Siva Yerramreddy | 95b4ecb | 2014-07-11 14:04:21 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Intel MIC Platform Software Stack (MPSS) |
| 3 | * |
| 4 | * Copyright(c) 2014 Intel Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License, version 2, as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but |
| 11 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * General Public License for more details. |
| 14 | * |
| 15 | * The full GNU General Public License is included in this distribution in |
| 16 | * the file called "COPYING". |
| 17 | * |
| 18 | * Intel MIC X100 DMA Driver. |
| 19 | * |
| 20 | * Adapted from IOAT dma driver. |
| 21 | */ |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/io.h> |
| 24 | #include <linux/seq_file.h> |
| 25 | |
| 26 | #include "mic_x100_dma.h" |
| 27 | |
| 28 | #define MIC_DMA_MAX_XFER_SIZE_CARD (1 * 1024 * 1024 -\ |
| 29 | MIC_DMA_ALIGN_BYTES) |
| 30 | #define MIC_DMA_MAX_XFER_SIZE_HOST (1 * 1024 * 1024 >> 1) |
| 31 | #define MIC_DMA_DESC_TYPE_SHIFT 60 |
| 32 | #define MIC_DMA_MEMCPY_LEN_SHIFT 46 |
| 33 | #define MIC_DMA_STAT_INTR_SHIFT 59 |
| 34 | |
| 35 | /* high-water mark for pushing dma descriptors */ |
| 36 | static int mic_dma_pending_level = 4; |
| 37 | |
| 38 | /* Status descriptor is used to write a 64 bit value to a memory location */ |
| 39 | enum mic_dma_desc_format_type { |
| 40 | MIC_DMA_MEMCPY = 1, |
| 41 | MIC_DMA_STATUS, |
| 42 | }; |
| 43 | |
| 44 | static inline u32 mic_dma_hw_ring_inc(u32 val) |
| 45 | { |
| 46 | return (val + 1) % MIC_DMA_DESC_RX_SIZE; |
| 47 | } |
| 48 | |
| 49 | static inline u32 mic_dma_hw_ring_dec(u32 val) |
| 50 | { |
| 51 | return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1; |
| 52 | } |
| 53 | |
| 54 | static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch) |
| 55 | { |
| 56 | ch->head = mic_dma_hw_ring_inc(ch->head); |
| 57 | } |
| 58 | |
| 59 | /* Prepare a memcpy desc */ |
| 60 | static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc, |
| 61 | dma_addr_t src_phys, dma_addr_t dst_phys, u64 size) |
| 62 | { |
| 63 | u64 qw0, qw1; |
| 64 | |
| 65 | qw0 = src_phys; |
| 66 | qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT; |
| 67 | qw1 = MIC_DMA_MEMCPY; |
| 68 | qw1 <<= MIC_DMA_DESC_TYPE_SHIFT; |
| 69 | qw1 |= dst_phys; |
| 70 | desc->qw0 = qw0; |
| 71 | desc->qw1 = qw1; |
| 72 | } |
| 73 | |
| 74 | /* Prepare a status desc. with @data to be written at @dst_phys */ |
| 75 | static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data, |
| 76 | dma_addr_t dst_phys, bool generate_intr) |
| 77 | { |
| 78 | u64 qw0, qw1; |
| 79 | |
| 80 | qw0 = data; |
| 81 | qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys; |
| 82 | if (generate_intr) |
| 83 | qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT); |
| 84 | desc->qw0 = qw0; |
| 85 | desc->qw1 = qw1; |
| 86 | } |
| 87 | |
| 88 | static void mic_dma_cleanup(struct mic_dma_chan *ch) |
| 89 | { |
| 90 | struct dma_async_tx_descriptor *tx; |
| 91 | u32 tail; |
| 92 | u32 last_tail; |
| 93 | |
| 94 | spin_lock(&ch->cleanup_lock); |
| 95 | tail = mic_dma_read_cmp_cnt(ch); |
| 96 | /* |
| 97 | * This is the barrier pair for smp_wmb() in fn. |
| 98 | * mic_dma_tx_submit_unlock. It's required so that we read the |
| 99 | * updated cookie value from tx->cookie. |
| 100 | */ |
| 101 | smp_rmb(); |
| 102 | for (last_tail = ch->last_tail; tail != last_tail;) { |
| 103 | tx = &ch->tx_array[last_tail]; |
| 104 | if (tx->cookie) { |
| 105 | dma_cookie_complete(tx); |
| 106 | if (tx->callback) { |
| 107 | tx->callback(tx->callback_param); |
| 108 | tx->callback = NULL; |
| 109 | } |
| 110 | } |
| 111 | last_tail = mic_dma_hw_ring_inc(last_tail); |
| 112 | } |
| 113 | /* finish all completion callbacks before incrementing tail */ |
| 114 | smp_mb(); |
| 115 | ch->last_tail = last_tail; |
| 116 | spin_unlock(&ch->cleanup_lock); |
| 117 | } |
| 118 | |
| 119 | static u32 mic_dma_ring_count(u32 head, u32 tail) |
| 120 | { |
| 121 | u32 count; |
| 122 | |
| 123 | if (head >= tail) |
| 124 | count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head); |
| 125 | else |
| 126 | count = tail - head; |
| 127 | return count - 1; |
| 128 | } |
| 129 | |
| 130 | /* Returns the num. of free descriptors on success, -ENOMEM on failure */ |
| 131 | static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required) |
| 132 | { |
| 133 | struct device *dev = mic_dma_ch_to_device(ch); |
| 134 | u32 count; |
| 135 | |
| 136 | count = mic_dma_ring_count(ch->head, ch->last_tail); |
| 137 | if (count < required) { |
| 138 | mic_dma_cleanup(ch); |
| 139 | count = mic_dma_ring_count(ch->head, ch->last_tail); |
| 140 | } |
| 141 | |
| 142 | if (count < required) { |
| 143 | dev_dbg(dev, "Not enough desc space"); |
| 144 | dev_dbg(dev, "%s %d required=%u, avail=%u\n", |
| 145 | __func__, __LINE__, required, count); |
| 146 | return -ENOMEM; |
| 147 | } else { |
| 148 | return count; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/ |
| 153 | static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src, |
| 154 | dma_addr_t dst, size_t len) |
| 155 | { |
| 156 | size_t current_transfer_len; |
| 157 | size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size; |
| 158 | /* 3 is added to make sure we have enough space for status desc */ |
| 159 | int num_desc = len / max_xfer_size + 3; |
| 160 | int ret; |
| 161 | |
| 162 | if (len % max_xfer_size) |
| 163 | num_desc++; |
| 164 | |
| 165 | ret = mic_dma_avail_desc_ring_space(ch, num_desc); |
| 166 | if (ret < 0) |
| 167 | return ret; |
| 168 | do { |
| 169 | current_transfer_len = min(len, max_xfer_size); |
| 170 | mic_dma_memcpy_desc(&ch->desc_ring[ch->head], |
| 171 | src, dst, current_transfer_len); |
| 172 | mic_dma_hw_ring_inc_head(ch); |
| 173 | len -= current_transfer_len; |
| 174 | dst = dst + current_transfer_len; |
| 175 | src = src + current_transfer_len; |
| 176 | } while (len > 0); |
| 177 | return 0; |
| 178 | } |
| 179 | |
| 180 | /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */ |
| 181 | static void mic_dma_prog_intr(struct mic_dma_chan *ch) |
| 182 | { |
| 183 | mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, |
| 184 | ch->status_dest_micpa, false); |
| 185 | mic_dma_hw_ring_inc_head(ch); |
| 186 | mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, |
| 187 | ch->status_dest_micpa, true); |
| 188 | mic_dma_hw_ring_inc_head(ch); |
| 189 | } |
| 190 | |
| 191 | /* Wrapper function to program memcpy descriptors/status descriptors */ |
| 192 | static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src, |
| 193 | dma_addr_t dst, size_t len) |
| 194 | { |
| 195 | if (-ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) |
| 196 | return -ENOMEM; |
| 197 | /* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */ |
| 198 | if (flags & DMA_PREP_FENCE) { |
| 199 | mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, |
| 200 | ch->status_dest_micpa, false); |
| 201 | mic_dma_hw_ring_inc_head(ch); |
| 202 | } |
| 203 | |
| 204 | if (flags & DMA_PREP_INTERRUPT) |
| 205 | mic_dma_prog_intr(ch); |
| 206 | |
| 207 | return 0; |
| 208 | } |
| 209 | |
| 210 | static inline void mic_dma_issue_pending(struct dma_chan *ch) |
| 211 | { |
| 212 | struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); |
| 213 | |
| 214 | spin_lock(&mic_ch->issue_lock); |
| 215 | /* |
| 216 | * Write to head triggers h/w to act on the descriptors. |
| 217 | * On MIC, writing the same head value twice causes |
| 218 | * a h/w error. On second write, h/w assumes we filled |
| 219 | * the entire ring & overwrote some of the descriptors. |
| 220 | */ |
| 221 | if (mic_ch->issued == mic_ch->submitted) |
| 222 | goto out; |
| 223 | mic_ch->issued = mic_ch->submitted; |
| 224 | /* |
| 225 | * make descriptor updates visible before advancing head, |
| 226 | * this is purposefully not smp_wmb() since we are also |
| 227 | * publishing the descriptor updates to a dma device |
| 228 | */ |
| 229 | wmb(); |
| 230 | mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued); |
| 231 | out: |
| 232 | spin_unlock(&mic_ch->issue_lock); |
| 233 | } |
| 234 | |
| 235 | static inline void mic_dma_update_pending(struct mic_dma_chan *ch) |
| 236 | { |
| 237 | if (mic_dma_ring_count(ch->issued, ch->submitted) |
| 238 | > mic_dma_pending_level) |
| 239 | mic_dma_issue_pending(&ch->api_ch); |
| 240 | } |
| 241 | |
| 242 | static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx) |
| 243 | { |
| 244 | struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan); |
| 245 | dma_cookie_t cookie; |
| 246 | |
| 247 | dma_cookie_assign(tx); |
| 248 | cookie = tx->cookie; |
| 249 | /* |
| 250 | * We need an smp write barrier here because another CPU might see |
| 251 | * an update to submitted and update h/w head even before we |
| 252 | * assigned a cookie to this tx. |
| 253 | */ |
| 254 | smp_wmb(); |
| 255 | mic_ch->submitted = mic_ch->head; |
| 256 | spin_unlock(&mic_ch->prep_lock); |
| 257 | mic_dma_update_pending(mic_ch); |
| 258 | return cookie; |
| 259 | } |
| 260 | |
| 261 | static inline struct dma_async_tx_descriptor * |
| 262 | allocate_tx(struct mic_dma_chan *ch) |
| 263 | { |
| 264 | u32 idx = mic_dma_hw_ring_dec(ch->head); |
| 265 | struct dma_async_tx_descriptor *tx = &ch->tx_array[idx]; |
| 266 | |
| 267 | dma_async_tx_descriptor_init(tx, &ch->api_ch); |
| 268 | tx->tx_submit = mic_dma_tx_submit_unlock; |
| 269 | return tx; |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * Prepare a memcpy descriptor to be added to the ring. |
| 274 | * Note that the temporary descriptor adds an extra overhead of copying the |
| 275 | * descriptor to ring. So, we copy directly to the descriptor ring |
| 276 | */ |
| 277 | static struct dma_async_tx_descriptor * |
| 278 | mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest, |
| 279 | dma_addr_t dma_src, size_t len, unsigned long flags) |
| 280 | { |
| 281 | struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); |
| 282 | struct device *dev = mic_dma_ch_to_device(mic_ch); |
| 283 | int result; |
| 284 | |
| 285 | if (!len && !flags) |
| 286 | return NULL; |
| 287 | |
| 288 | spin_lock(&mic_ch->prep_lock); |
| 289 | result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len); |
| 290 | if (result >= 0) |
| 291 | return allocate_tx(mic_ch); |
| 292 | dev_err(dev, "Error enqueueing dma, error=%d\n", result); |
| 293 | spin_unlock(&mic_ch->prep_lock); |
| 294 | return NULL; |
| 295 | } |
| 296 | |
| 297 | static struct dma_async_tx_descriptor * |
| 298 | mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags) |
| 299 | { |
| 300 | struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); |
| 301 | int ret; |
| 302 | |
| 303 | spin_lock(&mic_ch->prep_lock); |
| 304 | ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0); |
| 305 | if (!ret) |
| 306 | return allocate_tx(mic_ch); |
| 307 | spin_unlock(&mic_ch->prep_lock); |
| 308 | return NULL; |
| 309 | } |
| 310 | |
| 311 | /* Return the status of the transaction */ |
| 312 | static enum dma_status |
| 313 | mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie, |
| 314 | struct dma_tx_state *txstate) |
| 315 | { |
| 316 | struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); |
| 317 | |
| 318 | if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate)) |
| 319 | mic_dma_cleanup(mic_ch); |
| 320 | |
| 321 | return dma_cookie_status(ch, cookie, txstate); |
| 322 | } |
| 323 | |
| 324 | static irqreturn_t mic_dma_thread_fn(int irq, void *data) |
| 325 | { |
| 326 | mic_dma_cleanup((struct mic_dma_chan *)data); |
| 327 | return IRQ_HANDLED; |
| 328 | } |
| 329 | |
| 330 | static irqreturn_t mic_dma_intr_handler(int irq, void *data) |
| 331 | { |
| 332 | struct mic_dma_chan *ch = ((struct mic_dma_chan *)data); |
| 333 | |
| 334 | mic_dma_ack_interrupt(ch); |
| 335 | return IRQ_WAKE_THREAD; |
| 336 | } |
| 337 | |
| 338 | static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch) |
| 339 | { |
| 340 | u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring); |
| 341 | struct device *dev = &to_mbus_device(ch)->dev; |
| 342 | |
| 343 | desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES); |
| 344 | ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL); |
| 345 | |
| 346 | if (!ch->desc_ring) |
| 347 | return -ENOMEM; |
| 348 | |
| 349 | ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring, |
| 350 | desc_ring_size, DMA_BIDIRECTIONAL); |
| 351 | if (dma_mapping_error(dev, ch->desc_ring_micpa)) |
| 352 | goto map_error; |
| 353 | |
| 354 | ch->tx_array = vzalloc(MIC_DMA_DESC_RX_SIZE * sizeof(*ch->tx_array)); |
| 355 | if (!ch->tx_array) |
| 356 | goto tx_error; |
| 357 | return 0; |
| 358 | tx_error: |
| 359 | dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size, |
| 360 | DMA_BIDIRECTIONAL); |
| 361 | map_error: |
| 362 | kfree(ch->desc_ring); |
| 363 | return -ENOMEM; |
| 364 | } |
| 365 | |
| 366 | static void mic_dma_free_desc_ring(struct mic_dma_chan *ch) |
| 367 | { |
| 368 | u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring); |
| 369 | |
| 370 | vfree(ch->tx_array); |
| 371 | desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES); |
| 372 | dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa, |
| 373 | desc_ring_size, DMA_BIDIRECTIONAL); |
| 374 | kfree(ch->desc_ring); |
| 375 | ch->desc_ring = NULL; |
| 376 | } |
| 377 | |
| 378 | static void mic_dma_free_status_dest(struct mic_dma_chan *ch) |
| 379 | { |
| 380 | dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa, |
| 381 | L1_CACHE_BYTES, DMA_BIDIRECTIONAL); |
| 382 | kfree(ch->status_dest); |
| 383 | } |
| 384 | |
| 385 | static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch) |
| 386 | { |
| 387 | struct device *dev = &to_mbus_device(ch)->dev; |
| 388 | |
| 389 | ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL); |
| 390 | if (!ch->status_dest) |
| 391 | return -ENOMEM; |
| 392 | ch->status_dest_micpa = dma_map_single(dev, ch->status_dest, |
| 393 | L1_CACHE_BYTES, DMA_BIDIRECTIONAL); |
| 394 | if (dma_mapping_error(dev, ch->status_dest_micpa)) { |
| 395 | kfree(ch->status_dest); |
| 396 | ch->status_dest = NULL; |
| 397 | return -ENOMEM; |
| 398 | } |
| 399 | return 0; |
| 400 | } |
| 401 | |
| 402 | static int mic_dma_check_chan(struct mic_dma_chan *ch) |
| 403 | { |
| 404 | if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) || |
| 405 | mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) { |
| 406 | mic_dma_disable_chan(ch); |
| 407 | mic_dma_chan_mask_intr(ch); |
| 408 | dev_err(mic_dma_ch_to_device(ch), |
| 409 | "%s %d error setting up mic dma chan %d\n", |
| 410 | __func__, __LINE__, ch->ch_num); |
| 411 | return -EBUSY; |
| 412 | } |
| 413 | return 0; |
| 414 | } |
| 415 | |
| 416 | static int mic_dma_chan_setup(struct mic_dma_chan *ch) |
| 417 | { |
| 418 | if (MIC_DMA_CHAN_MIC == ch->owner) |
| 419 | mic_dma_chan_set_owner(ch); |
| 420 | mic_dma_disable_chan(ch); |
| 421 | mic_dma_chan_mask_intr(ch); |
| 422 | mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0); |
| 423 | mic_dma_chan_set_desc_ring(ch); |
| 424 | ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR); |
| 425 | ch->head = ch->last_tail; |
| 426 | ch->issued = 0; |
| 427 | mic_dma_chan_unmask_intr(ch); |
| 428 | mic_dma_enable_chan(ch); |
| 429 | return mic_dma_check_chan(ch); |
| 430 | } |
| 431 | |
| 432 | static void mic_dma_chan_destroy(struct mic_dma_chan *ch) |
| 433 | { |
| 434 | mic_dma_disable_chan(ch); |
| 435 | mic_dma_chan_mask_intr(ch); |
| 436 | } |
| 437 | |
| 438 | static void mic_dma_unregister_dma_device(struct mic_dma_device *mic_dma_dev) |
| 439 | { |
| 440 | dma_async_device_unregister(&mic_dma_dev->dma_dev); |
| 441 | } |
| 442 | |
| 443 | static int mic_dma_setup_irq(struct mic_dma_chan *ch) |
| 444 | { |
| 445 | ch->cookie = |
| 446 | to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch), |
| 447 | mic_dma_intr_handler, mic_dma_thread_fn, |
| 448 | "mic dma_channel", ch, ch->ch_num); |
| 449 | if (IS_ERR(ch->cookie)) |
| 450 | return IS_ERR(ch->cookie); |
| 451 | return 0; |
| 452 | } |
| 453 | |
| 454 | static inline void mic_dma_free_irq(struct mic_dma_chan *ch) |
| 455 | { |
| 456 | to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch); |
| 457 | } |
| 458 | |
| 459 | static int mic_dma_chan_init(struct mic_dma_chan *ch) |
| 460 | { |
| 461 | int ret = mic_dma_alloc_desc_ring(ch); |
| 462 | |
| 463 | if (ret) |
| 464 | goto ring_error; |
| 465 | ret = mic_dma_alloc_status_dest(ch); |
| 466 | if (ret) |
| 467 | goto status_error; |
| 468 | ret = mic_dma_chan_setup(ch); |
| 469 | if (ret) |
| 470 | goto chan_error; |
| 471 | return ret; |
| 472 | chan_error: |
| 473 | mic_dma_free_status_dest(ch); |
| 474 | status_error: |
| 475 | mic_dma_free_desc_ring(ch); |
| 476 | ring_error: |
| 477 | return ret; |
| 478 | } |
| 479 | |
| 480 | static int mic_dma_drain_chan(struct mic_dma_chan *ch) |
| 481 | { |
| 482 | struct dma_async_tx_descriptor *tx; |
| 483 | int err = 0; |
| 484 | dma_cookie_t cookie; |
| 485 | |
| 486 | tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE); |
| 487 | if (!tx) { |
| 488 | err = -ENOMEM; |
| 489 | goto error; |
| 490 | } |
| 491 | |
| 492 | cookie = tx->tx_submit(tx); |
| 493 | if (dma_submit_error(cookie)) |
| 494 | err = -ENOMEM; |
| 495 | else |
| 496 | err = dma_sync_wait(&ch->api_ch, cookie); |
| 497 | if (err) { |
| 498 | dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n", |
| 499 | __func__, __LINE__, ch->ch_num); |
| 500 | err = -EIO; |
| 501 | } |
| 502 | error: |
| 503 | mic_dma_cleanup(ch); |
| 504 | return err; |
| 505 | } |
| 506 | |
| 507 | static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch) |
| 508 | { |
| 509 | mic_dma_chan_destroy(ch); |
| 510 | mic_dma_cleanup(ch); |
| 511 | mic_dma_free_status_dest(ch); |
| 512 | mic_dma_free_desc_ring(ch); |
| 513 | } |
| 514 | |
| 515 | static int mic_dma_init(struct mic_dma_device *mic_dma_dev, |
| 516 | enum mic_dma_chan_owner owner) |
| 517 | { |
| 518 | int i, first_chan = mic_dma_dev->start_ch; |
| 519 | struct mic_dma_chan *ch; |
| 520 | int ret; |
| 521 | |
| 522 | for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { |
| 523 | unsigned long data; |
| 524 | ch = &mic_dma_dev->mic_ch[i]; |
| 525 | data = (unsigned long)ch; |
| 526 | ch->ch_num = i; |
| 527 | ch->owner = owner; |
| 528 | spin_lock_init(&ch->cleanup_lock); |
| 529 | spin_lock_init(&ch->prep_lock); |
| 530 | spin_lock_init(&ch->issue_lock); |
| 531 | ret = mic_dma_setup_irq(ch); |
| 532 | if (ret) |
| 533 | goto error; |
| 534 | } |
| 535 | return 0; |
| 536 | error: |
| 537 | for (i = i - 1; i >= first_chan; i--) |
| 538 | mic_dma_free_irq(ch); |
| 539 | return ret; |
| 540 | } |
| 541 | |
| 542 | static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev) |
| 543 | { |
| 544 | int i, first_chan = mic_dma_dev->start_ch; |
| 545 | struct mic_dma_chan *ch; |
| 546 | |
| 547 | for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { |
| 548 | ch = &mic_dma_dev->mic_ch[i]; |
| 549 | mic_dma_free_irq(ch); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | static int mic_dma_alloc_chan_resources(struct dma_chan *ch) |
| 554 | { |
| 555 | int ret = mic_dma_chan_init(to_mic_dma_chan(ch)); |
| 556 | if (ret) |
| 557 | return ret; |
| 558 | return MIC_DMA_DESC_RX_SIZE; |
| 559 | } |
| 560 | |
| 561 | static void mic_dma_free_chan_resources(struct dma_chan *ch) |
| 562 | { |
| 563 | struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); |
| 564 | mic_dma_drain_chan(mic_ch); |
| 565 | mic_dma_chan_uninit(mic_ch); |
| 566 | } |
| 567 | |
| 568 | /* Set the fn. handlers and register the dma device with dma api */ |
| 569 | static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev, |
| 570 | enum mic_dma_chan_owner owner) |
| 571 | { |
| 572 | int i, first_chan = mic_dma_dev->start_ch; |
| 573 | |
| 574 | dma_cap_zero(mic_dma_dev->dma_dev.cap_mask); |
| 575 | /* |
| 576 | * This dma engine is not capable of host memory to host memory |
| 577 | * transfers |
| 578 | */ |
| 579 | dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask); |
| 580 | |
| 581 | if (MIC_DMA_CHAN_HOST == owner) |
| 582 | dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask); |
| 583 | mic_dma_dev->dma_dev.device_alloc_chan_resources = |
| 584 | mic_dma_alloc_chan_resources; |
| 585 | mic_dma_dev->dma_dev.device_free_chan_resources = |
| 586 | mic_dma_free_chan_resources; |
| 587 | mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status; |
| 588 | mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock; |
| 589 | mic_dma_dev->dma_dev.device_prep_dma_interrupt = |
| 590 | mic_dma_prep_interrupt_lock; |
| 591 | mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending; |
| 592 | mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT; |
| 593 | INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels); |
| 594 | for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { |
| 595 | mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev; |
| 596 | dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch); |
| 597 | list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node, |
| 598 | &mic_dma_dev->dma_dev.channels); |
| 599 | } |
| 600 | return dma_async_device_register(&mic_dma_dev->dma_dev); |
| 601 | } |
| 602 | |
| 603 | /* |
| 604 | * Initializes dma channels and registers the dma device with the |
| 605 | * dma engine api. |
| 606 | */ |
| 607 | static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev, |
| 608 | enum mic_dma_chan_owner owner) |
| 609 | { |
| 610 | struct mic_dma_device *mic_dma_dev; |
| 611 | int ret; |
| 612 | struct device *dev = &mbdev->dev; |
| 613 | |
| 614 | mic_dma_dev = kzalloc(sizeof(*mic_dma_dev), GFP_KERNEL); |
| 615 | if (!mic_dma_dev) { |
| 616 | ret = -ENOMEM; |
| 617 | goto alloc_error; |
| 618 | } |
| 619 | mic_dma_dev->mbdev = mbdev; |
| 620 | mic_dma_dev->dma_dev.dev = dev; |
| 621 | mic_dma_dev->mmio = mbdev->mmio_va; |
| 622 | if (MIC_DMA_CHAN_HOST == owner) { |
| 623 | mic_dma_dev->start_ch = 0; |
| 624 | mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST; |
| 625 | } else { |
| 626 | mic_dma_dev->start_ch = 4; |
| 627 | mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD; |
| 628 | } |
| 629 | ret = mic_dma_init(mic_dma_dev, owner); |
| 630 | if (ret) |
| 631 | goto init_error; |
| 632 | ret = mic_dma_register_dma_device(mic_dma_dev, owner); |
| 633 | if (ret) |
| 634 | goto reg_error; |
| 635 | return mic_dma_dev; |
| 636 | reg_error: |
| 637 | mic_dma_uninit(mic_dma_dev); |
| 638 | init_error: |
| 639 | kfree(mic_dma_dev); |
| 640 | mic_dma_dev = NULL; |
| 641 | alloc_error: |
| 642 | dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret); |
| 643 | return mic_dma_dev; |
| 644 | } |
| 645 | |
| 646 | static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev) |
| 647 | { |
| 648 | mic_dma_unregister_dma_device(mic_dma_dev); |
| 649 | mic_dma_uninit(mic_dma_dev); |
| 650 | kfree(mic_dma_dev); |
| 651 | } |
| 652 | |
| 653 | /* DEBUGFS CODE */ |
| 654 | static int mic_dma_reg_seq_show(struct seq_file *s, void *pos) |
| 655 | { |
| 656 | struct mic_dma_device *mic_dma_dev = s->private; |
| 657 | int i, chan_num, first_chan = mic_dma_dev->start_ch; |
| 658 | struct mic_dma_chan *ch; |
| 659 | |
| 660 | seq_printf(s, "SBOX_DCR: %#x\n", |
| 661 | mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan], |
| 662 | MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR)); |
| 663 | seq_puts(s, "DMA Channel Registers\n"); |
| 664 | seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s", |
| 665 | "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO"); |
| 666 | seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT"); |
| 667 | for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { |
| 668 | ch = &mic_dma_dev->mic_ch[i]; |
| 669 | chan_num = ch->ch_num; |
| 670 | seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x", |
| 671 | chan_num, |
| 672 | mic_dma_read_reg(ch, MIC_DMA_REG_DCAR), |
| 673 | mic_dma_read_reg(ch, MIC_DMA_REG_DTPR), |
| 674 | mic_dma_read_reg(ch, MIC_DMA_REG_DHPR), |
| 675 | mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI)); |
| 676 | seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n", |
| 677 | mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO), |
| 678 | mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR), |
| 679 | mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK), |
| 680 | mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT)); |
| 681 | } |
| 682 | return 0; |
| 683 | } |
| 684 | |
| 685 | static int mic_dma_reg_debug_open(struct inode *inode, struct file *file) |
| 686 | { |
| 687 | return single_open(file, mic_dma_reg_seq_show, inode->i_private); |
| 688 | } |
| 689 | |
| 690 | static int mic_dma_reg_debug_release(struct inode *inode, struct file *file) |
| 691 | { |
| 692 | return single_release(inode, file); |
| 693 | } |
| 694 | |
| 695 | static const struct file_operations mic_dma_reg_ops = { |
| 696 | .owner = THIS_MODULE, |
| 697 | .open = mic_dma_reg_debug_open, |
| 698 | .read = seq_read, |
| 699 | .llseek = seq_lseek, |
| 700 | .release = mic_dma_reg_debug_release |
| 701 | }; |
| 702 | |
| 703 | /* Debugfs parent dir */ |
| 704 | static struct dentry *mic_dma_dbg; |
| 705 | |
| 706 | static int mic_dma_driver_probe(struct mbus_device *mbdev) |
| 707 | { |
| 708 | struct mic_dma_device *mic_dma_dev; |
| 709 | enum mic_dma_chan_owner owner; |
| 710 | |
| 711 | if (MBUS_DEV_DMA_MIC == mbdev->id.device) |
| 712 | owner = MIC_DMA_CHAN_MIC; |
| 713 | else |
| 714 | owner = MIC_DMA_CHAN_HOST; |
| 715 | |
| 716 | mic_dma_dev = mic_dma_dev_reg(mbdev, owner); |
| 717 | dev_set_drvdata(&mbdev->dev, mic_dma_dev); |
| 718 | |
| 719 | if (mic_dma_dbg) { |
| 720 | mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev), |
| 721 | mic_dma_dbg); |
| 722 | if (mic_dma_dev->dbg_dir) |
| 723 | debugfs_create_file("mic_dma_reg", 0444, |
| 724 | mic_dma_dev->dbg_dir, mic_dma_dev, |
| 725 | &mic_dma_reg_ops); |
| 726 | } |
| 727 | return 0; |
| 728 | } |
| 729 | |
| 730 | static void mic_dma_driver_remove(struct mbus_device *mbdev) |
| 731 | { |
| 732 | struct mic_dma_device *mic_dma_dev; |
| 733 | |
| 734 | mic_dma_dev = dev_get_drvdata(&mbdev->dev); |
| 735 | debugfs_remove_recursive(mic_dma_dev->dbg_dir); |
| 736 | mic_dma_dev_unreg(mic_dma_dev); |
| 737 | } |
| 738 | |
| 739 | static struct mbus_device_id id_table[] = { |
| 740 | {MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID}, |
| 741 | {MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID}, |
| 742 | {0}, |
| 743 | }; |
| 744 | |
| 745 | static struct mbus_driver mic_dma_driver = { |
| 746 | .driver.name = KBUILD_MODNAME, |
| 747 | .driver.owner = THIS_MODULE, |
| 748 | .id_table = id_table, |
| 749 | .probe = mic_dma_driver_probe, |
| 750 | .remove = mic_dma_driver_remove, |
| 751 | }; |
| 752 | |
| 753 | static int __init mic_x100_dma_init(void) |
| 754 | { |
| 755 | int rc = mbus_register_driver(&mic_dma_driver); |
| 756 | if (rc) |
| 757 | return rc; |
| 758 | mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL); |
| 759 | return 0; |
| 760 | } |
| 761 | |
| 762 | static void __exit mic_x100_dma_exit(void) |
| 763 | { |
| 764 | debugfs_remove_recursive(mic_dma_dbg); |
| 765 | mbus_unregister_driver(&mic_dma_driver); |
| 766 | } |
| 767 | |
| 768 | module_init(mic_x100_dma_init); |
| 769 | module_exit(mic_x100_dma_exit); |
| 770 | |
| 771 | MODULE_DEVICE_TABLE(mbus, id_table); |
| 772 | MODULE_AUTHOR("Intel Corporation"); |
| 773 | MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver"); |
| 774 | MODULE_LICENSE("GPL v2"); |