Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * |
| 3 | * Optimized version of the copy_user() routine. |
| 4 | * It is used to copy date across the kernel/user boundary. |
| 5 | * |
| 6 | * The source and destination are always on opposite side of |
| 7 | * the boundary. When reading from user space we must catch |
| 8 | * faults on loads. When writing to user space we must catch |
| 9 | * errors on stores. Note that because of the nature of the copy |
| 10 | * we don't need to worry about overlapping regions. |
| 11 | * |
| 12 | * |
| 13 | * Inputs: |
| 14 | * in0 address of source buffer |
| 15 | * in1 address of destination buffer |
| 16 | * in2 number of bytes to copy |
| 17 | * |
| 18 | * Outputs: |
| 19 | * ret0 0 in case of success. The number of bytes NOT copied in |
| 20 | * case of error. |
| 21 | * |
| 22 | * Copyright (C) 2000-2001 Hewlett-Packard Co |
| 23 | * Stephane Eranian <eranian@hpl.hp.com> |
| 24 | * |
| 25 | * Fixme: |
| 26 | * - handle the case where we have more than 16 bytes and the alignment |
| 27 | * are different. |
| 28 | * - more benchmarking |
| 29 | * - fix extraneous stop bit introduced by the EX() macro. |
| 30 | */ |
| 31 | |
| 32 | #include <asm/asmmacro.h> |
| 33 | |
| 34 | // |
| 35 | // Tuneable parameters |
| 36 | // |
| 37 | #define COPY_BREAK 16 // we do byte copy below (must be >=16) |
| 38 | #define PIPE_DEPTH 21 // pipe depth |
| 39 | |
| 40 | #define EPI p[PIPE_DEPTH-1] |
| 41 | |
| 42 | // |
| 43 | // arguments |
| 44 | // |
| 45 | #define dst in0 |
| 46 | #define src in1 |
| 47 | #define len in2 |
| 48 | |
| 49 | // |
| 50 | // local registers |
| 51 | // |
| 52 | #define t1 r2 // rshift in bytes |
| 53 | #define t2 r3 // lshift in bytes |
| 54 | #define rshift r14 // right shift in bits |
| 55 | #define lshift r15 // left shift in bits |
| 56 | #define word1 r16 |
| 57 | #define word2 r17 |
| 58 | #define cnt r18 |
| 59 | #define len2 r19 |
| 60 | #define saved_lc r20 |
| 61 | #define saved_pr r21 |
| 62 | #define tmp r22 |
| 63 | #define val r23 |
| 64 | #define src1 r24 |
| 65 | #define dst1 r25 |
| 66 | #define src2 r26 |
| 67 | #define dst2 r27 |
| 68 | #define len1 r28 |
| 69 | #define enddst r29 |
| 70 | #define endsrc r30 |
| 71 | #define saved_pfs r31 |
| 72 | |
| 73 | GLOBAL_ENTRY(__copy_user) |
| 74 | .prologue |
| 75 | .save ar.pfs, saved_pfs |
| 76 | alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7) |
| 77 | |
| 78 | .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH] |
| 79 | .rotp p[PIPE_DEPTH] |
| 80 | |
| 81 | adds len2=-1,len // br.ctop is repeat/until |
| 82 | mov ret0=r0 |
| 83 | |
| 84 | ;; // RAW of cfm when len=0 |
| 85 | cmp.eq p8,p0=r0,len // check for zero length |
| 86 | .save ar.lc, saved_lc |
| 87 | mov saved_lc=ar.lc // preserve ar.lc (slow) |
| 88 | (p8) br.ret.spnt.many rp // empty mempcy() |
| 89 | ;; |
| 90 | add enddst=dst,len // first byte after end of source |
| 91 | add endsrc=src,len // first byte after end of destination |
| 92 | .save pr, saved_pr |
| 93 | mov saved_pr=pr // preserve predicates |
| 94 | |
| 95 | .body |
| 96 | |
| 97 | mov dst1=dst // copy because of rotation |
| 98 | mov ar.ec=PIPE_DEPTH |
| 99 | mov pr.rot=1<<16 // p16=true all others are false |
| 100 | |
| 101 | mov src1=src // copy because of rotation |
| 102 | mov ar.lc=len2 // initialize lc for small count |
| 103 | cmp.lt p10,p7=COPY_BREAK,len // if len > COPY_BREAK then long copy |
| 104 | |
| 105 | xor tmp=src,dst // same alignment test prepare |
| 106 | (p10) br.cond.dptk .long_copy_user |
| 107 | ;; // RAW pr.rot/p16 ? |
| 108 | // |
| 109 | // Now we do the byte by byte loop with software pipeline |
| 110 | // |
| 111 | // p7 is necessarily false by now |
| 112 | 1: |
| 113 | EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) |
| 114 | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) |
| 115 | br.ctop.dptk.few 1b |
| 116 | ;; |
| 117 | mov ar.lc=saved_lc |
| 118 | mov pr=saved_pr,0xffffffffffff0000 |
| 119 | mov ar.pfs=saved_pfs // restore ar.ec |
| 120 | br.ret.sptk.many rp // end of short memcpy |
| 121 | |
| 122 | // |
| 123 | // Not 8-byte aligned |
| 124 | // |
| 125 | .diff_align_copy_user: |
| 126 | // At this point we know we have more than 16 bytes to copy |
| 127 | // and also that src and dest do _not_ have the same alignment. |
| 128 | and src2=0x7,src1 // src offset |
| 129 | and dst2=0x7,dst1 // dst offset |
| 130 | ;; |
| 131 | // The basic idea is that we copy byte-by-byte at the head so |
| 132 | // that we can reach 8-byte alignment for both src1 and dst1. |
| 133 | // Then copy the body using software pipelined 8-byte copy, |
| 134 | // shifting the two back-to-back words right and left, then copy |
| 135 | // the tail by copying byte-by-byte. |
| 136 | // |
| 137 | // Fault handling. If the byte-by-byte at the head fails on the |
| 138 | // load, then restart and finish the pipleline by copying zeros |
| 139 | // to the dst1. Then copy zeros for the rest of dst1. |
| 140 | // If 8-byte software pipeline fails on the load, do the same as |
| 141 | // failure_in3 does. If the byte-by-byte at the tail fails, it is |
| 142 | // handled simply by failure_in_pipe1. |
| 143 | // |
| 144 | // The case p14 represents the source has more bytes in the |
| 145 | // the first word (by the shifted part), whereas the p15 needs to |
| 146 | // copy some bytes from the 2nd word of the source that has the |
| 147 | // tail of the 1st of the destination. |
| 148 | // |
| 149 | |
| 150 | // |
| 151 | // Optimization. If dst1 is 8-byte aligned (quite common), we don't need |
| 152 | // to copy the head to dst1, to start 8-byte copy software pipeline. |
| 153 | // We know src1 is not 8-byte aligned in this case. |
| 154 | // |
| 155 | cmp.eq p14,p15=r0,dst2 |
| 156 | (p15) br.cond.spnt 1f |
| 157 | ;; |
| 158 | sub t1=8,src2 |
| 159 | mov t2=src2 |
| 160 | ;; |
| 161 | shl rshift=t2,3 |
| 162 | sub len1=len,t1 // set len1 |
| 163 | ;; |
| 164 | sub lshift=64,rshift |
| 165 | ;; |
| 166 | br.cond.spnt .word_copy_user |
| 167 | ;; |
| 168 | 1: |
| 169 | cmp.leu p14,p15=src2,dst2 |
| 170 | sub t1=dst2,src2 |
| 171 | ;; |
| 172 | .pred.rel "mutex", p14, p15 |
| 173 | (p14) sub word1=8,src2 // (8 - src offset) |
| 174 | (p15) sub t1=r0,t1 // absolute value |
| 175 | (p15) sub word1=8,dst2 // (8 - dst offset) |
| 176 | ;; |
| 177 | // For the case p14, we don't need to copy the shifted part to |
| 178 | // the 1st word of destination. |
| 179 | sub t2=8,t1 |
| 180 | (p14) sub word1=word1,t1 |
| 181 | ;; |
| 182 | sub len1=len,word1 // resulting len |
| 183 | (p15) shl rshift=t1,3 // in bits |
| 184 | (p14) shl rshift=t2,3 |
| 185 | ;; |
| 186 | (p14) sub len1=len1,t1 |
| 187 | adds cnt=-1,word1 |
| 188 | ;; |
| 189 | sub lshift=64,rshift |
| 190 | mov ar.ec=PIPE_DEPTH |
| 191 | mov pr.rot=1<<16 // p16=true all others are false |
| 192 | mov ar.lc=cnt |
| 193 | ;; |
| 194 | 2: |
| 195 | EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1) |
| 196 | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) |
| 197 | br.ctop.dptk.few 2b |
| 198 | ;; |
| 199 | clrrrb |
| 200 | ;; |
| 201 | .word_copy_user: |
| 202 | cmp.gtu p9,p0=16,len1 |
| 203 | (p9) br.cond.spnt 4f // if (16 > len1) skip 8-byte copy |
| 204 | ;; |
| 205 | shr.u cnt=len1,3 // number of 64-bit words |
| 206 | ;; |
| 207 | adds cnt=-1,cnt |
| 208 | ;; |
| 209 | .pred.rel "mutex", p14, p15 |
| 210 | (p14) sub src1=src1,t2 |
| 211 | (p15) sub src1=src1,t1 |
| 212 | // |
| 213 | // Now both src1 and dst1 point to an 8-byte aligned address. And |
| 214 | // we have more than 8 bytes to copy. |
| 215 | // |
| 216 | mov ar.lc=cnt |
| 217 | mov ar.ec=PIPE_DEPTH |
| 218 | mov pr.rot=1<<16 // p16=true all others are false |
| 219 | ;; |
| 220 | 3: |
| 221 | // |
| 222 | // The pipleline consists of 3 stages: |
| 223 | // 1 (p16): Load a word from src1 |
| 224 | // 2 (EPI_1): Shift right pair, saving to tmp |
| 225 | // 3 (EPI): Store tmp to dst1 |
| 226 | // |
| 227 | // To make it simple, use at least 2 (p16) loops to set up val1[n] |
| 228 | // because we need 2 back-to-back val1[] to get tmp. |
| 229 | // Note that this implies EPI_2 must be p18 or greater. |
| 230 | // |
| 231 | |
| 232 | #define EPI_1 p[PIPE_DEPTH-2] |
| 233 | #define SWITCH(pred, shift) cmp.eq pred,p0=shift,rshift |
| 234 | #define CASE(pred, shift) \ |
| 235 | (pred) br.cond.spnt .copy_user_bit##shift |
| 236 | #define BODY(rshift) \ |
| 237 | .copy_user_bit##rshift: \ |
| 238 | 1: \ |
| 239 | EX(.failure_out,(EPI) st8 [dst1]=tmp,8); \ |
| 240 | (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ |
| 241 | EX(3f,(p16) ld8 val1[1]=[src1],8); \ |
| 242 | (p16) mov val1[0]=r0; \ |
| 243 | br.ctop.dptk 1b; \ |
| 244 | ;; \ |
| 245 | br.cond.sptk.many .diff_align_do_tail; \ |
| 246 | 2: \ |
| 247 | (EPI) st8 [dst1]=tmp,8; \ |
| 248 | (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ |
| 249 | 3: \ |
| 250 | (p16) mov val1[1]=r0; \ |
| 251 | (p16) mov val1[0]=r0; \ |
| 252 | br.ctop.dptk 2b; \ |
| 253 | ;; \ |
| 254 | br.cond.sptk.many .failure_in2 |
| 255 | |
| 256 | // |
| 257 | // Since the instruction 'shrp' requires a fixed 128-bit value |
| 258 | // specifying the bits to shift, we need to provide 7 cases |
| 259 | // below. |
| 260 | // |
| 261 | SWITCH(p6, 8) |
| 262 | SWITCH(p7, 16) |
| 263 | SWITCH(p8, 24) |
| 264 | SWITCH(p9, 32) |
| 265 | SWITCH(p10, 40) |
| 266 | SWITCH(p11, 48) |
| 267 | SWITCH(p12, 56) |
| 268 | ;; |
| 269 | CASE(p6, 8) |
| 270 | CASE(p7, 16) |
| 271 | CASE(p8, 24) |
| 272 | CASE(p9, 32) |
| 273 | CASE(p10, 40) |
| 274 | CASE(p11, 48) |
| 275 | CASE(p12, 56) |
| 276 | ;; |
| 277 | BODY(8) |
| 278 | BODY(16) |
| 279 | BODY(24) |
| 280 | BODY(32) |
| 281 | BODY(40) |
| 282 | BODY(48) |
| 283 | BODY(56) |
| 284 | ;; |
| 285 | .diff_align_do_tail: |
| 286 | .pred.rel "mutex", p14, p15 |
| 287 | (p14) sub src1=src1,t1 |
| 288 | (p14) adds dst1=-8,dst1 |
| 289 | (p15) sub dst1=dst1,t1 |
| 290 | ;; |
| 291 | 4: |
| 292 | // Tail correction. |
| 293 | // |
| 294 | // The problem with this piplelined loop is that the last word is not |
| 295 | // loaded and thus parf of the last word written is not correct. |
| 296 | // To fix that, we simply copy the tail byte by byte. |
| 297 | |
| 298 | sub len1=endsrc,src1,1 |
| 299 | clrrrb |
| 300 | ;; |
| 301 | mov ar.ec=PIPE_DEPTH |
| 302 | mov pr.rot=1<<16 // p16=true all others are false |
| 303 | mov ar.lc=len1 |
| 304 | ;; |
| 305 | 5: |
| 306 | EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) |
| 307 | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) |
| 308 | br.ctop.dptk.few 5b |
| 309 | ;; |
| 310 | mov ar.lc=saved_lc |
| 311 | mov pr=saved_pr,0xffffffffffff0000 |
| 312 | mov ar.pfs=saved_pfs |
| 313 | br.ret.sptk.many rp |
| 314 | |
| 315 | // |
| 316 | // Beginning of long mempcy (i.e. > 16 bytes) |
| 317 | // |
| 318 | .long_copy_user: |
| 319 | tbit.nz p6,p7=src1,0 // odd alignment |
| 320 | and tmp=7,tmp |
| 321 | ;; |
| 322 | cmp.eq p10,p8=r0,tmp |
| 323 | mov len1=len // copy because of rotation |
| 324 | (p8) br.cond.dpnt .diff_align_copy_user |
| 325 | ;; |
| 326 | // At this point we know we have more than 16 bytes to copy |
| 327 | // and also that both src and dest have the same alignment |
| 328 | // which may not be the one we want. So for now we must move |
| 329 | // forward slowly until we reach 16byte alignment: no need to |
| 330 | // worry about reaching the end of buffer. |
| 331 | // |
| 332 | EX(.failure_in1,(p6) ld1 val1[0]=[src1],1) // 1-byte aligned |
| 333 | (p6) adds len1=-1,len1;; |
| 334 | tbit.nz p7,p0=src1,1 |
| 335 | ;; |
| 336 | EX(.failure_in1,(p7) ld2 val1[1]=[src1],2) // 2-byte aligned |
| 337 | (p7) adds len1=-2,len1;; |
| 338 | tbit.nz p8,p0=src1,2 |
| 339 | ;; |
| 340 | // |
| 341 | // Stop bit not required after ld4 because if we fail on ld4 |
| 342 | // we have never executed the ld1, therefore st1 is not executed. |
| 343 | // |
| 344 | EX(.failure_in1,(p8) ld4 val2[0]=[src1],4) // 4-byte aligned |
| 345 | ;; |
| 346 | EX(.failure_out,(p6) st1 [dst1]=val1[0],1) |
| 347 | tbit.nz p9,p0=src1,3 |
| 348 | ;; |
| 349 | // |
| 350 | // Stop bit not required after ld8 because if we fail on ld8 |
| 351 | // we have never executed the ld2, therefore st2 is not executed. |
| 352 | // |
| 353 | EX(.failure_in1,(p9) ld8 val2[1]=[src1],8) // 8-byte aligned |
| 354 | EX(.failure_out,(p7) st2 [dst1]=val1[1],2) |
| 355 | (p8) adds len1=-4,len1 |
| 356 | ;; |
| 357 | EX(.failure_out, (p8) st4 [dst1]=val2[0],4) |
| 358 | (p9) adds len1=-8,len1;; |
| 359 | shr.u cnt=len1,4 // number of 128-bit (2x64bit) words |
| 360 | ;; |
| 361 | EX(.failure_out, (p9) st8 [dst1]=val2[1],8) |
| 362 | tbit.nz p6,p0=len1,3 |
| 363 | cmp.eq p7,p0=r0,cnt |
| 364 | adds tmp=-1,cnt // br.ctop is repeat/until |
| 365 | (p7) br.cond.dpnt .dotail // we have less than 16 bytes left |
| 366 | ;; |
| 367 | adds src2=8,src1 |
| 368 | adds dst2=8,dst1 |
| 369 | mov ar.lc=tmp |
| 370 | ;; |
| 371 | // |
| 372 | // 16bytes/iteration |
| 373 | // |
| 374 | 2: |
| 375 | EX(.failure_in3,(p16) ld8 val1[0]=[src1],16) |
| 376 | (p16) ld8 val2[0]=[src2],16 |
| 377 | |
| 378 | EX(.failure_out, (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16) |
| 379 | (EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 |
| 380 | br.ctop.dptk 2b |
| 381 | ;; // RAW on src1 when fall through from loop |
| 382 | // |
| 383 | // Tail correction based on len only |
| 384 | // |
| 385 | // No matter where we come from (loop or test) the src1 pointer |
| 386 | // is 16 byte aligned AND we have less than 16 bytes to copy. |
| 387 | // |
| 388 | .dotail: |
| 389 | EX(.failure_in1,(p6) ld8 val1[0]=[src1],8) // at least 8 bytes |
| 390 | tbit.nz p7,p0=len1,2 |
| 391 | ;; |
| 392 | EX(.failure_in1,(p7) ld4 val1[1]=[src1],4) // at least 4 bytes |
| 393 | tbit.nz p8,p0=len1,1 |
| 394 | ;; |
| 395 | EX(.failure_in1,(p8) ld2 val2[0]=[src1],2) // at least 2 bytes |
| 396 | tbit.nz p9,p0=len1,0 |
| 397 | ;; |
| 398 | EX(.failure_out, (p6) st8 [dst1]=val1[0],8) |
| 399 | ;; |
| 400 | EX(.failure_in1,(p9) ld1 val2[1]=[src1]) // only 1 byte left |
| 401 | mov ar.lc=saved_lc |
| 402 | ;; |
| 403 | EX(.failure_out,(p7) st4 [dst1]=val1[1],4) |
| 404 | mov pr=saved_pr,0xffffffffffff0000 |
| 405 | ;; |
| 406 | EX(.failure_out, (p8) st2 [dst1]=val2[0],2) |
| 407 | mov ar.pfs=saved_pfs |
| 408 | ;; |
| 409 | EX(.failure_out, (p9) st1 [dst1]=val2[1]) |
| 410 | br.ret.sptk.many rp |
| 411 | |
| 412 | |
| 413 | // |
| 414 | // Here we handle the case where the byte by byte copy fails |
| 415 | // on the load. |
| 416 | // Several factors make the zeroing of the rest of the buffer kind of |
| 417 | // tricky: |
| 418 | // - the pipeline: loads/stores are not in sync (pipeline) |
| 419 | // |
| 420 | // In the same loop iteration, the dst1 pointer does not directly |
| 421 | // reflect where the faulty load was. |
| 422 | // |
| 423 | // - pipeline effect |
| 424 | // When you get a fault on load, you may have valid data from |
| 425 | // previous loads not yet store in transit. Such data must be |
| 426 | // store normally before moving onto zeroing the rest. |
| 427 | // |
| 428 | // - single/multi dispersal independence. |
| 429 | // |
| 430 | // solution: |
| 431 | // - we don't disrupt the pipeline, i.e. data in transit in |
| 432 | // the software pipeline will be eventually move to memory. |
| 433 | // We simply replace the load with a simple mov and keep the |
| 434 | // pipeline going. We can't really do this inline because |
| 435 | // p16 is always reset to 1 when lc > 0. |
| 436 | // |
| 437 | .failure_in_pipe1: |
| 438 | sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied |
| 439 | 1: |
| 440 | (p16) mov val1[0]=r0 |
| 441 | (EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 |
| 442 | br.ctop.dptk 1b |
| 443 | ;; |
| 444 | mov pr=saved_pr,0xffffffffffff0000 |
| 445 | mov ar.lc=saved_lc |
| 446 | mov ar.pfs=saved_pfs |
| 447 | br.ret.sptk.many rp |
| 448 | |
| 449 | // |
| 450 | // This is the case where the byte by byte copy fails on the load |
| 451 | // when we copy the head. We need to finish the pipeline and copy |
| 452 | // zeros for the rest of the destination. Since this happens |
| 453 | // at the top we still need to fill the body and tail. |
| 454 | .failure_in_pipe2: |
| 455 | sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied |
| 456 | 2: |
| 457 | (p16) mov val1[0]=r0 |
| 458 | (EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 |
| 459 | br.ctop.dptk 2b |
| 460 | ;; |
| 461 | sub len=enddst,dst1,1 // precompute len |
| 462 | br.cond.dptk.many .failure_in1bis |
| 463 | ;; |
| 464 | |
| 465 | // |
| 466 | // Here we handle the head & tail part when we check for alignment. |
| 467 | // The following code handles only the load failures. The |
| 468 | // main diffculty comes from the fact that loads/stores are |
| 469 | // scheduled. So when you fail on a load, the stores corresponding |
| 470 | // to previous successful loads must be executed. |
| 471 | // |
| 472 | // However some simplifications are possible given the way |
| 473 | // things work. |
| 474 | // |
| 475 | // 1) HEAD |
| 476 | // Theory of operation: |
| 477 | // |
| 478 | // Page A | Page B |
| 479 | // ---------|----- |
| 480 | // 1|8 x |
| 481 | // 1 2|8 x |
| 482 | // 4|8 x |
| 483 | // 1 4|8 x |
| 484 | // 2 4|8 x |
| 485 | // 1 2 4|8 x |
| 486 | // |1 |
| 487 | // |2 x |
| 488 | // |4 x |
| 489 | // |
| 490 | // page_size >= 4k (2^12). (x means 4, 2, 1) |
| 491 | // Here we suppose Page A exists and Page B does not. |
| 492 | // |
| 493 | // As we move towards eight byte alignment we may encounter faults. |
| 494 | // The numbers on each page show the size of the load (current alignment). |
| 495 | // |
| 496 | // Key point: |
| 497 | // - if you fail on 1, 2, 4 then you have never executed any smaller |
| 498 | // size loads, e.g. failing ld4 means no ld1 nor ld2 executed |
| 499 | // before. |
| 500 | // |
| 501 | // This allows us to simplify the cleanup code, because basically you |
| 502 | // only have to worry about "pending" stores in the case of a failing |
| 503 | // ld8(). Given the way the code is written today, this means only |
| 504 | // worry about st2, st4. There we can use the information encapsulated |
| 505 | // into the predicates. |
| 506 | // |
| 507 | // Other key point: |
| 508 | // - if you fail on the ld8 in the head, it means you went straight |
| 509 | // to it, i.e. 8byte alignment within an unexisting page. |
| 510 | // Again this comes from the fact that if you crossed just for the ld8 then |
| 511 | // you are 8byte aligned but also 16byte align, therefore you would |
| 512 | // either go for the 16byte copy loop OR the ld8 in the tail part. |
| 513 | // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible |
| 514 | // because it would mean you had 15bytes to copy in which case you |
| 515 | // would have defaulted to the byte by byte copy. |
| 516 | // |
| 517 | // |
| 518 | // 2) TAIL |
| 519 | // Here we now we have less than 16 bytes AND we are either 8 or 16 byte |
| 520 | // aligned. |
| 521 | // |
| 522 | // Key point: |
| 523 | // This means that we either: |
| 524 | // - are right on a page boundary |
| 525 | // OR |
| 526 | // - are at more than 16 bytes from a page boundary with |
| 527 | // at most 15 bytes to copy: no chance of crossing. |
| 528 | // |
| 529 | // This allows us to assume that if we fail on a load we haven't possibly |
| 530 | // executed any of the previous (tail) ones, so we don't need to do |
| 531 | // any stores. For instance, if we fail on ld2, this means we had |
| 532 | // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4. |
| 533 | // |
| 534 | // This means that we are in a situation similar the a fault in the |
| 535 | // head part. That's nice! |
| 536 | // |
| 537 | .failure_in1: |
| 538 | sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied |
| 539 | sub len=endsrc,src1,1 |
| 540 | // |
| 541 | // we know that ret0 can never be zero at this point |
| 542 | // because we failed why trying to do a load, i.e. there is still |
| 543 | // some work to do. |
| 544 | // The failure_in1bis and length problem is taken care of at the |
| 545 | // calling side. |
| 546 | // |
| 547 | ;; |
| 548 | .failure_in1bis: // from (.failure_in3) |
| 549 | mov ar.lc=len // Continue with a stupid byte store. |
| 550 | ;; |
| 551 | 5: |
| 552 | st1 [dst1]=r0,1 |
| 553 | br.cloop.dptk 5b |
| 554 | ;; |
| 555 | mov pr=saved_pr,0xffffffffffff0000 |
| 556 | mov ar.lc=saved_lc |
| 557 | mov ar.pfs=saved_pfs |
| 558 | br.ret.sptk.many rp |
| 559 | |
| 560 | // |
| 561 | // Here we simply restart the loop but instead |
| 562 | // of doing loads we fill the pipeline with zeroes |
| 563 | // We can't simply store r0 because we may have valid |
| 564 | // data in transit in the pipeline. |
| 565 | // ar.lc and ar.ec are setup correctly at this point |
| 566 | // |
| 567 | // we MUST use src1/endsrc here and not dst1/enddst because |
| 568 | // of the pipeline effect. |
| 569 | // |
| 570 | .failure_in3: |
| 571 | sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied |
| 572 | ;; |
| 573 | 2: |
| 574 | (p16) mov val1[0]=r0 |
| 575 | (p16) mov val2[0]=r0 |
| 576 | (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16 |
| 577 | (EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 |
| 578 | br.ctop.dptk 2b |
| 579 | ;; |
| 580 | cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? |
| 581 | sub len=enddst,dst1,1 // precompute len |
| 582 | (p6) br.cond.dptk .failure_in1bis |
| 583 | ;; |
| 584 | mov pr=saved_pr,0xffffffffffff0000 |
| 585 | mov ar.lc=saved_lc |
| 586 | mov ar.pfs=saved_pfs |
| 587 | br.ret.sptk.many rp |
| 588 | |
| 589 | .failure_in2: |
| 590 | sub ret0=endsrc,src1 |
| 591 | cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? |
| 592 | sub len=enddst,dst1,1 // precompute len |
| 593 | (p6) br.cond.dptk .failure_in1bis |
| 594 | ;; |
| 595 | mov pr=saved_pr,0xffffffffffff0000 |
| 596 | mov ar.lc=saved_lc |
| 597 | mov ar.pfs=saved_pfs |
| 598 | br.ret.sptk.many rp |
| 599 | |
| 600 | // |
| 601 | // handling of failures on stores: that's the easy part |
| 602 | // |
| 603 | .failure_out: |
| 604 | sub ret0=enddst,dst1 |
| 605 | mov pr=saved_pr,0xffffffffffff0000 |
| 606 | mov ar.lc=saved_lc |
| 607 | |
| 608 | mov ar.pfs=saved_pfs |
| 609 | br.ret.sptk.many rp |
| 610 | END(__copy_user) |