blob: 4cd05cc05a55411cdf951ad413e07814221927c8 [file] [log] [blame]
Linus Walleijb43d65f2009-06-09 08:11:42 +01001/*
2 * drivers/spi/amba-pl022.c
3 *
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
5 *
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
8 *
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
10 *
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 */
26
27/*
28 * TODO:
29 * - add timeout on polled transfers
Linus Walleijb43d65f2009-06-09 08:11:42 +010030 */
31
32#include <linux/init.h>
33#include <linux/module.h>
34#include <linux/device.h>
35#include <linux/ioport.h>
36#include <linux/errno.h>
37#include <linux/interrupt.h>
38#include <linux/spi/spi.h>
39#include <linux/workqueue.h>
Linus Walleijb43d65f2009-06-09 08:11:42 +010040#include <linux/delay.h>
41#include <linux/clk.h>
42#include <linux/err.h>
43#include <linux/amba/bus.h>
44#include <linux/amba/pl022.h>
45#include <linux/io.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090046#include <linux/slab.h>
Linus Walleijb1b6b9a2010-09-29 17:31:35 +090047#include <linux/dmaengine.h>
48#include <linux/dma-mapping.h>
49#include <linux/scatterlist.h>
Linus Walleijb43d65f2009-06-09 08:11:42 +010050
51/*
52 * This macro is used to define some register default values.
53 * reg is masked with mask, the OR:ed with an (again masked)
54 * val shifted sb steps to the left.
55 */
56#define SSP_WRITE_BITS(reg, val, mask, sb) \
57 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
58
59/*
60 * This macro is also used to define some default values.
61 * It will just shift val by sb steps to the left and mask
62 * the result with mask.
63 */
64#define GEN_MASK_BITS(val, mask, sb) \
65 (((val)<<(sb)) & (mask))
66
67#define DRIVE_TX 0
68#define DO_NOT_DRIVE_TX 1
69
70#define DO_NOT_QUEUE_DMA 0
71#define QUEUE_DMA 1
72
73#define RX_TRANSFER 1
74#define TX_TRANSFER 2
75
76/*
77 * Macros to access SSP Registers with their offsets
78 */
79#define SSP_CR0(r) (r + 0x000)
80#define SSP_CR1(r) (r + 0x004)
81#define SSP_DR(r) (r + 0x008)
82#define SSP_SR(r) (r + 0x00C)
83#define SSP_CPSR(r) (r + 0x010)
84#define SSP_IMSC(r) (r + 0x014)
85#define SSP_RIS(r) (r + 0x018)
86#define SSP_MIS(r) (r + 0x01C)
87#define SSP_ICR(r) (r + 0x020)
88#define SSP_DMACR(r) (r + 0x024)
89#define SSP_ITCR(r) (r + 0x080)
90#define SSP_ITIP(r) (r + 0x084)
91#define SSP_ITOP(r) (r + 0x088)
92#define SSP_TDR(r) (r + 0x08C)
93
94#define SSP_PID0(r) (r + 0xFE0)
95#define SSP_PID1(r) (r + 0xFE4)
96#define SSP_PID2(r) (r + 0xFE8)
97#define SSP_PID3(r) (r + 0xFEC)
98
99#define SSP_CID0(r) (r + 0xFF0)
100#define SSP_CID1(r) (r + 0xFF4)
101#define SSP_CID2(r) (r + 0xFF8)
102#define SSP_CID3(r) (r + 0xFFC)
103
104/*
105 * SSP Control Register 0 - SSP_CR0
106 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000107#define SSP_CR0_MASK_DSS (0x0FUL << 0)
108#define SSP_CR0_MASK_FRF (0x3UL << 4)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100109#define SSP_CR0_MASK_SPO (0x1UL << 6)
110#define SSP_CR0_MASK_SPH (0x1UL << 7)
111#define SSP_CR0_MASK_SCR (0xFFUL << 8)
Linus Walleij556f4ae2010-05-05 09:28:15 +0000112
113/*
114 * The ST version of this block moves som bits
115 * in SSP_CR0 and extends it to 32 bits
116 */
117#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
118#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
119#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
120#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
121
Linus Walleijb43d65f2009-06-09 08:11:42 +0100122
123/*
124 * SSP Control Register 0 - SSP_CR1
125 */
126#define SSP_CR1_MASK_LBM (0x1UL << 0)
127#define SSP_CR1_MASK_SSE (0x1UL << 1)
128#define SSP_CR1_MASK_MS (0x1UL << 2)
129#define SSP_CR1_MASK_SOD (0x1UL << 3)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100130
131/*
Linus Walleij556f4ae2010-05-05 09:28:15 +0000132 * The ST version of this block adds some bits
133 * in SSP_CR1
Linus Walleijb43d65f2009-06-09 08:11:42 +0100134 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000135#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
136#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
137#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
138#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
139#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
Linus Walleij781c7b12010-05-07 08:40:53 +0000140/* This one is only in the PL023 variant */
141#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100142
143/*
144 * SSP Status Register - SSP_SR
145 */
146#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
147#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
148#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000149#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
Linus Walleijb43d65f2009-06-09 08:11:42 +0100150#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
151
152/*
153 * SSP Clock Prescale Register - SSP_CPSR
154 */
155#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
156
157/*
158 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
159 */
160#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
161#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
162#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
163#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
164
165/*
166 * SSP Raw Interrupt Status Register - SSP_RIS
167 */
168/* Receive Overrun Raw Interrupt status */
169#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
170/* Receive Timeout Raw Interrupt status */
171#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
172/* Receive FIFO Raw Interrupt status */
173#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
174/* Transmit FIFO Raw Interrupt status */
175#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
176
177/*
178 * SSP Masked Interrupt Status Register - SSP_MIS
179 */
180/* Receive Overrun Masked Interrupt status */
181#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
182/* Receive Timeout Masked Interrupt status */
183#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
184/* Receive FIFO Masked Interrupt status */
185#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
186/* Transmit FIFO Masked Interrupt status */
187#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
188
189/*
190 * SSP Interrupt Clear Register - SSP_ICR
191 */
192/* Receive Overrun Raw Clear Interrupt bit */
193#define SSP_ICR_MASK_RORIC (0x1UL << 0)
194/* Receive Timeout Clear Interrupt bit */
195#define SSP_ICR_MASK_RTIC (0x1UL << 1)
196
197/*
198 * SSP DMA Control Register - SSP_DMACR
199 */
200/* Receive DMA Enable bit */
201#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
202/* Transmit DMA Enable bit */
203#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
204
205/*
206 * SSP Integration Test control Register - SSP_ITCR
207 */
208#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
209#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
210
211/*
212 * SSP Integration Test Input Register - SSP_ITIP
213 */
214#define ITIP_MASK_SSPRXD (0x1UL << 0)
215#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
216#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
217#define ITIP_MASK_RXDMAC (0x1UL << 3)
218#define ITIP_MASK_TXDMAC (0x1UL << 4)
219#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
220
221/*
222 * SSP Integration Test output Register - SSP_ITOP
223 */
224#define ITOP_MASK_SSPTXD (0x1UL << 0)
225#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
226#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
227#define ITOP_MASK_SSPOEn (0x1UL << 3)
228#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
229#define ITOP_MASK_RORINTR (0x1UL << 5)
230#define ITOP_MASK_RTINTR (0x1UL << 6)
231#define ITOP_MASK_RXINTR (0x1UL << 7)
232#define ITOP_MASK_TXINTR (0x1UL << 8)
233#define ITOP_MASK_INTR (0x1UL << 9)
234#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
235#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
236#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
237#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
238
239/*
240 * SSP Test Data Register - SSP_TDR
241 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000242#define TDR_MASK_TESTDATA (0xFFFFFFFF)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100243
244/*
245 * Message State
246 * we use the spi_message.state (void *) pointer to
247 * hold a single state value, that's why all this
248 * (void *) casting is done here.
249 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000250#define STATE_START ((void *) 0)
251#define STATE_RUNNING ((void *) 1)
252#define STATE_DONE ((void *) 2)
253#define STATE_ERROR ((void *) -1)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100254
255/*
Linus Walleijb43d65f2009-06-09 08:11:42 +0100256 * SSP State - Whether Enabled or Disabled
257 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000258#define SSP_DISABLED (0)
259#define SSP_ENABLED (1)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100260
261/*
262 * SSP DMA State - Whether DMA Enabled or Disabled
263 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000264#define SSP_DMA_DISABLED (0)
265#define SSP_DMA_ENABLED (1)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100266
267/*
268 * SSP Clock Defaults
269 */
Linus Walleij556f4ae2010-05-05 09:28:15 +0000270#define SSP_DEFAULT_CLKRATE 0x2
271#define SSP_DEFAULT_PRESCALE 0x40
Linus Walleijb43d65f2009-06-09 08:11:42 +0100272
273/*
274 * SSP Clock Parameter ranges
275 */
276#define CPSDVR_MIN 0x02
277#define CPSDVR_MAX 0xFE
278#define SCR_MIN 0x00
279#define SCR_MAX 0xFF
280
281/*
282 * SSP Interrupt related Macros
283 */
284#define DEFAULT_SSP_REG_IMSC 0x0UL
285#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
286#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
287
288#define CLEAR_ALL_INTERRUPTS 0x3
289
290
291/*
292 * The type of reading going on on this chip
293 */
294enum ssp_reading {
295 READING_NULL,
296 READING_U8,
297 READING_U16,
298 READING_U32
299};
300
301/**
302 * The type of writing going on on this chip
303 */
304enum ssp_writing {
305 WRITING_NULL,
306 WRITING_U8,
307 WRITING_U16,
308 WRITING_U32
309};
310
311/**
312 * struct vendor_data - vendor-specific config parameters
313 * for PL022 derivates
314 * @fifodepth: depth of FIFOs (both)
315 * @max_bpw: maximum number of bits per word
316 * @unidir: supports unidirection transfers
Linus Walleij556f4ae2010-05-05 09:28:15 +0000317 * @extended_cr: 32 bit wide control register 0 with extra
318 * features and extra features in CR1 as found in the ST variants
Linus Walleij781c7b12010-05-07 08:40:53 +0000319 * @pl023: supports a subset of the ST extensions called "PL023"
Linus Walleijb43d65f2009-06-09 08:11:42 +0100320 */
321struct vendor_data {
322 int fifodepth;
323 int max_bpw;
324 bool unidir;
Linus Walleij556f4ae2010-05-05 09:28:15 +0000325 bool extended_cr;
Linus Walleij781c7b12010-05-07 08:40:53 +0000326 bool pl023;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100327};
328
329/**
330 * struct pl022 - This is the private SSP driver data structure
331 * @adev: AMBA device model hookup
Linus Walleij12e8b322011-02-08 13:03:55 +0100332 * @vendor: vendor data for the IP block
333 * @phybase: the physical memory where the SSP device resides
334 * @virtbase: the virtual memory where the SSP is mapped
335 * @clk: outgoing clock "SPICLK" for the SPI bus
Linus Walleijb43d65f2009-06-09 08:11:42 +0100336 * @master: SPI framework hookup
337 * @master_info: controller-specific data from machine setup
Linus Walleijb43d65f2009-06-09 08:11:42 +0100338 * @workqueue: a workqueue on which any spi_message request is queued
Linus Walleij12e8b322011-02-08 13:03:55 +0100339 * @pump_messages: work struct for scheduling work to the workqueue
340 * @queue_lock: spinlock to syncronise access to message queue
341 * @queue: message queue
Linus Walleijb43d65f2009-06-09 08:11:42 +0100342 * @busy: workqueue is busy
Linus Walleij5e8b8212010-12-22 23:13:59 +0100343 * @running: workqueue is running
Linus Walleijb43d65f2009-06-09 08:11:42 +0100344 * @pump_transfers: Tasklet used in Interrupt Transfer mode
345 * @cur_msg: Pointer to current spi_message being processed
346 * @cur_transfer: Pointer to current spi_transfer
347 * @cur_chip: pointer to current clients chip(assigned from controller_state)
348 * @tx: current position in TX buffer to be read
349 * @tx_end: end position in TX buffer to be read
350 * @rx: current position in RX buffer to be written
351 * @rx_end: end position in RX buffer to be written
Linus Walleij12e8b322011-02-08 13:03:55 +0100352 * @read: the type of read currently going on
353 * @write: the type of write currently going on
354 * @exp_fifo_level: expected FIFO level
355 * @dma_rx_channel: optional channel for RX DMA
356 * @dma_tx_channel: optional channel for TX DMA
357 * @sgt_rx: scattertable for the RX transfer
358 * @sgt_tx: scattertable for the TX transfer
359 * @dummypage: a dummy page used for driving data on the bus with DMA
Linus Walleijb43d65f2009-06-09 08:11:42 +0100360 */
361struct pl022 {
362 struct amba_device *adev;
363 struct vendor_data *vendor;
364 resource_size_t phybase;
365 void __iomem *virtbase;
366 struct clk *clk;
367 struct spi_master *master;
368 struct pl022_ssp_controller *master_info;
369 /* Driver message queue */
370 struct workqueue_struct *workqueue;
371 struct work_struct pump_messages;
372 spinlock_t queue_lock;
373 struct list_head queue;
Linus Walleijdec5a582010-12-22 23:13:48 +0100374 bool busy;
Linus Walleij5e8b8212010-12-22 23:13:59 +0100375 bool running;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100376 /* Message transfer pump */
377 struct tasklet_struct pump_transfers;
378 struct spi_message *cur_msg;
379 struct spi_transfer *cur_transfer;
380 struct chip_data *cur_chip;
381 void *tx;
382 void *tx_end;
383 void *rx;
384 void *rx_end;
385 enum ssp_reading read;
386 enum ssp_writing write;
Linus Walleijfc054752010-01-22 13:53:30 +0100387 u32 exp_fifo_level;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900388 /* DMA settings */
389#ifdef CONFIG_DMA_ENGINE
390 struct dma_chan *dma_rx_channel;
391 struct dma_chan *dma_tx_channel;
392 struct sg_table sgt_rx;
393 struct sg_table sgt_tx;
394 char *dummypage;
395#endif
Linus Walleijb43d65f2009-06-09 08:11:42 +0100396};
397
398/**
399 * struct chip_data - To maintain runtime state of SSP for each client chip
Linus Walleij556f4ae2010-05-05 09:28:15 +0000400 * @cr0: Value of control register CR0 of SSP - on later ST variants this
401 * register is 32 bits wide rather than just 16
Linus Walleijb43d65f2009-06-09 08:11:42 +0100402 * @cr1: Value of control register CR1 of SSP
403 * @dmacr: Value of DMA control Register of SSP
404 * @cpsr: Value of Clock prescale register
405 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
406 * @enable_dma: Whether to enable DMA or not
Linus Walleijb43d65f2009-06-09 08:11:42 +0100407 * @read: function ptr to be used to read when doing xfer for this chip
Linus Walleij12e8b322011-02-08 13:03:55 +0100408 * @write: function ptr to be used to write when doing xfer for this chip
Linus Walleijb43d65f2009-06-09 08:11:42 +0100409 * @cs_control: chip select callback provided by chip
410 * @xfer_type: polling/interrupt/DMA
411 *
412 * Runtime state of the SSP controller, maintained per chip,
413 * This would be set according to the current message that would be served
414 */
415struct chip_data {
Linus Walleij556f4ae2010-05-05 09:28:15 +0000416 u32 cr0;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100417 u16 cr1;
418 u16 dmacr;
419 u16 cpsr;
420 u8 n_bytes;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900421 bool enable_dma;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100422 enum ssp_reading read;
423 enum ssp_writing write;
424 void (*cs_control) (u32 command);
425 int xfer_type;
426};
427
428/**
429 * null_cs_control - Dummy chip select function
430 * @command: select/delect the chip
431 *
432 * If no chip select function is provided by client this is used as dummy
433 * chip select
434 */
435static void null_cs_control(u32 command)
436{
437 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
438}
439
440/**
441 * giveback - current spi_message is over, schedule next message and call
442 * callback of this message. Assumes that caller already
443 * set message->status; dma and pio irqs are blocked
444 * @pl022: SSP driver private data structure
445 */
446static void giveback(struct pl022 *pl022)
447{
448 struct spi_transfer *last_transfer;
449 unsigned long flags;
450 struct spi_message *msg;
451 void (*curr_cs_control) (u32 command);
452
453 /*
454 * This local reference to the chip select function
455 * is needed because we set curr_chip to NULL
456 * as a step toward termininating the message.
457 */
458 curr_cs_control = pl022->cur_chip->cs_control;
459 spin_lock_irqsave(&pl022->queue_lock, flags);
460 msg = pl022->cur_msg;
461 pl022->cur_msg = NULL;
462 pl022->cur_transfer = NULL;
463 pl022->cur_chip = NULL;
464 queue_work(pl022->workqueue, &pl022->pump_messages);
465 spin_unlock_irqrestore(&pl022->queue_lock, flags);
466
467 last_transfer = list_entry(msg->transfers.prev,
468 struct spi_transfer,
469 transfer_list);
470
471 /* Delay if requested before any change in chip select */
472 if (last_transfer->delay_usecs)
473 /*
474 * FIXME: This runs in interrupt context.
475 * Is this really smart?
476 */
477 udelay(last_transfer->delay_usecs);
478
479 /*
480 * Drop chip select UNLESS cs_change is true or we are returning
481 * a message with an error, or next message is for another chip
482 */
483 if (!last_transfer->cs_change)
484 curr_cs_control(SSP_CHIP_DESELECT);
485 else {
486 struct spi_message *next_msg;
487
488 /* Holding of cs was hinted, but we need to make sure
489 * the next message is for the same chip. Don't waste
490 * time with the following tests unless this was hinted.
491 *
492 * We cannot postpone this until pump_messages, because
493 * after calling msg->complete (below) the driver that
494 * sent the current message could be unloaded, which
495 * could invalidate the cs_control() callback...
496 */
497
498 /* get a pointer to the next message, if any */
499 spin_lock_irqsave(&pl022->queue_lock, flags);
500 if (list_empty(&pl022->queue))
501 next_msg = NULL;
502 else
503 next_msg = list_entry(pl022->queue.next,
504 struct spi_message, queue);
505 spin_unlock_irqrestore(&pl022->queue_lock, flags);
506
507 /* see if the next and current messages point
508 * to the same chip
509 */
510 if (next_msg && next_msg->spi != msg->spi)
511 next_msg = NULL;
512 if (!next_msg || msg->state == STATE_ERROR)
513 curr_cs_control(SSP_CHIP_DESELECT);
514 }
515 msg->state = NULL;
516 if (msg->complete)
517 msg->complete(msg->context);
Linus Walleij808f1032011-02-08 13:03:32 +0100518 /* This message is completed, so let's turn off the clocks & power */
Linus Walleijb43d65f2009-06-09 08:11:42 +0100519 clk_disable(pl022->clk);
Linus Walleij545074f2010-08-21 11:07:36 +0200520 amba_pclk_disable(pl022->adev);
Linus Walleij808f1032011-02-08 13:03:32 +0100521 amba_vcore_disable(pl022->adev);
Linus Walleijb43d65f2009-06-09 08:11:42 +0100522}
523
524/**
525 * flush - flush the FIFO to reach a clean state
526 * @pl022: SSP driver private data structure
527 */
528static int flush(struct pl022 *pl022)
529{
530 unsigned long limit = loops_per_jiffy << 1;
531
532 dev_dbg(&pl022->adev->dev, "flush\n");
533 do {
534 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
535 readw(SSP_DR(pl022->virtbase));
536 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
Linus Walleijfc054752010-01-22 13:53:30 +0100537
538 pl022->exp_fifo_level = 0;
539
Linus Walleijb43d65f2009-06-09 08:11:42 +0100540 return limit;
541}
542
543/**
544 * restore_state - Load configuration of current chip
545 * @pl022: SSP driver private data structure
546 */
547static void restore_state(struct pl022 *pl022)
548{
549 struct chip_data *chip = pl022->cur_chip;
550
Linus Walleij556f4ae2010-05-05 09:28:15 +0000551 if (pl022->vendor->extended_cr)
552 writel(chip->cr0, SSP_CR0(pl022->virtbase));
553 else
554 writew(chip->cr0, SSP_CR0(pl022->virtbase));
Linus Walleijb43d65f2009-06-09 08:11:42 +0100555 writew(chip->cr1, SSP_CR1(pl022->virtbase));
556 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
557 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
558 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
559 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
560}
561
Linus Walleijb43d65f2009-06-09 08:11:42 +0100562/*
563 * Default SSP Register Values
564 */
565#define DEFAULT_SSP_REG_CR0 ( \
566 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
Linus Walleij556f4ae2010-05-05 09:28:15 +0000567 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
Linus Walleijb43d65f2009-06-09 08:11:42 +0100568 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
Linus Walleijee2b8052009-08-15 15:12:05 +0100569 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
Linus Walleij556f4ae2010-05-05 09:28:15 +0000570 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
571)
572
573/* ST versions have slightly different bit layout */
574#define DEFAULT_SSP_REG_CR0_ST ( \
575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
576 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
577 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
580 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
581 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
Linus Walleijb43d65f2009-06-09 08:11:42 +0100582)
583
Linus Walleij781c7b12010-05-07 08:40:53 +0000584/* The PL023 version is slightly different again */
585#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
586 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
590)
591
Linus Walleijb43d65f2009-06-09 08:11:42 +0100592#define DEFAULT_SSP_REG_CR1 ( \
593 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
594 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
595 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
Linus Walleij556f4ae2010-05-05 09:28:15 +0000596 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
Linus Walleijb43d65f2009-06-09 08:11:42 +0100597)
598
Linus Walleij556f4ae2010-05-05 09:28:15 +0000599/* ST versions extend this register to use all 16 bits */
600#define DEFAULT_SSP_REG_CR1_ST ( \
601 DEFAULT_SSP_REG_CR1 | \
602 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
603 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
604 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
605 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
606 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
607)
608
Linus Walleij781c7b12010-05-07 08:40:53 +0000609/*
610 * The PL023 variant has further differences: no loopback mode, no microwire
611 * support, and a new clock feedback delay setting.
612 */
613#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
614 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
615 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
616 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
617 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
618 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
619 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
621 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
622)
Linus Walleij556f4ae2010-05-05 09:28:15 +0000623
Linus Walleijb43d65f2009-06-09 08:11:42 +0100624#define DEFAULT_SSP_REG_CPSR ( \
Linus Walleij556f4ae2010-05-05 09:28:15 +0000625 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
Linus Walleijb43d65f2009-06-09 08:11:42 +0100626)
627
628#define DEFAULT_SSP_REG_DMACR (\
629 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
630 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
631)
632
Linus Walleij781c7b12010-05-07 08:40:53 +0000633/**
634 * load_ssp_default_config - Load default configuration for SSP
635 * @pl022: SSP driver private data structure
636 */
Linus Walleijb43d65f2009-06-09 08:11:42 +0100637static void load_ssp_default_config(struct pl022 *pl022)
638{
Linus Walleij781c7b12010-05-07 08:40:53 +0000639 if (pl022->vendor->pl023) {
640 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
641 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
642 } else if (pl022->vendor->extended_cr) {
Linus Walleij556f4ae2010-05-05 09:28:15 +0000643 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
644 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
645 } else {
646 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
647 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
648 }
Linus Walleijb43d65f2009-06-09 08:11:42 +0100649 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
650 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
651 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
652 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
653}
654
655/**
656 * This will write to TX and read from RX according to the parameters
657 * set in pl022.
658 */
659static void readwriter(struct pl022 *pl022)
660{
661
662 /*
663 * The FIFO depth is different inbetween primecell variants.
664 * I believe filling in too much in the FIFO might cause
665 * errons in 8bit wide transfers on ARM variants (just 8 words
666 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
667 *
Linus Walleijfc054752010-01-22 13:53:30 +0100668 * To prevent this issue, the TX FIFO is only filled to the
669 * unused RX FIFO fill length, regardless of what the TX
670 * FIFO status flag indicates.
Linus Walleijb43d65f2009-06-09 08:11:42 +0100671 */
672 dev_dbg(&pl022->adev->dev,
673 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
674 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
675
676 /* Read as much as you can */
677 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
678 && (pl022->rx < pl022->rx_end)) {
679 switch (pl022->read) {
680 case READING_NULL:
681 readw(SSP_DR(pl022->virtbase));
682 break;
683 case READING_U8:
684 *(u8 *) (pl022->rx) =
685 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
686 break;
687 case READING_U16:
688 *(u16 *) (pl022->rx) =
689 (u16) readw(SSP_DR(pl022->virtbase));
690 break;
691 case READING_U32:
692 *(u32 *) (pl022->rx) =
693 readl(SSP_DR(pl022->virtbase));
694 break;
695 }
696 pl022->rx += (pl022->cur_chip->n_bytes);
Linus Walleijfc054752010-01-22 13:53:30 +0100697 pl022->exp_fifo_level--;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100698 }
699 /*
Linus Walleijfc054752010-01-22 13:53:30 +0100700 * Write as much as possible up to the RX FIFO size
Linus Walleijb43d65f2009-06-09 08:11:42 +0100701 */
Linus Walleijfc054752010-01-22 13:53:30 +0100702 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
Linus Walleijb43d65f2009-06-09 08:11:42 +0100703 && (pl022->tx < pl022->tx_end)) {
704 switch (pl022->write) {
705 case WRITING_NULL:
706 writew(0x0, SSP_DR(pl022->virtbase));
707 break;
708 case WRITING_U8:
709 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
710 break;
711 case WRITING_U16:
712 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
713 break;
714 case WRITING_U32:
715 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
716 break;
717 }
718 pl022->tx += (pl022->cur_chip->n_bytes);
Linus Walleijfc054752010-01-22 13:53:30 +0100719 pl022->exp_fifo_level++;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100720 /*
721 * This inner reader takes care of things appearing in the RX
722 * FIFO as we're transmitting. This will happen a lot since the
723 * clock starts running when you put things into the TX FIFO,
724 * and then things are continously clocked into the RX FIFO.
725 */
726 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
727 && (pl022->rx < pl022->rx_end)) {
728 switch (pl022->read) {
729 case READING_NULL:
730 readw(SSP_DR(pl022->virtbase));
731 break;
732 case READING_U8:
733 *(u8 *) (pl022->rx) =
734 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
735 break;
736 case READING_U16:
737 *(u16 *) (pl022->rx) =
738 (u16) readw(SSP_DR(pl022->virtbase));
739 break;
740 case READING_U32:
741 *(u32 *) (pl022->rx) =
742 readl(SSP_DR(pl022->virtbase));
743 break;
744 }
745 pl022->rx += (pl022->cur_chip->n_bytes);
Linus Walleijfc054752010-01-22 13:53:30 +0100746 pl022->exp_fifo_level--;
Linus Walleijb43d65f2009-06-09 08:11:42 +0100747 }
748 }
749 /*
750 * When we exit here the TX FIFO should be full and the RX FIFO
751 * should be empty
752 */
753}
754
755
756/**
757 * next_transfer - Move to the Next transfer in the current spi message
758 * @pl022: SSP driver private data structure
759 *
760 * This function moves though the linked list of spi transfers in the
761 * current spi message and returns with the state of current spi
762 * message i.e whether its last transfer is done(STATE_DONE) or
763 * Next transfer is ready(STATE_RUNNING)
764 */
765static void *next_transfer(struct pl022 *pl022)
766{
767 struct spi_message *msg = pl022->cur_msg;
768 struct spi_transfer *trans = pl022->cur_transfer;
769
770 /* Move to next transfer */
771 if (trans->transfer_list.next != &msg->transfers) {
772 pl022->cur_transfer =
773 list_entry(trans->transfer_list.next,
774 struct spi_transfer, transfer_list);
775 return STATE_RUNNING;
776 }
777 return STATE_DONE;
778}
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900779
780/*
781 * This DMA functionality is only compiled in if we have
782 * access to the generic DMA devices/DMA engine.
783 */
784#ifdef CONFIG_DMA_ENGINE
785static void unmap_free_dma_scatter(struct pl022 *pl022)
786{
787 /* Unmap and free the SG tables */
Linus Walleijb7298892010-12-22 23:13:07 +0100788 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900789 pl022->sgt_tx.nents, DMA_TO_DEVICE);
Linus Walleijb7298892010-12-22 23:13:07 +0100790 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900791 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
792 sg_free_table(&pl022->sgt_rx);
793 sg_free_table(&pl022->sgt_tx);
794}
795
796static void dma_callback(void *data)
797{
798 struct pl022 *pl022 = data;
799 struct spi_message *msg = pl022->cur_msg;
800
801 BUG_ON(!pl022->sgt_rx.sgl);
802
803#ifdef VERBOSE_DEBUG
804 /*
805 * Optionally dump out buffers to inspect contents, this is
806 * good if you want to convince yourself that the loopback
807 * read/write contents are the same, when adopting to a new
808 * DMA engine.
809 */
810 {
811 struct scatterlist *sg;
812 unsigned int i;
813
814 dma_sync_sg_for_cpu(&pl022->adev->dev,
815 pl022->sgt_rx.sgl,
816 pl022->sgt_rx.nents,
817 DMA_FROM_DEVICE);
818
819 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
820 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
821 print_hex_dump(KERN_ERR, "SPI RX: ",
822 DUMP_PREFIX_OFFSET,
823 16,
824 1,
825 sg_virt(sg),
826 sg_dma_len(sg),
827 1);
828 }
829 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
830 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
831 print_hex_dump(KERN_ERR, "SPI TX: ",
832 DUMP_PREFIX_OFFSET,
833 16,
834 1,
835 sg_virt(sg),
836 sg_dma_len(sg),
837 1);
838 }
839 }
840#endif
841
842 unmap_free_dma_scatter(pl022);
843
844 /* Update total bytes transfered */
845 msg->actual_length += pl022->cur_transfer->len;
846 if (pl022->cur_transfer->cs_change)
847 pl022->cur_chip->
848 cs_control(SSP_CHIP_DESELECT);
849
850 /* Move to next transfer */
851 msg->state = next_transfer(pl022);
852 tasklet_schedule(&pl022->pump_transfers);
853}
854
855static void setup_dma_scatter(struct pl022 *pl022,
856 void *buffer,
857 unsigned int length,
858 struct sg_table *sgtab)
859{
860 struct scatterlist *sg;
861 int bytesleft = length;
862 void *bufp = buffer;
863 int mapbytes;
864 int i;
865
866 if (buffer) {
867 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
868 /*
869 * If there are less bytes left than what fits
870 * in the current page (plus page alignment offset)
871 * we just feed in this, else we stuff in as much
872 * as we can.
873 */
874 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
875 mapbytes = bytesleft;
876 else
877 mapbytes = PAGE_SIZE - offset_in_page(bufp);
878 sg_set_page(sg, virt_to_page(bufp),
879 mapbytes, offset_in_page(bufp));
880 bufp += mapbytes;
881 bytesleft -= mapbytes;
882 dev_dbg(&pl022->adev->dev,
883 "set RX/TX target page @ %p, %d bytes, %d left\n",
884 bufp, mapbytes, bytesleft);
885 }
886 } else {
887 /* Map the dummy buffer on every page */
888 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
889 if (bytesleft < PAGE_SIZE)
890 mapbytes = bytesleft;
891 else
892 mapbytes = PAGE_SIZE;
893 sg_set_page(sg, virt_to_page(pl022->dummypage),
894 mapbytes, 0);
895 bytesleft -= mapbytes;
896 dev_dbg(&pl022->adev->dev,
897 "set RX/TX to dummy page %d bytes, %d left\n",
898 mapbytes, bytesleft);
899
900 }
901 }
902 BUG_ON(bytesleft);
903}
904
905/**
906 * configure_dma - configures the channels for the next transfer
907 * @pl022: SSP driver's private data structure
908 */
909static int configure_dma(struct pl022 *pl022)
910{
911 struct dma_slave_config rx_conf = {
912 .src_addr = SSP_DR(pl022->phybase),
913 .direction = DMA_FROM_DEVICE,
914 .src_maxburst = pl022->vendor->fifodepth >> 1,
915 };
916 struct dma_slave_config tx_conf = {
917 .dst_addr = SSP_DR(pl022->phybase),
918 .direction = DMA_TO_DEVICE,
919 .dst_maxburst = pl022->vendor->fifodepth >> 1,
920 };
921 unsigned int pages;
922 int ret;
Linus Walleij082086f2010-12-22 23:13:37 +0100923 int rx_sglen, tx_sglen;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900924 struct dma_chan *rxchan = pl022->dma_rx_channel;
925 struct dma_chan *txchan = pl022->dma_tx_channel;
926 struct dma_async_tx_descriptor *rxdesc;
927 struct dma_async_tx_descriptor *txdesc;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900928
929 /* Check that the channels are available */
930 if (!rxchan || !txchan)
931 return -ENODEV;
932
933 switch (pl022->read) {
934 case READING_NULL:
935 /* Use the same as for writing */
936 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
937 break;
938 case READING_U8:
939 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
940 break;
941 case READING_U16:
942 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
943 break;
944 case READING_U32:
945 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
946 break;
947 }
948
949 switch (pl022->write) {
950 case WRITING_NULL:
951 /* Use the same as for reading */
952 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
953 break;
954 case WRITING_U8:
955 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
956 break;
957 case WRITING_U16:
958 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
959 break;
960 case WRITING_U32:
Joe Perchesbc3f67a2010-11-14 19:04:47 -0800961 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900962 break;
963 }
964
965 /* SPI pecularity: we need to read and write the same width */
966 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
967 rx_conf.src_addr_width = tx_conf.dst_addr_width;
968 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
969 tx_conf.dst_addr_width = rx_conf.src_addr_width;
970 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
971
Linus Walleijecd442f2011-02-08 13:03:12 +0100972 dmaengine_slave_config(rxchan, &rx_conf);
973 dmaengine_slave_config(txchan, &tx_conf);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900974
975 /* Create sglists for the transfers */
976 pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
977 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
978
979 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
980 if (ret)
981 goto err_alloc_rx_sg;
982
983 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
984 if (ret)
985 goto err_alloc_tx_sg;
986
987 /* Fill in the scatterlists for the RX+TX buffers */
988 setup_dma_scatter(pl022, pl022->rx,
989 pl022->cur_transfer->len, &pl022->sgt_rx);
990 setup_dma_scatter(pl022, pl022->tx,
991 pl022->cur_transfer->len, &pl022->sgt_tx);
992
993 /* Map DMA buffers */
Linus Walleij082086f2010-12-22 23:13:37 +0100994 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900995 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
Linus Walleij082086f2010-12-22 23:13:37 +0100996 if (!rx_sglen)
Linus Walleijb1b6b9a2010-09-29 17:31:35 +0900997 goto err_rx_sgmap;
998
Linus Walleij082086f2010-12-22 23:13:37 +0100999 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001000 pl022->sgt_tx.nents, DMA_TO_DEVICE);
Linus Walleij082086f2010-12-22 23:13:37 +01001001 if (!tx_sglen)
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001002 goto err_tx_sgmap;
1003
1004 /* Send both scatterlists */
1005 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1006 pl022->sgt_rx.sgl,
Linus Walleij082086f2010-12-22 23:13:37 +01001007 rx_sglen,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001008 DMA_FROM_DEVICE,
1009 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1010 if (!rxdesc)
1011 goto err_rxdesc;
1012
1013 txdesc = txchan->device->device_prep_slave_sg(txchan,
1014 pl022->sgt_tx.sgl,
Linus Walleij082086f2010-12-22 23:13:37 +01001015 tx_sglen,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001016 DMA_TO_DEVICE,
1017 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018 if (!txdesc)
1019 goto err_txdesc;
1020
1021 /* Put the callback on the RX transfer only, that should finish last */
1022 rxdesc->callback = dma_callback;
1023 rxdesc->callback_param = pl022;
1024
1025 /* Submit and fire RX and TX with TX last so we're ready to read! */
Linus Walleijecd442f2011-02-08 13:03:12 +01001026 dmaengine_submit(rxdesc);
1027 dmaengine_submit(txdesc);
1028 dma_async_issue_pending(rxchan);
1029 dma_async_issue_pending(txchan);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001030
1031 return 0;
1032
1033err_submit_tx:
1034err_submit_rx:
1035err_txdesc:
Linus Walleijecd442f2011-02-08 13:03:12 +01001036 dmaengine_terminate_all(txchan);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001037err_rxdesc:
Linus Walleijecd442f2011-02-08 13:03:12 +01001038 dmaengine_terminate_all(rxchan);
Linus Walleijb7298892010-12-22 23:13:07 +01001039 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001040 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1041err_tx_sgmap:
Linus Walleijb7298892010-12-22 23:13:07 +01001042 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001043 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1044err_rx_sgmap:
1045 sg_free_table(&pl022->sgt_tx);
1046err_alloc_tx_sg:
1047 sg_free_table(&pl022->sgt_rx);
1048err_alloc_rx_sg:
1049 return -ENOMEM;
1050}
1051
1052static int __init pl022_dma_probe(struct pl022 *pl022)
1053{
1054 dma_cap_mask_t mask;
1055
1056 /* Try to acquire a generic DMA engine slave channel */
1057 dma_cap_zero(mask);
1058 dma_cap_set(DMA_SLAVE, mask);
1059 /*
1060 * We need both RX and TX channels to do DMA, else do none
1061 * of them.
1062 */
1063 pl022->dma_rx_channel = dma_request_channel(mask,
1064 pl022->master_info->dma_filter,
1065 pl022->master_info->dma_rx_param);
1066 if (!pl022->dma_rx_channel) {
1067 dev_err(&pl022->adev->dev, "no RX DMA channel!\n");
1068 goto err_no_rxchan;
1069 }
1070
1071 pl022->dma_tx_channel = dma_request_channel(mask,
1072 pl022->master_info->dma_filter,
1073 pl022->master_info->dma_tx_param);
1074 if (!pl022->dma_tx_channel) {
1075 dev_err(&pl022->adev->dev, "no TX DMA channel!\n");
1076 goto err_no_txchan;
1077 }
1078
1079 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1080 if (!pl022->dummypage) {
1081 dev_err(&pl022->adev->dev, "no DMA dummypage!\n");
1082 goto err_no_dummypage;
1083 }
1084
1085 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1086 dma_chan_name(pl022->dma_rx_channel),
1087 dma_chan_name(pl022->dma_tx_channel));
1088
1089 return 0;
1090
1091err_no_dummypage:
1092 dma_release_channel(pl022->dma_tx_channel);
1093err_no_txchan:
1094 dma_release_channel(pl022->dma_rx_channel);
1095 pl022->dma_rx_channel = NULL;
1096err_no_rxchan:
1097 return -ENODEV;
1098}
1099
1100static void terminate_dma(struct pl022 *pl022)
1101{
1102 struct dma_chan *rxchan = pl022->dma_rx_channel;
1103 struct dma_chan *txchan = pl022->dma_tx_channel;
1104
Linus Walleijecd442f2011-02-08 13:03:12 +01001105 dmaengine_terminate_all(rxchan);
1106 dmaengine_terminate_all(txchan);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001107 unmap_free_dma_scatter(pl022);
1108}
1109
1110static void pl022_dma_remove(struct pl022 *pl022)
1111{
1112 if (pl022->busy)
1113 terminate_dma(pl022);
1114 if (pl022->dma_tx_channel)
1115 dma_release_channel(pl022->dma_tx_channel);
1116 if (pl022->dma_rx_channel)
1117 dma_release_channel(pl022->dma_rx_channel);
1118 kfree(pl022->dummypage);
1119}
1120
1121#else
1122static inline int configure_dma(struct pl022 *pl022)
1123{
1124 return -ENODEV;
1125}
1126
1127static inline int pl022_dma_probe(struct pl022 *pl022)
1128{
1129 return 0;
1130}
1131
1132static inline void pl022_dma_remove(struct pl022 *pl022)
1133{
1134}
1135#endif
1136
Linus Walleijb43d65f2009-06-09 08:11:42 +01001137/**
1138 * pl022_interrupt_handler - Interrupt handler for SSP controller
1139 *
1140 * This function handles interrupts generated for an interrupt based transfer.
1141 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1142 * current message's state as STATE_ERROR and schedule the tasklet
1143 * pump_transfers which will do the postprocessing of the current message by
1144 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1145 * more data, and writes data in TX FIFO till it is not full. If we complete
1146 * the transfer we move to the next transfer and schedule the tasklet.
1147 */
1148static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1149{
1150 struct pl022 *pl022 = dev_id;
1151 struct spi_message *msg = pl022->cur_msg;
1152 u16 irq_status = 0;
1153 u16 flag = 0;
1154
1155 if (unlikely(!msg)) {
1156 dev_err(&pl022->adev->dev,
1157 "bad message state in interrupt handler");
1158 /* Never fail */
1159 return IRQ_HANDLED;
1160 }
1161
1162 /* Read the Interrupt Status Register */
1163 irq_status = readw(SSP_MIS(pl022->virtbase));
1164
1165 if (unlikely(!irq_status))
1166 return IRQ_NONE;
1167
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001168 /*
1169 * This handles the FIFO interrupts, the timeout
1170 * interrupts are flatly ignored, they cannot be
1171 * trusted.
1172 */
Linus Walleijb43d65f2009-06-09 08:11:42 +01001173 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1174 /*
1175 * Overrun interrupt - bail out since our Data has been
1176 * corrupted
1177 */
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001178 dev_err(&pl022->adev->dev, "FIFO overrun\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001179 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1180 dev_err(&pl022->adev->dev,
1181 "RXFIFO is full\n");
1182 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1183 dev_err(&pl022->adev->dev,
1184 "TXFIFO is full\n");
1185
1186 /*
1187 * Disable and clear interrupts, disable SSP,
1188 * mark message with bad status so it can be
1189 * retried.
1190 */
1191 writew(DISABLE_ALL_INTERRUPTS,
1192 SSP_IMSC(pl022->virtbase));
1193 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1194 writew((readw(SSP_CR1(pl022->virtbase)) &
1195 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1196 msg->state = STATE_ERROR;
1197
1198 /* Schedule message queue handler */
1199 tasklet_schedule(&pl022->pump_transfers);
1200 return IRQ_HANDLED;
1201 }
1202
1203 readwriter(pl022);
1204
1205 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1206 flag = 1;
1207 /* Disable Transmit interrupt */
1208 writew(readw(SSP_IMSC(pl022->virtbase)) &
1209 (~SSP_IMSC_MASK_TXIM),
1210 SSP_IMSC(pl022->virtbase));
1211 }
1212
1213 /*
1214 * Since all transactions must write as much as shall be read,
1215 * we can conclude the entire transaction once RX is complete.
1216 * At this point, all TX will always be finished.
1217 */
1218 if (pl022->rx >= pl022->rx_end) {
1219 writew(DISABLE_ALL_INTERRUPTS,
1220 SSP_IMSC(pl022->virtbase));
1221 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1222 if (unlikely(pl022->rx > pl022->rx_end)) {
1223 dev_warn(&pl022->adev->dev, "read %u surplus "
1224 "bytes (did you request an odd "
1225 "number of bytes on a 16bit bus?)\n",
1226 (u32) (pl022->rx - pl022->rx_end));
1227 }
1228 /* Update total bytes transfered */
1229 msg->actual_length += pl022->cur_transfer->len;
1230 if (pl022->cur_transfer->cs_change)
1231 pl022->cur_chip->
1232 cs_control(SSP_CHIP_DESELECT);
1233 /* Move to next transfer */
1234 msg->state = next_transfer(pl022);
1235 tasklet_schedule(&pl022->pump_transfers);
1236 return IRQ_HANDLED;
1237 }
1238
1239 return IRQ_HANDLED;
1240}
1241
1242/**
1243 * This sets up the pointers to memory for the next message to
1244 * send out on the SPI bus.
1245 */
1246static int set_up_next_transfer(struct pl022 *pl022,
1247 struct spi_transfer *transfer)
1248{
1249 int residue;
1250
1251 /* Sanity check the message for this bus width */
1252 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1253 if (unlikely(residue != 0)) {
1254 dev_err(&pl022->adev->dev,
1255 "message of %u bytes to transmit but the current "
1256 "chip bus has a data width of %u bytes!\n",
1257 pl022->cur_transfer->len,
1258 pl022->cur_chip->n_bytes);
1259 dev_err(&pl022->adev->dev, "skipping this message\n");
1260 return -EIO;
1261 }
1262 pl022->tx = (void *)transfer->tx_buf;
1263 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1264 pl022->rx = (void *)transfer->rx_buf;
1265 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1266 pl022->write =
1267 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1268 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1269 return 0;
1270}
1271
1272/**
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001273 * pump_transfers - Tasklet function which schedules next transfer
1274 * when running in interrupt or DMA transfer mode.
Linus Walleijb43d65f2009-06-09 08:11:42 +01001275 * @data: SSP driver private data structure
1276 *
1277 */
1278static void pump_transfers(unsigned long data)
1279{
1280 struct pl022 *pl022 = (struct pl022 *) data;
1281 struct spi_message *message = NULL;
1282 struct spi_transfer *transfer = NULL;
1283 struct spi_transfer *previous = NULL;
1284
1285 /* Get current state information */
1286 message = pl022->cur_msg;
1287 transfer = pl022->cur_transfer;
1288
1289 /* Handle for abort */
1290 if (message->state == STATE_ERROR) {
1291 message->status = -EIO;
1292 giveback(pl022);
1293 return;
1294 }
1295
1296 /* Handle end of message */
1297 if (message->state == STATE_DONE) {
1298 message->status = 0;
1299 giveback(pl022);
1300 return;
1301 }
1302
1303 /* Delay if requested at end of transfer before CS change */
1304 if (message->state == STATE_RUNNING) {
1305 previous = list_entry(transfer->transfer_list.prev,
1306 struct spi_transfer,
1307 transfer_list);
1308 if (previous->delay_usecs)
1309 /*
1310 * FIXME: This runs in interrupt context.
1311 * Is this really smart?
1312 */
1313 udelay(previous->delay_usecs);
1314
1315 /* Drop chip select only if cs_change is requested */
1316 if (previous->cs_change)
1317 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1318 } else {
1319 /* STATE_START */
1320 message->state = STATE_RUNNING;
1321 }
1322
1323 if (set_up_next_transfer(pl022, transfer)) {
1324 message->state = STATE_ERROR;
1325 message->status = -EIO;
1326 giveback(pl022);
1327 return;
1328 }
1329 /* Flush the FIFOs and let's go! */
1330 flush(pl022);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001331
1332 if (pl022->cur_chip->enable_dma) {
1333 if (configure_dma(pl022)) {
1334 dev_dbg(&pl022->adev->dev,
1335 "configuration of DMA failed, fall back to interrupt mode\n");
1336 goto err_config_dma;
1337 }
1338 return;
1339 }
1340
1341err_config_dma:
Linus Walleijb43d65f2009-06-09 08:11:42 +01001342 writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1343}
1344
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001345static void do_interrupt_dma_transfer(struct pl022 *pl022)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001346{
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001347 u32 irqflags = ENABLE_ALL_INTERRUPTS;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001348
1349 /* Enable target chip */
1350 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1351 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1352 /* Error path */
1353 pl022->cur_msg->state = STATE_ERROR;
1354 pl022->cur_msg->status = -EIO;
1355 giveback(pl022);
1356 return;
1357 }
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001358 /* If we're using DMA, set up DMA here */
1359 if (pl022->cur_chip->enable_dma) {
1360 /* Configure DMA transfer */
1361 if (configure_dma(pl022)) {
1362 dev_dbg(&pl022->adev->dev,
1363 "configuration of DMA failed, fall back to interrupt mode\n");
1364 goto err_config_dma;
1365 }
1366 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1367 irqflags = DISABLE_ALL_INTERRUPTS;
1368 }
1369err_config_dma:
Linus Walleijb43d65f2009-06-09 08:11:42 +01001370 /* Enable SSP, turn on interrupts */
1371 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1372 SSP_CR1(pl022->virtbase));
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001373 writew(irqflags, SSP_IMSC(pl022->virtbase));
Linus Walleijb43d65f2009-06-09 08:11:42 +01001374}
1375
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001376static void do_polling_transfer(struct pl022 *pl022)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001377{
Linus Walleijb43d65f2009-06-09 08:11:42 +01001378 struct spi_message *message = NULL;
1379 struct spi_transfer *transfer = NULL;
1380 struct spi_transfer *previous = NULL;
1381 struct chip_data *chip;
1382
1383 chip = pl022->cur_chip;
1384 message = pl022->cur_msg;
1385
1386 while (message->state != STATE_DONE) {
1387 /* Handle for abort */
1388 if (message->state == STATE_ERROR)
1389 break;
1390 transfer = pl022->cur_transfer;
1391
1392 /* Delay if requested at end of transfer */
1393 if (message->state == STATE_RUNNING) {
1394 previous =
1395 list_entry(transfer->transfer_list.prev,
1396 struct spi_transfer, transfer_list);
1397 if (previous->delay_usecs)
1398 udelay(previous->delay_usecs);
1399 if (previous->cs_change)
1400 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1401 } else {
1402 /* STATE_START */
1403 message->state = STATE_RUNNING;
1404 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1405 }
1406
1407 /* Configuration Changing Per Transfer */
1408 if (set_up_next_transfer(pl022, transfer)) {
1409 /* Error path */
1410 message->state = STATE_ERROR;
1411 break;
1412 }
1413 /* Flush FIFOs and enable SSP */
1414 flush(pl022);
1415 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1416 SSP_CR1(pl022->virtbase));
1417
Linus Walleij556f4ae2010-05-05 09:28:15 +00001418 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001419 /* FIXME: insert a timeout so we don't hang here indefinately */
1420 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end)
1421 readwriter(pl022);
1422
1423 /* Update total byte transfered */
1424 message->actual_length += pl022->cur_transfer->len;
1425 if (pl022->cur_transfer->cs_change)
1426 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1427 /* Move to next transfer */
1428 message->state = next_transfer(pl022);
1429 }
1430
1431 /* Handle end of message */
1432 if (message->state == STATE_DONE)
1433 message->status = 0;
1434 else
1435 message->status = -EIO;
1436
1437 giveback(pl022);
1438 return;
1439}
1440
1441/**
1442 * pump_messages - Workqueue function which processes spi message queue
1443 * @data: pointer to private data of SSP driver
1444 *
1445 * This function checks if there is any spi message in the queue that
1446 * needs processing and delegate control to appropriate function
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001447 * do_polling_transfer()/do_interrupt_dma_transfer()
Linus Walleijb43d65f2009-06-09 08:11:42 +01001448 * based on the kind of the transfer
1449 *
1450 */
1451static void pump_messages(struct work_struct *work)
1452{
1453 struct pl022 *pl022 =
1454 container_of(work, struct pl022, pump_messages);
1455 unsigned long flags;
1456
1457 /* Lock queue and check for queue work */
1458 spin_lock_irqsave(&pl022->queue_lock, flags);
Linus Walleij5e8b8212010-12-22 23:13:59 +01001459 if (list_empty(&pl022->queue) || !pl022->running) {
Linus Walleijdec5a582010-12-22 23:13:48 +01001460 pl022->busy = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001461 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1462 return;
1463 }
1464 /* Make sure we are not already running a message */
1465 if (pl022->cur_msg) {
1466 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1467 return;
1468 }
1469 /* Extract head of queue */
1470 pl022->cur_msg =
1471 list_entry(pl022->queue.next, struct spi_message, queue);
1472
1473 list_del_init(&pl022->cur_msg->queue);
Linus Walleijdec5a582010-12-22 23:13:48 +01001474 pl022->busy = true;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001475 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1476
1477 /* Initial message state */
1478 pl022->cur_msg->state = STATE_START;
1479 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1480 struct spi_transfer,
1481 transfer_list);
1482
1483 /* Setup the SPI using the per chip configuration */
1484 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1485 /*
Linus Walleij808f1032011-02-08 13:03:32 +01001486 * We enable the core voltage and clocks here, then the clocks
1487 * and core will be disabled when giveback() is called in each method
1488 * (poll/interrupt/DMA)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001489 */
Linus Walleij808f1032011-02-08 13:03:32 +01001490 amba_vcore_enable(pl022->adev);
Linus Walleij545074f2010-08-21 11:07:36 +02001491 amba_pclk_enable(pl022->adev);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001492 clk_enable(pl022->clk);
1493 restore_state(pl022);
1494 flush(pl022);
1495
1496 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1497 do_polling_transfer(pl022);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001498 else
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001499 do_interrupt_dma_transfer(pl022);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001500}
1501
1502
1503static int __init init_queue(struct pl022 *pl022)
1504{
1505 INIT_LIST_HEAD(&pl022->queue);
1506 spin_lock_init(&pl022->queue_lock);
1507
Linus Walleij5e8b8212010-12-22 23:13:59 +01001508 pl022->running = false;
Linus Walleijdec5a582010-12-22 23:13:48 +01001509 pl022->busy = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001510
1511 tasklet_init(&pl022->pump_transfers,
1512 pump_transfers, (unsigned long)pl022);
1513
1514 INIT_WORK(&pl022->pump_messages, pump_messages);
1515 pl022->workqueue = create_singlethread_workqueue(
1516 dev_name(pl022->master->dev.parent));
1517 if (pl022->workqueue == NULL)
1518 return -EBUSY;
1519
1520 return 0;
1521}
1522
1523
1524static int start_queue(struct pl022 *pl022)
1525{
1526 unsigned long flags;
1527
1528 spin_lock_irqsave(&pl022->queue_lock, flags);
1529
Linus Walleij5e8b8212010-12-22 23:13:59 +01001530 if (pl022->running || pl022->busy) {
Linus Walleijb43d65f2009-06-09 08:11:42 +01001531 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1532 return -EBUSY;
1533 }
1534
Linus Walleij5e8b8212010-12-22 23:13:59 +01001535 pl022->running = true;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001536 pl022->cur_msg = NULL;
1537 pl022->cur_transfer = NULL;
1538 pl022->cur_chip = NULL;
1539 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1540
1541 queue_work(pl022->workqueue, &pl022->pump_messages);
1542
1543 return 0;
1544}
1545
1546
1547static int stop_queue(struct pl022 *pl022)
1548{
1549 unsigned long flags;
1550 unsigned limit = 500;
1551 int status = 0;
1552
1553 spin_lock_irqsave(&pl022->queue_lock, flags);
1554
1555 /* This is a bit lame, but is optimized for the common execution path.
1556 * A wait_queue on the pl022->busy could be used, but then the common
1557 * execution path (pump_messages) would be required to call wake_up or
1558 * friends on every SPI message. Do this instead */
Linus Walleijb43d65f2009-06-09 08:11:42 +01001559 while (!list_empty(&pl022->queue) && pl022->busy && limit--) {
1560 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1561 msleep(10);
1562 spin_lock_irqsave(&pl022->queue_lock, flags);
1563 }
1564
1565 if (!list_empty(&pl022->queue) || pl022->busy)
1566 status = -EBUSY;
Linus Walleij5e8b8212010-12-22 23:13:59 +01001567 else
1568 pl022->running = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001569
1570 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1571
1572 return status;
1573}
1574
1575static int destroy_queue(struct pl022 *pl022)
1576{
1577 int status;
1578
1579 status = stop_queue(pl022);
1580 /* we are unloading the module or failing to load (only two calls
1581 * to this routine), and neither call can handle a return value.
1582 * However, destroy_workqueue calls flush_workqueue, and that will
1583 * block until all work is done. If the reason that stop_queue
1584 * timed out is that the work will never finish, then it does no
1585 * good to call destroy_workqueue, so return anyway. */
1586 if (status != 0)
1587 return status;
1588
1589 destroy_workqueue(pl022->workqueue);
1590
1591 return 0;
1592}
1593
1594static int verify_controller_parameters(struct pl022 *pl022,
Linus Walleijf9d629c2010-10-01 13:33:13 +02001595 struct pl022_config_chip const *chip_info)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001596{
Linus Walleijb43d65f2009-06-09 08:11:42 +01001597 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1598 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001599 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001600 "interface is configured incorrectly\n");
1601 return -EINVAL;
1602 }
1603 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1604 (!pl022->vendor->unidir)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001605 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001606 "unidirectional mode not supported in this "
1607 "hardware version\n");
1608 return -EINVAL;
1609 }
1610 if ((chip_info->hierarchy != SSP_MASTER)
1611 && (chip_info->hierarchy != SSP_SLAVE)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001612 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001613 "hierarchy is configured incorrectly\n");
1614 return -EINVAL;
1615 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01001616 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1617 && (chip_info->com_mode != DMA_TRANSFER)
1618 && (chip_info->com_mode != POLLING_TRANSFER)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001619 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001620 "Communication mode is configured incorrectly\n");
1621 return -EINVAL;
1622 }
1623 if ((chip_info->rx_lev_trig < SSP_RX_1_OR_MORE_ELEM)
1624 || (chip_info->rx_lev_trig > SSP_RX_32_OR_MORE_ELEM)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001625 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001626 "RX FIFO Trigger Level is configured incorrectly\n");
1627 return -EINVAL;
1628 }
1629 if ((chip_info->tx_lev_trig < SSP_TX_1_OR_MORE_EMPTY_LOC)
1630 || (chip_info->tx_lev_trig > SSP_TX_32_OR_MORE_EMPTY_LOC)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001631 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001632 "TX FIFO Trigger Level is configured incorrectly\n");
1633 return -EINVAL;
1634 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01001635 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1636 if ((chip_info->ctrl_len < SSP_BITS_4)
1637 || (chip_info->ctrl_len > SSP_BITS_32)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001638 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001639 "CTRL LEN is configured incorrectly\n");
1640 return -EINVAL;
1641 }
1642 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1643 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001644 dev_err(&pl022->adev->dev,
Linus Walleijb43d65f2009-06-09 08:11:42 +01001645 "Wait State is configured incorrectly\n");
1646 return -EINVAL;
1647 }
Linus Walleij556f4ae2010-05-05 09:28:15 +00001648 /* Half duplex is only available in the ST Micro version */
1649 if (pl022->vendor->extended_cr) {
1650 if ((chip_info->duplex !=
1651 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1652 && (chip_info->duplex !=
Julia Lawall4a4fd472010-09-29 17:31:30 +09001653 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001654 dev_err(&pl022->adev->dev,
Linus Walleij556f4ae2010-05-05 09:28:15 +00001655 "Microwire duplex mode is configured incorrectly\n");
1656 return -EINVAL;
Julia Lawall4a4fd472010-09-29 17:31:30 +09001657 }
Linus Walleij556f4ae2010-05-05 09:28:15 +00001658 } else {
1659 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
Linus Walleij5a1c98b2010-10-01 11:47:32 +02001660 dev_err(&pl022->adev->dev,
Linus Walleij556f4ae2010-05-05 09:28:15 +00001661 "Microwire half duplex mode requested,"
1662 " but this is only available in the"
1663 " ST version of PL022\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001664 return -EINVAL;
1665 }
1666 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01001667 return 0;
1668}
1669
1670/**
1671 * pl022_transfer - transfer function registered to SPI master framework
1672 * @spi: spi device which is requesting transfer
1673 * @msg: spi message which is to handled is queued to driver queue
1674 *
1675 * This function is registered to the SPI framework for this SPI master
1676 * controller. It will queue the spi_message in the queue of driver if
1677 * the queue is not stopped and return.
1678 */
1679static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1680{
1681 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1682 unsigned long flags;
1683
1684 spin_lock_irqsave(&pl022->queue_lock, flags);
1685
Linus Walleij5e8b8212010-12-22 23:13:59 +01001686 if (!pl022->running) {
Linus Walleijb43d65f2009-06-09 08:11:42 +01001687 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1688 return -ESHUTDOWN;
1689 }
1690 msg->actual_length = 0;
1691 msg->status = -EINPROGRESS;
1692 msg->state = STATE_START;
1693
1694 list_add_tail(&msg->queue, &pl022->queue);
Linus Walleij5e8b8212010-12-22 23:13:59 +01001695 if (pl022->running && !pl022->busy)
Linus Walleijb43d65f2009-06-09 08:11:42 +01001696 queue_work(pl022->workqueue, &pl022->pump_messages);
1697
1698 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1699 return 0;
1700}
1701
1702static int calculate_effective_freq(struct pl022 *pl022,
1703 int freq,
1704 struct ssp_clock_params *clk_freq)
1705{
1706 /* Lets calculate the frequency parameters */
1707 u16 cpsdvsr = 2;
1708 u16 scr = 0;
1709 bool freq_found = false;
1710 u32 rate;
1711 u32 max_tclk;
1712 u32 min_tclk;
1713
1714 rate = clk_get_rate(pl022->clk);
1715 /* cpsdvscr = 2 & scr 0 */
1716 max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1717 /* cpsdvsr = 254 & scr = 255 */
1718 min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1719
1720 if ((freq <= max_tclk) && (freq >= min_tclk)) {
1721 while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1722 while (scr <= SCR_MAX && !freq_found) {
1723 if ((rate /
1724 (cpsdvsr * (1 + scr))) > freq)
1725 scr += 1;
1726 else {
1727 /*
1728 * This bool is made true when
1729 * effective frequency >=
1730 * target frequency is found
1731 */
1732 freq_found = true;
1733 if ((rate /
1734 (cpsdvsr * (1 + scr))) != freq) {
1735 if (scr == SCR_MIN) {
1736 cpsdvsr -= 2;
1737 scr = SCR_MAX;
1738 } else
1739 scr -= 1;
1740 }
1741 }
1742 }
1743 if (!freq_found) {
1744 cpsdvsr += 2;
1745 scr = SCR_MIN;
1746 }
1747 }
1748 if (cpsdvsr != 0) {
1749 dev_dbg(&pl022->adev->dev,
1750 "SSP Effective Frequency is %u\n",
1751 (rate / (cpsdvsr * (1 + scr))));
1752 clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1753 clk_freq->scr = (u8) (scr & 0xFF);
1754 dev_dbg(&pl022->adev->dev,
1755 "SSP cpsdvsr = %d, scr = %d\n",
1756 clk_freq->cpsdvsr, clk_freq->scr);
1757 }
1758 } else {
1759 dev_err(&pl022->adev->dev,
1760 "controller data is incorrect: out of range frequency");
1761 return -EINVAL;
1762 }
1763 return 0;
1764}
1765
Linus Walleijf9d629c2010-10-01 13:33:13 +02001766
1767/*
1768 * A piece of default chip info unless the platform
1769 * supplies it.
1770 */
1771static const struct pl022_config_chip pl022_default_chip_info = {
1772 .com_mode = POLLING_TRANSFER,
1773 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1774 .hierarchy = SSP_SLAVE,
1775 .slave_tx_disable = DO_NOT_DRIVE_TX,
1776 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1777 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1778 .ctrl_len = SSP_BITS_8,
1779 .wait_state = SSP_MWIRE_WAIT_ZERO,
1780 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1781 .cs_control = null_cs_control,
1782};
1783
1784
Linus Walleijb43d65f2009-06-09 08:11:42 +01001785/**
Linus Walleijb43d65f2009-06-09 08:11:42 +01001786 * pl022_setup - setup function registered to SPI master framework
1787 * @spi: spi device which is requesting setup
1788 *
1789 * This function is registered to the SPI framework for this SPI master
1790 * controller. If it is the first time when setup is called by this device,
1791 * this function will initialize the runtime state for this chip and save
1792 * the same in the device structure. Else it will update the runtime info
1793 * with the updated chip info. Nothing is really being written to the
1794 * controller hardware here, that is not done until the actual transfer
1795 * commence.
1796 */
Linus Walleijb43d65f2009-06-09 08:11:42 +01001797static int pl022_setup(struct spi_device *spi)
1798{
Linus Walleijf9d629c2010-10-01 13:33:13 +02001799 struct pl022_config_chip const *chip_info;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001800 struct chip_data *chip;
Viresh Kumar94a1b6d2011-01-13 17:24:22 +05301801 struct ssp_clock_params clk_freq = {0, };
Linus Walleijb43d65f2009-06-09 08:11:42 +01001802 int status = 0;
1803 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
Kevin Wellsbde435a2010-09-16 06:18:50 -07001804 unsigned int bits = spi->bits_per_word;
1805 u32 tmp;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001806
1807 if (!spi->max_speed_hz)
1808 return -EINVAL;
1809
1810 /* Get controller_state if one is supplied */
1811 chip = spi_get_ctldata(spi);
1812
1813 if (chip == NULL) {
1814 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1815 if (!chip) {
1816 dev_err(&spi->dev,
1817 "cannot allocate controller state\n");
1818 return -ENOMEM;
1819 }
1820 dev_dbg(&spi->dev,
1821 "allocated memory for controller's runtime state\n");
1822 }
1823
1824 /* Get controller data if one is supplied */
1825 chip_info = spi->controller_data;
1826
1827 if (chip_info == NULL) {
Linus Walleijf9d629c2010-10-01 13:33:13 +02001828 chip_info = &pl022_default_chip_info;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001829 /* spi_board_info.controller_data not is supplied */
1830 dev_dbg(&spi->dev,
1831 "using default controller_data settings\n");
Linus Walleijf9d629c2010-10-01 13:33:13 +02001832 } else
Linus Walleijb43d65f2009-06-09 08:11:42 +01001833 dev_dbg(&spi->dev,
1834 "using user supplied controller_data settings\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001835
1836 /*
1837 * We can override with custom divisors, else we use the board
1838 * frequency setting
1839 */
1840 if ((0 == chip_info->clk_freq.cpsdvsr)
1841 && (0 == chip_info->clk_freq.scr)) {
1842 status = calculate_effective_freq(pl022,
1843 spi->max_speed_hz,
Linus Walleijf9d629c2010-10-01 13:33:13 +02001844 &clk_freq);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001845 if (status < 0)
1846 goto err_config_params;
1847 } else {
Linus Walleijf9d629c2010-10-01 13:33:13 +02001848 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1849 if ((clk_freq.cpsdvsr % 2) != 0)
1850 clk_freq.cpsdvsr =
1851 clk_freq.cpsdvsr - 1;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001852 }
Linus Walleijf9d629c2010-10-01 13:33:13 +02001853 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1854 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1855 dev_err(&spi->dev,
1856 "cpsdvsr is configured incorrectly\n");
1857 goto err_config_params;
1858 }
1859
1860
Linus Walleijb43d65f2009-06-09 08:11:42 +01001861 status = verify_controller_parameters(pl022, chip_info);
1862 if (status) {
1863 dev_err(&spi->dev, "controller data is incorrect");
1864 goto err_config_params;
1865 }
Linus Walleijf9d629c2010-10-01 13:33:13 +02001866
Linus Walleijb43d65f2009-06-09 08:11:42 +01001867 /* Now set controller state based on controller data */
1868 chip->xfer_type = chip_info->com_mode;
Linus Walleijf9d629c2010-10-01 13:33:13 +02001869 if (!chip_info->cs_control) {
1870 chip->cs_control = null_cs_control;
1871 dev_warn(&spi->dev,
1872 "chip select function is NULL for this chip\n");
1873 } else
1874 chip->cs_control = chip_info->cs_control;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001875
Kevin Wellsbde435a2010-09-16 06:18:50 -07001876 if (bits <= 3) {
1877 /* PL022 doesn't support less than 4-bits */
1878 status = -ENOTSUPP;
1879 goto err_config_params;
1880 } else if (bits <= 8) {
1881 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001882 chip->n_bytes = 1;
1883 chip->read = READING_U8;
1884 chip->write = WRITING_U8;
Kevin Wellsbde435a2010-09-16 06:18:50 -07001885 } else if (bits <= 16) {
Linus Walleijb43d65f2009-06-09 08:11:42 +01001886 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1887 chip->n_bytes = 2;
1888 chip->read = READING_U16;
1889 chip->write = WRITING_U16;
1890 } else {
1891 if (pl022->vendor->max_bpw >= 32) {
1892 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1893 chip->n_bytes = 4;
1894 chip->read = READING_U32;
1895 chip->write = WRITING_U32;
1896 } else {
1897 dev_err(&spi->dev,
1898 "illegal data size for this controller!\n");
1899 dev_err(&spi->dev,
1900 "a standard pl022 can only handle "
1901 "1 <= n <= 16 bit words\n");
Kevin Wellsbde435a2010-09-16 06:18:50 -07001902 status = -ENOTSUPP;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001903 goto err_config_params;
1904 }
1905 }
1906
1907 /* Now Initialize all register settings required for this chip */
1908 chip->cr0 = 0;
1909 chip->cr1 = 0;
1910 chip->dmacr = 0;
1911 chip->cpsr = 0;
1912 if ((chip_info->com_mode == DMA_TRANSFER)
1913 && ((pl022->master_info)->enable_dma)) {
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001914 chip->enable_dma = true;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001915 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
Linus Walleijb43d65f2009-06-09 08:11:42 +01001916 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1917 SSP_DMACR_MASK_RXDMAE, 0);
1918 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1919 SSP_DMACR_MASK_TXDMAE, 1);
1920 } else {
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09001921 chip->enable_dma = false;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001922 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1923 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1924 SSP_DMACR_MASK_RXDMAE, 0);
1925 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1926 SSP_DMACR_MASK_TXDMAE, 1);
1927 }
1928
Linus Walleijf9d629c2010-10-01 13:33:13 +02001929 chip->cpsr = clk_freq.cpsdvsr;
Linus Walleijb43d65f2009-06-09 08:11:42 +01001930
Linus Walleij556f4ae2010-05-05 09:28:15 +00001931 /* Special setup for the ST micro extended control registers */
1932 if (pl022->vendor->extended_cr) {
Kevin Wellsbde435a2010-09-16 06:18:50 -07001933 u32 etx;
1934
Linus Walleij781c7b12010-05-07 08:40:53 +00001935 if (pl022->vendor->pl023) {
1936 /* These bits are only in the PL023 */
1937 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1938 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1939 } else {
1940 /* These bits are in the PL022 but not PL023 */
1941 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1942 SSP_CR0_MASK_HALFDUP_ST, 5);
1943 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1944 SSP_CR0_MASK_CSS_ST, 16);
1945 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1946 SSP_CR0_MASK_FRF_ST, 21);
1947 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1948 SSP_CR1_MASK_MWAIT_ST, 6);
1949 }
Kevin Wellsbde435a2010-09-16 06:18:50 -07001950 SSP_WRITE_BITS(chip->cr0, bits - 1,
Linus Walleij556f4ae2010-05-05 09:28:15 +00001951 SSP_CR0_MASK_DSS_ST, 0);
Kevin Wellsbde435a2010-09-16 06:18:50 -07001952
1953 if (spi->mode & SPI_LSB_FIRST) {
1954 tmp = SSP_RX_LSB;
1955 etx = SSP_TX_LSB;
1956 } else {
1957 tmp = SSP_RX_MSB;
1958 etx = SSP_TX_MSB;
1959 }
1960 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1961 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
Linus Walleij556f4ae2010-05-05 09:28:15 +00001962 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1963 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1964 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1965 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1966 } else {
Kevin Wellsbde435a2010-09-16 06:18:50 -07001967 SSP_WRITE_BITS(chip->cr0, bits - 1,
Linus Walleij556f4ae2010-05-05 09:28:15 +00001968 SSP_CR0_MASK_DSS, 0);
1969 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1970 SSP_CR0_MASK_FRF, 4);
1971 }
Kevin Wellsbde435a2010-09-16 06:18:50 -07001972
Linus Walleij556f4ae2010-05-05 09:28:15 +00001973 /* Stuff that is common for all versions */
Kevin Wellsbde435a2010-09-16 06:18:50 -07001974 if (spi->mode & SPI_CPOL)
1975 tmp = SSP_CLK_POL_IDLE_HIGH;
1976 else
1977 tmp = SSP_CLK_POL_IDLE_LOW;
1978 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1979
1980 if (spi->mode & SPI_CPHA)
1981 tmp = SSP_CLK_SECOND_EDGE;
1982 else
1983 tmp = SSP_CLK_FIRST_EDGE;
1984 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1985
Linus Walleijf9d629c2010-10-01 13:33:13 +02001986 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
Linus Walleij781c7b12010-05-07 08:40:53 +00001987 /* Loopback is available on all versions except PL023 */
Kevin Wellsbde435a2010-09-16 06:18:50 -07001988 if (!pl022->vendor->pl023) {
1989 if (spi->mode & SPI_LOOP)
1990 tmp = LOOPBACK_ENABLED;
1991 else
1992 tmp = LOOPBACK_DISABLED;
1993 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1994 }
Linus Walleijb43d65f2009-06-09 08:11:42 +01001995 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1996 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1997 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
Linus Walleijb43d65f2009-06-09 08:11:42 +01001998
1999 /* Save controller_state */
2000 spi_set_ctldata(spi, chip);
2001 return status;
2002 err_config_params:
Kevin Wellsbde435a2010-09-16 06:18:50 -07002003 spi_set_ctldata(spi, NULL);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002004 kfree(chip);
2005 return status;
2006}
2007
2008/**
2009 * pl022_cleanup - cleanup function registered to SPI master framework
2010 * @spi: spi device which is requesting cleanup
2011 *
2012 * This function is registered to the SPI framework for this SPI master
2013 * controller. It will free the runtime state of chip.
2014 */
2015static void pl022_cleanup(struct spi_device *spi)
2016{
2017 struct chip_data *chip = spi_get_ctldata(spi);
2018
2019 spi_set_ctldata(spi, NULL);
2020 kfree(chip);
2021}
2022
2023
Kevin Wellsb4225882010-07-27 16:39:30 +00002024static int __devinit
Linus Walleijb43d65f2009-06-09 08:11:42 +01002025pl022_probe(struct amba_device *adev, struct amba_id *id)
2026{
2027 struct device *dev = &adev->dev;
2028 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2029 struct spi_master *master;
2030 struct pl022 *pl022 = NULL; /*Data for this driver */
2031 int status = 0;
2032
2033 dev_info(&adev->dev,
2034 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2035 if (platform_info == NULL) {
2036 dev_err(&adev->dev, "probe - no platform data supplied\n");
2037 status = -ENODEV;
2038 goto err_no_pdata;
2039 }
2040
2041 /* Allocate master with space for data */
2042 master = spi_alloc_master(dev, sizeof(struct pl022));
2043 if (master == NULL) {
2044 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2045 status = -ENOMEM;
2046 goto err_no_master;
2047 }
2048
2049 pl022 = spi_master_get_devdata(master);
2050 pl022->master = master;
2051 pl022->master_info = platform_info;
2052 pl022->adev = adev;
2053 pl022->vendor = id->data;
2054
2055 /*
2056 * Bus Number Which has been Assigned to this SSP controller
2057 * on this board
2058 */
2059 master->bus_num = platform_info->bus_id;
2060 master->num_chipselect = platform_info->num_chipselect;
2061 master->cleanup = pl022_cleanup;
2062 master->setup = pl022_setup;
2063 master->transfer = pl022_transfer;
2064
Kevin Wellsbde435a2010-09-16 06:18:50 -07002065 /*
2066 * Supports mode 0-3, loopback, and active low CS. Transfers are
2067 * always MS bit first on the original pl022.
2068 */
2069 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2070 if (pl022->vendor->extended_cr)
2071 master->mode_bits |= SPI_LSB_FIRST;
2072
Linus Walleijb43d65f2009-06-09 08:11:42 +01002073 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2074
2075 status = amba_request_regions(adev, NULL);
2076 if (status)
2077 goto err_no_ioregion;
2078
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002079 pl022->phybase = adev->res.start;
Linus Walleijb43d65f2009-06-09 08:11:42 +01002080 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2081 if (pl022->virtbase == NULL) {
2082 status = -ENOMEM;
2083 goto err_no_ioremap;
2084 }
2085 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2086 adev->res.start, pl022->virtbase);
2087
2088 pl022->clk = clk_get(&adev->dev, NULL);
2089 if (IS_ERR(pl022->clk)) {
2090 status = PTR_ERR(pl022->clk);
2091 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2092 goto err_no_clk;
2093 }
2094
2095 /* Disable SSP */
Linus Walleijb43d65f2009-06-09 08:11:42 +01002096 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2097 SSP_CR1(pl022->virtbase));
2098 load_ssp_default_config(pl022);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002099
2100 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2101 pl022);
2102 if (status < 0) {
2103 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2104 goto err_no_irq;
2105 }
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002106
2107 /* Get DMA channels */
2108 if (platform_info->enable_dma) {
2109 status = pl022_dma_probe(pl022);
2110 if (status != 0)
2111 goto err_no_dma;
2112 }
2113
Linus Walleijb43d65f2009-06-09 08:11:42 +01002114 /* Initialize and start queue */
2115 status = init_queue(pl022);
2116 if (status != 0) {
2117 dev_err(&adev->dev, "probe - problem initializing queue\n");
2118 goto err_init_queue;
2119 }
2120 status = start_queue(pl022);
2121 if (status != 0) {
2122 dev_err(&adev->dev, "probe - problem starting queue\n");
2123 goto err_start_queue;
2124 }
2125 /* Register with the SPI framework */
2126 amba_set_drvdata(adev, pl022);
2127 status = spi_register_master(master);
2128 if (status != 0) {
2129 dev_err(&adev->dev,
2130 "probe - problem registering spi master\n");
2131 goto err_spi_register;
2132 }
2133 dev_dbg(dev, "probe succeded\n");
Linus Walleij808f1032011-02-08 13:03:32 +01002134 /*
2135 * Disable the silicon block pclk and any voltage domain and just
2136 * power it up and clock it when it's needed
2137 */
Linus Walleij545074f2010-08-21 11:07:36 +02002138 amba_pclk_disable(adev);
Linus Walleij808f1032011-02-08 13:03:32 +01002139 amba_vcore_disable(adev);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002140 return 0;
2141
2142 err_spi_register:
2143 err_start_queue:
2144 err_init_queue:
2145 destroy_queue(pl022);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002146 pl022_dma_remove(pl022);
2147 err_no_dma:
Linus Walleijb43d65f2009-06-09 08:11:42 +01002148 free_irq(adev->irq[0], pl022);
2149 err_no_irq:
2150 clk_put(pl022->clk);
2151 err_no_clk:
2152 iounmap(pl022->virtbase);
2153 err_no_ioremap:
2154 amba_release_regions(adev);
2155 err_no_ioregion:
2156 spi_master_put(master);
2157 err_no_master:
2158 err_no_pdata:
2159 return status;
2160}
2161
Kevin Wellsb4225882010-07-27 16:39:30 +00002162static int __devexit
Linus Walleijb43d65f2009-06-09 08:11:42 +01002163pl022_remove(struct amba_device *adev)
2164{
2165 struct pl022 *pl022 = amba_get_drvdata(adev);
2166 int status = 0;
2167 if (!pl022)
2168 return 0;
2169
2170 /* Remove the queue */
2171 status = destroy_queue(pl022);
2172 if (status != 0) {
2173 dev_err(&adev->dev,
2174 "queue remove failed (%d)\n", status);
2175 return status;
2176 }
2177 load_ssp_default_config(pl022);
Linus Walleijb1b6b9a2010-09-29 17:31:35 +09002178 pl022_dma_remove(pl022);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002179 free_irq(adev->irq[0], pl022);
2180 clk_disable(pl022->clk);
2181 clk_put(pl022->clk);
2182 iounmap(pl022->virtbase);
2183 amba_release_regions(adev);
2184 tasklet_disable(&pl022->pump_transfers);
2185 spi_unregister_master(pl022->master);
2186 spi_master_put(pl022->master);
2187 amba_set_drvdata(adev, NULL);
2188 dev_dbg(&adev->dev, "remove succeded\n");
2189 return 0;
2190}
2191
2192#ifdef CONFIG_PM
2193static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2194{
2195 struct pl022 *pl022 = amba_get_drvdata(adev);
2196 int status = 0;
2197
2198 status = stop_queue(pl022);
2199 if (status) {
2200 dev_warn(&adev->dev, "suspend cannot stop queue\n");
2201 return status;
2202 }
2203
Linus Walleij808f1032011-02-08 13:03:32 +01002204 amba_vcore_enable(adev);
Linus Walleij545074f2010-08-21 11:07:36 +02002205 amba_pclk_enable(adev);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002206 load_ssp_default_config(pl022);
Linus Walleij545074f2010-08-21 11:07:36 +02002207 amba_pclk_disable(adev);
Linus Walleij808f1032011-02-08 13:03:32 +01002208 amba_vcore_disable(adev);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002209 dev_dbg(&adev->dev, "suspended\n");
2210 return 0;
2211}
2212
2213static int pl022_resume(struct amba_device *adev)
2214{
2215 struct pl022 *pl022 = amba_get_drvdata(adev);
2216 int status = 0;
2217
2218 /* Start the queue running */
2219 status = start_queue(pl022);
2220 if (status)
2221 dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2222 else
2223 dev_dbg(&adev->dev, "resumed\n");
2224
2225 return status;
2226}
2227#else
2228#define pl022_suspend NULL
2229#define pl022_resume NULL
2230#endif /* CONFIG_PM */
2231
2232static struct vendor_data vendor_arm = {
2233 .fifodepth = 8,
2234 .max_bpw = 16,
2235 .unidir = false,
Linus Walleij556f4ae2010-05-05 09:28:15 +00002236 .extended_cr = false,
Linus Walleij781c7b12010-05-07 08:40:53 +00002237 .pl023 = false,
Linus Walleijb43d65f2009-06-09 08:11:42 +01002238};
2239
2240
2241static struct vendor_data vendor_st = {
2242 .fifodepth = 32,
2243 .max_bpw = 32,
2244 .unidir = false,
Linus Walleij556f4ae2010-05-05 09:28:15 +00002245 .extended_cr = true,
Linus Walleij781c7b12010-05-07 08:40:53 +00002246 .pl023 = false,
2247};
2248
2249static struct vendor_data vendor_st_pl023 = {
2250 .fifodepth = 32,
2251 .max_bpw = 32,
2252 .unidir = false,
2253 .extended_cr = true,
2254 .pl023 = true,
Linus Walleijb43d65f2009-06-09 08:11:42 +01002255};
2256
2257static struct amba_id pl022_ids[] = {
2258 {
2259 /*
2260 * ARM PL022 variant, this has a 16bit wide
2261 * and 8 locations deep TX/RX FIFO
2262 */
2263 .id = 0x00041022,
2264 .mask = 0x000fffff,
2265 .data = &vendor_arm,
2266 },
2267 {
2268 /*
2269 * ST Micro derivative, this has 32bit wide
2270 * and 32 locations deep TX/RX FIFO
2271 */
Srinidhi Kasagare89e04f2009-10-05 06:13:53 +01002272 .id = 0x01080022,
Linus Walleijb43d65f2009-06-09 08:11:42 +01002273 .mask = 0xffffffff,
2274 .data = &vendor_st,
2275 },
Linus Walleij781c7b12010-05-07 08:40:53 +00002276 {
2277 /*
2278 * ST-Ericsson derivative "PL023" (this is not
2279 * an official ARM number), this is a PL022 SSP block
2280 * stripped to SPI mode only, it has 32bit wide
2281 * and 32 locations deep TX/RX FIFO but no extended
2282 * CR0/CR1 register
2283 */
2284 .id = 0x00080023,
2285 .mask = 0xffffffff,
2286 .data = &vendor_st_pl023,
2287 },
Linus Walleijb43d65f2009-06-09 08:11:42 +01002288 { 0, 0 },
2289};
2290
2291static struct amba_driver pl022_driver = {
2292 .drv = {
2293 .name = "ssp-pl022",
2294 },
2295 .id_table = pl022_ids,
2296 .probe = pl022_probe,
Kevin Wellsb4225882010-07-27 16:39:30 +00002297 .remove = __devexit_p(pl022_remove),
Linus Walleijb43d65f2009-06-09 08:11:42 +01002298 .suspend = pl022_suspend,
2299 .resume = pl022_resume,
2300};
2301
2302
2303static int __init pl022_init(void)
2304{
2305 return amba_driver_register(&pl022_driver);
2306}
2307
Linus Walleij25c8e032010-09-06 11:02:12 +02002308subsys_initcall(pl022_init);
Linus Walleijb43d65f2009-06-09 08:11:42 +01002309
2310static void __exit pl022_exit(void)
2311{
2312 amba_driver_unregister(&pl022_driver);
2313}
2314
2315module_exit(pl022_exit);
2316
2317MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2318MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2319MODULE_LICENSE("GPL");