cpus in "network_cpus". |
| 261 | */ |
| 262 | static struct cpumask network_cpus_map; |
| 263 | |
| 264 | |
| 265 | |
| 266 | #ifdef TILE_NET_DEBUG |
| 267 | /* |
| 268 | * printk with extra stuff. |
| 269 | * |
| 270 | * We print the CPU we're running in brackets. |
| 271 | */ |
| 272 | static void net_printk(char *fmt, ...) |
| 273 | { |
| 274 | int i; |
| 275 | int len; |
| 276 | va_list args; |
| 277 | static char buf[256]; |
| 278 | |
| 279 | len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id()); |
| 280 | va_start(args, fmt); |
| 281 | i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args); |
| 282 | va_end(args); |
| 283 | buf[255] = '\0'; |
| 284 | pr_notice(buf); |
| 285 | } |
| 286 | #endif |
| 287 | |
| 288 | |
| 289 | #ifdef TILE_NET_DUMP_PACKETS |
| 290 | /* |
| 291 | * Dump a packet. |
| 292 | */ |
| 293 | static void dump_packet(unsigned char *data, unsigned long length, char *s) |
| 294 | { |
| 295 | unsigned long i; |
| 296 | static unsigned int count; |
| 297 | |
| 298 | pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n", |
| 299 | data, length, s, count++); |
| 300 | |
| 301 | pr_info("\n"); |
| 302 | |
| 303 | for (i = 0; i < length; i++) { |
| 304 | if ((i & 0xf) == 0) |
| 305 | sprintf(buf, "%8.8lx:", i); |
| 306 | sprintf(buf + strlen(buf), " %2.2x", data[i]); |
| 307 | if ((i & 0xf) == 0xf || i == length - 1) |
| 308 | pr_info("%s\n", buf); |
| 309 | } |
| 310 | } |
| 311 | #endif |
| 312 | |
| 313 | |
| 314 | /* |
| 315 | * Provide support for the __netio_fastio1() swint |
| 316 | * (see <hv/drv_xgbe_intf.h> for how it is used). |
| 317 | * |
| 318 | * The fastio swint2 call may clobber all the caller-saved registers. |
| 319 | * It rarely clobbers memory, but we allow for the possibility in |
| 320 | * the signature just to be on the safe side. |
| 321 | * |
| 322 | * Also, gcc doesn't seem to allow an input operand to be |
| 323 | * clobbered, so we fake it with dummy outputs. |
| 324 | * |
| 325 | * This function can't be static because of the way it is declared |
| 326 | * in the netio header. |
| 327 | */ |
| 328 | inline int __netio_fastio1(u32 fastio_index, u32 arg0) |
| 329 | { |
| 330 | long result, clobber_r1, clobber_r10; |
| 331 | asm volatile("swint2" |
| 332 | : "=R00" (result), |
| 333 | "=R01" (clobber_r1), "=R10" (clobber_r10) |
| 334 | : "R10" (fastio_index), "R01" (arg0) |
| 335 | : "memory", "r2", "r3", "r4", |
| 336 | "r5", "r6", "r7", "r8", "r9", |
| 337 | "r11", "r12", "r13", "r14", |
| 338 | "r15", "r16", "r17", "r18", "r19", |
| 339 | "r20", "r21", "r22", "r23", "r24", |
| 340 | "r25", "r26", "r27", "r28", "r29"); |
| 341 | return result; |
| 342 | } |
| 343 | |
| 344 | |
| 345 | /* |
| 346 | * Provide a linux buffer to LIPP. |
| 347 | */ |
| 348 | static void tile_net_provide_linux_buffer(struct tile_net_cpu *info, |
| 349 | void *va, bool small) |
| 350 | { |
| 351 | struct tile_netio_queue *queue = &info->queue; |
| 352 | |
| 353 | /* Convert "va" and "small" to "linux_buffer_t". */ |
| 354 | unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small; |
| 355 | |
| 356 | __netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer); |
| 357 | } |
| 358 | |
| 359 | |
| 360 | /* |
| 361 | * Provide a linux buffer for LIPP. |
| 362 | */ |
| 363 | static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info, |
| 364 | bool small) |
| 365 | { |
| 366 | /* ISSUE: What should we use here? */ |
| 367 | unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100; |
| 368 | |
| 369 | /* Round up to ensure to avoid "false sharing" with last cache line. */ |
| 370 | unsigned int buffer_size = |
| 371 | (((small ? LIPP_SMALL_PACKET_SIZE : large_size) + |
| 372 | CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE()); |
| 373 | |
| 374 | /* |
| 375 | * ISSUE: Since CPAs are 38 bits, and we can only encode the |
| 376 | * high 31 bits in a "linux_buffer_t", the low 7 bits must be |
| 377 | * zero, and thus, we must align the actual "va" mod 128. |
| 378 | */ |
| 379 | const unsigned long align = 128; |
| 380 | |
| 381 | struct sk_buff *skb; |
| 382 | void *va; |
| 383 | |
| 384 | struct sk_buff **skb_ptr; |
| 385 | |
| 386 | /* Note that "dev_alloc_skb()" adds NET_SKB_PAD more bytes, */ |
| 387 | /* and also "reserves" that many bytes. */ |
| 388 | /* ISSUE: Can we "share" the NET_SKB_PAD bytes with "skb_ptr"? */ |
| 389 | int len = sizeof(*skb_ptr) + align + buffer_size; |
| 390 | |
| 391 | while (1) { |
| 392 | |
| 393 | /* Allocate (or fail). */ |
| 394 | skb = dev_alloc_skb(len); |
| 395 | if (skb == NULL) |
| 396 | return false; |
| 397 | |
| 398 | /* Make room for a back-pointer to 'skb'. */ |
| 399 | skb_reserve(skb, sizeof(*skb_ptr)); |
| 400 | |
| 401 | /* Make sure we are aligned. */ |
| 402 | skb_reserve(skb, -(long)skb->data & (align - 1)); |
| 403 | |
| 404 | /* This address is given to IPP. */ |
| 405 | va = skb->data; |
| 406 | |
| 407 | if (small) |
| 408 | break; |
| 409 | |
| 410 | /* ISSUE: This has never been observed! */ |
| 411 | /* Large buffers must not span a huge page. */ |
| 412 | if (((((long)va & ~HPAGE_MASK) + 1535) & HPAGE_MASK) == 0) |
| 413 | break; |
| 414 | pr_err("Leaking unaligned linux buffer at %p.\n", va); |
| 415 | } |
| 416 | |
| 417 | /* Skip two bytes to satisfy LIPP assumptions. */ |
| 418 | /* Note that this aligns IP on a 16 byte boundary. */ |
| 419 | /* ISSUE: Do this when the packet arrives? */ |
| 420 | skb_reserve(skb, NET_IP_ALIGN); |
| 421 | |
| 422 | /* Save a back-pointer to 'skb'. */ |
| 423 | skb_ptr = va - sizeof(*skb_ptr); |
| 424 | *skb_ptr = skb; |
| 425 | |
| 426 | /* Invalidate the packet buffer. */ |
| 427 | if (!hash_default) |
| 428 | __inv_buffer(skb->data, buffer_size); |
| 429 | |
| 430 | /* Make sure "skb_ptr" has been flushed. */ |
| 431 | __insn_mf(); |
| 432 | |
| 433 | #ifdef TILE_NET_PARANOIA |
| 434 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 435 | if (hash_default) { |
| 436 | HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va); |
| 437 | if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3) |
| 438 | panic("Non-coherent ingress buffer!"); |
| 439 | } |
| 440 | #endif |
| 441 | #endif |
| 442 | |
| 443 | /* Provide the new buffer. */ |
| 444 | tile_net_provide_linux_buffer(info, va, small); |
| 445 | |
| 446 | return true; |
| 447 | } |
| 448 | |
| 449 | |
| 450 | /* |
| 451 | * Provide linux buffers for LIPP. |
| 452 | */ |
| 453 | static void tile_net_provide_needed_buffers(struct tile_net_cpu *info) |
| 454 | { |
| 455 | while (info->num_needed_small_buffers != 0) { |
| 456 | if (!tile_net_provide_needed_buffer(info, true)) |
| 457 | goto oops; |
| 458 | info->num_needed_small_buffers--; |
| 459 | } |
| 460 | |
| 461 | while (info->num_needed_large_buffers != 0) { |
| 462 | if (!tile_net_provide_needed_buffer(info, false)) |
| 463 | goto oops; |
| 464 | info->num_needed_large_buffers--; |
| 465 | } |
| 466 | |
| 467 | return; |
| 468 | |
| 469 | oops: |
| 470 | |
| 471 | /* Add a description to the page allocation failure dump. */ |
| 472 | pr_notice("Could not provide a linux buffer to LIPP.\n"); |
| 473 | } |
| 474 | |
| 475 | |
| 476 | /* |
| 477 | * Grab some LEPP completions, and store them in "comps", of size |
| 478 | * "comps_size", and return the number of completions which were |
| 479 | * stored, so the caller can free them. |
| 480 | * |
| 481 | * If "pending" is not NULL, it will be set to true if there might |
| 482 | * still be some pending completions caused by this tile, else false. |
| 483 | */ |
| 484 | static unsigned int tile_net_lepp_grab_comps(struct net_device *dev, |
| 485 | struct sk_buff *comps[], |
| 486 | unsigned int comps_size, |
| 487 | bool *pending) |
| 488 | { |
| 489 | struct tile_net_priv *priv = netdev_priv(dev); |
| 490 | |
| 491 | lepp_queue_t *eq = priv->epp_queue; |
| 492 | |
| 493 | unsigned int n = 0; |
| 494 | |
| 495 | unsigned int comp_head; |
| 496 | unsigned int comp_busy; |
| 497 | unsigned int comp_tail; |
| 498 | |
| 499 | spin_lock(&priv->comp_lock); |
| 500 | |
| 501 | comp_head = eq->comp_head; |
| 502 | comp_busy = eq->comp_busy; |
| 503 | comp_tail = eq->comp_tail; |
| 504 | |
| 505 | while (comp_head != comp_busy && n < comps_size) { |
| 506 | comps[n++] = eq->comps[comp_head]; |
| 507 | LEPP_QINC(comp_head); |
| 508 | } |
| 509 | |
| 510 | if (pending != NULL) |
| 511 | *pending = (comp_head != comp_tail); |
| 512 | |
| 513 | eq->comp_head = comp_head; |
| 514 | |
| 515 | spin_unlock(&priv->comp_lock); |
| 516 | |
| 517 | return n; |
| 518 | } |
| 519 | |
| 520 | |
| 521 | /* |
| 522 | * Make sure the egress timer is scheduled. |
| 523 | * |
| 524 | * Note that we use "schedule if not scheduled" logic instead of the more |
| 525 | * obvious "reschedule" logic, because "reschedule" is fairly expensive. |
| 526 | */ |
| 527 | static void tile_net_schedule_egress_timer(struct tile_net_cpu *info) |
| 528 | { |
| 529 | if (!info->egress_timer_scheduled) { |
| 530 | mod_timer_pinned(&info->egress_timer, jiffies + 1); |
| 531 | info->egress_timer_scheduled = true; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | |
| 536 | /* |
| 537 | * The "function" for "info->egress_timer". |
| 538 | * |
| 539 | * This timer will reschedule itself as long as there are any pending |
| 540 | * completions expected (on behalf of any tile). |
| 541 | * |
| 542 | * ISSUE: Realistically, will the timer ever stop scheduling itself? |
| 543 | * |
| 544 | * ISSUE: This timer is almost never actually needed, so just use a global |
| 545 | * timer that can run on any tile. |
| 546 | * |
| 547 | * ISSUE: Maybe instead track number of expected completions, and free |
| 548 | * only that many, resetting to zero if "pending" is ever false. |
| 549 | */ |
| 550 | static void tile_net_handle_egress_timer(unsigned long arg) |
| 551 | { |
| 552 | struct tile_net_cpu *info = (struct tile_net_cpu *)arg; |
| 553 | struct net_device *dev = info->napi.dev; |
| 554 | |
| 555 | struct sk_buff *olds[32]; |
| 556 | unsigned int wanted = 32; |
| 557 | unsigned int i, nolds = 0; |
| 558 | bool pending; |
| 559 | |
| 560 | /* The timer is no longer scheduled. */ |
| 561 | info->egress_timer_scheduled = false; |
| 562 | |
| 563 | nolds = tile_net_lepp_grab_comps(dev, olds, wanted, &pending); |
| 564 | |
| 565 | for (i = 0; i < nolds; i++) |
| 566 | kfree_skb(olds[i]); |
| 567 | |
| 568 | /* Reschedule timer if needed. */ |
| 569 | if (pending) |
| 570 | tile_net_schedule_egress_timer(info); |
| 571 | } |
| 572 | |
| 573 | |
| 574 | #ifdef IGNORE_DUP_ACKS |
| 575 | |
| 576 | /* |
| 577 | * Help detect "duplicate" ACKs. These are sequential packets (for a |
| 578 | * given flow) which are exactly 66 bytes long, sharing everything but |
| 579 | * ID=2@0x12, Hsum=2@0x18, Ack=4@0x2a, WinSize=2@0x30, Csum=2@0x32, |
| 580 | * Tstamps=10@0x38. The ID's are +1, the Hsum's are -1, the Ack's are |
| 581 | * +N, and the Tstamps are usually identical. |
| 582 | * |
| 583 | * NOTE: Apparently truly duplicate acks (with identical "ack" values), |
| 584 | * should not be collapsed, as they are used for some kind of flow control. |
| 585 | */ |
| 586 | static bool is_dup_ack(char *s1, char *s2, unsigned int len) |
| 587 | { |
| 588 | int i; |
| 589 | |
| 590 | unsigned long long ignorable = 0; |
| 591 | |
| 592 | /* Identification. */ |
| 593 | ignorable |= (1ULL << 0x12); |
| 594 | ignorable |= (1ULL << 0x13); |
| 595 | |
| 596 | /* Header checksum. */ |
| 597 | ignorable |= (1ULL << 0x18); |
| 598 | ignorable |= (1ULL << 0x19); |
| 599 | |
| 600 | /* ACK. */ |
| 601 | ignorable |= (1ULL << 0x2a); |
| 602 | ignorable |= (1ULL << 0x2b); |
| 603 | ignorable |= (1ULL << 0x2c); |
| 604 | ignorable |= (1ULL << 0x2d); |
| 605 | |
| 606 | /* WinSize. */ |
| 607 | ignorable |= (1ULL << 0x30); |
| 608 | ignorable |= (1ULL << 0x31); |
| 609 | |
| 610 | /* Checksum. */ |
| 611 | ignorable |= (1ULL << 0x32); |
| 612 | ignorable |= (1ULL << 0x33); |
| 613 | |
| 614 | for (i = 0; i < len; i++, ignorable >>= 1) { |
| 615 | |
| 616 | if ((ignorable & 1) || (s1[i] == s2[i])) |
| 617 | continue; |
| 618 | |
| 619 | #ifdef TILE_NET_DEBUG |
| 620 | /* HACK: Mention non-timestamp diffs. */ |
| 621 | if (i < 0x38 && i != 0x2f && |
| 622 | net_ratelimit()) |
| 623 | pr_info("Diff at 0x%x\n", i); |
| 624 | #endif |
| 625 | |
| 626 | return false; |
| 627 | } |
| 628 | |
| 629 | #ifdef TILE_NET_NO_SUPPRESS_DUP_ACKS |
| 630 | /* HACK: Do not suppress truly duplicate ACKs. */ |
| 631 | /* ISSUE: Is this actually necessary or helpful? */ |
| 632 | if (s1[0x2a] == s2[0x2a] && |
| 633 | s1[0x2b] == s2[0x2b] && |
| 634 | s1[0x2c] == s2[0x2c] && |
| 635 | s1[0x2d] == s2[0x2d]) { |
| 636 | return false; |
| 637 | } |
| 638 | #endif |
| 639 | |
| 640 | return true; |
| 641 | } |
| 642 | |
| 643 | #endif |
| 644 | |
| 645 | |
| 646 | |
| 647 | /* |
| 648 | * Like "tile_net_handle_packets()", but just discard packets. |
| 649 | */ |
| 650 | static void tile_net_discard_packets(struct net_device *dev) |
| 651 | { |
| 652 | struct tile_net_priv *priv = netdev_priv(dev); |
| 653 | int my_cpu = smp_processor_id(); |
| 654 | struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| 655 | struct tile_netio_queue *queue = &info->queue; |
| 656 | netio_queue_impl_t *qsp = queue->__system_part; |
| 657 | netio_queue_user_impl_t *qup = &queue->__user_part; |
| 658 | |
| 659 | while (qup->__packet_receive_read != |
| 660 | qsp->__packet_receive_queue.__packet_write) { |
| 661 | |
| 662 | int index = qup->__packet_receive_read; |
| 663 | |
| 664 | int index2_aux = index + sizeof(netio_pkt_t); |
| 665 | int index2 = |
| 666 | ((index2_aux == |
| 667 | qsp->__packet_receive_queue.__last_packet_plus_one) ? |
| 668 | 0 : index2_aux); |
| 669 | |
| 670 | netio_pkt_t *pkt = (netio_pkt_t *) |
| 671 | ((unsigned long) &qsp[1] + index); |
| 672 | |
| 673 | /* Extract the "linux_buffer_t". */ |
| 674 | unsigned int buffer = pkt->__packet.word; |
| 675 | |
| 676 | /* Convert "linux_buffer_t" to "va". */ |
| 677 | void *va = __va((phys_addr_t)(buffer >> 1) << 7); |
| 678 | |
| 679 | /* Acquire the associated "skb". */ |
| 680 | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); |
| 681 | struct sk_buff *skb = *skb_ptr; |
| 682 | |
| 683 | kfree_skb(skb); |
| 684 | |
| 685 | /* Consume this packet. */ |
| 686 | qup->__packet_receive_read = index2; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | |
| 691 | /* |
| 692 | * Handle the next packet. Return true if "processed", false if "filtered". |
| 693 | */ |
| 694 | static bool tile_net_poll_aux(struct tile_net_cpu *info, int index) |
| 695 | { |
| 696 | struct net_device *dev = info->napi.dev; |
| 697 | |
| 698 | struct tile_netio_queue *queue = &info->queue; |
| 699 | netio_queue_impl_t *qsp = queue->__system_part; |
| 700 | netio_queue_user_impl_t *qup = &queue->__user_part; |
| 701 | struct tile_net_stats_t *stats = &info->stats; |
| 702 | |
| 703 | int filter; |
| 704 | |
| 705 | int index2_aux = index + sizeof(netio_pkt_t); |
| 706 | int index2 = |
| 707 | ((index2_aux == |
| 708 | qsp->__packet_receive_queue.__last_packet_plus_one) ? |
| 709 | 0 : index2_aux); |
| 710 | |
| 711 | netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index); |
| 712 | |
| 713 | netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt); |
| 714 | |
| 715 | /* Extract the packet size. */ |
| 716 | unsigned long len = |
| 717 | (NETIO_PKT_CUSTOM_LENGTH(pkt) + |
| 718 | NET_IP_ALIGN - NETIO_PACKET_PADDING); |
| 719 | |
| 720 | /* Extract the "linux_buffer_t". */ |
| 721 | unsigned int buffer = pkt->__packet.word; |
| 722 | |
| 723 | /* Extract "small" (vs "large"). */ |
| 724 | bool small = ((buffer & 1) != 0); |
| 725 | |
| 726 | /* Convert "linux_buffer_t" to "va". */ |
| 727 | void *va = __va((phys_addr_t)(buffer >> 1) << 7); |
| 728 | |
| 729 | /* Extract the packet data pointer. */ |
| 730 | /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */ |
| 731 | unsigned char *buf = va + NET_IP_ALIGN; |
| 732 | |
| 733 | #ifdef IGNORE_DUP_ACKS |
| 734 | |
| 735 | static int other; |
| 736 | static int final; |
| 737 | static int keep; |
| 738 | static int skip; |
| 739 | |
| 740 | #endif |
| 741 | |
| 742 | /* Invalidate the packet buffer. */ |
| 743 | if (!hash_default) |
| 744 | __inv_buffer(buf, len); |
| 745 | |
| 746 | /* ISSUE: Is this needed? */ |
| 747 | dev->last_rx = jiffies; |
| 748 | |
| 749 | #ifdef TILE_NET_DUMP_PACKETS |
| 750 | dump_packet(buf, len, "rx"); |
| 751 | #endif /* TILE_NET_DUMP_PACKETS */ |
| 752 | |
| 753 | #ifdef TILE_NET_VERIFY_INGRESS |
| 754 | if (!NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt) && |
| 755 | NETIO_PKT_L4_CSUM_CALCULATED_M(metadata, pkt)) { |
| 756 | /* |
| 757 | * FIXME: This complains about UDP packets |
| 758 | * with a "zero" checksum (bug 6624). |
| 759 | */ |
| 760 | #ifdef TILE_NET_PANIC_ON_BAD |
| 761 | dump_packet(buf, len, "rx"); |
| 762 | panic("Bad L4 checksum."); |
| 763 | #else |
| 764 | pr_warning("Bad L4 checksum on %d byte packet.\n", len); |
| 765 | #endif |
| 766 | } |
| 767 | if (!NETIO_PKT_L3_CSUM_CORRECT_M(metadata, pkt) && |
| 768 | NETIO_PKT_L3_CSUM_CALCULATED_M(metadata, pkt)) { |
| 769 | dump_packet(buf, len, "rx"); |
| 770 | panic("Bad L3 checksum."); |
| 771 | } |
| 772 | switch (NETIO_PKT_STATUS_M(metadata, pkt)) { |
| 773 | case NETIO_PKT_STATUS_OVERSIZE: |
| 774 | if (len >= 64) { |
| 775 | dump_packet(buf, len, "rx"); |
| 776 | panic("Unexpected OVERSIZE."); |
| 777 | } |
| 778 | break; |
| 779 | case NETIO_PKT_STATUS_BAD: |
| 780 | #ifdef TILE_NET_PANIC_ON_BAD |
| 781 | dump_packet(buf, len, "rx"); |
| 782 | panic("Unexpected BAD packet."); |
| 783 | #else |
| 784 | pr_warning("Unexpected BAD %d byte packet.\n", len); |
| 785 | #endif |
| 786 | } |
| 787 | #endif |
| 788 | |
| 789 | filter = 0; |
| 790 | |
| 791 | if (!(dev->flags & IFF_UP)) { |
| 792 | /* Filter packets received before we're up. */ |
| 793 | filter = 1; |
| 794 | } else if (!(dev->flags & IFF_PROMISC)) { |
| 795 | /* |
| 796 | * FIXME: Implement HW multicast filter. |
| 797 | */ |
| 798 | if (!IS_MULTICAST(buf) && !IS_BROADCAST(buf)) { |
| 799 | /* Filter packets not for our address. */ |
| 800 | const u8 *mine = dev->dev_addr; |
| 801 | filter = compare_ether_addr(mine, buf); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | #ifdef IGNORE_DUP_ACKS |
| 806 | |
| 807 | if (len != 66) { |
| 808 | /* FIXME: Must check "is_tcp_ack(buf, len)" somehow. */ |
| 809 | |
| 810 | other++; |
| 811 | |
| 812 | } else if (index2 == |
| 813 | qsp->__packet_receive_queue.__packet_write) { |
| 814 | |
| 815 | final++; |
| 816 | |
| 817 | } else { |
| 818 | |
| 819 | netio_pkt_t *pkt2 = (netio_pkt_t *) |
| 820 | ((unsigned long) &qsp[1] + index2); |
| 821 | |
| 822 | netio_pkt_metadata_t *metadata2 = |
| 823 | NETIO_PKT_METADATA(pkt2); |
| 824 | |
| 825 | /* Extract the packet size. */ |
| 826 | unsigned long len2 = |
| 827 | (NETIO_PKT_CUSTOM_LENGTH(pkt2) + |
| 828 | NET_IP_ALIGN - NETIO_PACKET_PADDING); |
| 829 | |
| 830 | if (len2 == 66 && |
| 831 | NETIO_PKT_FLOW_HASH_M(metadata, pkt) == |
| 832 | NETIO_PKT_FLOW_HASH_M(metadata2, pkt2)) { |
| 833 | |
| 834 | /* Extract the "linux_buffer_t". */ |
| 835 | unsigned int buffer2 = pkt2->__packet.word; |
| 836 | |
| 837 | /* Convert "linux_buffer_t" to "va". */ |
| 838 | void *va2 = |
| 839 | __va((phys_addr_t)(buffer2 >> 1) << 7); |
| 840 | |
| 841 | /* Extract the packet data pointer. */ |
| 842 | /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */ |
| 843 | unsigned char *buf2 = va2 + NET_IP_ALIGN; |
| 844 | |
| 845 | /* Invalidate the packet buffer. */ |
| 846 | if (!hash_default) |
| 847 | __inv_buffer(buf2, len2); |
| 848 | |
| 849 | if (is_dup_ack(buf, buf2, len)) { |
| 850 | skip++; |
| 851 | filter = 1; |
| 852 | } else { |
| 853 | keep++; |
| 854 | } |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | if (net_ratelimit()) |
| 859 | pr_info("Other %d Final %d Keep %d Skip %d.\n", |
| 860 | other, final, keep, skip); |
| 861 | |
| 862 | #endif |
| 863 | |
| 864 | if (filter) { |
| 865 | |
| 866 | /* ISSUE: Update "drop" statistics? */ |
| 867 | |
| 868 | tile_net_provide_linux_buffer(info, va, small); |
| 869 | |
| 870 | } else { |
| 871 | |
| 872 | /* Acquire the associated "skb". */ |
| 873 | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); |
| 874 | struct sk_buff *skb = *skb_ptr; |
| 875 | |
| 876 | /* Paranoia. */ |
| 877 | if (skb->data != buf) |
| 878 | panic("Corrupt linux buffer from LIPP! " |
| 879 | "VA=%p, skb=%p, skb->data=%p\n", |
| 880 | va, skb, skb->data); |
| 881 | |
| 882 | /* Encode the actual packet length. */ |
| 883 | skb_put(skb, len); |
| 884 | |
| 885 | /* NOTE: This call also sets "skb->dev = dev". */ |
| 886 | skb->protocol = eth_type_trans(skb, dev); |
| 887 | |
| 888 | /* ISSUE: Discard corrupt packets? */ |
| 889 | /* ISSUE: Discard packets with bad checksums? */ |
| 890 | |
| 891 | /* Avoid recomputing TCP/UDP checksums. */ |
| 892 | if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt)) |
| 893 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 894 | |
| 895 | netif_receive_skb(skb); |
| 896 | |
| 897 | stats->rx_packets++; |
| 898 | stats->rx_bytes += len; |
| 899 | |
| 900 | if (small) |
| 901 | info->num_needed_small_buffers++; |
| 902 | else |
| 903 | info->num_needed_large_buffers++; |
| 904 | } |
| 905 | |
| 906 | /* Return four credits after every fourth packet. */ |
| 907 | if (--qup->__receive_credit_remaining == 0) { |
| 908 | u32 interval = qup->__receive_credit_interval; |
| 909 | qup->__receive_credit_remaining = interval; |
| 910 | __netio_fastio_return_credits(qup->__fastio_index, interval); |
| 911 | } |
| 912 | |
| 913 | /* Consume this packet. */ |
| 914 | qup->__packet_receive_read = index2; |
| 915 | |
| 916 | return !filter; |
| 917 | } |
| 918 | |
| 919 | |
| 920 | /* |
| 921 | * Handle some packets for the given device on the current CPU. |
| 922 | * |
| 923 | * ISSUE: The "rotting packet" race condition occurs if a packet |
| 924 | * arrives after the queue appears to be empty, and before the |
| 925 | * hypervisor interrupt is re-enabled. |
| 926 | */ |
| 927 | static int tile_net_poll(struct napi_struct *napi, int budget) |
| 928 | { |
| 929 | struct net_device *dev = napi->dev; |
| 930 | struct tile_net_priv *priv = netdev_priv(dev); |
| 931 | int my_cpu = smp_processor_id(); |
| 932 | struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| 933 | struct tile_netio_queue *queue = &info->queue; |
| 934 | netio_queue_impl_t *qsp = queue->__system_part; |
| 935 | netio_queue_user_impl_t *qup = &queue->__user_part; |
| 936 | |
| 937 | unsigned int work = 0; |
| 938 | |
| 939 | while (1) { |
| 940 | int index = qup->__packet_receive_read; |
| 941 | if (index == qsp->__packet_receive_queue.__packet_write) |
| 942 | break; |
| 943 | |
| 944 | if (tile_net_poll_aux(info, index)) { |
| 945 | if (++work >= budget) |
| 946 | goto done; |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | napi_complete(&info->napi); |
| 951 | |
| 952 | /* Re-enable hypervisor interrupts. */ |
| 953 | enable_percpu_irq(priv->intr_id); |
| 954 | |
| 955 | /* HACK: Avoid the "rotting packet" problem. */ |
| 956 | if (qup->__packet_receive_read != |
| 957 | qsp->__packet_receive_queue.__packet_write) |
| 958 | napi_schedule(&info->napi); |
| 959 | |
| 960 | /* ISSUE: Handle completions? */ |
| 961 | |
| 962 | done: |
| 963 | |
| 964 | tile_net_provide_needed_buffers(info); |
| 965 | |
| 966 | return work; |
| 967 | } |
| 968 | |
| 969 | |
| 970 | /* |
| 971 | * Handle an ingress interrupt for the given device on the current cpu. |
| 972 | */ |
| 973 | static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr) |
| 974 | { |
| 975 | struct net_device *dev = (struct net_device *)dev_ptr; |
| 976 | struct tile_net_priv *priv = netdev_priv(dev); |
| 977 | int my_cpu = smp_processor_id(); |
| 978 | struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| 979 | |
| 980 | /* Disable hypervisor interrupt. */ |
| 981 | disable_percpu_irq(priv->intr_id); |
| 982 | |
| 983 | napi_schedule(&info->napi); |
| 984 | |
| 985 | return IRQ_HANDLED; |
| 986 | } |
| 987 | |
| 988 | |
| 989 | /* |
| 990 | * One time initialization per interface. |
| 991 | */ |
| 992 | static int tile_net_open_aux(struct net_device *dev) |
| 993 | { |
| 994 | struct tile_net_priv *priv = netdev_priv(dev); |
| 995 | |
| 996 | int ret; |
| 997 | int dummy; |
| 998 | unsigned int epp_lotar; |
| 999 | |
| 1000 | /* |
| 1001 | * Find out where EPP memory should be homed. |
| 1002 | */ |
| 1003 | ret = hv_dev_pread(priv->hv_devhdl, 0, |
| 1004 | (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar), |
| 1005 | NETIO_EPP_SHM_OFF); |
| 1006 | if (ret < 0) { |
| 1007 | pr_err("could not read epp_shm_queue lotar.\n"); |
| 1008 | return -EIO; |
| 1009 | } |
| 1010 | |
| 1011 | /* |
| 1012 | * Home the page on the EPP. |
| 1013 | */ |
| 1014 | { |
| 1015 | int epp_home = hv_lotar_to_cpu(epp_lotar); |
| 1016 | struct page *page = virt_to_page(priv->epp_queue); |
| 1017 | homecache_change_page_home(page, 0, epp_home); |
| 1018 | } |
| 1019 | |
| 1020 | /* |
| 1021 | * Register the EPP shared memory queue. |
| 1022 | */ |
| 1023 | { |
| 1024 | netio_ipp_address_t ea = { |
| 1025 | .va = 0, |
| 1026 | .pa = __pa(priv->epp_queue), |
| 1027 | .pte = hv_pte(0), |
| 1028 | .size = PAGE_SIZE, |
| 1029 | }; |
| 1030 | ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar); |
| 1031 | ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3); |
| 1032 | ret = hv_dev_pwrite(priv->hv_devhdl, 0, |
| 1033 | (HV_VirtAddr)&ea, |
| 1034 | sizeof(ea), |
| 1035 | NETIO_EPP_SHM_OFF); |
| 1036 | if (ret < 0) |
| 1037 | return -EIO; |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * Start LIPP/LEPP. |
| 1042 | */ |
| 1043 | if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, |
| 1044 | sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) { |
| 1045 | pr_warning("Failed to start LIPP/LEPP.\n"); |
| 1046 | return -EIO; |
| 1047 | } |
| 1048 | |
| 1049 | return 0; |
| 1050 | } |
| 1051 | |
| 1052 | |
| 1053 | /* |
| 1054 | * Register with hypervisor on each CPU. |
| 1055 | * |
| 1056 | * Strangely, this function does important things even if it "fails", |
| 1057 | * which is especially common if the link is not up yet. Hopefully |
| 1058 | * these things are all "harmless" if done twice! |
| 1059 | */ |
| 1060 | static void tile_net_register(void *dev_ptr) |
| 1061 | { |
| 1062 | struct net_device *dev = (struct net_device *)dev_ptr; |
| 1063 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1064 | int my_cpu = smp_processor_id(); |
| 1065 | struct tile_net_cpu *info; |
| 1066 | |
| 1067 | struct tile_netio_queue *queue; |
| 1068 | |
| 1069 | /* Only network cpus can receive packets. */ |
| 1070 | int queue_id = |
| 1071 | cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255; |
| 1072 | |
| 1073 | netio_input_config_t config = { |
| 1074 | .flags = 0, |
| 1075 | .num_receive_packets = priv->network_cpus_credits, |
| 1076 | .queue_id = queue_id |
| 1077 | }; |
| 1078 | |
| 1079 | int ret = 0; |
| 1080 | netio_queue_impl_t *queuep; |
| 1081 | |
| 1082 | PDEBUG("tile_net_register(queue_id %d)\n", queue_id); |
| 1083 | |
| 1084 | if (!strcmp(dev->name, "xgbe0")) |
| 1085 | info = &__get_cpu_var(hv_xgbe0); |
| 1086 | else if (!strcmp(dev->name, "xgbe1")) |
| 1087 | info = &__get_cpu_var(hv_xgbe1); |
| 1088 | else if (!strcmp(dev->name, "gbe0")) |
| 1089 | info = &__get_cpu_var(hv_gbe0); |
| 1090 | else if (!strcmp(dev->name, "gbe1")) |
| 1091 | info = &__get_cpu_var(hv_gbe1); |
| 1092 | else |
| 1093 | BUG(); |
| 1094 | |
| 1095 | /* Initialize the egress timer. */ |
| 1096 | init_timer(&info->egress_timer); |
| 1097 | info->egress_timer.data = (long)info; |
| 1098 | info->egress_timer.function = tile_net_handle_egress_timer; |
| 1099 | |
| 1100 | priv->cpu[my_cpu] = info; |
| 1101 | |
| 1102 | /* |
| 1103 | * Register ourselves with the IPP. |
| 1104 | */ |
| 1105 | ret = hv_dev_pwrite(priv->hv_devhdl, 0, |
| 1106 | (HV_VirtAddr)&config, |
| 1107 | sizeof(netio_input_config_t), |
| 1108 | NETIO_IPP_INPUT_REGISTER_OFF); |
| 1109 | PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n", |
| 1110 | ret); |
| 1111 | if (ret < 0) { |
| 1112 | printk(KERN_DEBUG "hv_dev_pwrite NETIO_IPP_INPUT_REGISTER_OFF" |
| 1113 | " failure %d\n", ret); |
| 1114 | info->link_down = (ret == NETIO_LINK_DOWN); |
| 1115 | return; |
| 1116 | } |
| 1117 | |
| 1118 | /* |
| 1119 | * Get the pointer to our queue's system part. |
| 1120 | */ |
| 1121 | |
| 1122 | ret = hv_dev_pread(priv->hv_devhdl, 0, |
| 1123 | (HV_VirtAddr)&queuep, |
| 1124 | sizeof(netio_queue_impl_t *), |
| 1125 | NETIO_IPP_INPUT_REGISTER_OFF); |
| 1126 | PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n", |
| 1127 | ret); |
| 1128 | PDEBUG("queuep %p\n", queuep); |
| 1129 | if (ret <= 0) { |
| 1130 | /* ISSUE: Shouldn't this be a fatal error? */ |
| 1131 | pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n"); |
| 1132 | return; |
| 1133 | } |
| 1134 | |
| 1135 | queue = &info->queue; |
| 1136 | |
| 1137 | queue->__system_part = queuep; |
| 1138 | |
| 1139 | memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t)); |
| 1140 | |
| 1141 | /* This is traditionally "config.num_receive_packets / 2". */ |
| 1142 | queue->__user_part.__receive_credit_interval = 4; |
| 1143 | queue->__user_part.__receive_credit_remaining = |
| 1144 | queue->__user_part.__receive_credit_interval; |
| 1145 | |
| 1146 | /* |
| 1147 | * Get a fastio index from the hypervisor. |
| 1148 | * ISSUE: Shouldn't this check the result? |
| 1149 | */ |
| 1150 | ret = hv_dev_pread(priv->hv_devhdl, 0, |
| 1151 | (HV_VirtAddr)&queue->__user_part.__fastio_index, |
| 1152 | sizeof(queue->__user_part.__fastio_index), |
| 1153 | NETIO_IPP_GET_FASTIO_OFF); |
| 1154 | PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret); |
| 1155 | |
| 1156 | netif_napi_add(dev, &info->napi, tile_net_poll, 64); |
| 1157 | |
| 1158 | /* Now we are registered. */ |
| 1159 | info->registered = true; |
| 1160 | } |
| 1161 | |
| 1162 | |
| 1163 | /* |
| 1164 | * Unregister with hypervisor on each CPU. |
| 1165 | */ |
| 1166 | static void tile_net_unregister(void *dev_ptr) |
| 1167 | { |
| 1168 | struct net_device *dev = (struct net_device *)dev_ptr; |
| 1169 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1170 | int my_cpu = smp_processor_id(); |
| 1171 | struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| 1172 | |
| 1173 | int ret = 0; |
| 1174 | int dummy = 0; |
| 1175 | |
| 1176 | /* Do nothing if never registered. */ |
| 1177 | if (info == NULL) |
| 1178 | return; |
| 1179 | |
| 1180 | /* Do nothing if already unregistered. */ |
| 1181 | if (!info->registered) |
| 1182 | return; |
| 1183 | |
| 1184 | /* |
| 1185 | * Unregister ourselves with LIPP. |
| 1186 | */ |
| 1187 | ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, |
| 1188 | sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF); |
| 1189 | PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_UNREGISTER_OFF) returned %d\n", |
| 1190 | ret); |
| 1191 | if (ret < 0) { |
| 1192 | /* FIXME: Just panic? */ |
| 1193 | pr_err("hv_dev_pwrite NETIO_IPP_INPUT_UNREGISTER_OFF" |
| 1194 | " failure %d\n", ret); |
| 1195 | } |
| 1196 | |
| 1197 | /* |
| 1198 | * Discard all packets still in our NetIO queue. Hopefully, |
| 1199 | * once the unregister call is complete, there will be no |
| 1200 | * packets still in flight on the IDN. |
| 1201 | */ |
| 1202 | tile_net_discard_packets(dev); |
| 1203 | |
| 1204 | /* Reset state. */ |
| 1205 | info->num_needed_small_buffers = 0; |
| 1206 | info->num_needed_large_buffers = 0; |
| 1207 | |
| 1208 | /* Cancel egress timer. */ |
| 1209 | del_timer(&info->egress_timer); |
| 1210 | info->egress_timer_scheduled = false; |
| 1211 | |
| 1212 | netif_napi_del(&info->napi); |
| 1213 | |
| 1214 | /* Now we are unregistered. */ |
| 1215 | info->registered = false; |
| 1216 | } |
| 1217 | |
| 1218 | |
| 1219 | /* |
| 1220 | * Helper function for "tile_net_stop()". |
| 1221 | * |
| 1222 | * Also used to handle registration failure in "tile_net_open_inner()", |
| 1223 | * when "fully_opened" is known to be false, and the various extra |
| 1224 | * steps in "tile_net_stop()" are not necessary. ISSUE: It might be |
| 1225 | * simpler if we could just call "tile_net_stop()" anyway. |
| 1226 | */ |
| 1227 | static void tile_net_stop_aux(struct net_device *dev) |
| 1228 | { |
| 1229 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1230 | |
| 1231 | int dummy = 0; |
| 1232 | |
| 1233 | /* Unregister all tiles, so LIPP will stop delivering packets. */ |
| 1234 | on_each_cpu(tile_net_unregister, (void *)dev, 1); |
| 1235 | |
| 1236 | /* Stop LIPP/LEPP. */ |
| 1237 | if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, |
| 1238 | sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0) |
| 1239 | panic("Failed to stop LIPP/LEPP!\n"); |
| 1240 | |
| 1241 | priv->partly_opened = 0; |
| 1242 | } |
| 1243 | |
| 1244 | |
| 1245 | /* |
| 1246 | * Disable ingress interrupts for the given device on the current cpu. |
| 1247 | */ |
| 1248 | static void tile_net_disable_intr(void *dev_ptr) |
| 1249 | { |
| 1250 | struct net_device *dev = (struct net_device *)dev_ptr; |
| 1251 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1252 | int my_cpu = smp_processor_id(); |
| 1253 | struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| 1254 | |
| 1255 | /* Disable hypervisor interrupt. */ |
| 1256 | disable_percpu_irq(priv->intr_id); |
| 1257 | |
| 1258 | /* Disable NAPI if needed. */ |
| 1259 | if (info != NULL && info->napi_enabled) { |
| 1260 | napi_disable(&info->napi); |
| 1261 | info->napi_enabled = false; |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | /* |
| 1267 | * Enable ingress interrupts for the given device on the current cpu. |
| 1268 | */ |
| 1269 | static void tile_net_enable_intr(void *dev_ptr) |
| 1270 | { |
| 1271 | struct net_device *dev = (struct net_device *)dev_ptr; |
| 1272 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1273 | int my_cpu = smp_processor_id(); |
| 1274 | struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| 1275 | |
| 1276 | /* Enable hypervisor interrupt. */ |
| 1277 | enable_percpu_irq(priv->intr_id); |
| 1278 | |
| 1279 | /* Enable NAPI. */ |
| 1280 | napi_enable(&info->napi); |
| 1281 | info->napi_enabled = true; |
| 1282 | } |
| 1283 | |
| 1284 | |
| 1285 | /* |
| 1286 | * tile_net_open_inner does most of the work of bringing up the interface. |
| 1287 | * It's called from tile_net_open(), and also from tile_net_retry_open(). |
| 1288 | * The return value is 0 if the interface was brought up, < 0 if |
| 1289 | * tile_net_open() should return the return value as an error, and > 0 if |
| 1290 | * tile_net_open() should return success and schedule a work item to |
| 1291 | * periodically retry the bringup. |
| 1292 | */ |
| 1293 | static int tile_net_open_inner(struct net_device *dev) |
| 1294 | { |
| 1295 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1296 | int my_cpu = smp_processor_id(); |
| 1297 | struct tile_net_cpu *info; |
| 1298 | struct tile_netio_queue *queue; |
| 1299 | unsigned int irq; |
| 1300 | int i; |
| 1301 | |
| 1302 | /* |
| 1303 | * First try to register just on the local CPU, and handle any |
| 1304 | * semi-expected "link down" failure specially. Note that we |
| 1305 | * do NOT call "tile_net_stop_aux()", unlike below. |
| 1306 | */ |
| 1307 | tile_net_register(dev); |
| 1308 | info = priv->cpu[my_cpu]; |
| 1309 | if (!info->registered) { |
| 1310 | if (info->link_down) |
| 1311 | return 1; |
| 1312 | return -EAGAIN; |
| 1313 | } |
| 1314 | |
| 1315 | /* |
| 1316 | * Now register everywhere else. If any registration fails, |
| 1317 | * even for "link down" (which might not be possible), we |
| 1318 | * clean up using "tile_net_stop_aux()". |
| 1319 | */ |
| 1320 | smp_call_function(tile_net_register, (void *)dev, 1); |
| 1321 | for_each_online_cpu(i) { |
| 1322 | if (!priv->cpu[i]->registered) { |
| 1323 | tile_net_stop_aux(dev); |
| 1324 | return -EAGAIN; |
| 1325 | } |
| 1326 | } |
| 1327 | |
| 1328 | queue = &info->queue; |
| 1329 | |
| 1330 | /* |
| 1331 | * Set the device intr bit mask. |
| 1332 | * The tile_net_register above sets per tile __intr_id. |
| 1333 | */ |
| 1334 | priv->intr_id = queue->__system_part->__intr_id; |
| 1335 | BUG_ON(!priv->intr_id); |
| 1336 | |
| 1337 | /* |
| 1338 | * Register the device interrupt handler. |
| 1339 | * The __ffs() function returns the index into the interrupt handler |
| 1340 | * table from the interrupt bit mask which should have one bit |
| 1341 | * and one bit only set. |
| 1342 | */ |
| 1343 | irq = __ffs(priv->intr_id); |
| 1344 | tile_irq_activate(irq, TILE_IRQ_PERCPU); |
| 1345 | BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt, |
| 1346 | 0, dev->name, (void *)dev) != 0); |
| 1347 | |
| 1348 | /* ISSUE: How could "priv->fully_opened" ever be "true" here? */ |
| 1349 | |
| 1350 | if (!priv->fully_opened) { |
| 1351 | |
| 1352 | int dummy = 0; |
| 1353 | |
| 1354 | /* Allocate initial buffers. */ |
| 1355 | |
| 1356 | int max_buffers = |
| 1357 | priv->network_cpus_count * priv->network_cpus_credits; |
| 1358 | |
| 1359 | info->num_needed_small_buffers = |
| 1360 | min(LIPP_SMALL_BUFFERS, max_buffers); |
| 1361 | |
| 1362 | info->num_needed_large_buffers = |
| 1363 | min(LIPP_LARGE_BUFFERS, max_buffers); |
| 1364 | |
| 1365 | tile_net_provide_needed_buffers(info); |
| 1366 | |
| 1367 | if (info->num_needed_small_buffers != 0 || |
| 1368 | info->num_needed_large_buffers != 0) |
| 1369 | panic("Insufficient memory for buffer stack!"); |
| 1370 | |
| 1371 | /* Start LIPP/LEPP and activate "ingress" at the shim. */ |
| 1372 | if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, |
| 1373 | sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0) |
| 1374 | panic("Failed to activate the LIPP Shim!\n"); |
| 1375 | |
| 1376 | priv->fully_opened = 1; |
| 1377 | } |
| 1378 | |
| 1379 | /* On each tile, enable the hypervisor to trigger interrupts. */ |
| 1380 | /* ISSUE: Do this before starting LIPP/LEPP? */ |
| 1381 | on_each_cpu(tile_net_enable_intr, (void *)dev, 1); |
| 1382 | |
| 1383 | /* Start our transmit queue. */ |
| 1384 | netif_start_queue(dev); |
| 1385 | |
| 1386 | return 0; |
| 1387 | } |
| 1388 | |
| 1389 | |
| 1390 | /* |
| 1391 | * Called periodically to retry bringing up the NetIO interface, |
| 1392 | * if it doesn't come up cleanly during tile_net_open(). |
| 1393 | */ |
| 1394 | static void tile_net_open_retry(struct work_struct *w) |
| 1395 | { |
| 1396 | struct delayed_work *dw = |
| 1397 | container_of(w, struct delayed_work, work); |
| 1398 | |
| 1399 | struct tile_net_priv *priv = |
| 1400 | container_of(dw, struct tile_net_priv, retry_work); |
| 1401 | |
| 1402 | /* |
| 1403 | * Try to bring the NetIO interface up. If it fails, reschedule |
| 1404 | * ourselves to try again later; otherwise, tell Linux we now have |
| 1405 | * a working link. ISSUE: What if the return value is negative? |
| 1406 | */ |
| 1407 | if (tile_net_open_inner(priv->dev)) |
| 1408 | schedule_delayed_work_on(singlethread_cpu, &priv->retry_work, |
| 1409 | TILE_NET_RETRY_INTERVAL); |
| 1410 | else |
| 1411 | netif_carrier_on(priv->dev); |
| 1412 | } |
| 1413 | |
| 1414 | |
| 1415 | /* |
| 1416 | * Called when a network interface is made active. |
| 1417 | * |
| 1418 | * Returns 0 on success, negative value on failure. |
| 1419 | * |
| 1420 | * The open entry point is called when a network interface is made |
| 1421 | * active by the system (IFF_UP). At this point all resources needed |
| 1422 | * for transmit and receive operations are allocated, the interrupt |
| 1423 | * handler is registered with the OS, the watchdog timer is started, |
| 1424 | * and the stack is notified that the interface is ready. |
| 1425 | * |
| 1426 | * If the actual link is not available yet, then we tell Linux that |
| 1427 | * we have no carrier, and we keep checking until the link comes up. |
| 1428 | */ |
| 1429 | static int tile_net_open(struct net_device *dev) |
| 1430 | { |
| 1431 | int ret = 0; |
| 1432 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1433 | |
| 1434 | /* |
| 1435 | * We rely on priv->partly_opened to tell us if this is the |
| 1436 | * first time this interface is being brought up. If it is |
| 1437 | * set, the IPP was already initialized and should not be |
| 1438 | * initialized again. |
| 1439 | */ |
| 1440 | if (!priv->partly_opened) { |
| 1441 | |
| 1442 | int count; |
| 1443 | int credits; |
| 1444 | |
| 1445 | /* Initialize LIPP/LEPP, and start the Shim. */ |
| 1446 | ret = tile_net_open_aux(dev); |
| 1447 | if (ret < 0) { |
| 1448 | pr_err("tile_net_open_aux failed: %d\n", ret); |
| 1449 | return ret; |
| 1450 | } |
| 1451 | |
| 1452 | /* Analyze the network cpus. */ |
| 1453 | |
| 1454 | if (network_cpus_used) |
| 1455 | cpumask_copy(&priv->network_cpus_map, |
| 1456 | &network_cpus_map); |
| 1457 | else |
| 1458 | cpumask_copy(&priv->network_cpus_map, cpu_online_mask); |
| 1459 | |
| 1460 | |
| 1461 | count = cpumask_weight(&priv->network_cpus_map); |
| 1462 | |
| 1463 | /* Limit credits to available buffers, and apply min. */ |
| 1464 | credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1); |
| 1465 | |
| 1466 | /* Apply "GBE" max limit. */ |
| 1467 | /* ISSUE: Use higher limit for XGBE? */ |
| 1468 | credits = min(NETIO_MAX_RECEIVE_PKTS, credits); |
| 1469 | |
| 1470 | priv->network_cpus_count = count; |
| 1471 | priv->network_cpus_credits = credits; |
| 1472 | |
| 1473 | #ifdef TILE_NET_DEBUG |
| 1474 | pr_info("Using %d network cpus, with %d credits each\n", |
| 1475 | priv->network_cpus_count, priv->network_cpus_credits); |
| 1476 | #endif |
| 1477 | |
| 1478 | priv->partly_opened = 1; |
| 1479 | } |
| 1480 | |
| 1481 | /* |
| 1482 | * Attempt to bring up the link. |
| 1483 | */ |
| 1484 | ret = tile_net_open_inner(dev); |
| 1485 | if (ret <= 0) { |
| 1486 | if (ret == 0) |
| 1487 | netif_carrier_on(dev); |
| 1488 | return ret; |
| 1489 | } |
| 1490 | |
| 1491 | /* |
| 1492 | * We were unable to bring up the NetIO interface, but we want to |
| 1493 | * try again in a little bit. Tell Linux that we have no carrier |
| 1494 | * so it doesn't try to use the interface before the link comes up |
| 1495 | * and then remember to try again later. |
| 1496 | */ |
| 1497 | netif_carrier_off(dev); |
| 1498 | schedule_delayed_work_on(singlethread_cpu, &priv->retry_work, |
| 1499 | TILE_NET_RETRY_INTERVAL); |
| 1500 | |
| 1501 | return 0; |
| 1502 | } |
| 1503 | |
| 1504 | |
| 1505 | /* |
| 1506 | * Disables a network interface. |
| 1507 | * |
| 1508 | * Returns 0, this is not allowed to fail. |
| 1509 | * |
| 1510 | * The close entry point is called when an interface is de-activated |
| 1511 | * by the OS. The hardware is still under the drivers control, but |
| 1512 | * needs to be disabled. A global MAC reset is issued to stop the |
| 1513 | * hardware, and all transmit and receive resources are freed. |
| 1514 | * |
| 1515 | * ISSUE: Can this can be called while "tile_net_poll()" is running? |
| 1516 | */ |
| 1517 | static int tile_net_stop(struct net_device *dev) |
| 1518 | { |
| 1519 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1520 | |
| 1521 | bool pending = true; |
| 1522 | |
| 1523 | PDEBUG("tile_net_stop()\n"); |
| 1524 | |
| 1525 | /* ISSUE: Only needed if not yet fully open. */ |
| 1526 | cancel_delayed_work_sync(&priv->retry_work); |
| 1527 | |
| 1528 | /* Can't transmit any more. */ |
| 1529 | netif_stop_queue(dev); |
| 1530 | |
| 1531 | /* |
| 1532 | * Disable hypervisor interrupts on each tile. |
| 1533 | */ |
| 1534 | on_each_cpu(tile_net_disable_intr, (void *)dev, 1); |
| 1535 | |
| 1536 | /* |
| 1537 | * Unregister the interrupt handler. |
| 1538 | * The __ffs() function returns the index into the interrupt handler |
| 1539 | * table from the interrupt bit mask which should have one bit |
| 1540 | * and one bit only set. |
| 1541 | */ |
| 1542 | if (priv->intr_id) |
| 1543 | free_irq(__ffs(priv->intr_id), dev); |
| 1544 | |
| 1545 | /* |
| 1546 | * Drain all the LIPP buffers. |
| 1547 | */ |
| 1548 | |
| 1549 | while (true) { |
| 1550 | int buffer; |
| 1551 | |
| 1552 | /* NOTE: This should never fail. */ |
| 1553 | if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer, |
| 1554 | sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0) |
| 1555 | break; |
| 1556 | |
| 1557 | /* Stop when done. */ |
| 1558 | if (buffer == 0) |
| 1559 | break; |
| 1560 | |
| 1561 | { |
| 1562 | /* Convert "linux_buffer_t" to "va". */ |
| 1563 | void *va = __va((phys_addr_t)(buffer >> 1) << 7); |
| 1564 | |
| 1565 | /* Acquire the associated "skb". */ |
| 1566 | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); |
| 1567 | struct sk_buff *skb = *skb_ptr; |
| 1568 | |
| 1569 | kfree_skb(skb); |
| 1570 | } |
| 1571 | } |
| 1572 | |
| 1573 | /* Stop LIPP/LEPP. */ |
| 1574 | tile_net_stop_aux(dev); |
| 1575 | |
| 1576 | |
| 1577 | priv->fully_opened = 0; |
| 1578 | |
| 1579 | |
| 1580 | /* |
| 1581 | * XXX: ISSUE: It appears that, in practice anyway, by the |
| 1582 | * time we get here, there are no pending completions. |
| 1583 | */ |
| 1584 | while (pending) { |
| 1585 | |
| 1586 | struct sk_buff *olds[32]; |
| 1587 | unsigned int wanted = 32; |
| 1588 | unsigned int i, nolds = 0; |
| 1589 | |
| 1590 | nolds = tile_net_lepp_grab_comps(dev, olds, |
| 1591 | wanted, &pending); |
| 1592 | |
| 1593 | /* ISSUE: We have never actually seen this debug spew. */ |
| 1594 | if (nolds != 0) |
| 1595 | pr_info("During tile_net_stop(), grabbed %d comps.\n", |
| 1596 | nolds); |
| 1597 | |
| 1598 | for (i = 0; i < nolds; i++) |
| 1599 | kfree_skb(olds[i]); |
| 1600 | } |
| 1601 | |
| 1602 | |
| 1603 | /* Wipe the EPP queue. */ |
| 1604 | memset(priv->epp_queue, 0, sizeof(lepp_queue_t)); |
| 1605 | |
| 1606 | /* Evict the EPP queue. */ |
| 1607 | finv_buffer(priv->epp_queue, PAGE_SIZE); |
| 1608 | |
| 1609 | return 0; |
| 1610 | } |
| 1611 | |
| 1612 | |
| 1613 | /* |
| 1614 | * Prepare the "frags" info for the resulting LEPP command. |
| 1615 | * |
| 1616 | * If needed, flush the memory used by the frags. |
| 1617 | */ |
| 1618 | static unsigned int tile_net_tx_frags(lepp_frag_t *frags, |
| 1619 | struct sk_buff *skb, |
| 1620 | void *b_data, unsigned int b_len) |
| 1621 | { |
| 1622 | unsigned int i, n = 0; |
| 1623 | |
| 1624 | struct skb_shared_info *sh = skb_shinfo(skb); |
| 1625 | |
| 1626 | phys_addr_t cpa; |
| 1627 | |
| 1628 | if (b_len != 0) { |
| 1629 | |
| 1630 | if (!hash_default) |
| 1631 | finv_buffer_remote(b_data, b_len); |
| 1632 | |
| 1633 | cpa = __pa(b_data); |
| 1634 | frags[n].cpa_lo = cpa; |
| 1635 | frags[n].cpa_hi = cpa >> 32; |
| 1636 | frags[n].length = b_len; |
| 1637 | frags[n].hash_for_home = hash_default; |
| 1638 | n++; |
| 1639 | } |
| 1640 | |
| 1641 | for (i = 0; i < sh->nr_frags; i++) { |
| 1642 | |
| 1643 | skb_frag_t *f = &sh->frags[i]; |
| 1644 | unsigned long pfn = page_to_pfn(f->page); |
| 1645 | |
| 1646 | /* FIXME: Compute "hash_for_home" properly. */ |
| 1647 | /* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */ |
| 1648 | int hash_for_home = hash_default; |
| 1649 | |
| 1650 | /* FIXME: Hmmm. */ |
| 1651 | if (!hash_default) { |
| 1652 | void *va = pfn_to_kaddr(pfn) + f->page_offset; |
| 1653 | BUG_ON(PageHighMem(f->page)); |
| 1654 | finv_buffer_remote(va, f->size); |
| 1655 | } |
| 1656 | |
| 1657 | cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset; |
| 1658 | frags[n].cpa_lo = cpa; |
| 1659 | frags[n].cpa_hi = cpa >> 32; |
| 1660 | frags[n].length = f->size; |
| 1661 | frags[n].hash_for_home = hash_for_home; |
| 1662 | n++; |
| 1663 | } |
| 1664 | |
| 1665 | return n; |
| 1666 | } |
| 1667 | |
| 1668 | |
| 1669 | /* |
| 1670 | * This function takes "skb", consisting of a header template and a |
| 1671 | * payload, and hands it to LEPP, to emit as one or more segments, |
| 1672 | * each consisting of a possibly modified header, plus a piece of the |
| 1673 | * payload, via a process known as "tcp segmentation offload". |
| 1674 | * |
| 1675 | * Usually, "data" will contain the header template, of size "sh_len", |
| 1676 | * and "sh->frags" will contain "skb->data_len" bytes of payload, and |
| 1677 | * there will be "sh->gso_segs" segments. |
| 1678 | * |
| 1679 | * Sometimes, if "sendfile()" requires copying, we will be called with |
| 1680 | * "data" containing the header and payload, with "frags" being empty. |
| 1681 | * |
| 1682 | * In theory, "sh->nr_frags" could be 3, but in practice, it seems |
| 1683 | * that this will never actually happen. |
| 1684 | * |
| 1685 | * See "emulate_large_send_offload()" for some reference code, which |
| 1686 | * does not handle checksumming. |
| 1687 | * |
| 1688 | * ISSUE: How do we make sure that high memory DMA does not migrate? |
| 1689 | */ |
| 1690 | static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev) |
| 1691 | { |
| 1692 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1693 | int my_cpu = smp_processor_id(); |
| 1694 | struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| 1695 | struct tile_net_stats_t *stats = &info->stats; |
| 1696 | |
| 1697 | struct skb_shared_info *sh = skb_shinfo(skb); |
| 1698 | |
| 1699 | unsigned char *data = skb->data; |
| 1700 | |
| 1701 | /* The ip header follows the ethernet header. */ |
| 1702 | struct iphdr *ih = ip_hdr(skb); |
| 1703 | unsigned int ih_len = ih->ihl * 4; |
| 1704 | |
| 1705 | /* Note that "nh == ih", by definition. */ |
| 1706 | unsigned char *nh = skb_network_header(skb); |
| 1707 | unsigned int eh_len = nh - data; |
| 1708 | |
| 1709 | /* The tcp header follows the ip header. */ |
| 1710 | struct tcphdr *th = (struct tcphdr *)(nh + ih_len); |
| 1711 | unsigned int th_len = th->doff * 4; |
| 1712 | |
| 1713 | /* The total number of header bytes. */ |
| 1714 | /* NOTE: This may be less than skb_headlen(skb). */ |
| 1715 | unsigned int sh_len = eh_len + ih_len + th_len; |
| 1716 | |
| 1717 | /* The number of payload bytes at "skb->data + sh_len". */ |
| 1718 | /* This is non-zero for sendfile() without HIGHDMA. */ |
| 1719 | unsigned int b_len = skb_headlen(skb) - sh_len; |
| 1720 | |
| 1721 | /* The total number of payload bytes. */ |
| 1722 | unsigned int d_len = b_len + skb->data_len; |
| 1723 | |
| 1724 | /* The maximum payload size. */ |
| 1725 | unsigned int p_len = sh->gso_size; |
| 1726 | |
| 1727 | /* The total number of segments. */ |
| 1728 | unsigned int num_segs = sh->gso_segs; |
| 1729 | |
| 1730 | /* The temporary copy of the command. */ |
| 1731 | u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4]; |
| 1732 | lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body; |
| 1733 | |
| 1734 | /* Analyze the "frags". */ |
| 1735 | unsigned int num_frags = |
| 1736 | tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len); |
| 1737 | |
| 1738 | /* The size of the command, including frags and header. */ |
| 1739 | size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len); |
| 1740 | |
| 1741 | /* The command header. */ |
| 1742 | lepp_tso_cmd_t cmd_init = { |
| 1743 | .tso = true, |
| 1744 | .header_size = sh_len, |
| 1745 | .ip_offset = eh_len, |
| 1746 | .tcp_offset = eh_len + ih_len, |
| 1747 | .payload_size = p_len, |
| 1748 | .num_frags = num_frags, |
| 1749 | }; |
| 1750 | |
| 1751 | unsigned long irqflags; |
| 1752 | |
| 1753 | lepp_queue_t *eq = priv->epp_queue; |
| 1754 | |
| 1755 | struct sk_buff *olds[4]; |
| 1756 | unsigned int wanted = 4; |
| 1757 | unsigned int i, nolds = 0; |
| 1758 | |
| 1759 | unsigned int cmd_head, cmd_tail, cmd_next; |
| 1760 | unsigned int comp_tail; |
| 1761 | |
| 1762 | unsigned int free_slots; |
| 1763 | |
| 1764 | |
| 1765 | /* Paranoia. */ |
| 1766 | BUG_ON(skb->protocol != htons(ETH_P_IP)); |
| 1767 | BUG_ON(ih->protocol != IPPROTO_TCP); |
| 1768 | BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL); |
| 1769 | BUG_ON(num_frags > LEPP_MAX_FRAGS); |
| 1770 | /*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */ |
| 1771 | BUG_ON(num_segs <= 1); |
| 1772 | |
| 1773 | |
| 1774 | /* Finish preparing the command. */ |
| 1775 | |
| 1776 | /* Copy the command header. */ |
| 1777 | *cmd = cmd_init; |
| 1778 | |
| 1779 | /* Copy the "header". */ |
| 1780 | memcpy(&cmd->frags[num_frags], data, sh_len); |
| 1781 | |
| 1782 | |
| 1783 | /* Prefetch and wait, to minimize time spent holding the spinlock. */ |
| 1784 | prefetch_L1(&eq->comp_tail); |
| 1785 | prefetch_L1(&eq->cmd_tail); |
| 1786 | mb(); |
| 1787 | |
| 1788 | |
| 1789 | /* Enqueue the command. */ |
| 1790 | |
| 1791 | spin_lock_irqsave(&priv->cmd_lock, irqflags); |
| 1792 | |
| 1793 | /* |
| 1794 | * Handle completions if needed to make room. |
| 1795 | * HACK: Spin until there is sufficient room. |
| 1796 | */ |
| 1797 | free_slots = lepp_num_free_comp_slots(eq); |
| 1798 | if (free_slots < 1) { |
| 1799 | spin: |
| 1800 | nolds += tile_net_lepp_grab_comps(dev, olds + nolds, |
| 1801 | wanted - nolds, NULL); |
| 1802 | if (lepp_num_free_comp_slots(eq) < 1) |
| 1803 | goto spin; |
| 1804 | } |
| 1805 | |
| 1806 | cmd_head = eq->cmd_head; |
| 1807 | cmd_tail = eq->cmd_tail; |
| 1808 | |
| 1809 | /* NOTE: The "gotos" below are untested. */ |
| 1810 | |
| 1811 | /* Prepare to advance, detecting full queue. */ |
| 1812 | cmd_next = cmd_tail + cmd_size; |
| 1813 | if (cmd_tail < cmd_head && cmd_next >= cmd_head) |
| 1814 | goto spin; |
| 1815 | if (cmd_next > LEPP_CMD_LIMIT) { |
| 1816 | cmd_next = 0; |
| 1817 | if (cmd_next == cmd_head) |
| 1818 | goto spin; |
| 1819 | } |
| 1820 | |
| 1821 | /* Copy the command. */ |
| 1822 | memcpy(&eq->cmds[cmd_tail], cmd, cmd_size); |
| 1823 | |
| 1824 | /* Advance. */ |
| 1825 | cmd_tail = cmd_next; |
| 1826 | |
| 1827 | /* Record "skb" for eventual freeing. */ |
| 1828 | comp_tail = eq->comp_tail; |
| 1829 | eq->comps[comp_tail] = skb; |
| 1830 | LEPP_QINC(comp_tail); |
| 1831 | eq->comp_tail = comp_tail; |
| 1832 | |
| 1833 | /* Flush before allowing LEPP to handle the command. */ |
| 1834 | __insn_mf(); |
| 1835 | |
| 1836 | eq->cmd_tail = cmd_tail; |
| 1837 | |
| 1838 | spin_unlock_irqrestore(&priv->cmd_lock, irqflags); |
| 1839 | |
| 1840 | if (nolds == 0) |
| 1841 | nolds = tile_net_lepp_grab_comps(dev, olds, wanted, NULL); |
| 1842 | |
| 1843 | /* Handle completions. */ |
| 1844 | for (i = 0; i < nolds; i++) |
| 1845 | kfree_skb(olds[i]); |
| 1846 | |
| 1847 | /* Update stats. */ |
| 1848 | stats->tx_packets += num_segs; |
| 1849 | stats->tx_bytes += (num_segs * sh_len) + d_len; |
| 1850 | |
| 1851 | /* Make sure the egress timer is scheduled. */ |
| 1852 | tile_net_schedule_egress_timer(info); |
| 1853 | |
| 1854 | return NETDEV_TX_OK; |
| 1855 | } |
| 1856 | |
| 1857 | |
| 1858 | /* |
| 1859 | * Transmit a packet (called by the kernel via "hard_start_xmit" hook). |
| 1860 | */ |
| 1861 | static int tile_net_tx(struct sk_buff *skb, struct net_device *dev) |
| 1862 | { |
| 1863 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1864 | int my_cpu = smp_processor_id(); |
| 1865 | struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| 1866 | struct tile_net_stats_t *stats = &info->stats; |
| 1867 | |
| 1868 | unsigned long irqflags; |
| 1869 | |
| 1870 | struct skb_shared_info *sh = skb_shinfo(skb); |
| 1871 | |
| 1872 | unsigned int len = skb->len; |
| 1873 | unsigned char *data = skb->data; |
| 1874 | |
| 1875 | unsigned int csum_start = skb->csum_start - skb_headroom(skb); |
| 1876 | |
| 1877 | lepp_frag_t frags[LEPP_MAX_FRAGS]; |
| 1878 | |
| 1879 | unsigned int num_frags; |
| 1880 | |
| 1881 | lepp_queue_t *eq = priv->epp_queue; |
| 1882 | |
| 1883 | struct sk_buff *olds[4]; |
| 1884 | unsigned int wanted = 4; |
| 1885 | unsigned int i, nolds = 0; |
| 1886 | |
| 1887 | unsigned int cmd_size = sizeof(lepp_cmd_t); |
| 1888 | |
| 1889 | unsigned int cmd_head, cmd_tail, cmd_next; |
| 1890 | unsigned int comp_tail; |
| 1891 | |
| 1892 | lepp_cmd_t cmds[LEPP_MAX_FRAGS]; |
| 1893 | |
| 1894 | unsigned int free_slots; |
| 1895 | |
| 1896 | |
| 1897 | /* |
| 1898 | * This is paranoia, since we think that if the link doesn't come |
| 1899 | * up, telling Linux we have no carrier will keep it from trying |
| 1900 | * to transmit. If it does, though, we can't execute this routine, |
| 1901 | * since data structures we depend on aren't set up yet. |
| 1902 | */ |
| 1903 | if (!info->registered) |
| 1904 | return NETDEV_TX_BUSY; |
| 1905 | |
| 1906 | |
| 1907 | /* Save the timestamp. */ |
| 1908 | dev->trans_start = jiffies; |
| 1909 | |
| 1910 | |
| 1911 | #ifdef TILE_NET_PARANOIA |
| 1912 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 1913 | if (hash_default) { |
| 1914 | HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data); |
| 1915 | if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3) |
| 1916 | panic("Non-coherent egress buffer!"); |
| 1917 | } |
| 1918 | #endif |
| 1919 | #endif |
| 1920 | |
| 1921 | |
| 1922 | #ifdef TILE_NET_DUMP_PACKETS |
| 1923 | /* ISSUE: Does not dump the "frags". */ |
| 1924 | dump_packet(data, skb_headlen(skb), "tx"); |
| 1925 | #endif /* TILE_NET_DUMP_PACKETS */ |
| 1926 | |
| 1927 | |
| 1928 | if (sh->gso_size != 0) |
| 1929 | return tile_net_tx_tso(skb, dev); |
| 1930 | |
| 1931 | |
| 1932 | /* Prepare the commands. */ |
| 1933 | |
| 1934 | num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb)); |
| 1935 | |
| 1936 | for (i = 0; i < num_frags; i++) { |
| 1937 | |
| 1938 | bool final = (i == num_frags - 1); |
| 1939 | |
| 1940 | lepp_cmd_t cmd = { |
| 1941 | .cpa_lo = frags[i].cpa_lo, |
| 1942 | .cpa_hi = frags[i].cpa_hi, |
| 1943 | .length = frags[i].length, |
| 1944 | .hash_for_home = frags[i].hash_for_home, |
| 1945 | .send_completion = final, |
| 1946 | .end_of_packet = final |
| 1947 | }; |
| 1948 | |
| 1949 | if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) { |
| 1950 | cmd.compute_checksum = 1; |
| 1951 | cmd.checksum_data.bits.start_byte = csum_start; |
| 1952 | cmd.checksum_data.bits.count = len - csum_start; |
| 1953 | cmd.checksum_data.bits.destination_byte = |
| 1954 | csum_start + skb->csum_offset; |
| 1955 | } |
| 1956 | |
| 1957 | cmds[i] = cmd; |
| 1958 | } |
| 1959 | |
| 1960 | |
| 1961 | /* Prefetch and wait, to minimize time spent holding the spinlock. */ |
| 1962 | prefetch_L1(&eq->comp_tail); |
| 1963 | prefetch_L1(&eq->cmd_tail); |
| 1964 | mb(); |
| 1965 | |
| 1966 | |
| 1967 | /* Enqueue the commands. */ |
| 1968 | |
| 1969 | spin_lock_irqsave(&priv->cmd_lock, irqflags); |
| 1970 | |
| 1971 | /* |
| 1972 | * Handle completions if needed to make room. |
| 1973 | * HACK: Spin until there is sufficient room. |
| 1974 | */ |
| 1975 | free_slots = lepp_num_free_comp_slots(eq); |
| 1976 | if (free_slots < 1) { |
| 1977 | spin: |
| 1978 | nolds += tile_net_lepp_grab_comps(dev, olds + nolds, |
| 1979 | wanted - nolds, NULL); |
| 1980 | if (lepp_num_free_comp_slots(eq) < 1) |
| 1981 | goto spin; |
| 1982 | } |
| 1983 | |
| 1984 | cmd_head = eq->cmd_head; |
| 1985 | cmd_tail = eq->cmd_tail; |
| 1986 | |
| 1987 | /* NOTE: The "gotos" below are untested. */ |
| 1988 | |
| 1989 | /* Copy the commands, or fail. */ |
| 1990 | for (i = 0; i < num_frags; i++) { |
| 1991 | |
| 1992 | /* Prepare to advance, detecting full queue. */ |
| 1993 | cmd_next = cmd_tail + cmd_size; |
| 1994 | if (cmd_tail < cmd_head && cmd_next >= cmd_head) |
| 1995 | goto spin; |
| 1996 | if (cmd_next > LEPP_CMD_LIMIT) { |
| 1997 | cmd_next = 0; |
| 1998 | if (cmd_next == cmd_head) |
| 1999 | goto spin; |
| 2000 | } |
| 2001 | |
| 2002 | /* Copy the command. */ |
| 2003 | *(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i]; |
| 2004 | |
| 2005 | /* Advance. */ |
| 2006 | cmd_tail = cmd_next; |
| 2007 | } |
| 2008 | |
| 2009 | /* Record "skb" for eventual freeing. */ |
| 2010 | comp_tail = eq->comp_tail; |
| 2011 | eq->comps[comp_tail] = skb; |
| 2012 | LEPP_QINC(comp_tail); |
| 2013 | eq->comp_tail = comp_tail; |
| 2014 | |
| 2015 | /* Flush before allowing LEPP to handle the command. */ |
| 2016 | __insn_mf(); |
| 2017 | |
| 2018 | eq->cmd_tail = cmd_tail; |
| 2019 | |
| 2020 | spin_unlock_irqrestore(&priv->cmd_lock, irqflags); |
| 2021 | |
| 2022 | if (nolds == 0) |
| 2023 | nolds = tile_net_lepp_grab_comps(dev, olds, wanted, NULL); |
| 2024 | |
| 2025 | /* Handle completions. */ |
| 2026 | for (i = 0; i < nolds; i++) |
| 2027 | kfree_skb(olds[i]); |
| 2028 | |
| 2029 | /* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */ |
| 2030 | stats->tx_packets++; |
| 2031 | stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN); |
| 2032 | |
| 2033 | /* Make sure the egress timer is scheduled. */ |
| 2034 | tile_net_schedule_egress_timer(info); |
| 2035 | |
| 2036 | return NETDEV_TX_OK; |
| 2037 | } |
| 2038 | |
| 2039 | |
| 2040 | /* |
| 2041 | * Deal with a transmit timeout. |
| 2042 | */ |
| 2043 | static void tile_net_tx_timeout(struct net_device *dev) |
| 2044 | { |
| 2045 | PDEBUG("tile_net_tx_timeout()\n"); |
| 2046 | PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies, |
| 2047 | jiffies - dev->trans_start); |
| 2048 | |
| 2049 | /* XXX: ISSUE: This doesn't seem useful for us. */ |
| 2050 | netif_wake_queue(dev); |
| 2051 | } |
| 2052 | |
| 2053 | |
| 2054 | /* |
| 2055 | * Ioctl commands. |
| 2056 | */ |
| 2057 | static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 2058 | { |
| 2059 | return -EOPNOTSUPP; |
| 2060 | } |
| 2061 | |
| 2062 | |
| 2063 | /* |
| 2064 | * Get System Network Statistics. |
| 2065 | * |
| 2066 | * Returns the address of the device statistics structure. |
| 2067 | */ |
| 2068 | static struct net_device_stats *tile_net_get_stats(struct net_device *dev) |
| 2069 | { |
| 2070 | struct tile_net_priv *priv = netdev_priv(dev); |
| 2071 | u32 rx_packets = 0; |
| 2072 | u32 tx_packets = 0; |
| 2073 | u32 rx_bytes = 0; |
| 2074 | u32 tx_bytes = 0; |
| 2075 | int i; |
| 2076 | |
| 2077 | for_each_online_cpu(i) { |
| 2078 | if (priv->cpu[i]) { |
| 2079 | rx_packets += priv->cpu[i]->stats.rx_packets; |
| 2080 | rx_bytes += priv->cpu[i]->stats.rx_bytes; |
| 2081 | tx_packets += priv->cpu[i]->stats.tx_packets; |
| 2082 | tx_bytes += priv->cpu[i]->stats.tx_bytes; |
| 2083 | } |
| 2084 | } |
| 2085 | |
| 2086 | priv->stats.rx_packets = rx_packets; |
| 2087 | priv->stats.rx_bytes = rx_bytes; |
| 2088 | priv->stats.tx_packets = tx_packets; |
| 2089 | priv->stats.tx_bytes = tx_bytes; |
| 2090 | |
| 2091 | return &priv->stats; |
| 2092 | } |
| 2093 | |
| 2094 | |
| 2095 | /* |
| 2096 | * Change the "mtu". |
| 2097 | * |
| 2098 | * The "change_mtu" method is usually not needed. |
| 2099 | * If you need it, it must be like this. |
| 2100 | */ |
| 2101 | static int tile_net_change_mtu(struct net_device *dev, int new_mtu) |
| 2102 | { |
| 2103 | PDEBUG("tile_net_change_mtu()\n"); |
| 2104 | |
| 2105 | /* Check ranges. */ |
| 2106 | if ((new_mtu < 68) || (new_mtu > 1500)) |
| 2107 | return -EINVAL; |
| 2108 | |
| 2109 | /* Accept the value. */ |
| 2110 | dev->mtu = new_mtu; |
| 2111 | |
| 2112 | return 0; |
| 2113 | } |
| 2114 | |
| 2115 | |
| 2116 | /* |
| 2117 | * Change the Ethernet Address of the NIC. |
| 2118 | * |
| 2119 | * The hypervisor driver does not support changing MAC address. However, |
| 2120 | * the IPP does not do anything with the MAC address, so the address which |
| 2121 | * gets used on outgoing packets, and which is accepted on incoming packets, |
| 2122 | * is completely up to the NetIO program or kernel driver which is actually |
| 2123 | * handling them. |
| 2124 | * |
| 2125 | * Returns 0 on success, negative on failure. |
| 2126 | */ |
| 2127 | static int tile_net_set_mac_address(struct net_device *dev, void *p) |
| 2128 | { |
| 2129 | struct sockaddr *addr = p; |
| 2130 | |
| 2131 | if (!is_valid_ether_addr(addr->sa_data)) |
| 2132 | return -EINVAL; |
| 2133 | |
| 2134 | /* ISSUE: Note that "dev_addr" is now a pointer. */ |
| 2135 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| 2136 | |
| 2137 | return 0; |
| 2138 | } |
| 2139 | |
| 2140 | |
| 2141 | /* |
| 2142 | * Obtain the MAC address from the hypervisor. |
| 2143 | * This must be done before opening the device. |
| 2144 | */ |
| 2145 | static int tile_net_get_mac(struct net_device *dev) |
| 2146 | { |
| 2147 | struct tile_net_priv *priv = netdev_priv(dev); |
| 2148 | |
| 2149 | char hv_dev_name[32]; |
| 2150 | int len; |
| 2151 | |
| 2152 | __netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF }; |
| 2153 | |
| 2154 | int ret; |
| 2155 | |
| 2156 | /* For example, "xgbe0". */ |
| 2157 | strcpy(hv_dev_name, dev->name); |
| 2158 | len = strlen(hv_dev_name); |
| 2159 | |
| 2160 | /* For example, "xgbe/0". */ |
| 2161 | hv_dev_name[len] = hv_dev_name[len - 1]; |
| 2162 | hv_dev_name[len - 1] = '/'; |
| 2163 | len++; |
| 2164 | |
| 2165 | /* For example, "xgbe/0/native_hash". */ |
| 2166 | strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native"); |
| 2167 | |
| 2168 | /* Get the hypervisor handle for this device. */ |
| 2169 | priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0); |
| 2170 | PDEBUG("hv_dev_open(%s) returned %d %p\n", |
| 2171 | hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl); |
| 2172 | if (priv->hv_devhdl < 0) { |
| 2173 | if (priv->hv_devhdl == HV_ENODEV) |
| 2174 | printk(KERN_DEBUG "Ignoring unconfigured device %s\n", |
| 2175 | hv_dev_name); |
| 2176 | else |
| 2177 | printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n", |
| 2178 | hv_dev_name, priv->hv_devhdl); |
| 2179 | return -1; |
| 2180 | } |
| 2181 | |
| 2182 | /* |
| 2183 | * Read the hardware address from the hypervisor. |
| 2184 | * ISSUE: Note that "dev_addr" is now a pointer. |
| 2185 | */ |
| 2186 | offset.bits.class = NETIO_PARAM; |
| 2187 | offset.bits.addr = NETIO_PARAM_MAC; |
| 2188 | ret = hv_dev_pread(priv->hv_devhdl, 0, |
| 2189 | (HV_VirtAddr)dev->dev_addr, dev->addr_len, |
| 2190 | offset.word); |
| 2191 | PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret); |
| 2192 | if (ret <= 0) { |
| 2193 | printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n", |
| 2194 | dev->name); |
| 2195 | /* |
| 2196 | * Since the device is configured by the hypervisor but we |
| 2197 | * can't get its MAC address, we are most likely running |
| 2198 | * the simulator, so let's generate a random MAC address. |
| 2199 | */ |
| 2200 | random_ether_addr(dev->dev_addr); |
| 2201 | } |
| 2202 | |
| 2203 | return 0; |
| 2204 | } |
| 2205 | |
| 2206 | |
| 2207 | static struct net_device_ops tile_net_ops = { |
| 2208 | .ndo_open = tile_net_open, |
| 2209 | .ndo_stop = tile_net_stop, |
| 2210 | .ndo_start_xmit = tile_net_tx, |
| 2211 | .ndo_do_ioctl = tile_net_ioctl, |
| 2212 | .ndo_get_stats = tile_net_get_stats, |
| 2213 | .ndo_change_mtu = tile_net_change_mtu, |
| 2214 | .ndo_tx_timeout = tile_net_tx_timeout, |
| 2215 | .ndo_set_mac_address = tile_net_set_mac_address |
| 2216 | }; |
| 2217 | |
| 2218 | |
| 2219 | /* |
| 2220 | * The setup function. |
| 2221 | * |
| 2222 | * This uses ether_setup() to assign various fields in dev, including |
| 2223 | * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields. |
| 2224 | */ |
| 2225 | static void tile_net_setup(struct net_device *dev) |
| 2226 | { |
| 2227 | PDEBUG("tile_net_setup()\n"); |
| 2228 | |
| 2229 | ether_setup(dev); |
| 2230 | |
| 2231 | dev->netdev_ops = &tile_net_ops; |
| 2232 | |
| 2233 | dev->watchdog_timeo = TILE_NET_TIMEOUT; |
| 2234 | |
| 2235 | /* We want lockless xmit. */ |
| 2236 | dev->features |= NETIF_F_LLTX; |
| 2237 | |
| 2238 | /* We support hardware tx checksums. */ |
| 2239 | dev->features |= NETIF_F_HW_CSUM; |
| 2240 | |
| 2241 | /* We support scatter/gather. */ |
| 2242 | dev->features |= NETIF_F_SG; |
| 2243 | |
| 2244 | /* We support TSO. */ |
| 2245 | dev->features |= NETIF_F_TSO; |
| 2246 | |
| 2247 | #ifdef TILE_NET_GSO |
| 2248 | /* We support GSO. */ |
| 2249 | dev->features |= NETIF_F_GSO; |
| 2250 | #endif |
| 2251 | |
| 2252 | if (hash_default) |
| 2253 | dev->features |= NETIF_F_HIGHDMA; |
| 2254 | |
| 2255 | /* ISSUE: We should support NETIF_F_UFO. */ |
| 2256 | |
| 2257 | dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN; |
| 2258 | |
| 2259 | dev->mtu = TILE_NET_MTU; |
| 2260 | } |
| 2261 | |
| 2262 | |
| 2263 | /* |
| 2264 | * Allocate the device structure, register the device, and obtain the |
| 2265 | * MAC address from the hypervisor. |
| 2266 | */ |
| 2267 | static struct net_device *tile_net_dev_init(const char *name) |
| 2268 | { |
| 2269 | int ret; |
| 2270 | struct net_device *dev; |
| 2271 | struct tile_net_priv *priv; |
| 2272 | struct page *page; |
| 2273 | |
| 2274 | /* |
| 2275 | * Allocate the device structure. This allocates "priv", calls |
| 2276 | * tile_net_setup(), and saves "name". Normally, "name" is a |
| 2277 | * template, instantiated by register_netdev(), but not for us. |
| 2278 | */ |
| 2279 | dev = alloc_netdev(sizeof(*priv), name, tile_net_setup); |
| 2280 | if (!dev) { |
| 2281 | pr_err("alloc_netdev(%s) failed\n", name); |
| 2282 | return NULL; |
| 2283 | } |
| 2284 | |
| 2285 | priv = netdev_priv(dev); |
| 2286 | |
| 2287 | /* Initialize "priv". */ |
| 2288 | |
| 2289 | memset(priv, 0, sizeof(*priv)); |
| 2290 | |
| 2291 | /* Save "dev" for "tile_net_open_retry()". */ |
| 2292 | priv->dev = dev; |
| 2293 | |
| 2294 | INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry); |
| 2295 | |
| 2296 | spin_lock_init(&priv->cmd_lock); |
| 2297 | spin_lock_init(&priv->comp_lock); |
| 2298 | |
| 2299 | /* Allocate "epp_queue". */ |
| 2300 | BUG_ON(get_order(sizeof(lepp_queue_t)) != 0); |
| 2301 | page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 0); |
| 2302 | if (!page) { |
| 2303 | free_netdev(dev); |
| 2304 | return NULL; |
| 2305 | } |
| 2306 | priv->epp_queue = page_address(page); |
| 2307 | |
| 2308 | /* Register the network device. */ |
| 2309 | ret = register_netdev(dev); |
| 2310 | if (ret) { |
| 2311 | pr_err("register_netdev %s failed %d\n", dev->name, ret); |
| 2312 | free_page((unsigned long)priv->epp_queue); |
| 2313 | free_netdev(dev); |
| 2314 | return NULL; |
| 2315 | } |
| 2316 | |
| 2317 | /* Get the MAC address. */ |
| 2318 | ret = tile_net_get_mac(dev); |
| 2319 | if (ret < 0) { |
| 2320 | unregister_netdev(dev); |
| 2321 | free_page((unsigned long)priv->epp_queue); |
| 2322 | free_netdev(dev); |
| 2323 | return NULL; |
| 2324 | } |
| 2325 | |
| 2326 | return dev; |
| 2327 | } |
| 2328 | |
| 2329 | |
| 2330 | /* |
| 2331 | * Module cleanup. |
| 2332 | */ |
| 2333 | static void tile_net_cleanup(void) |
| 2334 | { |
| 2335 | int i; |
| 2336 | |
| 2337 | for (i = 0; i < TILE_NET_DEVS; i++) { |
| 2338 | if (tile_net_devs[i]) { |
| 2339 | struct net_device *dev = tile_net_devs[i]; |
| 2340 | struct tile_net_priv *priv = netdev_priv(dev); |
| 2341 | unregister_netdev(dev); |
| 2342 | finv_buffer(priv->epp_queue, PAGE_SIZE); |
| 2343 | free_page((unsigned long)priv->epp_queue); |
| 2344 | free_netdev(dev); |
| 2345 | } |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | |
| 2350 | /* |
| 2351 | * Module initialization. |
| 2352 | */ |
| 2353 | static int tile_net_init_module(void) |
| 2354 | { |
| 2355 | pr_info("Tilera IPP Net Driver\n"); |
| 2356 | |
| 2357 | tile_net_devs[0] = tile_net_dev_init("xgbe0"); |
| 2358 | tile_net_devs[1] = tile_net_dev_init("xgbe1"); |
| 2359 | tile_net_devs[2] = tile_net_dev_init("gbe0"); |
| 2360 | tile_net_devs[3] = tile_net_dev_init("gbe1"); |
| 2361 | |
| 2362 | return 0; |
| 2363 | } |
| 2364 | |
| 2365 | |
| 2366 | #ifndef MODULE |
| 2367 | /* |
| 2368 | * The "network_cpus" boot argument specifies the cpus that are dedicated |
| 2369 | * to handle ingress packets. |
| 2370 | * |
| 2371 | * The parameter should be in the form "network_cpus=m-n[,x-y]", where |
| 2372 | * m, n, x, y are integer numbers that represent the cpus that can be |
| 2373 | * neither a dedicated cpu nor a dataplane cpu. |
| 2374 | */ |
| 2375 | static int __init network_cpus_setup(char *str) |
| 2376 | { |
| 2377 | int rc = cpulist_parse_crop(str, &network_cpus_map); |
| 2378 | if (rc != 0) { |
| 2379 | pr_warning("network_cpus=%s: malformed cpu list\n", |
| 2380 | str); |
| 2381 | } else { |
| 2382 | |
| 2383 | /* Remove dedicated cpus. */ |
| 2384 | cpumask_and(&network_cpus_map, &network_cpus_map, |
| 2385 | cpu_possible_mask); |
| 2386 | |
| 2387 | |
| 2388 | if (cpumask_empty(&network_cpus_map)) { |
| 2389 | pr_warning("Ignoring network_cpus='%s'.\n", |
| 2390 | str); |
| 2391 | } else { |
| 2392 | char buf[1024]; |
| 2393 | cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map); |
| 2394 | pr_info("Linux network CPUs: %s\n", buf); |
| 2395 | network_cpus_used = true; |
| 2396 | } |
| 2397 | } |
| 2398 | |
| 2399 | return 0; |
| 2400 | } |
| 2401 | __setup("network_cpus=", network_cpus_setup); |
| 2402 | #endif |
| 2403 | |
| 2404 | |
| 2405 | module_init(tile_net_init_module); |
| 2406 | module_exit(tile_net_cleanup); |