Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com> |
| 3 | * |
| 4 | * mtd nand driver for M-Systems DiskOnChip G4 |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus |
| 12 | * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. |
| 13 | * Should work on these as well. Let me know! |
| 14 | * |
| 15 | * TODO: |
| 16 | * |
| 17 | * Mechanism for management of password-protected areas |
| 18 | * |
| 19 | * Hamming ecc when reading oob only |
| 20 | * |
| 21 | * According to the M-Sys documentation, this device is also available in a |
| 22 | * "dual-die" configuration having a 256MB capacity, but no mechanism for |
| 23 | * detecting this variant is documented. Currently this driver assumes 128MB |
| 24 | * capacity. |
| 25 | * |
| 26 | * Support for multiple cascaded devices ("floors"). Not sure which gadgets |
| 27 | * contain multiple G4s in a cascaded configuration, if any. |
| 28 | * |
| 29 | */ |
| 30 | |
| 31 | #include <linux/kernel.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/init.h> |
| 34 | #include <linux/string.h> |
| 35 | #include <linux/sched.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/export.h> |
| 39 | #include <linux/platform_device.h> |
| 40 | #include <linux/io.h> |
| 41 | #include <linux/bitops.h> |
| 42 | #include <linux/mtd/partitions.h> |
| 43 | #include <linux/mtd/mtd.h> |
| 44 | #include <linux/mtd/nand.h> |
| 45 | #include <linux/bch.h> |
| 46 | #include <linux/bitrev.h> |
| 47 | |
| 48 | /* |
| 49 | * You'll want to ignore badblocks if you're reading a partition that contains |
| 50 | * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since |
| 51 | * it does not use mtd nand's method for marking bad blocks (using oob area). |
| 52 | * This will also skip the check of the "page written" flag. |
| 53 | */ |
| 54 | static bool ignore_badblocks; |
| 55 | module_param(ignore_badblocks, bool, 0); |
| 56 | MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed"); |
| 57 | |
| 58 | struct docg4_priv { |
| 59 | struct mtd_info *mtd; |
| 60 | struct device *dev; |
| 61 | void __iomem *virtadr; |
| 62 | int status; |
| 63 | struct { |
| 64 | unsigned int command; |
| 65 | int column; |
| 66 | int page; |
| 67 | } last_command; |
| 68 | uint8_t oob_buf[16]; |
| 69 | uint8_t ecc_buf[7]; |
| 70 | int oob_page; |
| 71 | struct bch_control *bch; |
| 72 | }; |
| 73 | |
| 74 | /* |
| 75 | * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are |
| 76 | * shared with other diskonchip devices (P3, G3 at least). |
| 77 | * |
| 78 | * Functions with names prefixed with docg4_ are mtd / nand interface functions |
| 79 | * (though they may also be called internally). All others are internal. |
| 80 | */ |
| 81 | |
| 82 | #define DOC_IOSPACE_DATA 0x0800 |
| 83 | |
| 84 | /* register offsets */ |
| 85 | #define DOC_CHIPID 0x1000 |
| 86 | #define DOC_DEVICESELECT 0x100a |
| 87 | #define DOC_ASICMODE 0x100c |
| 88 | #define DOC_DATAEND 0x101e |
| 89 | #define DOC_NOP 0x103e |
| 90 | |
| 91 | #define DOC_FLASHSEQUENCE 0x1032 |
| 92 | #define DOC_FLASHCOMMAND 0x1034 |
| 93 | #define DOC_FLASHADDRESS 0x1036 |
| 94 | #define DOC_FLASHCONTROL 0x1038 |
| 95 | #define DOC_ECCCONF0 0x1040 |
| 96 | #define DOC_ECCCONF1 0x1042 |
| 97 | #define DOC_HAMMINGPARITY 0x1046 |
| 98 | #define DOC_BCH_SYNDROM(idx) (0x1048 + idx) |
| 99 | |
| 100 | #define DOC_ASICMODECONFIRM 0x1072 |
| 101 | #define DOC_CHIPID_INV 0x1074 |
| 102 | #define DOC_POWERMODE 0x107c |
| 103 | |
| 104 | #define DOCG4_MYSTERY_REG 0x1050 |
| 105 | |
| 106 | /* apparently used only to write oob bytes 6 and 7 */ |
| 107 | #define DOCG4_OOB_6_7 0x1052 |
| 108 | |
| 109 | /* DOC_FLASHSEQUENCE register commands */ |
| 110 | #define DOC_SEQ_RESET 0x00 |
| 111 | #define DOCG4_SEQ_PAGE_READ 0x03 |
| 112 | #define DOCG4_SEQ_FLUSH 0x29 |
| 113 | #define DOCG4_SEQ_PAGEWRITE 0x16 |
| 114 | #define DOCG4_SEQ_PAGEPROG 0x1e |
| 115 | #define DOCG4_SEQ_BLOCKERASE 0x24 |
| 116 | |
| 117 | /* DOC_FLASHCOMMAND register commands */ |
| 118 | #define DOCG4_CMD_PAGE_READ 0x00 |
| 119 | #define DOC_CMD_ERASECYCLE2 0xd0 |
| 120 | #define DOCG4_CMD_FLUSH 0x70 |
| 121 | #define DOCG4_CMD_READ2 0x30 |
| 122 | #define DOC_CMD_PROG_BLOCK_ADDR 0x60 |
| 123 | #define DOCG4_CMD_PAGEWRITE 0x80 |
| 124 | #define DOC_CMD_PROG_CYCLE2 0x10 |
| 125 | #define DOC_CMD_RESET 0xff |
| 126 | |
| 127 | /* DOC_POWERMODE register bits */ |
| 128 | #define DOC_POWERDOWN_READY 0x80 |
| 129 | |
| 130 | /* DOC_FLASHCONTROL register bits */ |
| 131 | #define DOC_CTRL_CE 0x10 |
| 132 | #define DOC_CTRL_UNKNOWN 0x40 |
| 133 | #define DOC_CTRL_FLASHREADY 0x01 |
| 134 | |
| 135 | /* DOC_ECCCONF0 register bits */ |
| 136 | #define DOC_ECCCONF0_READ_MODE 0x8000 |
| 137 | #define DOC_ECCCONF0_UNKNOWN 0x2000 |
| 138 | #define DOC_ECCCONF0_ECC_ENABLE 0x1000 |
| 139 | #define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff |
| 140 | |
| 141 | /* DOC_ECCCONF1 register bits */ |
| 142 | #define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80 |
| 143 | #define DOC_ECCCONF1_ECC_ENABLE 0x07 |
| 144 | #define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20 |
| 145 | |
| 146 | /* DOC_ASICMODE register bits */ |
| 147 | #define DOC_ASICMODE_RESET 0x00 |
| 148 | #define DOC_ASICMODE_NORMAL 0x01 |
| 149 | #define DOC_ASICMODE_POWERDOWN 0x02 |
| 150 | #define DOC_ASICMODE_MDWREN 0x04 |
| 151 | #define DOC_ASICMODE_BDETCT_RESET 0x08 |
| 152 | #define DOC_ASICMODE_RSTIN_RESET 0x10 |
| 153 | #define DOC_ASICMODE_RAM_WE 0x20 |
| 154 | |
| 155 | /* good status values read after read/write/erase operations */ |
| 156 | #define DOCG4_PROGSTATUS_GOOD 0x51 |
| 157 | #define DOCG4_PROGSTATUS_GOOD_2 0xe0 |
| 158 | |
| 159 | /* |
| 160 | * On read operations (page and oob-only), the first byte read from I/O reg is a |
| 161 | * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read |
| 162 | * after reset only) or 0x51, so bit 1 is presumed to be an error indicator. |
| 163 | */ |
| 164 | #define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */ |
| 165 | |
| 166 | /* anatomy of the device */ |
| 167 | #define DOCG4_CHIP_SIZE 0x8000000 |
| 168 | #define DOCG4_PAGE_SIZE 0x200 |
| 169 | #define DOCG4_PAGES_PER_BLOCK 0x200 |
| 170 | #define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE) |
| 171 | #define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE) |
| 172 | #define DOCG4_OOB_SIZE 0x10 |
| 173 | #define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */ |
| 174 | #define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */ |
| 175 | #define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */ |
| 176 | |
| 177 | /* all but the last byte is included in ecc calculation */ |
| 178 | #define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1) |
| 179 | |
| 180 | #define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */ |
| 181 | |
| 182 | /* expected values from the ID registers */ |
| 183 | #define DOCG4_IDREG1_VALUE 0x0400 |
| 184 | #define DOCG4_IDREG2_VALUE 0xfbff |
| 185 | |
| 186 | /* primitive polynomial used to build the Galois field used by hw ecc gen */ |
| 187 | #define DOCG4_PRIMITIVE_POLY 0x4443 |
| 188 | |
| 189 | #define DOCG4_M 14 /* Galois field is of order 2^14 */ |
| 190 | #define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */ |
| 191 | |
| 192 | #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */ |
| 193 | |
| 194 | /* |
| 195 | * Oob bytes 0 - 6 are available to the user. |
| 196 | * Byte 7 is hamming ecc for first 7 bytes. Bytes 8 - 14 are hw-generated ecc. |
| 197 | * Byte 15 (the last) is used by the driver as a "page written" flag. |
| 198 | */ |
| 199 | static struct nand_ecclayout docg4_oobinfo = { |
| 200 | .eccbytes = 9, |
| 201 | .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, |
| 202 | .oobavail = 7, |
| 203 | .oobfree = { {0, 7} } |
| 204 | }; |
| 205 | |
| 206 | /* |
| 207 | * The device has a nop register which M-Sys claims is for the purpose of |
| 208 | * inserting precise delays. But beware; at least some operations fail if the |
| 209 | * nop writes are replaced with a generic delay! |
| 210 | */ |
| 211 | static inline void write_nop(void __iomem *docptr) |
| 212 | { |
| 213 | writew(0, docptr + DOC_NOP); |
| 214 | } |
| 215 | |
| 216 | static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| 217 | { |
| 218 | int i; |
| 219 | struct nand_chip *nand = mtd->priv; |
| 220 | uint16_t *p = (uint16_t *) buf; |
| 221 | len >>= 1; |
| 222 | |
| 223 | for (i = 0; i < len; i++) |
| 224 | p[i] = readw(nand->IO_ADDR_R); |
| 225 | } |
| 226 | |
| 227 | static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) |
| 228 | { |
| 229 | int i; |
| 230 | struct nand_chip *nand = mtd->priv; |
| 231 | uint16_t *p = (uint16_t *) buf; |
| 232 | len >>= 1; |
| 233 | |
| 234 | for (i = 0; i < len; i++) |
| 235 | writew(p[i], nand->IO_ADDR_W); |
| 236 | } |
| 237 | |
| 238 | static int poll_status(struct docg4_priv *doc) |
| 239 | { |
| 240 | /* |
| 241 | * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL |
| 242 | * register. Operations known to take a long time (e.g., block erase) |
| 243 | * should sleep for a while before calling this. |
| 244 | */ |
| 245 | |
| 246 | uint16_t flash_status; |
| 247 | unsigned int timeo; |
| 248 | void __iomem *docptr = doc->virtadr; |
| 249 | |
| 250 | dev_dbg(doc->dev, "%s...\n", __func__); |
| 251 | |
| 252 | /* hardware quirk requires reading twice initially */ |
| 253 | flash_status = readw(docptr + DOC_FLASHCONTROL); |
| 254 | |
| 255 | timeo = 1000; |
| 256 | do { |
| 257 | cpu_relax(); |
| 258 | flash_status = readb(docptr + DOC_FLASHCONTROL); |
| 259 | } while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo); |
| 260 | |
| 261 | |
| 262 | if (!timeo) { |
| 263 | dev_err(doc->dev, "%s: timed out!\n", __func__); |
| 264 | return NAND_STATUS_FAIL; |
| 265 | } |
| 266 | |
| 267 | if (unlikely(timeo < 50)) |
| 268 | dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n", |
| 269 | __func__, timeo); |
| 270 | |
| 271 | return 0; |
| 272 | } |
| 273 | |
| 274 | |
| 275 | static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) |
| 276 | { |
| 277 | |
| 278 | struct docg4_priv *doc = nand->priv; |
| 279 | int status = NAND_STATUS_WP; /* inverse logic?? */ |
| 280 | dev_dbg(doc->dev, "%s...\n", __func__); |
| 281 | |
| 282 | /* report any previously unreported error */ |
| 283 | if (doc->status) { |
| 284 | status |= doc->status; |
| 285 | doc->status = 0; |
| 286 | return status; |
| 287 | } |
| 288 | |
| 289 | status |= poll_status(doc); |
| 290 | return status; |
| 291 | } |
| 292 | |
| 293 | static void docg4_select_chip(struct mtd_info *mtd, int chip) |
| 294 | { |
| 295 | /* |
| 296 | * Select among multiple cascaded chips ("floors"). Multiple floors are |
| 297 | * not yet supported, so the only valid non-negative value is 0. |
| 298 | */ |
| 299 | struct nand_chip *nand = mtd->priv; |
| 300 | struct docg4_priv *doc = nand->priv; |
| 301 | void __iomem *docptr = doc->virtadr; |
| 302 | |
| 303 | dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip); |
| 304 | |
| 305 | if (chip < 0) |
| 306 | return; /* deselected */ |
| 307 | |
| 308 | if (chip > 0) |
| 309 | dev_warn(doc->dev, "multiple floors currently unsupported\n"); |
| 310 | |
| 311 | writew(0, docptr + DOC_DEVICESELECT); |
| 312 | } |
| 313 | |
| 314 | static void reset(struct mtd_info *mtd) |
| 315 | { |
| 316 | /* full device reset */ |
| 317 | |
| 318 | struct nand_chip *nand = mtd->priv; |
| 319 | struct docg4_priv *doc = nand->priv; |
| 320 | void __iomem *docptr = doc->virtadr; |
| 321 | |
| 322 | writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, |
| 323 | docptr + DOC_ASICMODE); |
| 324 | writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), |
| 325 | docptr + DOC_ASICMODECONFIRM); |
| 326 | write_nop(docptr); |
| 327 | |
| 328 | writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, |
| 329 | docptr + DOC_ASICMODE); |
| 330 | writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), |
| 331 | docptr + DOC_ASICMODECONFIRM); |
| 332 | |
| 333 | writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); |
| 334 | |
| 335 | poll_status(doc); |
| 336 | } |
| 337 | |
| 338 | static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) |
| 339 | { |
| 340 | /* read the 7 hw-generated ecc bytes */ |
| 341 | |
| 342 | int i; |
| 343 | for (i = 0; i < 7; i++) { /* hw quirk; read twice */ |
| 344 | ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); |
| 345 | ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| 350 | { |
| 351 | /* |
| 352 | * Called after a page read when hardware reports bitflips. |
| 353 | * Up to four bitflips can be corrected. |
| 354 | */ |
| 355 | |
| 356 | struct nand_chip *nand = mtd->priv; |
| 357 | struct docg4_priv *doc = nand->priv; |
| 358 | void __iomem *docptr = doc->virtadr; |
| 359 | int i, numerrs, errpos[4]; |
| 360 | const uint8_t blank_read_hwecc[8] = { |
| 361 | 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; |
| 362 | |
| 363 | read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ |
| 364 | |
| 365 | /* check if read error is due to a blank page */ |
| 366 | if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) |
| 367 | return 0; /* yes */ |
| 368 | |
| 369 | /* skip additional check of "written flag" if ignore_badblocks */ |
| 370 | if (ignore_badblocks == false) { |
| 371 | |
| 372 | /* |
| 373 | * If the hw ecc bytes are not those of a blank page, there's |
| 374 | * still a chance that the page is blank, but was read with |
| 375 | * errors. Check the "written flag" in last oob byte, which |
| 376 | * is set to zero when a page is written. If more than half |
| 377 | * the bits are set, assume a blank page. Unfortunately, the |
| 378 | * bit flips(s) are not reported in stats. |
| 379 | */ |
| 380 | |
| 381 | if (doc->oob_buf[15]) { |
| 382 | int bit, numsetbits = 0; |
| 383 | unsigned long written_flag = doc->oob_buf[15]; |
| 384 | for_each_set_bit(bit, &written_flag, 8) |
| 385 | numsetbits++; |
| 386 | if (numsetbits > 4) { /* assume blank */ |
| 387 | dev_warn(doc->dev, |
| 388 | "error(s) in blank page " |
| 389 | "at offset %08x\n", |
| 390 | page * DOCG4_PAGE_SIZE); |
| 391 | return 0; |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch |
| 398 | * algorithm is used to decode this. However the hw operates on page |
| 399 | * data in a bit order that is the reverse of that of the bch alg, |
| 400 | * requiring that the bits be reversed on the result. Thanks to Ivan |
| 401 | * Djelic for his analysis! |
| 402 | */ |
| 403 | for (i = 0; i < 7; i++) |
| 404 | doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); |
| 405 | |
| 406 | numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, |
| 407 | doc->ecc_buf, NULL, errpos); |
| 408 | |
| 409 | if (numerrs == -EBADMSG) { |
| 410 | dev_warn(doc->dev, "uncorrectable errors at offset %08x\n", |
| 411 | page * DOCG4_PAGE_SIZE); |
| 412 | return -EBADMSG; |
| 413 | } |
| 414 | |
| 415 | BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */ |
| 416 | |
| 417 | /* undo last step in BCH alg (modulo mirroring not needed) */ |
| 418 | for (i = 0; i < numerrs; i++) |
| 419 | errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); |
| 420 | |
| 421 | /* fix the errors */ |
| 422 | for (i = 0; i < numerrs; i++) { |
| 423 | |
| 424 | /* ignore if error within oob ecc bytes */ |
| 425 | if (errpos[i] > DOCG4_USERDATA_LEN * 8) |
| 426 | continue; |
| 427 | |
| 428 | /* if error within oob area preceeding ecc bytes... */ |
| 429 | if (errpos[i] > DOCG4_PAGE_SIZE * 8) |
| 430 | change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, |
| 431 | (unsigned long *)doc->oob_buf); |
| 432 | |
| 433 | else /* error in page data */ |
| 434 | change_bit(errpos[i], (unsigned long *)buf); |
| 435 | } |
| 436 | |
| 437 | dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n", |
| 438 | numerrs, page * DOCG4_PAGE_SIZE); |
| 439 | |
| 440 | return numerrs; |
| 441 | } |
| 442 | |
| 443 | static uint8_t docg4_read_byte(struct mtd_info *mtd) |
| 444 | { |
| 445 | struct nand_chip *nand = mtd->priv; |
| 446 | struct docg4_priv *doc = nand->priv; |
| 447 | |
| 448 | dev_dbg(doc->dev, "%s\n", __func__); |
| 449 | |
| 450 | if (doc->last_command.command == NAND_CMD_STATUS) { |
| 451 | int status; |
| 452 | |
| 453 | /* |
| 454 | * Previous nand command was status request, so nand |
| 455 | * infrastructure code expects to read the status here. If an |
| 456 | * error occurred in a previous operation, report it. |
| 457 | */ |
| 458 | doc->last_command.command = 0; |
| 459 | |
| 460 | if (doc->status) { |
| 461 | status = doc->status; |
| 462 | doc->status = 0; |
| 463 | } |
| 464 | |
| 465 | /* why is NAND_STATUS_WP inverse logic?? */ |
| 466 | else |
| 467 | status = NAND_STATUS_WP | NAND_STATUS_READY; |
| 468 | |
| 469 | return status; |
| 470 | } |
| 471 | |
| 472 | dev_warn(doc->dev, "unexpectd call to read_byte()\n"); |
| 473 | |
| 474 | return 0; |
| 475 | } |
| 476 | |
| 477 | static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr) |
| 478 | { |
| 479 | /* write the four address bytes packed in docg4_addr to the device */ |
| 480 | |
| 481 | void __iomem *docptr = doc->virtadr; |
| 482 | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| 483 | docg4_addr >>= 8; |
| 484 | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| 485 | docg4_addr >>= 8; |
| 486 | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| 487 | docg4_addr >>= 8; |
| 488 | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); |
| 489 | } |
| 490 | |
| 491 | static int read_progstatus(struct docg4_priv *doc) |
| 492 | { |
| 493 | /* |
| 494 | * This apparently checks the status of programming. Done after an |
| 495 | * erasure, and after page data is written. On error, the status is |
| 496 | * saved, to be later retrieved by the nand infrastructure code. |
| 497 | */ |
| 498 | void __iomem *docptr = doc->virtadr; |
| 499 | |
| 500 | /* status is read from the I/O reg */ |
| 501 | uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); |
| 502 | uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); |
| 503 | uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); |
| 504 | |
| 505 | dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n", |
| 506 | __func__, status1, status2, status3); |
| 507 | |
| 508 | if (status1 != DOCG4_PROGSTATUS_GOOD |
| 509 | || status2 != DOCG4_PROGSTATUS_GOOD_2 |
| 510 | || status3 != DOCG4_PROGSTATUS_GOOD_2) { |
| 511 | doc->status = NAND_STATUS_FAIL; |
| 512 | dev_warn(doc->dev, "read_progstatus failed: " |
| 513 | "%02x, %02x, %02x\n", status1, status2, status3); |
| 514 | return -EIO; |
| 515 | } |
| 516 | return 0; |
| 517 | } |
| 518 | |
| 519 | static int pageprog(struct mtd_info *mtd) |
| 520 | { |
| 521 | /* |
| 522 | * Final step in writing a page. Writes the contents of its |
| 523 | * internal buffer out to the flash array, or some such. |
| 524 | */ |
| 525 | |
| 526 | struct nand_chip *nand = mtd->priv; |
| 527 | struct docg4_priv *doc = nand->priv; |
| 528 | void __iomem *docptr = doc->virtadr; |
| 529 | int retval = 0; |
| 530 | |
| 531 | dev_dbg(doc->dev, "docg4: %s\n", __func__); |
| 532 | |
| 533 | writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); |
| 534 | writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); |
| 535 | write_nop(docptr); |
| 536 | write_nop(docptr); |
| 537 | |
| 538 | /* Just busy-wait; usleep_range() slows things down noticeably. */ |
| 539 | poll_status(doc); |
| 540 | |
| 541 | writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); |
| 542 | writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); |
| 543 | writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); |
| 544 | write_nop(docptr); |
| 545 | write_nop(docptr); |
| 546 | write_nop(docptr); |
| 547 | write_nop(docptr); |
| 548 | write_nop(docptr); |
| 549 | |
| 550 | retval = read_progstatus(doc); |
| 551 | writew(0, docptr + DOC_DATAEND); |
| 552 | write_nop(docptr); |
| 553 | poll_status(doc); |
| 554 | write_nop(docptr); |
| 555 | |
| 556 | return retval; |
| 557 | } |
| 558 | |
| 559 | static void sequence_reset(struct mtd_info *mtd) |
| 560 | { |
| 561 | /* common starting sequence for all operations */ |
| 562 | |
| 563 | struct nand_chip *nand = mtd->priv; |
| 564 | struct docg4_priv *doc = nand->priv; |
| 565 | void __iomem *docptr = doc->virtadr; |
| 566 | |
| 567 | writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); |
| 568 | writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); |
| 569 | writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); |
| 570 | write_nop(docptr); |
| 571 | write_nop(docptr); |
| 572 | poll_status(doc); |
| 573 | write_nop(docptr); |
| 574 | } |
| 575 | |
| 576 | static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) |
| 577 | { |
| 578 | /* first step in reading a page */ |
| 579 | |
| 580 | struct nand_chip *nand = mtd->priv; |
| 581 | struct docg4_priv *doc = nand->priv; |
| 582 | void __iomem *docptr = doc->virtadr; |
| 583 | |
| 584 | dev_dbg(doc->dev, |
| 585 | "docg4: %s: g4 page %08x\n", __func__, docg4_addr); |
| 586 | |
| 587 | sequence_reset(mtd); |
| 588 | |
| 589 | writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); |
| 590 | writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); |
| 591 | write_nop(docptr); |
| 592 | |
| 593 | write_addr(doc, docg4_addr); |
| 594 | |
| 595 | write_nop(docptr); |
| 596 | writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); |
| 597 | write_nop(docptr); |
| 598 | write_nop(docptr); |
| 599 | |
| 600 | poll_status(doc); |
| 601 | } |
| 602 | |
| 603 | static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) |
| 604 | { |
| 605 | /* first step in writing a page */ |
| 606 | |
| 607 | struct nand_chip *nand = mtd->priv; |
| 608 | struct docg4_priv *doc = nand->priv; |
| 609 | void __iomem *docptr = doc->virtadr; |
| 610 | |
| 611 | dev_dbg(doc->dev, |
| 612 | "docg4: %s: g4 addr: %x\n", __func__, docg4_addr); |
| 613 | sequence_reset(mtd); |
| 614 | writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); |
| 615 | writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); |
| 616 | write_nop(docptr); |
| 617 | write_addr(doc, docg4_addr); |
| 618 | write_nop(docptr); |
| 619 | write_nop(docptr); |
| 620 | poll_status(doc); |
| 621 | } |
| 622 | |
| 623 | static uint32_t mtd_to_docg4_address(int page, int column) |
| 624 | { |
| 625 | /* |
| 626 | * Convert mtd address to format used by the device, 32 bit packed. |
| 627 | * |
| 628 | * Some notes on G4 addressing... The M-Sys documentation on this device |
| 629 | * claims that pages are 2K in length, and indeed, the format of the |
| 630 | * address used by the device reflects that. But within each page are |
| 631 | * four 512 byte "sub-pages", each with its own oob data that is |
| 632 | * read/written immediately after the 512 bytes of page data. This oob |
| 633 | * data contains the ecc bytes for the preceeding 512 bytes. |
| 634 | * |
| 635 | * Rather than tell the mtd nand infrastructure that page size is 2k, |
| 636 | * with four sub-pages each, we engage in a little subterfuge and tell |
| 637 | * the infrastructure code that pages are 512 bytes in size. This is |
| 638 | * done because during the course of reverse-engineering the device, I |
| 639 | * never observed an instance where an entire 2K "page" was read or |
| 640 | * written as a unit. Each "sub-page" is always addressed individually, |
| 641 | * its data read/written, and ecc handled before the next "sub-page" is |
| 642 | * addressed. |
| 643 | * |
| 644 | * This requires us to convert addresses passed by the mtd nand |
| 645 | * infrastructure code to those used by the device. |
| 646 | * |
| 647 | * The address that is written to the device consists of four bytes: the |
| 648 | * first two are the 2k page number, and the second is the index into |
| 649 | * the page. The index is in terms of 16-bit half-words and includes |
| 650 | * the preceeding oob data, so e.g., the index into the second |
| 651 | * "sub-page" is 0x108, and the full device address of the start of mtd |
| 652 | * page 0x201 is 0x00800108. |
| 653 | */ |
| 654 | int g4_page = page / 4; /* device's 2K page */ |
| 655 | int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ |
| 656 | return (g4_page << 16) | g4_index; /* pack */ |
| 657 | } |
| 658 | |
| 659 | static void docg4_command(struct mtd_info *mtd, unsigned command, int column, |
| 660 | int page_addr) |
| 661 | { |
| 662 | /* handle standard nand commands */ |
| 663 | |
| 664 | struct nand_chip *nand = mtd->priv; |
| 665 | struct docg4_priv *doc = nand->priv; |
| 666 | uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); |
| 667 | |
| 668 | dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n", |
| 669 | __func__, command, page_addr, column); |
| 670 | |
| 671 | /* |
| 672 | * Save the command and its arguments. This enables emulation of |
| 673 | * standard flash devices, and also some optimizations. |
| 674 | */ |
| 675 | doc->last_command.command = command; |
| 676 | doc->last_command.column = column; |
| 677 | doc->last_command.page = page_addr; |
| 678 | |
| 679 | switch (command) { |
| 680 | |
| 681 | case NAND_CMD_RESET: |
| 682 | reset(mtd); |
| 683 | break; |
| 684 | |
| 685 | case NAND_CMD_READ0: |
| 686 | read_page_prologue(mtd, g4_addr); |
| 687 | break; |
| 688 | |
| 689 | case NAND_CMD_STATUS: |
| 690 | /* next call to read_byte() will expect a status */ |
| 691 | break; |
| 692 | |
| 693 | case NAND_CMD_SEQIN: |
| 694 | write_page_prologue(mtd, g4_addr); |
| 695 | |
| 696 | /* hack for deferred write of oob bytes */ |
| 697 | if (doc->oob_page == page_addr) |
| 698 | memcpy(nand->oob_poi, doc->oob_buf, 16); |
| 699 | break; |
| 700 | |
| 701 | case NAND_CMD_PAGEPROG: |
| 702 | pageprog(mtd); |
| 703 | break; |
| 704 | |
| 705 | /* we don't expect these, based on review of nand_base.c */ |
| 706 | case NAND_CMD_READOOB: |
| 707 | case NAND_CMD_READID: |
| 708 | case NAND_CMD_ERASE1: |
| 709 | case NAND_CMD_ERASE2: |
| 710 | dev_warn(doc->dev, "docg4_command: " |
| 711 | "unexpected nand command 0x%x\n", command); |
| 712 | break; |
| 713 | |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | static int read_page(struct mtd_info *mtd, struct nand_chip *nand, |
| 718 | uint8_t *buf, int page, bool use_ecc) |
| 719 | { |
| 720 | struct docg4_priv *doc = nand->priv; |
| 721 | void __iomem *docptr = doc->virtadr; |
| 722 | uint16_t status, edc_err, *buf16; |
Mike Dunn | 3f91e94 | 2012-04-25 12:06:09 -0700 | [diff] [blame] | 723 | int bits_corrected = 0; |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 724 | |
| 725 | dev_dbg(doc->dev, "%s: page %08x\n", __func__, page); |
| 726 | |
| 727 | writew(DOC_ECCCONF0_READ_MODE | |
| 728 | DOC_ECCCONF0_ECC_ENABLE | |
| 729 | DOC_ECCCONF0_UNKNOWN | |
| 730 | DOCG4_BCH_SIZE, |
| 731 | docptr + DOC_ECCCONF0); |
| 732 | write_nop(docptr); |
| 733 | write_nop(docptr); |
| 734 | write_nop(docptr); |
| 735 | write_nop(docptr); |
| 736 | write_nop(docptr); |
| 737 | |
| 738 | /* the 1st byte from the I/O reg is a status; the rest is page data */ |
| 739 | status = readw(docptr + DOC_IOSPACE_DATA); |
| 740 | if (status & DOCG4_READ_ERROR) { |
| 741 | dev_err(doc->dev, |
| 742 | "docg4_read_page: bad status: 0x%02x\n", status); |
| 743 | writew(0, docptr + DOC_DATAEND); |
| 744 | return -EIO; |
| 745 | } |
| 746 | |
| 747 | dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); |
| 748 | |
| 749 | docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ |
| 750 | |
| 751 | /* |
| 752 | * Diskonchips read oob immediately after a page read. Mtd |
| 753 | * infrastructure issues a separate command for reading oob after the |
| 754 | * page is read. So we save the oob bytes in a local buffer and just |
| 755 | * copy it if the next command reads oob from the same page. |
| 756 | */ |
| 757 | |
| 758 | /* first 14 oob bytes read from I/O reg */ |
| 759 | docg4_read_buf(mtd, doc->oob_buf, 14); |
| 760 | |
| 761 | /* last 2 read from another reg */ |
| 762 | buf16 = (uint16_t *)(doc->oob_buf + 14); |
| 763 | *buf16 = readw(docptr + DOCG4_MYSTERY_REG); |
| 764 | |
| 765 | write_nop(docptr); |
| 766 | |
| 767 | if (likely(use_ecc == true)) { |
| 768 | |
| 769 | /* read the register that tells us if bitflip(s) detected */ |
| 770 | edc_err = readw(docptr + DOC_ECCCONF1); |
| 771 | edc_err = readw(docptr + DOC_ECCCONF1); |
| 772 | dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err); |
| 773 | |
| 774 | /* If bitflips are reported, attempt to correct with ecc */ |
| 775 | if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { |
Mike Dunn | 3f91e94 | 2012-04-25 12:06:09 -0700 | [diff] [blame] | 776 | bits_corrected = correct_data(mtd, buf, page); |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 777 | if (bits_corrected == -EBADMSG) |
| 778 | mtd->ecc_stats.failed++; |
| 779 | else |
| 780 | mtd->ecc_stats.corrected += bits_corrected; |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | writew(0, docptr + DOC_DATAEND); |
Mike Dunn | 3f91e94 | 2012-04-25 12:06:09 -0700 | [diff] [blame] | 785 | return bits_corrected; |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 786 | } |
| 787 | |
| 788 | |
| 789 | static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 790 | uint8_t *buf, int oob_required, int page) |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 791 | { |
| 792 | return read_page(mtd, nand, buf, page, false); |
| 793 | } |
| 794 | |
| 795 | static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 796 | uint8_t *buf, int oob_required, int page) |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 797 | { |
| 798 | return read_page(mtd, nand, buf, page, true); |
| 799 | } |
| 800 | |
| 801 | static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, |
Shmulik Ladkani | 5c2ffb1 | 2012-05-09 13:06:35 +0300 | [diff] [blame] | 802 | int page) |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 803 | { |
| 804 | struct docg4_priv *doc = nand->priv; |
| 805 | void __iomem *docptr = doc->virtadr; |
| 806 | uint16_t status; |
| 807 | |
| 808 | dev_dbg(doc->dev, "%s: page %x\n", __func__, page); |
| 809 | |
| 810 | /* |
| 811 | * Oob bytes are read as part of a normal page read. If the previous |
| 812 | * nand command was a read of the page whose oob is now being read, just |
| 813 | * copy the oob bytes that we saved in a local buffer and avoid a |
| 814 | * separate oob read. |
| 815 | */ |
| 816 | if (doc->last_command.command == NAND_CMD_READ0 && |
| 817 | doc->last_command.page == page) { |
| 818 | memcpy(nand->oob_poi, doc->oob_buf, 16); |
| 819 | return 0; |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * Separate read of oob data only. |
| 824 | */ |
| 825 | docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); |
| 826 | |
| 827 | writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); |
| 828 | write_nop(docptr); |
| 829 | write_nop(docptr); |
| 830 | write_nop(docptr); |
| 831 | write_nop(docptr); |
| 832 | write_nop(docptr); |
| 833 | |
| 834 | /* the 1st byte from the I/O reg is a status; the rest is oob data */ |
| 835 | status = readw(docptr + DOC_IOSPACE_DATA); |
| 836 | if (status & DOCG4_READ_ERROR) { |
| 837 | dev_warn(doc->dev, |
| 838 | "docg4_read_oob failed: status = 0x%02x\n", status); |
| 839 | return -EIO; |
| 840 | } |
| 841 | |
| 842 | dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); |
| 843 | |
| 844 | docg4_read_buf(mtd, nand->oob_poi, 16); |
| 845 | |
| 846 | write_nop(docptr); |
| 847 | write_nop(docptr); |
| 848 | write_nop(docptr); |
| 849 | writew(0, docptr + DOC_DATAEND); |
| 850 | write_nop(docptr); |
| 851 | |
| 852 | return 0; |
| 853 | } |
| 854 | |
| 855 | static void docg4_erase_block(struct mtd_info *mtd, int page) |
| 856 | { |
| 857 | struct nand_chip *nand = mtd->priv; |
| 858 | struct docg4_priv *doc = nand->priv; |
| 859 | void __iomem *docptr = doc->virtadr; |
| 860 | uint16_t g4_page; |
| 861 | |
| 862 | dev_dbg(doc->dev, "%s: page %04x\n", __func__, page); |
| 863 | |
| 864 | sequence_reset(mtd); |
| 865 | |
| 866 | writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); |
| 867 | writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); |
| 868 | write_nop(docptr); |
| 869 | |
| 870 | /* only 2 bytes of address are written to specify erase block */ |
| 871 | g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */ |
| 872 | writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); |
| 873 | g4_page >>= 8; |
| 874 | writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); |
| 875 | write_nop(docptr); |
| 876 | |
| 877 | /* start the erasure */ |
| 878 | writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); |
| 879 | write_nop(docptr); |
| 880 | write_nop(docptr); |
| 881 | |
| 882 | usleep_range(500, 1000); /* erasure is long; take a snooze */ |
| 883 | poll_status(doc); |
| 884 | writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); |
| 885 | writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); |
| 886 | writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); |
| 887 | write_nop(docptr); |
| 888 | write_nop(docptr); |
| 889 | write_nop(docptr); |
| 890 | write_nop(docptr); |
| 891 | write_nop(docptr); |
| 892 | |
| 893 | read_progstatus(doc); |
| 894 | |
| 895 | writew(0, docptr + DOC_DATAEND); |
| 896 | write_nop(docptr); |
| 897 | poll_status(doc); |
| 898 | write_nop(docptr); |
| 899 | } |
| 900 | |
| 901 | static void write_page(struct mtd_info *mtd, struct nand_chip *nand, |
| 902 | const uint8_t *buf, bool use_ecc) |
| 903 | { |
| 904 | struct docg4_priv *doc = nand->priv; |
| 905 | void __iomem *docptr = doc->virtadr; |
| 906 | uint8_t ecc_buf[8]; |
| 907 | |
| 908 | dev_dbg(doc->dev, "%s...\n", __func__); |
| 909 | |
| 910 | writew(DOC_ECCCONF0_ECC_ENABLE | |
| 911 | DOC_ECCCONF0_UNKNOWN | |
| 912 | DOCG4_BCH_SIZE, |
| 913 | docptr + DOC_ECCCONF0); |
| 914 | write_nop(docptr); |
| 915 | |
| 916 | /* write the page data */ |
| 917 | docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); |
| 918 | |
| 919 | /* oob bytes 0 through 5 are written to I/O reg */ |
| 920 | docg4_write_buf16(mtd, nand->oob_poi, 6); |
| 921 | |
| 922 | /* oob byte 6 written to a separate reg */ |
| 923 | writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); |
| 924 | |
| 925 | write_nop(docptr); |
| 926 | write_nop(docptr); |
| 927 | |
| 928 | /* write hw-generated ecc bytes to oob */ |
| 929 | if (likely(use_ecc == true)) { |
| 930 | /* oob byte 7 is hamming code */ |
| 931 | uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); |
| 932 | hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ |
| 933 | writew(hamming, docptr + DOCG4_OOB_6_7); |
| 934 | write_nop(docptr); |
| 935 | |
| 936 | /* read the 7 bch bytes from ecc regs */ |
| 937 | read_hw_ecc(docptr, ecc_buf); |
| 938 | ecc_buf[7] = 0; /* clear the "page written" flag */ |
| 939 | } |
| 940 | |
| 941 | /* write user-supplied bytes to oob */ |
| 942 | else { |
| 943 | writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); |
| 944 | write_nop(docptr); |
| 945 | memcpy(ecc_buf, &nand->oob_poi[8], 8); |
| 946 | } |
| 947 | |
| 948 | docg4_write_buf16(mtd, ecc_buf, 8); |
| 949 | write_nop(docptr); |
| 950 | write_nop(docptr); |
| 951 | writew(0, docptr + DOC_DATAEND); |
| 952 | write_nop(docptr); |
| 953 | } |
| 954 | |
| 955 | static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 956 | const uint8_t *buf, int oob_required) |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 957 | { |
| 958 | return write_page(mtd, nand, buf, false); |
| 959 | } |
| 960 | |
| 961 | static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 962 | const uint8_t *buf, int oob_required) |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 963 | { |
| 964 | return write_page(mtd, nand, buf, true); |
| 965 | } |
| 966 | |
| 967 | static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, |
| 968 | int page) |
| 969 | { |
| 970 | /* |
| 971 | * Writing oob-only is not really supported, because MLC nand must write |
| 972 | * oob bytes at the same time as page data. Nonetheless, we save the |
| 973 | * oob buffer contents here, and then write it along with the page data |
| 974 | * if the same page is subsequently written. This allows user space |
| 975 | * utilities that write the oob data prior to the page data to work |
| 976 | * (e.g., nandwrite). The disdvantage is that, if the intention was to |
| 977 | * write oob only, the operation is quietly ignored. Also, oob can get |
| 978 | * corrupted if two concurrent processes are running nandwrite. |
| 979 | */ |
| 980 | |
| 981 | /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ |
| 982 | struct docg4_priv *doc = nand->priv; |
| 983 | doc->oob_page = page; |
| 984 | memcpy(doc->oob_buf, nand->oob_poi, 16); |
| 985 | return 0; |
| 986 | } |
| 987 | |
| 988 | static int __init read_factory_bbt(struct mtd_info *mtd) |
| 989 | { |
| 990 | /* |
| 991 | * The device contains a read-only factory bad block table. Read it and |
| 992 | * update the memory-based bbt accordingly. |
| 993 | */ |
| 994 | |
| 995 | struct nand_chip *nand = mtd->priv; |
| 996 | struct docg4_priv *doc = nand->priv; |
| 997 | uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); |
| 998 | uint8_t *buf; |
| 999 | int i, block, status; |
| 1000 | |
| 1001 | buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); |
| 1002 | if (buf == NULL) |
| 1003 | return -ENOMEM; |
| 1004 | |
| 1005 | read_page_prologue(mtd, g4_addr); |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 1006 | status = docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE); |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 1007 | if (status) |
| 1008 | goto exit; |
| 1009 | |
| 1010 | /* |
| 1011 | * If no memory-based bbt was created, exit. This will happen if module |
| 1012 | * parameter ignore_badblocks is set. Then why even call this function? |
| 1013 | * For an unknown reason, block erase always fails if it's the first |
| 1014 | * operation after device power-up. The above read ensures it never is. |
| 1015 | * Ugly, I know. |
| 1016 | */ |
| 1017 | if (nand->bbt == NULL) /* no memory-based bbt */ |
| 1018 | goto exit; |
| 1019 | |
| 1020 | /* |
| 1021 | * Parse factory bbt and update memory-based bbt. Factory bbt format is |
| 1022 | * simple: one bit per block, block numbers increase left to right (msb |
| 1023 | * to lsb). Bit clear means bad block. |
| 1024 | */ |
| 1025 | for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { |
| 1026 | int bitnum; |
| 1027 | unsigned long bits = ~buf[i]; |
| 1028 | for_each_set_bit(bitnum, &bits, 8) { |
| 1029 | int badblock = block + 7 - bitnum; |
| 1030 | nand->bbt[badblock / 4] |= |
| 1031 | 0x03 << ((badblock % 4) * 2); |
| 1032 | mtd->ecc_stats.badblocks++; |
| 1033 | dev_notice(doc->dev, "factory-marked bad block: %d\n", |
| 1034 | badblock); |
| 1035 | } |
| 1036 | } |
| 1037 | exit: |
| 1038 | kfree(buf); |
| 1039 | return status; |
| 1040 | } |
| 1041 | |
| 1042 | static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| 1043 | { |
| 1044 | /* |
| 1045 | * Mark a block as bad. Bad blocks are marked in the oob area of the |
| 1046 | * first page of the block. The default scan_bbt() in the nand |
| 1047 | * infrastructure code works fine for building the memory-based bbt |
| 1048 | * during initialization, as does the nand infrastructure function that |
| 1049 | * checks if a block is bad by reading the bbt. This function replaces |
| 1050 | * the nand default because writes to oob-only are not supported. |
| 1051 | */ |
| 1052 | |
| 1053 | int ret, i; |
| 1054 | uint8_t *buf; |
| 1055 | struct nand_chip *nand = mtd->priv; |
| 1056 | struct docg4_priv *doc = nand->priv; |
| 1057 | struct nand_bbt_descr *bbtd = nand->badblock_pattern; |
| 1058 | int block = (int)(ofs >> nand->bbt_erase_shift); |
| 1059 | int page = (int)(ofs >> nand->page_shift); |
| 1060 | uint32_t g4_addr = mtd_to_docg4_address(page, 0); |
| 1061 | |
| 1062 | dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs); |
| 1063 | |
| 1064 | if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) |
| 1065 | dev_warn(doc->dev, "%s: ofs %llx not start of block!\n", |
| 1066 | __func__, ofs); |
| 1067 | |
| 1068 | /* allocate blank buffer for page data */ |
| 1069 | buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); |
| 1070 | if (buf == NULL) |
| 1071 | return -ENOMEM; |
| 1072 | |
| 1073 | /* update bbt in memory */ |
| 1074 | nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2); |
| 1075 | |
| 1076 | /* write bit-wise negation of pattern to oob buffer */ |
| 1077 | memset(nand->oob_poi, 0xff, mtd->oobsize); |
| 1078 | for (i = 0; i < bbtd->len; i++) |
| 1079 | nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; |
| 1080 | |
| 1081 | /* write first page of block */ |
| 1082 | write_page_prologue(mtd, g4_addr); |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 1083 | docg4_write_page(mtd, nand, buf, 1); |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 1084 | ret = pageprog(mtd); |
| 1085 | if (!ret) |
| 1086 | mtd->ecc_stats.badblocks++; |
| 1087 | |
| 1088 | kfree(buf); |
| 1089 | |
| 1090 | return ret; |
| 1091 | } |
| 1092 | |
| 1093 | static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip) |
| 1094 | { |
| 1095 | /* only called when module_param ignore_badblocks is set */ |
| 1096 | return 0; |
| 1097 | } |
| 1098 | |
| 1099 | static int docg4_suspend(struct platform_device *pdev, pm_message_t state) |
| 1100 | { |
| 1101 | /* |
| 1102 | * Put the device into "deep power-down" mode. Note that CE# must be |
| 1103 | * deasserted for this to take effect. The xscale, e.g., can be |
| 1104 | * configured to float this signal when the processor enters power-down, |
| 1105 | * and a suitable pull-up ensures its deassertion. |
| 1106 | */ |
| 1107 | |
| 1108 | int i; |
| 1109 | uint8_t pwr_down; |
| 1110 | struct docg4_priv *doc = platform_get_drvdata(pdev); |
| 1111 | void __iomem *docptr = doc->virtadr; |
| 1112 | |
| 1113 | dev_dbg(doc->dev, "%s...\n", __func__); |
| 1114 | |
| 1115 | /* poll the register that tells us we're ready to go to sleep */ |
| 1116 | for (i = 0; i < 10; i++) { |
| 1117 | pwr_down = readb(docptr + DOC_POWERMODE); |
| 1118 | if (pwr_down & DOC_POWERDOWN_READY) |
| 1119 | break; |
| 1120 | usleep_range(1000, 4000); |
| 1121 | } |
| 1122 | |
| 1123 | if (pwr_down & DOC_POWERDOWN_READY) { |
| 1124 | dev_err(doc->dev, "suspend failed; " |
| 1125 | "timeout polling DOC_POWERDOWN_READY\n"); |
| 1126 | return -EIO; |
| 1127 | } |
| 1128 | |
| 1129 | writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN, |
| 1130 | docptr + DOC_ASICMODE); |
| 1131 | writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN), |
| 1132 | docptr + DOC_ASICMODECONFIRM); |
| 1133 | |
| 1134 | write_nop(docptr); |
| 1135 | |
| 1136 | return 0; |
| 1137 | } |
| 1138 | |
| 1139 | static int docg4_resume(struct platform_device *pdev) |
| 1140 | { |
| 1141 | |
| 1142 | /* |
| 1143 | * Exit power-down. Twelve consecutive reads of the address below |
| 1144 | * accomplishes this, assuming CE# has been asserted. |
| 1145 | */ |
| 1146 | |
| 1147 | struct docg4_priv *doc = platform_get_drvdata(pdev); |
| 1148 | void __iomem *docptr = doc->virtadr; |
| 1149 | int i; |
| 1150 | |
| 1151 | dev_dbg(doc->dev, "%s...\n", __func__); |
| 1152 | |
| 1153 | for (i = 0; i < 12; i++) |
| 1154 | readb(docptr + 0x1fff); |
| 1155 | |
| 1156 | return 0; |
| 1157 | } |
| 1158 | |
| 1159 | static void __init init_mtd_structs(struct mtd_info *mtd) |
| 1160 | { |
| 1161 | /* initialize mtd and nand data structures */ |
| 1162 | |
| 1163 | /* |
| 1164 | * Note that some of the following initializations are not usually |
| 1165 | * required within a nand driver because they are performed by the nand |
| 1166 | * infrastructure code as part of nand_scan(). In this case they need |
| 1167 | * to be initialized here because we skip call to nand_scan_ident() (the |
| 1168 | * first half of nand_scan()). The call to nand_scan_ident() is skipped |
| 1169 | * because for this device the chip id is not read in the manner of a |
| 1170 | * standard nand device. Unfortunately, nand_scan_ident() does other |
| 1171 | * things as well, such as call nand_set_defaults(). |
| 1172 | */ |
| 1173 | |
| 1174 | struct nand_chip *nand = mtd->priv; |
| 1175 | struct docg4_priv *doc = nand->priv; |
| 1176 | |
| 1177 | mtd->size = DOCG4_CHIP_SIZE; |
| 1178 | mtd->name = "Msys_Diskonchip_G4"; |
| 1179 | mtd->writesize = DOCG4_PAGE_SIZE; |
| 1180 | mtd->erasesize = DOCG4_BLOCK_SIZE; |
| 1181 | mtd->oobsize = DOCG4_OOB_SIZE; |
| 1182 | nand->chipsize = DOCG4_CHIP_SIZE; |
| 1183 | nand->chip_shift = DOCG4_CHIP_SHIFT; |
| 1184 | nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT; |
| 1185 | nand->chip_delay = 20; |
| 1186 | nand->page_shift = DOCG4_PAGE_SHIFT; |
| 1187 | nand->pagemask = 0x3ffff; |
| 1188 | nand->badblockpos = NAND_LARGE_BADBLOCK_POS; |
| 1189 | nand->badblockbits = 8; |
| 1190 | nand->ecc.layout = &docg4_oobinfo; |
| 1191 | nand->ecc.mode = NAND_ECC_HW_SYNDROME; |
| 1192 | nand->ecc.size = DOCG4_PAGE_SIZE; |
| 1193 | nand->ecc.prepad = 8; |
| 1194 | nand->ecc.bytes = 8; |
Mike Dunn | 6a918ba | 2012-03-11 14:21:11 -0700 | [diff] [blame] | 1195 | nand->ecc.strength = DOCG4_T; |
Brian Norris | 1826dbc | 2012-05-01 17:12:55 -0700 | [diff] [blame] | 1196 | nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE; |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 1197 | nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA; |
| 1198 | nand->controller = &nand->hwcontrol; |
| 1199 | spin_lock_init(&nand->controller->lock); |
| 1200 | init_waitqueue_head(&nand->controller->wq); |
| 1201 | |
| 1202 | /* methods */ |
| 1203 | nand->cmdfunc = docg4_command; |
| 1204 | nand->waitfunc = docg4_wait; |
| 1205 | nand->select_chip = docg4_select_chip; |
| 1206 | nand->read_byte = docg4_read_byte; |
| 1207 | nand->block_markbad = docg4_block_markbad; |
| 1208 | nand->read_buf = docg4_read_buf; |
| 1209 | nand->write_buf = docg4_write_buf16; |
| 1210 | nand->scan_bbt = nand_default_bbt; |
| 1211 | nand->erase_cmd = docg4_erase_block; |
| 1212 | nand->ecc.read_page = docg4_read_page; |
| 1213 | nand->ecc.write_page = docg4_write_page; |
| 1214 | nand->ecc.read_page_raw = docg4_read_page_raw; |
| 1215 | nand->ecc.write_page_raw = docg4_write_page_raw; |
| 1216 | nand->ecc.read_oob = docg4_read_oob; |
| 1217 | nand->ecc.write_oob = docg4_write_oob; |
| 1218 | |
| 1219 | /* |
| 1220 | * The way the nand infrastructure code is written, a memory-based bbt |
| 1221 | * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt, |
| 1222 | * nand->block_bad() is used. So when ignoring bad blocks, we skip the |
| 1223 | * scan and define a dummy block_bad() which always returns 0. |
| 1224 | */ |
| 1225 | if (ignore_badblocks) { |
| 1226 | nand->options |= NAND_SKIP_BBTSCAN; |
| 1227 | nand->block_bad = docg4_block_neverbad; |
| 1228 | } |
| 1229 | |
| 1230 | } |
| 1231 | |
| 1232 | static int __init read_id_reg(struct mtd_info *mtd) |
| 1233 | { |
| 1234 | struct nand_chip *nand = mtd->priv; |
| 1235 | struct docg4_priv *doc = nand->priv; |
| 1236 | void __iomem *docptr = doc->virtadr; |
| 1237 | uint16_t id1, id2; |
| 1238 | |
| 1239 | /* check for presence of g4 chip by reading id registers */ |
| 1240 | id1 = readw(docptr + DOC_CHIPID); |
| 1241 | id1 = readw(docptr + DOCG4_MYSTERY_REG); |
| 1242 | id2 = readw(docptr + DOC_CHIPID_INV); |
| 1243 | id2 = readw(docptr + DOCG4_MYSTERY_REG); |
| 1244 | |
| 1245 | if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) { |
| 1246 | dev_info(doc->dev, |
| 1247 | "NAND device: 128MiB Diskonchip G4 detected\n"); |
| 1248 | return 0; |
| 1249 | } |
| 1250 | |
| 1251 | return -ENODEV; |
| 1252 | } |
| 1253 | |
| 1254 | static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; |
| 1255 | |
| 1256 | static int __init probe_docg4(struct platform_device *pdev) |
| 1257 | { |
| 1258 | struct mtd_info *mtd; |
| 1259 | struct nand_chip *nand; |
| 1260 | void __iomem *virtadr; |
| 1261 | struct docg4_priv *doc; |
| 1262 | int len, retval; |
| 1263 | struct resource *r; |
| 1264 | struct device *dev = &pdev->dev; |
| 1265 | |
| 1266 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1267 | if (r == NULL) { |
| 1268 | dev_err(dev, "no io memory resource defined!\n"); |
| 1269 | return -ENODEV; |
| 1270 | } |
| 1271 | |
| 1272 | virtadr = ioremap(r->start, resource_size(r)); |
| 1273 | if (!virtadr) { |
Dan Carpenter | 2c4ae27 | 2012-01-31 11:54:06 +0300 | [diff] [blame] | 1274 | dev_err(dev, "Diskonchip ioremap failed: %pR\n", r); |
Mike Dunn | 570469f | 2012-01-03 16:05:44 -0800 | [diff] [blame] | 1275 | return -EIO; |
| 1276 | } |
| 1277 | |
| 1278 | len = sizeof(struct mtd_info) + sizeof(struct nand_chip) + |
| 1279 | sizeof(struct docg4_priv); |
| 1280 | mtd = kzalloc(len, GFP_KERNEL); |
| 1281 | if (mtd == NULL) { |
| 1282 | retval = -ENOMEM; |
| 1283 | goto fail; |
| 1284 | } |
| 1285 | nand = (struct nand_chip *) (mtd + 1); |
| 1286 | doc = (struct docg4_priv *) (nand + 1); |
| 1287 | mtd->priv = nand; |
| 1288 | nand->priv = doc; |
| 1289 | mtd->owner = THIS_MODULE; |
| 1290 | doc->virtadr = virtadr; |
| 1291 | doc->dev = dev; |
| 1292 | |
| 1293 | init_mtd_structs(mtd); |
| 1294 | |
| 1295 | /* initialize kernel bch algorithm */ |
| 1296 | doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); |
| 1297 | if (doc->bch == NULL) { |
| 1298 | retval = -EINVAL; |
| 1299 | goto fail; |
| 1300 | } |
| 1301 | |
| 1302 | platform_set_drvdata(pdev, doc); |
| 1303 | |
| 1304 | reset(mtd); |
| 1305 | retval = read_id_reg(mtd); |
| 1306 | if (retval == -ENODEV) { |
| 1307 | dev_warn(dev, "No diskonchip G4 device found.\n"); |
| 1308 | goto fail; |
| 1309 | } |
| 1310 | |
| 1311 | retval = nand_scan_tail(mtd); |
| 1312 | if (retval) |
| 1313 | goto fail; |
| 1314 | |
| 1315 | retval = read_factory_bbt(mtd); |
| 1316 | if (retval) |
| 1317 | goto fail; |
| 1318 | |
| 1319 | retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); |
| 1320 | if (retval) |
| 1321 | goto fail; |
| 1322 | |
| 1323 | doc->mtd = mtd; |
| 1324 | return 0; |
| 1325 | |
| 1326 | fail: |
| 1327 | iounmap(virtadr); |
| 1328 | if (mtd) { |
| 1329 | /* re-declarations avoid compiler warning */ |
| 1330 | struct nand_chip *nand = mtd->priv; |
| 1331 | struct docg4_priv *doc = nand->priv; |
| 1332 | nand_release(mtd); /* deletes partitions and mtd devices */ |
| 1333 | platform_set_drvdata(pdev, NULL); |
| 1334 | free_bch(doc->bch); |
| 1335 | kfree(mtd); |
| 1336 | } |
| 1337 | |
| 1338 | return retval; |
| 1339 | } |
| 1340 | |
| 1341 | static int __exit cleanup_docg4(struct platform_device *pdev) |
| 1342 | { |
| 1343 | struct docg4_priv *doc = platform_get_drvdata(pdev); |
| 1344 | nand_release(doc->mtd); |
| 1345 | platform_set_drvdata(pdev, NULL); |
| 1346 | free_bch(doc->bch); |
| 1347 | kfree(doc->mtd); |
| 1348 | iounmap(doc->virtadr); |
| 1349 | return 0; |
| 1350 | } |
| 1351 | |
| 1352 | static struct platform_driver docg4_driver = { |
| 1353 | .driver = { |
| 1354 | .name = "docg4", |
| 1355 | .owner = THIS_MODULE, |
| 1356 | }, |
| 1357 | .suspend = docg4_suspend, |
| 1358 | .resume = docg4_resume, |
| 1359 | .remove = __exit_p(cleanup_docg4), |
| 1360 | }; |
| 1361 | |
| 1362 | static int __init docg4_init(void) |
| 1363 | { |
| 1364 | return platform_driver_probe(&docg4_driver, probe_docg4); |
| 1365 | } |
| 1366 | |
| 1367 | static void __exit docg4_exit(void) |
| 1368 | { |
| 1369 | platform_driver_unregister(&docg4_driver); |
| 1370 | } |
| 1371 | |
| 1372 | module_init(docg4_init); |
| 1373 | module_exit(docg4_exit); |
| 1374 | |
| 1375 | MODULE_LICENSE("GPL"); |
| 1376 | MODULE_AUTHOR("Mike Dunn"); |
| 1377 | MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver"); |