blob: 2ce0c8251dc3d41dd70eb9cd3d642e5b06546f02 [file] [log] [blame]
Frank Mandarinodb2a4162006-10-06 18:31:09 +02001/*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Author: Liam Girdwood
6 * liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * Revision history
14 * 12th Aug 2005 Initial version.
15 * 25th Oct 2005 Working Codec, Interface and Platform registration.
16 *
17 * TODO:
18 * o Add hw rules to enforce rates, etc.
19 * o More testing with other codecs/machines.
20 * o Add more codecs and platforms to ensure good API coverage.
21 * o Support TDM on PCM and I2S
22 */
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/init.h>
27#include <linux/delay.h>
28#include <linux/pm.h>
29#include <linux/bitops.h>
30#include <linux/platform_device.h>
31#include <sound/driver.h>
32#include <sound/core.h>
33#include <sound/pcm.h>
34#include <sound/pcm_params.h>
35#include <sound/soc.h>
36#include <sound/soc-dapm.h>
37#include <sound/initval.h>
38
39/* debug */
40#define SOC_DEBUG 0
41#if SOC_DEBUG
42#define dbg(format, arg...) printk(format, ## arg)
43#else
44#define dbg(format, arg...)
45#endif
46/* debug DAI capabilities matching */
47#define SOC_DEBUG_DAI 0
48#if SOC_DEBUG_DAI
49#define dbgc(format, arg...) printk(format, ## arg)
50#else
51#define dbgc(format, arg...)
52#endif
53
54static DEFINE_MUTEX(pcm_mutex);
55static DEFINE_MUTEX(io_mutex);
56static struct workqueue_struct *soc_workq;
57static struct work_struct soc_stream_work;
58static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
59
60/* supported sample rates */
61/* ATTENTION: these values depend on the definition in pcm.h! */
62static const unsigned int rates[] = {
63 5512, 8000, 11025, 16000, 22050, 32000, 44100,
64 48000, 64000, 88200, 96000, 176400, 192000
65};
66
67/*
68 * This is a timeout to do a DAPM powerdown after a stream is closed().
69 * It can be used to eliminate pops between different playback streams, e.g.
70 * between two audio tracks.
71 */
72static int pmdown_time = 5000;
73module_param(pmdown_time, int, 0);
74MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
75
76#ifdef CONFIG_SND_SOC_AC97_BUS
77/* unregister ac97 codec */
78static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
79{
80 if (codec->ac97->dev.bus)
81 device_unregister(&codec->ac97->dev);
82 return 0;
83}
84
85/* stop no dev release warning */
86static void soc_ac97_device_release(struct device *dev){}
87
88/* register ac97 codec to bus */
89static int soc_ac97_dev_register(struct snd_soc_codec *codec)
90{
91 int err;
92
93 codec->ac97->dev.bus = &ac97_bus_type;
94 codec->ac97->dev.parent = NULL;
95 codec->ac97->dev.release = soc_ac97_device_release;
96
97 snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
98 codec->card->number, 0, codec->name);
99 err = device_register(&codec->ac97->dev);
100 if (err < 0) {
101 snd_printk(KERN_ERR "Can't register ac97 bus\n");
102 codec->ac97->dev.bus = NULL;
103 return err;
104 }
105 return 0;
106}
107#endif
108
109static inline const char* get_dai_name(int type)
110{
111 switch(type) {
112 case SND_SOC_DAI_AC97:
113 return "AC97";
114 case SND_SOC_DAI_I2S:
115 return "I2S";
116 case SND_SOC_DAI_PCM:
117 return "PCM";
118 }
119 return NULL;
120}
121
122/* get rate format from rate */
123static inline int soc_get_rate_format(int rate)
124{
125 int i;
126
127 for (i = 0; i < ARRAY_SIZE(rates); i++) {
128 if (rates[i] == rate)
129 return 1 << i;
130 }
131 return 0;
132}
133
134/* gets the audio system mclk/sysclk for the given parameters */
135static unsigned inline int soc_get_mclk(struct snd_soc_pcm_runtime *rtd,
136 struct snd_soc_clock_info *info)
137{
138 struct snd_soc_device *socdev = rtd->socdev;
139 struct snd_soc_machine *machine = socdev->machine;
140 int i;
141
142 /* find the matching machine config and get it's mclk for the given
143 * sample rate and hardware format */
144 for(i = 0; i < machine->num_links; i++) {
145 if (machine->dai_link[i].cpu_dai == rtd->cpu_dai &&
146 machine->dai_link[i].config_sysclk)
147 return machine->dai_link[i].config_sysclk(rtd, info);
148 }
149 return 0;
150}
151
152/* changes a bitclk multiplier mask to a divider mask */
153static u16 soc_bfs_mult_to_div(u16 bfs, int rate, unsigned int mclk,
154 unsigned int pcmfmt, unsigned int chn)
155{
156 int i, j;
157 u16 bfs_ = 0;
158 int size = snd_pcm_format_physical_width(pcmfmt), min = 0;
159
160 if (size <= 0)
161 return 0;
162
163 /* the minimum bit clock that has enough bandwidth */
164 min = size * rate * chn;
165 dbgc("mult --> div min bclk %d with mclk %d\n", min, mclk);
166
167 for (i = 0; i < 16; i++) {
168 if ((bfs >> i) & 0x1) {
169 j = rate * SND_SOC_FSB_REAL(1<<i);
170
171 if (j >= min) {
172 bfs_ |= SND_SOC_FSBD(mclk/j);
173 dbgc("mult --> div support mult %d\n",
174 SND_SOC_FSB_REAL(1<<i));
175 }
176 }
177 }
178
179 return bfs_;
180}
181
182/* changes a bitclk divider mask to a multiplier mask */
183static u16 soc_bfs_div_to_mult(u16 bfs, int rate, unsigned int mclk,
184 unsigned int pcmfmt, unsigned int chn)
185{
186 int i, j;
187 u16 bfs_ = 0;
188
189 int size = snd_pcm_format_physical_width(pcmfmt), min = 0;
190
191 if (size <= 0)
192 return 0;
193
194 /* the minimum bit clock that has enough bandwidth */
195 min = size * rate * chn;
196 dbgc("div to mult min bclk %d with mclk %d\n", min, mclk);
197
198 for (i = 0; i < 16; i++) {
199 if ((bfs >> i) & 0x1) {
200 j = mclk / (SND_SOC_FSBD_REAL(1<<i));
201 if (j >= min) {
202 bfs_ |= SND_SOC_FSB(j/rate);
203 dbgc("div --> mult support div %d\n",
204 SND_SOC_FSBD_REAL(1<<i));
205 }
206 }
207 }
208
209 return bfs_;
210}
211
212/* Matches codec DAI and SoC CPU DAI hardware parameters */
213static int soc_hw_match_params(struct snd_pcm_substream *substream,
214 struct snd_pcm_hw_params *params)
215{
216 struct snd_soc_pcm_runtime *rtd = substream->private_data;
217 struct snd_soc_dai_mode *codec_dai_mode = NULL;
218 struct snd_soc_dai_mode *cpu_dai_mode = NULL;
219 struct snd_soc_clock_info clk_info;
220 unsigned int fs, mclk, codec_bfs, cpu_bfs, rate = params_rate(params),
221 chn, j, k, cpu_bclk, codec_bclk, pcmrate;
222 u16 fmt = 0;
223
224 dbg("asoc: match version %s\n", SND_SOC_VERSION);
225 clk_info.rate = rate;
226 pcmrate = soc_get_rate_format(rate);
227
228 /* try and find a match from the codec and cpu DAI capabilities */
229 for (j = 0; j < rtd->codec_dai->caps.num_modes; j++) {
230 for (k = 0; k < rtd->cpu_dai->caps.num_modes; k++) {
231 codec_dai_mode = &rtd->codec_dai->caps.mode[j];
232 cpu_dai_mode = &rtd->cpu_dai->caps.mode[k];
233
234 if (!(codec_dai_mode->pcmrate & cpu_dai_mode->pcmrate &
235 pcmrate)) {
236 dbgc("asoc: DAI[%d:%d] failed to match rate\n", j, k);
237 continue;
238 }
239
240 fmt = codec_dai_mode->fmt & cpu_dai_mode->fmt;
241 if (!(fmt & SND_SOC_DAIFMT_FORMAT_MASK)) {
242 dbgc("asoc: DAI[%d:%d] failed to match format\n", j, k);
243 continue;
244 }
245
246 if (!(fmt & SND_SOC_DAIFMT_CLOCK_MASK)) {
247 dbgc("asoc: DAI[%d:%d] failed to match clock masters\n",
248 j, k);
249 continue;
250 }
251
252 if (!(fmt & SND_SOC_DAIFMT_INV_MASK)) {
253 dbgc("asoc: DAI[%d:%d] failed to match invert\n", j, k);
254 continue;
255 }
256
257 if (!(codec_dai_mode->pcmfmt & cpu_dai_mode->pcmfmt)) {
258 dbgc("asoc: DAI[%d:%d] failed to match pcm format\n", j, k);
259 continue;
260 }
261
262 if (!(codec_dai_mode->pcmdir & cpu_dai_mode->pcmdir)) {
263 dbgc("asoc: DAI[%d:%d] failed to match direction\n", j, k);
264 continue;
265 }
266
267 /* todo - still need to add tdm selection */
268 rtd->cpu_dai->dai_runtime.fmt =
269 rtd->codec_dai->dai_runtime.fmt =
270 1 << (ffs(fmt & SND_SOC_DAIFMT_FORMAT_MASK) -1) |
271 1 << (ffs(fmt & SND_SOC_DAIFMT_CLOCK_MASK) - 1) |
272 1 << (ffs(fmt & SND_SOC_DAIFMT_INV_MASK) - 1);
273 clk_info.bclk_master =
274 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_CLOCK_MASK;
275
276 /* make sure the ratio between rate and master
277 * clock is acceptable*/
278 fs = (cpu_dai_mode->fs & codec_dai_mode->fs);
279 if (fs == 0) {
280 dbgc("asoc: DAI[%d:%d] failed to match FS\n", j, k);
281 continue;
282 }
283 clk_info.fs = rtd->cpu_dai->dai_runtime.fs =
284 rtd->codec_dai->dai_runtime.fs = fs;
285
286 /* calculate audio system clocking using slowest clocks possible*/
287 mclk = soc_get_mclk(rtd, &clk_info);
288 if (mclk == 0) {
289 dbgc("asoc: DAI[%d:%d] configuration not clockable\n", j, k);
290 dbgc("asoc: rate %d fs %d master %x\n", rate, fs,
291 clk_info.bclk_master);
292 continue;
293 }
294
295 /* calculate word size (per channel) and frame size */
296 rtd->codec_dai->dai_runtime.pcmfmt =
297 rtd->cpu_dai->dai_runtime.pcmfmt =
298 1 << params_format(params);
299
300 chn = params_channels(params);
301 /* i2s always has left and right */
302 if (params_channels(params) == 1 &&
303 rtd->cpu_dai->dai_runtime.fmt & (SND_SOC_DAIFMT_I2S |
304 SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_LEFT_J))
305 chn <<= 1;
306
307 /* Calculate bfs - the ratio between bitclock and the sample rate
308 * We must take into consideration the dividers and multipliers
309 * used in the codec and cpu DAI modes. We always choose the
310 * lowest possible clocks to reduce power.
311 */
312 if (codec_dai_mode->flags & cpu_dai_mode->flags &
313 SND_SOC_DAI_BFS_DIV) {
314 /* cpu & codec bfs dividers */
315 rtd->cpu_dai->dai_runtime.bfs =
316 rtd->codec_dai->dai_runtime.bfs =
317 1 << (fls(codec_dai_mode->bfs & cpu_dai_mode->bfs) - 1);
318 } else if (codec_dai_mode->flags & SND_SOC_DAI_BFS_DIV) {
319 /* normalise bfs codec divider & cpu mult */
320 codec_bfs = soc_bfs_div_to_mult(codec_dai_mode->bfs, rate,
321 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
322 rtd->cpu_dai->dai_runtime.bfs =
323 1 << (ffs(codec_bfs & cpu_dai_mode->bfs) - 1);
324 cpu_bfs = soc_bfs_mult_to_div(cpu_dai_mode->bfs, rate, mclk,
325 rtd->codec_dai->dai_runtime.pcmfmt, chn);
326 rtd->codec_dai->dai_runtime.bfs =
327 1 << (fls(codec_dai_mode->bfs & cpu_bfs) - 1);
328 } else if (cpu_dai_mode->flags & SND_SOC_DAI_BFS_DIV) {
329 /* normalise bfs codec mult & cpu divider */
330 codec_bfs = soc_bfs_mult_to_div(codec_dai_mode->bfs, rate,
331 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
332 rtd->cpu_dai->dai_runtime.bfs =
333 1 << (fls(codec_bfs & cpu_dai_mode->bfs) -1);
334 cpu_bfs = soc_bfs_div_to_mult(cpu_dai_mode->bfs, rate, mclk,
335 rtd->codec_dai->dai_runtime.pcmfmt, chn);
336 rtd->codec_dai->dai_runtime.bfs =
337 1 << (ffs(codec_dai_mode->bfs & cpu_bfs) -1);
338 } else {
339 /* codec & cpu bfs rate multipliers */
340 rtd->cpu_dai->dai_runtime.bfs =
341 rtd->codec_dai->dai_runtime.bfs =
342 1 << (ffs(codec_dai_mode->bfs & cpu_dai_mode->bfs) -1);
343 }
344
345 /* make sure the bit clock speed is acceptable */
346 if (!rtd->cpu_dai->dai_runtime.bfs ||
347 !rtd->codec_dai->dai_runtime.bfs) {
348 dbgc("asoc: DAI[%d:%d] failed to match BFS\n", j, k);
349 dbgc("asoc: cpu_dai %x codec %x\n",
350 rtd->cpu_dai->dai_runtime.bfs,
351 rtd->codec_dai->dai_runtime.bfs);
352 dbgc("asoc: mclk %d hwfmt %x\n", mclk, fmt);
353 continue;
354 }
355
356 goto found;
357 }
358 }
359 printk(KERN_ERR "asoc: no matching DAI found between codec and CPU\n");
360 return -EINVAL;
361
362found:
363 /* we have matching DAI's, so complete the runtime info */
364 rtd->codec_dai->dai_runtime.pcmrate =
365 rtd->cpu_dai->dai_runtime.pcmrate =
366 soc_get_rate_format(rate);
367
368 rtd->codec_dai->dai_runtime.priv = codec_dai_mode->priv;
369 rtd->cpu_dai->dai_runtime.priv = cpu_dai_mode->priv;
370 rtd->codec_dai->dai_runtime.flags = codec_dai_mode->flags;
371 rtd->cpu_dai->dai_runtime.flags = cpu_dai_mode->flags;
372
373 /* for debug atm */
374 dbg("asoc: DAI[%d:%d] Match OK\n", j, k);
375 if (rtd->codec_dai->dai_runtime.flags == SND_SOC_DAI_BFS_DIV) {
376 codec_bclk = (rtd->codec_dai->dai_runtime.fs * params_rate(params)) /
377 SND_SOC_FSBD_REAL(rtd->codec_dai->dai_runtime.bfs);
378 dbg("asoc: codec fs %d mclk %d bfs div %d bclk %d\n",
379 rtd->codec_dai->dai_runtime.fs, mclk,
380 SND_SOC_FSBD_REAL(rtd->codec_dai->dai_runtime.bfs), codec_bclk);
381 } else {
382 codec_bclk = params_rate(params) *
383 SND_SOC_FSB_REAL(rtd->codec_dai->dai_runtime.bfs);
384 dbg("asoc: codec fs %d mclk %d bfs mult %d bclk %d\n",
385 rtd->codec_dai->dai_runtime.fs, mclk,
386 SND_SOC_FSB_REAL(rtd->codec_dai->dai_runtime.bfs), codec_bclk);
387 }
388 if (rtd->cpu_dai->dai_runtime.flags == SND_SOC_DAI_BFS_DIV) {
389 cpu_bclk = (rtd->cpu_dai->dai_runtime.fs * params_rate(params)) /
390 SND_SOC_FSBD_REAL(rtd->cpu_dai->dai_runtime.bfs);
391 dbg("asoc: cpu fs %d mclk %d bfs div %d bclk %d\n",
392 rtd->cpu_dai->dai_runtime.fs, mclk,
393 SND_SOC_FSBD_REAL(rtd->cpu_dai->dai_runtime.bfs), cpu_bclk);
394 } else {
395 cpu_bclk = params_rate(params) *
396 SND_SOC_FSB_REAL(rtd->cpu_dai->dai_runtime.bfs);
397 dbg("asoc: cpu fs %d mclk %d bfs mult %d bclk %d\n",
398 rtd->cpu_dai->dai_runtime.fs, mclk,
399 SND_SOC_FSB_REAL(rtd->cpu_dai->dai_runtime.bfs), cpu_bclk);
400 }
401
402 /*
403 * Check we have matching bitclocks. If we don't then it means the
404 * sysclock returned by either the codec or cpu DAI (selected by the
405 * machine sysclock function) is wrong compared with the supported DAI
406 * modes for the codec or cpu DAI.
407 */
408 if (cpu_bclk != codec_bclk){
409 printk(KERN_ERR
410 "asoc: codec and cpu bitclocks differ, audio may be wrong speed\n"
411 );
412 printk(KERN_ERR "asoc: codec %d != cpu %d\n", codec_bclk, cpu_bclk);
413 }
414
415 switch(rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_CLOCK_MASK) {
416 case SND_SOC_DAIFMT_CBM_CFM:
417 dbg("asoc: DAI codec BCLK master, LRC master\n");
418 break;
419 case SND_SOC_DAIFMT_CBS_CFM:
420 dbg("asoc: DAI codec BCLK slave, LRC master\n");
421 break;
422 case SND_SOC_DAIFMT_CBM_CFS:
423 dbg("asoc: DAI codec BCLK master, LRC slave\n");
424 break;
425 case SND_SOC_DAIFMT_CBS_CFS:
426 dbg("asoc: DAI codec BCLK slave, LRC slave\n");
427 break;
428 }
429 dbg("asoc: mode %x, invert %x\n",
430 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_FORMAT_MASK,
431 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_INV_MASK);
432 dbg("asoc: audio rate %d chn %d fmt %x\n", params_rate(params),
433 params_channels(params), params_format(params));
434
435 return 0;
436}
437
438static inline u32 get_rates(struct snd_soc_dai_mode *modes, int nmodes)
439{
440 int i;
441 u32 rates = 0;
442
443 for(i = 0; i < nmodes; i++)
444 rates |= modes[i].pcmrate;
445
446 return rates;
447}
448
449static inline u64 get_formats(struct snd_soc_dai_mode *modes, int nmodes)
450{
451 int i;
452 u64 formats = 0;
453
454 for(i = 0; i < nmodes; i++)
455 formats |= modes[i].pcmfmt;
456
457 return formats;
458}
459
460/*
461 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
462 * then initialized and any private data can be allocated. This also calls
463 * startup for the cpu DAI, platform, machine and codec DAI.
464 */
465static int soc_pcm_open(struct snd_pcm_substream *substream)
466{
467 struct snd_soc_pcm_runtime *rtd = substream->private_data;
468 struct snd_soc_device *socdev = rtd->socdev;
469 struct snd_pcm_runtime *runtime = substream->runtime;
470 struct snd_soc_machine *machine = socdev->machine;
471 struct snd_soc_platform *platform = socdev->platform;
472 struct snd_soc_codec_dai *codec_dai = rtd->codec_dai;
473 struct snd_soc_cpu_dai *cpu_dai = rtd->cpu_dai;
474 int ret = 0;
475
476 mutex_lock(&pcm_mutex);
477
478 /* startup the audio subsystem */
479 if (rtd->cpu_dai->ops.startup) {
480 ret = rtd->cpu_dai->ops.startup(substream);
481 if (ret < 0) {
482 printk(KERN_ERR "asoc: can't open interface %s\n",
483 rtd->cpu_dai->name);
484 goto out;
485 }
486 }
487
488 if (platform->pcm_ops->open) {
489 ret = platform->pcm_ops->open(substream);
490 if (ret < 0) {
491 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
492 goto platform_err;
493 }
494 }
495
496 if (machine->ops && machine->ops->startup) {
497 ret = machine->ops->startup(substream);
498 if (ret < 0) {
499 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
500 goto machine_err;
501 }
502 }
503
504 if (rtd->codec_dai->ops.startup) {
505 ret = rtd->codec_dai->ops.startup(substream);
506 if (ret < 0) {
507 printk(KERN_ERR "asoc: can't open codec %s\n",
508 rtd->codec_dai->name);
509 goto codec_dai_err;
510 }
511 }
512
513 /* create runtime params from DMA, codec and cpu DAI */
514 if (runtime->hw.rates)
515 runtime->hw.rates &=
516 get_rates(codec_dai->caps.mode, codec_dai->caps.num_modes) &
517 get_rates(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
518 else
519 runtime->hw.rates =
520 get_rates(codec_dai->caps.mode, codec_dai->caps.num_modes) &
521 get_rates(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
522 if (runtime->hw.formats)
523 runtime->hw.formats &=
524 get_formats(codec_dai->caps.mode, codec_dai->caps.num_modes) &
525 get_formats(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
526 else
527 runtime->hw.formats =
528 get_formats(codec_dai->caps.mode, codec_dai->caps.num_modes) &
529 get_formats(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
530
531 /* Check that the codec and cpu DAI's are compatible */
532 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
533 runtime->hw.rate_min =
534 max(rtd->codec_dai->playback.rate_min,
535 rtd->cpu_dai->playback.rate_min);
536 runtime->hw.rate_max =
537 min(rtd->codec_dai->playback.rate_max,
538 rtd->cpu_dai->playback.rate_max);
539 runtime->hw.channels_min =
540 max(rtd->codec_dai->playback.channels_min,
541 rtd->cpu_dai->playback.channels_min);
542 runtime->hw.channels_max =
543 min(rtd->codec_dai->playback.channels_max,
544 rtd->cpu_dai->playback.channels_max);
545 } else {
546 runtime->hw.rate_min =
547 max(rtd->codec_dai->capture.rate_min,
548 rtd->cpu_dai->capture.rate_min);
549 runtime->hw.rate_max =
550 min(rtd->codec_dai->capture.rate_max,
551 rtd->cpu_dai->capture.rate_max);
552 runtime->hw.channels_min =
553 max(rtd->codec_dai->capture.channels_min,
554 rtd->cpu_dai->capture.channels_min);
555 runtime->hw.channels_max =
556 min(rtd->codec_dai->capture.channels_max,
557 rtd->cpu_dai->capture.channels_max);
558 }
559
560 snd_pcm_limit_hw_rates(runtime);
561 if (!runtime->hw.rates) {
562 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
563 rtd->codec_dai->name, rtd->cpu_dai->name);
564 goto codec_dai_err;
565 }
566 if (!runtime->hw.formats) {
567 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
568 rtd->codec_dai->name, rtd->cpu_dai->name);
569 goto codec_dai_err;
570 }
571 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
572 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
573 rtd->codec_dai->name, rtd->cpu_dai->name);
574 goto codec_dai_err;
575 }
576
577 dbg("asoc: %s <-> %s info:\n", rtd->codec_dai->name, rtd->cpu_dai->name);
Liam Girdwoodb5c5fd22006-10-13 19:13:41 +0200578 dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
579 dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
580 runtime->hw.channels_max);
581 dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
582 runtime->hw.rate_max);
Frank Mandarinodb2a4162006-10-06 18:31:09 +0200583
584
585 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
586 rtd->cpu_dai->playback.active = rtd->codec_dai->playback.active = 1;
587 else
588 rtd->cpu_dai->capture.active = rtd->codec_dai->capture.active = 1;
589 rtd->cpu_dai->active = rtd->codec_dai->active = 1;
590 rtd->cpu_dai->runtime = runtime;
591 socdev->codec->active++;
592 mutex_unlock(&pcm_mutex);
593 return 0;
594
595codec_dai_err:
596 if (machine->ops && machine->ops->shutdown)
597 machine->ops->shutdown(substream);
598
599machine_err:
600 if (platform->pcm_ops->close)
601 platform->pcm_ops->close(substream);
602
603platform_err:
604 if (rtd->cpu_dai->ops.shutdown)
605 rtd->cpu_dai->ops.shutdown(substream);
606out:
607 mutex_unlock(&pcm_mutex);
608 return ret;
609}
610
611/*
612 * Power down the audio subsytem pmdown_time msecs after close is called.
613 * This is to ensure there are no pops or clicks in between any music tracks
614 * due to DAPM power cycling.
615 */
616static void close_delayed_work(void *data)
617{
618 struct snd_soc_device *socdev = data;
619 struct snd_soc_codec *codec = socdev->codec;
620 struct snd_soc_codec_dai *codec_dai;
621 int i;
622
623 mutex_lock(&pcm_mutex);
624 for(i = 0; i < codec->num_dai; i++) {
625 codec_dai = &codec->dai[i];
626
627 dbg("pop wq checking: %s status: %s waiting: %s\n",
628 codec_dai->playback.stream_name,
629 codec_dai->playback.active ? "active" : "inactive",
630 codec_dai->pop_wait ? "yes" : "no");
631
632 /* are we waiting on this codec DAI stream */
633 if (codec_dai->pop_wait == 1) {
634
635 codec_dai->pop_wait = 0;
636 snd_soc_dapm_stream_event(codec, codec_dai->playback.stream_name,
637 SND_SOC_DAPM_STREAM_STOP);
638
639 /* power down the codec power domain if no longer active */
640 if (codec->active == 0) {
641 dbg("pop wq D3 %s %s\n", codec->name,
642 codec_dai->playback.stream_name);
643 if (codec->dapm_event)
644 codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
645 }
646 }
647 }
648 mutex_unlock(&pcm_mutex);
649}
650
651/*
652 * Called by ALSA when a PCM substream is closed. Private data can be
653 * freed here. The cpu DAI, codec DAI, machine and platform are also
654 * shutdown.
655 */
656static int soc_codec_close(struct snd_pcm_substream *substream)
657{
658 struct snd_soc_pcm_runtime *rtd = substream->private_data;
659 struct snd_soc_device *socdev = rtd->socdev;
660 struct snd_soc_machine *machine = socdev->machine;
661 struct snd_soc_platform *platform = socdev->platform;
662 struct snd_soc_codec *codec = socdev->codec;
663
664 mutex_lock(&pcm_mutex);
665
666 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
667 rtd->cpu_dai->playback.active = rtd->codec_dai->playback.active = 0;
668 else
669 rtd->cpu_dai->capture.active = rtd->codec_dai->capture.active = 0;
670
671 if (rtd->codec_dai->playback.active == 0 &&
672 rtd->codec_dai->capture.active == 0) {
673 rtd->cpu_dai->active = rtd->codec_dai->active = 0;
674 }
675 codec->active--;
676
677 if (rtd->cpu_dai->ops.shutdown)
678 rtd->cpu_dai->ops.shutdown(substream);
679
680 if (rtd->codec_dai->ops.shutdown)
681 rtd->codec_dai->ops.shutdown(substream);
682
683 if (machine->ops && machine->ops->shutdown)
684 machine->ops->shutdown(substream);
685
686 if (platform->pcm_ops->close)
687 platform->pcm_ops->close(substream);
688 rtd->cpu_dai->runtime = NULL;
689
690 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
691 /* start delayed pop wq here for playback streams */
692 rtd->codec_dai->pop_wait = 1;
693 queue_delayed_work(soc_workq, &soc_stream_work,
694 msecs_to_jiffies(pmdown_time));
695 } else {
696 /* capture streams can be powered down now */
697 snd_soc_dapm_stream_event(codec, rtd->codec_dai->capture.stream_name,
698 SND_SOC_DAPM_STREAM_STOP);
699
700 if (codec->active == 0 && rtd->codec_dai->pop_wait == 0){
701 if (codec->dapm_event)
702 codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
703 }
704 }
705
706 mutex_unlock(&pcm_mutex);
707 return 0;
708}
709
710/*
711 * Called by ALSA when the PCM substream is prepared, can set format, sample
712 * rate, etc. This function is non atomic and can be called multiple times,
713 * it can refer to the runtime info.
714 */
715static int soc_pcm_prepare(struct snd_pcm_substream *substream)
716{
717 struct snd_soc_pcm_runtime *rtd = substream->private_data;
718 struct snd_soc_device *socdev = rtd->socdev;
719 struct snd_soc_platform *platform = socdev->platform;
720 struct snd_soc_codec *codec = socdev->codec;
721 int ret = 0;
722
723 mutex_lock(&pcm_mutex);
724 if (platform->pcm_ops->prepare) {
725 ret = platform->pcm_ops->prepare(substream);
726 if (ret < 0)
727 goto out;
728 }
729
730 if (rtd->codec_dai->ops.prepare) {
731 ret = rtd->codec_dai->ops.prepare(substream);
732 if (ret < 0)
733 goto out;
734 }
735
736 if (rtd->cpu_dai->ops.prepare)
737 ret = rtd->cpu_dai->ops.prepare(substream);
738
739 /* we only want to start a DAPM playback stream if we are not waiting
740 * on an existing one stopping */
741 if (rtd->codec_dai->pop_wait) {
742 /* we are waiting for the delayed work to start */
743 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
744 snd_soc_dapm_stream_event(codec,
745 rtd->codec_dai->capture.stream_name,
746 SND_SOC_DAPM_STREAM_START);
747 else {
748 rtd->codec_dai->pop_wait = 0;
749 cancel_delayed_work(&soc_stream_work);
750 if (rtd->codec_dai->digital_mute)
751 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
752 }
753 } else {
754 /* no delayed work - do we need to power up codec */
755 if (codec->dapm_state != SNDRV_CTL_POWER_D0) {
756
757 if (codec->dapm_event)
758 codec->dapm_event(codec, SNDRV_CTL_POWER_D1);
759
760 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
761 snd_soc_dapm_stream_event(codec,
762 rtd->codec_dai->playback.stream_name,
763 SND_SOC_DAPM_STREAM_START);
764 else
765 snd_soc_dapm_stream_event(codec,
766 rtd->codec_dai->capture.stream_name,
767 SND_SOC_DAPM_STREAM_START);
768
769 if (codec->dapm_event)
770 codec->dapm_event(codec, SNDRV_CTL_POWER_D0);
771 if (rtd->codec_dai->digital_mute)
772 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
773
774 } else {
775 /* codec already powered - power on widgets */
776 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
777 snd_soc_dapm_stream_event(codec,
778 rtd->codec_dai->playback.stream_name,
779 SND_SOC_DAPM_STREAM_START);
780 else
781 snd_soc_dapm_stream_event(codec,
782 rtd->codec_dai->capture.stream_name,
783 SND_SOC_DAPM_STREAM_START);
784 if (rtd->codec_dai->digital_mute)
785 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
786 }
787 }
788
789out:
790 mutex_unlock(&pcm_mutex);
791 return ret;
792}
793
794/*
795 * Called by ALSA when the hardware params are set by application. This
796 * function can also be called multiple times and can allocate buffers
797 * (using snd_pcm_lib_* ). It's non-atomic.
798 */
799static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
800 struct snd_pcm_hw_params *params)
801{
802 struct snd_soc_pcm_runtime *rtd = substream->private_data;
803 struct snd_soc_device *socdev = rtd->socdev;
804 struct snd_soc_platform *platform = socdev->platform;
805 struct snd_soc_machine *machine = socdev->machine;
806 int ret = 0;
807
808 mutex_lock(&pcm_mutex);
809
810 /* we don't need to match any AC97 params */
811 if (rtd->cpu_dai->type != SND_SOC_DAI_AC97) {
812 ret = soc_hw_match_params(substream, params);
813 if (ret < 0)
814 goto out;
815 } else {
816 struct snd_soc_clock_info clk_info;
817 clk_info.rate = params_rate(params);
818 ret = soc_get_mclk(rtd, &clk_info);
819 if (ret < 0)
820 goto out;
821 }
822
823 if (rtd->codec_dai->ops.hw_params) {
824 ret = rtd->codec_dai->ops.hw_params(substream, params);
825 if (ret < 0) {
826 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
827 rtd->codec_dai->name);
828 goto out;
829 }
830 }
831
832 if (rtd->cpu_dai->ops.hw_params) {
833 ret = rtd->cpu_dai->ops.hw_params(substream, params);
834 if (ret < 0) {
835 printk(KERN_ERR "asoc: can't set interface %s hw params\n",
836 rtd->cpu_dai->name);
837 goto interface_err;
838 }
839 }
840
841 if (platform->pcm_ops->hw_params) {
842 ret = platform->pcm_ops->hw_params(substream, params);
843 if (ret < 0) {
844 printk(KERN_ERR "asoc: can't set platform %s hw params\n",
845 platform->name);
846 goto platform_err;
847 }
848 }
849
850 if (machine->ops && machine->ops->hw_params) {
851 ret = machine->ops->hw_params(substream, params);
852 if (ret < 0) {
853 printk(KERN_ERR "asoc: machine hw_params failed\n");
854 goto machine_err;
855 }
856 }
857
858out:
859 mutex_unlock(&pcm_mutex);
860 return ret;
861
862machine_err:
863 if (platform->pcm_ops->hw_free)
864 platform->pcm_ops->hw_free(substream);
865
866platform_err:
867 if (rtd->cpu_dai->ops.hw_free)
868 rtd->cpu_dai->ops.hw_free(substream);
869
870interface_err:
871 if (rtd->codec_dai->ops.hw_free)
872 rtd->codec_dai->ops.hw_free(substream);
873
874 mutex_unlock(&pcm_mutex);
875 return ret;
876}
877
878/*
879 * Free's resources allocated by hw_params, can be called multiple times
880 */
881static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
882{
883 struct snd_soc_pcm_runtime *rtd = substream->private_data;
884 struct snd_soc_device *socdev = rtd->socdev;
885 struct snd_soc_platform *platform = socdev->platform;
886 struct snd_soc_codec *codec = socdev->codec;
887 struct snd_soc_machine *machine = socdev->machine;
888
889 mutex_lock(&pcm_mutex);
890
891 /* apply codec digital mute */
892 if (!codec->active && rtd->codec_dai->digital_mute)
893 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 1);
894
895 /* free any machine hw params */
896 if (machine->ops && machine->ops->hw_free)
897 machine->ops->hw_free(substream);
898
899 /* free any DMA resources */
900 if (platform->pcm_ops->hw_free)
901 platform->pcm_ops->hw_free(substream);
902
903 /* now free hw params for the DAI's */
904 if (rtd->codec_dai->ops.hw_free)
905 rtd->codec_dai->ops.hw_free(substream);
906
907 if (rtd->cpu_dai->ops.hw_free)
908 rtd->cpu_dai->ops.hw_free(substream);
909
910 mutex_unlock(&pcm_mutex);
911 return 0;
912}
913
914static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
915{
916 struct snd_soc_pcm_runtime *rtd = substream->private_data;
917 struct snd_soc_device *socdev = rtd->socdev;
918 struct snd_soc_platform *platform = socdev->platform;
919 int ret;
920
921 if (rtd->codec_dai->ops.trigger) {
922 ret = rtd->codec_dai->ops.trigger(substream, cmd);
923 if (ret < 0)
924 return ret;
925 }
926
927 if (platform->pcm_ops->trigger) {
928 ret = platform->pcm_ops->trigger(substream, cmd);
929 if (ret < 0)
930 return ret;
931 }
932
933 if (rtd->cpu_dai->ops.trigger) {
934 ret = rtd->cpu_dai->ops.trigger(substream, cmd);
935 if (ret < 0)
936 return ret;
937 }
938 return 0;
939}
940
941/* ASoC PCM operations */
942static struct snd_pcm_ops soc_pcm_ops = {
943 .open = soc_pcm_open,
944 .close = soc_codec_close,
945 .hw_params = soc_pcm_hw_params,
946 .hw_free = soc_pcm_hw_free,
947 .prepare = soc_pcm_prepare,
948 .trigger = soc_pcm_trigger,
949};
950
951#ifdef CONFIG_PM
952/* powers down audio subsystem for suspend */
953static int soc_suspend(struct platform_device *pdev, pm_message_t state)
954{
955 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
956 struct snd_soc_machine *machine = socdev->machine;
957 struct snd_soc_platform *platform = socdev->platform;
958 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
959 struct snd_soc_codec *codec = socdev->codec;
960 int i;
961
962 /* mute any active DAC's */
963 for(i = 0; i < machine->num_links; i++) {
964 struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
965 if (dai->digital_mute && dai->playback.active)
966 dai->digital_mute(codec, dai, 1);
967 }
968
969 if (machine->suspend_pre)
970 machine->suspend_pre(pdev, state);
971
972 for(i = 0; i < machine->num_links; i++) {
973 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
974 if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
975 cpu_dai->suspend(pdev, cpu_dai);
976 if (platform->suspend)
977 platform->suspend(pdev, cpu_dai);
978 }
979
980 /* close any waiting streams and save state */
981 flush_workqueue(soc_workq);
982 codec->suspend_dapm_state = codec->dapm_state;
983
984 for(i = 0; i < codec->num_dai; i++) {
985 char *stream = codec->dai[i].playback.stream_name;
986 if (stream != NULL)
987 snd_soc_dapm_stream_event(codec, stream,
988 SND_SOC_DAPM_STREAM_SUSPEND);
989 stream = codec->dai[i].capture.stream_name;
990 if (stream != NULL)
991 snd_soc_dapm_stream_event(codec, stream,
992 SND_SOC_DAPM_STREAM_SUSPEND);
993 }
994
995 if (codec_dev->suspend)
996 codec_dev->suspend(pdev, state);
997
998 for(i = 0; i < machine->num_links; i++) {
999 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1000 if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
1001 cpu_dai->suspend(pdev, cpu_dai);
1002 }
1003
1004 if (machine->suspend_post)
1005 machine->suspend_post(pdev, state);
1006
1007 return 0;
1008}
1009
1010/* powers up audio subsystem after a suspend */
1011static int soc_resume(struct platform_device *pdev)
1012{
1013 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1014 struct snd_soc_machine *machine = socdev->machine;
1015 struct snd_soc_platform *platform = socdev->platform;
1016 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1017 struct snd_soc_codec *codec = socdev->codec;
1018 int i;
1019
1020 if (machine->resume_pre)
1021 machine->resume_pre(pdev);
1022
1023 for(i = 0; i < machine->num_links; i++) {
1024 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1025 if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
1026 cpu_dai->resume(pdev, cpu_dai);
1027 }
1028
1029 if (codec_dev->resume)
1030 codec_dev->resume(pdev);
1031
1032 for(i = 0; i < codec->num_dai; i++) {
1033 char* stream = codec->dai[i].playback.stream_name;
1034 if (stream != NULL)
1035 snd_soc_dapm_stream_event(codec, stream,
1036 SND_SOC_DAPM_STREAM_RESUME);
1037 stream = codec->dai[i].capture.stream_name;
1038 if (stream != NULL)
1039 snd_soc_dapm_stream_event(codec, stream,
1040 SND_SOC_DAPM_STREAM_RESUME);
1041 }
1042
1043 /* unmute any active DAC's */
1044 for(i = 0; i < machine->num_links; i++) {
1045 struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
1046 if (dai->digital_mute && dai->playback.active)
1047 dai->digital_mute(codec, dai, 0);
1048 }
1049
1050 for(i = 0; i < machine->num_links; i++) {
1051 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1052 if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
1053 cpu_dai->resume(pdev, cpu_dai);
1054 if (platform->resume)
1055 platform->resume(pdev, cpu_dai);
1056 }
1057
1058 if (machine->resume_post)
1059 machine->resume_post(pdev);
1060
1061 return 0;
1062}
1063
1064#else
1065#define soc_suspend NULL
1066#define soc_resume NULL
1067#endif
1068
1069/* probes a new socdev */
1070static int soc_probe(struct platform_device *pdev)
1071{
1072 int ret = 0, i;
1073 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1074 struct snd_soc_machine *machine = socdev->machine;
1075 struct snd_soc_platform *platform = socdev->platform;
1076 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1077
1078 if (machine->probe) {
1079 ret = machine->probe(pdev);
1080 if(ret < 0)
1081 return ret;
1082 }
1083
1084 for (i = 0; i < machine->num_links; i++) {
1085 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1086 if (cpu_dai->probe) {
1087 ret = cpu_dai->probe(pdev);
1088 if(ret < 0)
1089 goto cpu_dai_err;
1090 }
1091 }
1092
1093 if (codec_dev->probe) {
1094 ret = codec_dev->probe(pdev);
1095 if(ret < 0)
1096 goto cpu_dai_err;
1097 }
1098
1099 if (platform->probe) {
1100 ret = platform->probe(pdev);
1101 if(ret < 0)
1102 goto platform_err;
1103 }
1104
1105 /* DAPM stream work */
1106 soc_workq = create_workqueue("kdapm");
1107 if (soc_workq == NULL)
1108 goto work_err;
1109 INIT_WORK(&soc_stream_work, close_delayed_work, socdev);
1110 return 0;
1111
1112work_err:
1113 if (platform->remove)
1114 platform->remove(pdev);
1115
1116platform_err:
1117 if (codec_dev->remove)
1118 codec_dev->remove(pdev);
1119
1120cpu_dai_err:
1121 for (i--; i > 0; i--) {
1122 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1123 if (cpu_dai->remove)
1124 cpu_dai->remove(pdev);
1125 }
1126
1127 if (machine->remove)
1128 machine->remove(pdev);
1129
1130 return ret;
1131}
1132
1133/* removes a socdev */
1134static int soc_remove(struct platform_device *pdev)
1135{
1136 int i;
1137 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1138 struct snd_soc_machine *machine = socdev->machine;
1139 struct snd_soc_platform *platform = socdev->platform;
1140 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1141
1142 if (soc_workq)
1143 destroy_workqueue(soc_workq);
1144
1145 if (platform->remove)
1146 platform->remove(pdev);
1147
1148 if (codec_dev->remove)
1149 codec_dev->remove(pdev);
1150
1151 for (i = 0; i < machine->num_links; i++) {
1152 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1153 if (cpu_dai->remove)
1154 cpu_dai->remove(pdev);
1155 }
1156
1157 if (machine->remove)
1158 machine->remove(pdev);
1159
1160 return 0;
1161}
1162
1163/* ASoC platform driver */
1164static struct platform_driver soc_driver = {
1165 .driver = {
1166 .name = "soc-audio",
1167 },
1168 .probe = soc_probe,
1169 .remove = soc_remove,
1170 .suspend = soc_suspend,
1171 .resume = soc_resume,
1172};
1173
1174/* create a new pcm */
1175static int soc_new_pcm(struct snd_soc_device *socdev,
1176 struct snd_soc_dai_link *dai_link, int num)
1177{
1178 struct snd_soc_codec *codec = socdev->codec;
1179 struct snd_soc_codec_dai *codec_dai = dai_link->codec_dai;
1180 struct snd_soc_cpu_dai *cpu_dai = dai_link->cpu_dai;
1181 struct snd_soc_pcm_runtime *rtd;
1182 struct snd_pcm *pcm;
1183 char new_name[64];
1184 int ret = 0, playback = 0, capture = 0;
1185
1186 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1187 if (rtd == NULL)
1188 return -ENOMEM;
1189 rtd->cpu_dai = cpu_dai;
1190 rtd->codec_dai = codec_dai;
1191 rtd->socdev = socdev;
1192
1193 /* check client and interface hw capabilities */
1194 sprintf(new_name, "%s %s-%s-%d",dai_link->stream_name, codec_dai->name,
1195 get_dai_name(cpu_dai->type), num);
1196
1197 if (codec_dai->playback.channels_min)
1198 playback = 1;
1199 if (codec_dai->capture.channels_min)
1200 capture = 1;
1201
1202 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1203 capture, &pcm);
1204 if (ret < 0) {
1205 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1206 kfree(rtd);
1207 return ret;
1208 }
1209
1210 pcm->private_data = rtd;
1211 soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
1212 soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
1213 soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
1214 soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
1215 soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
1216 soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
1217 soc_pcm_ops.page = socdev->platform->pcm_ops->page;
1218
1219 if (playback)
1220 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1221
1222 if (capture)
1223 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1224
1225 ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
1226 if (ret < 0) {
1227 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1228 kfree(rtd);
1229 return ret;
1230 }
1231
1232 pcm->private_free = socdev->platform->pcm_free;
1233 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1234 cpu_dai->name);
1235 return ret;
1236}
1237
1238/* codec register dump */
1239static ssize_t codec_reg_show(struct device *dev,
1240 struct device_attribute *attr, char *buf)
1241{
1242 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1243 struct snd_soc_codec *codec = devdata->codec;
1244 int i, step = 1, count = 0;
1245
1246 if (!codec->reg_cache_size)
1247 return 0;
1248
1249 if (codec->reg_cache_step)
1250 step = codec->reg_cache_step;
1251
1252 count += sprintf(buf, "%s registers\n", codec->name);
1253 for(i = 0; i < codec->reg_cache_size; i += step)
1254 count += sprintf(buf + count, "%2x: %4x\n", i, codec->read(codec, i));
1255
1256 return count;
1257}
1258static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1259
1260/**
1261 * snd_soc_new_ac97_codec - initailise AC97 device
1262 * @codec: audio codec
1263 * @ops: AC97 bus operations
1264 * @num: AC97 codec number
1265 *
1266 * Initialises AC97 codec resources for use by ad-hoc devices only.
1267 */
1268int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1269 struct snd_ac97_bus_ops *ops, int num)
1270{
1271 mutex_lock(&codec->mutex);
1272
1273 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1274 if (codec->ac97 == NULL) {
1275 mutex_unlock(&codec->mutex);
1276 return -ENOMEM;
1277 }
1278
1279 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1280 if (codec->ac97->bus == NULL) {
1281 kfree(codec->ac97);
1282 codec->ac97 = NULL;
1283 mutex_unlock(&codec->mutex);
1284 return -ENOMEM;
1285 }
1286
1287 codec->ac97->bus->ops = ops;
1288 codec->ac97->num = num;
1289 mutex_unlock(&codec->mutex);
1290 return 0;
1291}
1292EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1293
1294/**
1295 * snd_soc_free_ac97_codec - free AC97 codec device
1296 * @codec: audio codec
1297 *
1298 * Frees AC97 codec device resources.
1299 */
1300void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1301{
1302 mutex_lock(&codec->mutex);
1303 kfree(codec->ac97->bus);
1304 kfree(codec->ac97);
1305 codec->ac97 = NULL;
1306 mutex_unlock(&codec->mutex);
1307}
1308EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1309
1310/**
1311 * snd_soc_update_bits - update codec register bits
1312 * @codec: audio codec
1313 * @reg: codec register
1314 * @mask: register mask
1315 * @value: new value
1316 *
1317 * Writes new register value.
1318 *
1319 * Returns 1 for change else 0.
1320 */
1321int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1322 unsigned short mask, unsigned short value)
1323{
1324 int change;
1325 unsigned short old, new;
1326
1327 mutex_lock(&io_mutex);
1328 old = snd_soc_read(codec, reg);
1329 new = (old & ~mask) | value;
1330 change = old != new;
1331 if (change)
1332 snd_soc_write(codec, reg, new);
1333
1334 mutex_unlock(&io_mutex);
1335 return change;
1336}
1337EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1338
1339/**
1340 * snd_soc_test_bits - test register for change
1341 * @codec: audio codec
1342 * @reg: codec register
1343 * @mask: register mask
1344 * @value: new value
1345 *
1346 * Tests a register with a new value and checks if the new value is
1347 * different from the old value.
1348 *
1349 * Returns 1 for change else 0.
1350 */
1351int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1352 unsigned short mask, unsigned short value)
1353{
1354 int change;
1355 unsigned short old, new;
1356
1357 mutex_lock(&io_mutex);
1358 old = snd_soc_read(codec, reg);
1359 new = (old & ~mask) | value;
1360 change = old != new;
1361 mutex_unlock(&io_mutex);
1362
1363 return change;
1364}
1365EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1366
1367/**
1368 * snd_soc_get_rate - get int sample rate
1369 * @hwpcmrate: the hardware pcm rate
1370 *
1371 * Returns the audio rate integaer value, else 0.
1372 */
1373int snd_soc_get_rate(int hwpcmrate)
1374{
1375 int rate = ffs(hwpcmrate) - 1;
1376
1377 if (rate > ARRAY_SIZE(rates))
1378 return 0;
1379 return rates[rate];
1380}
1381EXPORT_SYMBOL_GPL(snd_soc_get_rate);
1382
1383/**
1384 * snd_soc_new_pcms - create new sound card and pcms
1385 * @socdev: the SoC audio device
1386 *
1387 * Create a new sound card based upon the codec and interface pcms.
1388 *
1389 * Returns 0 for success, else error.
1390 */
1391int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char * xid)
1392{
1393 struct snd_soc_codec *codec = socdev->codec;
1394 struct snd_soc_machine *machine = socdev->machine;
1395 int ret = 0, i;
1396
1397 mutex_lock(&codec->mutex);
1398
1399 /* register a sound card */
1400 codec->card = snd_card_new(idx, xid, codec->owner, 0);
1401 if (!codec->card) {
1402 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1403 codec->name);
1404 mutex_unlock(&codec->mutex);
1405 return -ENODEV;
1406 }
1407
1408 codec->card->dev = socdev->dev;
1409 codec->card->private_data = codec;
1410 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1411
1412 /* create the pcms */
1413 for(i = 0; i < machine->num_links; i++) {
1414 ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
1415 if (ret < 0) {
1416 printk(KERN_ERR "asoc: can't create pcm %s\n",
1417 machine->dai_link[i].stream_name);
1418 mutex_unlock(&codec->mutex);
1419 return ret;
1420 }
1421 }
1422
1423 mutex_unlock(&codec->mutex);
1424 return ret;
1425}
1426EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1427
1428/**
1429 * snd_soc_register_card - register sound card
1430 * @socdev: the SoC audio device
1431 *
1432 * Register a SoC sound card. Also registers an AC97 device if the
1433 * codec is AC97 for ad hoc devices.
1434 *
1435 * Returns 0 for success, else error.
1436 */
1437int snd_soc_register_card(struct snd_soc_device *socdev)
1438{
1439 struct snd_soc_codec *codec = socdev->codec;
1440 struct snd_soc_machine *machine = socdev->machine;
Liam Girdwood12e74f72006-10-16 21:19:48 +02001441 int ret = 0, i, ac97 = 0, err = 0;
Frank Mandarinodb2a4162006-10-06 18:31:09 +02001442
1443 mutex_lock(&codec->mutex);
1444 for(i = 0; i < machine->num_links; i++) {
Liam Girdwood12e74f72006-10-16 21:19:48 +02001445 if (socdev->machine->dai_link[i].init) {
1446 err = socdev->machine->dai_link[i].init(codec);
1447 if (err < 0) {
1448 printk(KERN_ERR "asoc: failed to init %s\n",
1449 socdev->machine->dai_link[i].stream_name);
1450 continue;
1451 }
1452 }
Frank Mandarinodb2a4162006-10-06 18:31:09 +02001453 if (socdev->machine->dai_link[i].cpu_dai->type == SND_SOC_DAI_AC97)
1454 ac97 = 1;
1455 }
1456 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1457 "%s", machine->name);
1458 snprintf(codec->card->longname, sizeof(codec->card->longname),
1459 "%s (%s)", machine->name, codec->name);
1460
1461 ret = snd_card_register(codec->card);
1462 if (ret < 0) {
1463 printk(KERN_ERR "asoc: failed to register soundcard for codec %s\n",
1464 codec->name);
Liam Girdwood12e74f72006-10-16 21:19:48 +02001465 goto out;
Frank Mandarinodb2a4162006-10-06 18:31:09 +02001466 }
1467
1468#ifdef CONFIG_SND_SOC_AC97_BUS
Liam Girdwood12e74f72006-10-16 21:19:48 +02001469 if (ac97) {
1470 ret = soc_ac97_dev_register(codec);
1471 if (ret < 0) {
1472 printk(KERN_ERR "asoc: AC97 device register failed\n");
1473 snd_card_free(codec->card);
1474 goto out;
1475 }
1476 }
Frank Mandarinodb2a4162006-10-06 18:31:09 +02001477#endif
1478
Liam Girdwood12e74f72006-10-16 21:19:48 +02001479 err = snd_soc_dapm_sys_add(socdev->dev);
1480 if (err < 0)
1481 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1482
1483 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1484 if (err < 0)
1485 printk(KERN_WARNING "asoc: failed to add codec sysfs entries\n");
1486out:
Frank Mandarinodb2a4162006-10-06 18:31:09 +02001487 mutex_unlock(&codec->mutex);
1488 return ret;
1489}
1490EXPORT_SYMBOL_GPL(snd_soc_register_card);
1491
1492/**
1493 * snd_soc_free_pcms - free sound card and pcms
1494 * @socdev: the SoC audio device
1495 *
1496 * Frees sound card and pcms associated with the socdev.
1497 * Also unregister the codec if it is an AC97 device.
1498 */
1499void snd_soc_free_pcms(struct snd_soc_device *socdev)
1500{
1501 struct snd_soc_codec *codec = socdev->codec;
1502
1503 mutex_lock(&codec->mutex);
1504#ifdef CONFIG_SND_SOC_AC97_BUS
1505 if (codec->ac97)
1506 soc_ac97_dev_unregister(codec);
1507#endif
1508
1509 if (codec->card)
1510 snd_card_free(codec->card);
1511 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1512 mutex_unlock(&codec->mutex);
1513}
1514EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1515
1516/**
1517 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1518 * @substream: the pcm substream
1519 * @hw: the hardware parameters
1520 *
1521 * Sets the substream runtime hardware parameters.
1522 */
1523int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1524 const struct snd_pcm_hardware *hw)
1525{
1526 struct snd_pcm_runtime *runtime = substream->runtime;
1527 runtime->hw.info = hw->info;
1528 runtime->hw.formats = hw->formats;
1529 runtime->hw.period_bytes_min = hw->period_bytes_min;
1530 runtime->hw.period_bytes_max = hw->period_bytes_max;
1531 runtime->hw.periods_min = hw->periods_min;
1532 runtime->hw.periods_max = hw->periods_max;
1533 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1534 runtime->hw.fifo_size = hw->fifo_size;
1535 return 0;
1536}
1537EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1538
1539/**
1540 * snd_soc_cnew - create new control
1541 * @_template: control template
1542 * @data: control private data
1543 * @lnng_name: control long name
1544 *
1545 * Create a new mixer control from a template control.
1546 *
1547 * Returns 0 for success, else error.
1548 */
1549struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1550 void *data, char *long_name)
1551{
1552 struct snd_kcontrol_new template;
1553
1554 memcpy(&template, _template, sizeof(template));
1555 if (long_name)
1556 template.name = long_name;
1557 template.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
1558 template.index = 0;
1559
1560 return snd_ctl_new1(&template, data);
1561}
1562EXPORT_SYMBOL_GPL(snd_soc_cnew);
1563
1564/**
1565 * snd_soc_info_enum_double - enumerated double mixer info callback
1566 * @kcontrol: mixer control
1567 * @uinfo: control element information
1568 *
1569 * Callback to provide information about a double enumerated
1570 * mixer control.
1571 *
1572 * Returns 0 for success.
1573 */
1574int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1575 struct snd_ctl_elem_info *uinfo)
1576{
1577 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1578
1579 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1580 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1581 uinfo->value.enumerated.items = e->mask;
1582
1583 if (uinfo->value.enumerated.item > e->mask - 1)
1584 uinfo->value.enumerated.item = e->mask - 1;
1585 strcpy(uinfo->value.enumerated.name,
1586 e->texts[uinfo->value.enumerated.item]);
1587 return 0;
1588}
1589EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1590
1591/**
1592 * snd_soc_get_enum_double - enumerated double mixer get callback
1593 * @kcontrol: mixer control
1594 * @uinfo: control element information
1595 *
1596 * Callback to get the value of a double enumerated mixer.
1597 *
1598 * Returns 0 for success.
1599 */
1600int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1601 struct snd_ctl_elem_value *ucontrol)
1602{
1603 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1604 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1605 unsigned short val, bitmask;
1606
1607 for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1608 ;
1609 val = snd_soc_read(codec, e->reg);
1610 ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
1611 if (e->shift_l != e->shift_r)
1612 ucontrol->value.enumerated.item[1] =
1613 (val >> e->shift_r) & (bitmask - 1);
1614
1615 return 0;
1616}
1617EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1618
1619/**
1620 * snd_soc_put_enum_double - enumerated double mixer put callback
1621 * @kcontrol: mixer control
1622 * @uinfo: control element information
1623 *
1624 * Callback to set the value of a double enumerated mixer.
1625 *
1626 * Returns 0 for success.
1627 */
1628int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1629 struct snd_ctl_elem_value *ucontrol)
1630{
1631 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1632 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1633 unsigned short val;
1634 unsigned short mask, bitmask;
1635
1636 for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1637 ;
1638 if (ucontrol->value.enumerated.item[0] > e->mask - 1)
1639 return -EINVAL;
1640 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1641 mask = (bitmask - 1) << e->shift_l;
1642 if (e->shift_l != e->shift_r) {
1643 if (ucontrol->value.enumerated.item[1] > e->mask - 1)
1644 return -EINVAL;
1645 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1646 mask |= (bitmask - 1) << e->shift_r;
1647 }
1648
1649 return snd_soc_update_bits(codec, e->reg, mask, val);
1650}
1651EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1652
1653/**
1654 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1655 * @kcontrol: mixer control
1656 * @uinfo: control element information
1657 *
1658 * Callback to provide information about an external enumerated
1659 * single mixer.
1660 *
1661 * Returns 0 for success.
1662 */
1663int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1664 struct snd_ctl_elem_info *uinfo)
1665{
1666 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1667
1668 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1669 uinfo->count = 1;
1670 uinfo->value.enumerated.items = e->mask;
1671
1672 if (uinfo->value.enumerated.item > e->mask - 1)
1673 uinfo->value.enumerated.item = e->mask - 1;
1674 strcpy(uinfo->value.enumerated.name,
1675 e->texts[uinfo->value.enumerated.item]);
1676 return 0;
1677}
1678EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1679
1680/**
1681 * snd_soc_info_volsw_ext - external single mixer info callback
1682 * @kcontrol: mixer control
1683 * @uinfo: control element information
1684 *
1685 * Callback to provide information about a single external mixer control.
1686 *
1687 * Returns 0 for success.
1688 */
1689int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1690 struct snd_ctl_elem_info *uinfo)
1691{
1692 int mask = kcontrol->private_value;
1693
1694 uinfo->type =
1695 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1696 uinfo->count = 1;
1697 uinfo->value.integer.min = 0;
1698 uinfo->value.integer.max = mask;
1699 return 0;
1700}
1701EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1702
1703/**
1704 * snd_soc_info_bool_ext - external single boolean mixer info callback
1705 * @kcontrol: mixer control
1706 * @uinfo: control element information
1707 *
1708 * Callback to provide information about a single boolean external mixer control.
1709 *
1710 * Returns 0 for success.
1711 */
1712int snd_soc_info_bool_ext(struct snd_kcontrol *kcontrol,
1713 struct snd_ctl_elem_info *uinfo)
1714{
1715 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1716 uinfo->count = 1;
1717 uinfo->value.integer.min = 0;
1718 uinfo->value.integer.max = 1;
1719 return 0;
1720}
1721EXPORT_SYMBOL_GPL(snd_soc_info_bool_ext);
1722
1723/**
1724 * snd_soc_info_volsw - single mixer info callback
1725 * @kcontrol: mixer control
1726 * @uinfo: control element information
1727 *
1728 * Callback to provide information about a single mixer control.
1729 *
1730 * Returns 0 for success.
1731 */
1732int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1733 struct snd_ctl_elem_info *uinfo)
1734{
1735 int mask = (kcontrol->private_value >> 16) & 0xff;
1736 int shift = (kcontrol->private_value >> 8) & 0x0f;
1737 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1738
1739 uinfo->type =
1740 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1741 uinfo->count = shift == rshift ? 1 : 2;
1742 uinfo->value.integer.min = 0;
1743 uinfo->value.integer.max = mask;
1744 return 0;
1745}
1746EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1747
1748/**
1749 * snd_soc_get_volsw - single mixer get callback
1750 * @kcontrol: mixer control
1751 * @uinfo: control element information
1752 *
1753 * Callback to get the value of a single mixer control.
1754 *
1755 * Returns 0 for success.
1756 */
1757int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1758 struct snd_ctl_elem_value *ucontrol)
1759{
1760 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1761 int reg = kcontrol->private_value & 0xff;
1762 int shift = (kcontrol->private_value >> 8) & 0x0f;
1763 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1764 int mask = (kcontrol->private_value >> 16) & 0xff;
1765 int invert = (kcontrol->private_value >> 24) & 0x01;
1766
1767 ucontrol->value.integer.value[0] =
1768 (snd_soc_read(codec, reg) >> shift) & mask;
1769 if (shift != rshift)
1770 ucontrol->value.integer.value[1] =
1771 (snd_soc_read(codec, reg) >> rshift) & mask;
1772 if (invert) {
1773 ucontrol->value.integer.value[0] =
1774 mask - ucontrol->value.integer.value[0];
1775 if (shift != rshift)
1776 ucontrol->value.integer.value[1] =
1777 mask - ucontrol->value.integer.value[1];
1778 }
1779
1780 return 0;
1781}
1782EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1783
1784/**
1785 * snd_soc_put_volsw - single mixer put callback
1786 * @kcontrol: mixer control
1787 * @uinfo: control element information
1788 *
1789 * Callback to set the value of a single mixer control.
1790 *
1791 * Returns 0 for success.
1792 */
1793int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1794 struct snd_ctl_elem_value *ucontrol)
1795{
1796 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1797 int reg = kcontrol->private_value & 0xff;
1798 int shift = (kcontrol->private_value >> 8) & 0x0f;
1799 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1800 int mask = (kcontrol->private_value >> 16) & 0xff;
1801 int invert = (kcontrol->private_value >> 24) & 0x01;
1802 int err;
1803 unsigned short val, val2, val_mask;
1804
1805 val = (ucontrol->value.integer.value[0] & mask);
1806 if (invert)
1807 val = mask - val;
1808 val_mask = mask << shift;
1809 val = val << shift;
1810 if (shift != rshift) {
1811 val2 = (ucontrol->value.integer.value[1] & mask);
1812 if (invert)
1813 val2 = mask - val2;
1814 val_mask |= mask << rshift;
1815 val |= val2 << rshift;
1816 }
1817 err = snd_soc_update_bits(codec, reg, val_mask, val);
1818 return err;
1819}
1820EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1821
1822/**
1823 * snd_soc_info_volsw_2r - double mixer info callback
1824 * @kcontrol: mixer control
1825 * @uinfo: control element information
1826 *
1827 * Callback to provide information about a double mixer control that
1828 * spans 2 codec registers.
1829 *
1830 * Returns 0 for success.
1831 */
1832int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1833 struct snd_ctl_elem_info *uinfo)
1834{
1835 int mask = (kcontrol->private_value >> 12) & 0xff;
1836
1837 uinfo->type =
1838 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1839 uinfo->count = 2;
1840 uinfo->value.integer.min = 0;
1841 uinfo->value.integer.max = mask;
1842 return 0;
1843}
1844EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1845
1846/**
1847 * snd_soc_get_volsw_2r - double mixer get callback
1848 * @kcontrol: mixer control
1849 * @uinfo: control element information
1850 *
1851 * Callback to get the value of a double mixer control that spans 2 registers.
1852 *
1853 * Returns 0 for success.
1854 */
1855int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1856 struct snd_ctl_elem_value *ucontrol)
1857{
1858 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1859 int reg = kcontrol->private_value & 0xff;
1860 int reg2 = (kcontrol->private_value >> 24) & 0xff;
1861 int shift = (kcontrol->private_value >> 8) & 0x0f;
1862 int mask = (kcontrol->private_value >> 12) & 0xff;
1863 int invert = (kcontrol->private_value >> 20) & 0x01;
1864
1865 ucontrol->value.integer.value[0] =
1866 (snd_soc_read(codec, reg) >> shift) & mask;
1867 ucontrol->value.integer.value[1] =
1868 (snd_soc_read(codec, reg2) >> shift) & mask;
1869 if (invert) {
1870 ucontrol->value.integer.value[0] =
1871 mask - ucontrol->value.integer.value[0];
1872 ucontrol->value.integer.value[1] =
1873 mask - ucontrol->value.integer.value[1];
1874 }
1875
1876 return 0;
1877}
1878EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1879
1880/**
1881 * snd_soc_put_volsw_2r - double mixer set callback
1882 * @kcontrol: mixer control
1883 * @uinfo: control element information
1884 *
1885 * Callback to set the value of a double mixer control that spans 2 registers.
1886 *
1887 * Returns 0 for success.
1888 */
1889int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1890 struct snd_ctl_elem_value *ucontrol)
1891{
1892 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1893 int reg = kcontrol->private_value & 0xff;
1894 int reg2 = (kcontrol->private_value >> 24) & 0xff;
1895 int shift = (kcontrol->private_value >> 8) & 0x0f;
1896 int mask = (kcontrol->private_value >> 12) & 0xff;
1897 int invert = (kcontrol->private_value >> 20) & 0x01;
1898 int err;
1899 unsigned short val, val2, val_mask;
1900
1901 val_mask = mask << shift;
1902 val = (ucontrol->value.integer.value[0] & mask);
1903 val2 = (ucontrol->value.integer.value[1] & mask);
1904
1905 if (invert) {
1906 val = mask - val;
1907 val2 = mask - val2;
1908 }
1909
1910 val = val << shift;
1911 val2 = val2 << shift;
1912
1913 if ((err = snd_soc_update_bits(codec, reg, val_mask, val)) < 0)
1914 return err;
1915
1916 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1917 return err;
1918}
1919EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1920
1921static int __devinit snd_soc_init(void)
1922{
1923 printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
1924 return platform_driver_register(&soc_driver);
1925}
1926
1927static void snd_soc_exit(void)
1928{
1929 platform_driver_unregister(&soc_driver);
1930}
1931
1932module_init(snd_soc_init);
1933module_exit(snd_soc_exit);
1934
1935/* Module information */
1936MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
1937MODULE_DESCRIPTION("ALSA SoC Core");
1938MODULE_LICENSE("GPL");