Vijay Subramanian | d4b3621 | 2014-01-04 17:33:55 -0800 | [diff] [blame] | 1 | /* Copyright (C) 2013 Cisco Systems, Inc, 2013. |
| 2 | * |
| 3 | * This program is free software; you can redistribute it and/or |
| 4 | * modify it under the terms of the GNU General Public License |
| 5 | * as published by the Free Software Foundation; either version 2 |
| 6 | * of the License. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | * GNU General Public License for more details. |
| 12 | * |
| 13 | * Author: Vijay Subramanian <vijaynsu@cisco.com> |
| 14 | * Author: Mythili Prabhu <mysuryan@cisco.com> |
| 15 | * |
| 16 | * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no> |
| 17 | * University of Oslo, Norway. |
Vijay Subramanian | 219e288 | 2014-02-12 18:58:21 -0800 | [diff] [blame] | 18 | * |
| 19 | * References: |
| 20 | * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00 |
| 21 | * IEEE Conference on High Performance Switching and Routing 2013 : |
| 22 | * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem" |
Vijay Subramanian | d4b3621 | 2014-01-04 17:33:55 -0800 | [diff] [blame] | 23 | */ |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/slab.h> |
| 27 | #include <linux/types.h> |
| 28 | #include <linux/kernel.h> |
| 29 | #include <linux/errno.h> |
| 30 | #include <linux/skbuff.h> |
| 31 | #include <net/pkt_sched.h> |
| 32 | #include <net/inet_ecn.h> |
| 33 | |
| 34 | #define QUEUE_THRESHOLD 10000 |
| 35 | #define DQCOUNT_INVALID -1 |
| 36 | #define MAX_PROB 0xffffffff |
| 37 | #define PIE_SCALE 8 |
| 38 | |
| 39 | /* parameters used */ |
| 40 | struct pie_params { |
| 41 | psched_time_t target; /* user specified target delay in pschedtime */ |
| 42 | u32 tupdate; /* timer frequency (in jiffies) */ |
| 43 | u32 limit; /* number of packets that can be enqueued */ |
Vijay Subramanian | 219e288 | 2014-02-12 18:58:21 -0800 | [diff] [blame] | 44 | u32 alpha; /* alpha and beta are between 0 and 32 */ |
Vijay Subramanian | d4b3621 | 2014-01-04 17:33:55 -0800 | [diff] [blame] | 45 | u32 beta; /* and are used for shift relative to 1 */ |
| 46 | bool ecn; /* true if ecn is enabled */ |
| 47 | bool bytemode; /* to scale drop early prob based on pkt size */ |
| 48 | }; |
| 49 | |
| 50 | /* variables used */ |
| 51 | struct pie_vars { |
| 52 | u32 prob; /* probability but scaled by u32 limit. */ |
| 53 | psched_time_t burst_time; |
| 54 | psched_time_t qdelay; |
| 55 | psched_time_t qdelay_old; |
| 56 | u64 dq_count; /* measured in bytes */ |
| 57 | psched_time_t dq_tstamp; /* drain rate */ |
| 58 | u32 avg_dq_rate; /* bytes per pschedtime tick,scaled */ |
| 59 | u32 qlen_old; /* in bytes */ |
| 60 | }; |
| 61 | |
| 62 | /* statistics gathering */ |
| 63 | struct pie_stats { |
| 64 | u32 packets_in; /* total number of packets enqueued */ |
| 65 | u32 dropped; /* packets dropped due to pie_action */ |
| 66 | u32 overlimit; /* dropped due to lack of space in queue */ |
| 67 | u32 maxq; /* maximum queue size */ |
| 68 | u32 ecn_mark; /* packets marked with ECN */ |
| 69 | }; |
| 70 | |
| 71 | /* private data for the Qdisc */ |
| 72 | struct pie_sched_data { |
| 73 | struct pie_params params; |
| 74 | struct pie_vars vars; |
| 75 | struct pie_stats stats; |
| 76 | struct timer_list adapt_timer; |
| 77 | }; |
| 78 | |
| 79 | static void pie_params_init(struct pie_params *params) |
| 80 | { |
| 81 | params->alpha = 2; |
| 82 | params->beta = 20; |
| 83 | params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */ |
| 84 | params->limit = 1000; /* default of 1000 packets */ |
| 85 | params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC); /* 20 ms */ |
| 86 | params->ecn = false; |
| 87 | params->bytemode = false; |
| 88 | } |
| 89 | |
| 90 | static void pie_vars_init(struct pie_vars *vars) |
| 91 | { |
| 92 | vars->dq_count = DQCOUNT_INVALID; |
| 93 | vars->avg_dq_rate = 0; |
| 94 | /* default of 100 ms in pschedtime */ |
| 95 | vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC); |
| 96 | } |
| 97 | |
| 98 | static bool drop_early(struct Qdisc *sch, u32 packet_size) |
| 99 | { |
| 100 | struct pie_sched_data *q = qdisc_priv(sch); |
| 101 | u32 rnd; |
| 102 | u32 local_prob = q->vars.prob; |
| 103 | u32 mtu = psched_mtu(qdisc_dev(sch)); |
| 104 | |
| 105 | /* If there is still burst allowance left skip random early drop */ |
| 106 | if (q->vars.burst_time > 0) |
| 107 | return false; |
| 108 | |
| 109 | /* If current delay is less than half of target, and |
| 110 | * if drop prob is low already, disable early_drop |
| 111 | */ |
| 112 | if ((q->vars.qdelay < q->params.target / 2) |
| 113 | && (q->vars.prob < MAX_PROB / 5)) |
| 114 | return false; |
| 115 | |
| 116 | /* If we have fewer than 2 mtu-sized packets, disable drop_early, |
| 117 | * similar to min_th in RED |
| 118 | */ |
| 119 | if (sch->qstats.backlog < 2 * mtu) |
| 120 | return false; |
| 121 | |
| 122 | /* If bytemode is turned on, use packet size to compute new |
| 123 | * probablity. Smaller packets will have lower drop prob in this case |
| 124 | */ |
| 125 | if (q->params.bytemode && packet_size <= mtu) |
| 126 | local_prob = (local_prob / mtu) * packet_size; |
| 127 | else |
| 128 | local_prob = q->vars.prob; |
| 129 | |
Aruna-Hewapathirane | 63862b5 | 2014-01-11 07:15:59 -0500 | [diff] [blame] | 130 | rnd = prandom_u32(); |
Vijay Subramanian | d4b3621 | 2014-01-04 17:33:55 -0800 | [diff] [blame] | 131 | if (rnd < local_prob) |
| 132 | return true; |
| 133 | |
| 134 | return false; |
| 135 | } |
| 136 | |
| 137 | static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| 138 | { |
| 139 | struct pie_sched_data *q = qdisc_priv(sch); |
| 140 | bool enqueue = false; |
| 141 | |
| 142 | if (unlikely(qdisc_qlen(sch) >= sch->limit)) { |
| 143 | q->stats.overlimit++; |
| 144 | goto out; |
| 145 | } |
| 146 | |
| 147 | if (!drop_early(sch, skb->len)) { |
| 148 | enqueue = true; |
| 149 | } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) && |
| 150 | INET_ECN_set_ce(skb)) { |
| 151 | /* If packet is ecn capable, mark it if drop probability |
| 152 | * is lower than 10%, else drop it. |
| 153 | */ |
| 154 | q->stats.ecn_mark++; |
| 155 | enqueue = true; |
| 156 | } |
| 157 | |
| 158 | /* we can enqueue the packet */ |
| 159 | if (enqueue) { |
| 160 | q->stats.packets_in++; |
| 161 | if (qdisc_qlen(sch) > q->stats.maxq) |
| 162 | q->stats.maxq = qdisc_qlen(sch); |
| 163 | |
| 164 | return qdisc_enqueue_tail(skb, sch); |
| 165 | } |
| 166 | |
| 167 | out: |
| 168 | q->stats.dropped++; |
| 169 | return qdisc_drop(skb, sch); |
| 170 | } |
| 171 | |
| 172 | static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = { |
| 173 | [TCA_PIE_TARGET] = {.type = NLA_U32}, |
| 174 | [TCA_PIE_LIMIT] = {.type = NLA_U32}, |
| 175 | [TCA_PIE_TUPDATE] = {.type = NLA_U32}, |
| 176 | [TCA_PIE_ALPHA] = {.type = NLA_U32}, |
| 177 | [TCA_PIE_BETA] = {.type = NLA_U32}, |
| 178 | [TCA_PIE_ECN] = {.type = NLA_U32}, |
| 179 | [TCA_PIE_BYTEMODE] = {.type = NLA_U32}, |
| 180 | }; |
| 181 | |
| 182 | static int pie_change(struct Qdisc *sch, struct nlattr *opt) |
| 183 | { |
| 184 | struct pie_sched_data *q = qdisc_priv(sch); |
| 185 | struct nlattr *tb[TCA_PIE_MAX + 1]; |
| 186 | unsigned int qlen; |
| 187 | int err; |
| 188 | |
| 189 | if (!opt) |
| 190 | return -EINVAL; |
| 191 | |
| 192 | err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy); |
| 193 | if (err < 0) |
| 194 | return err; |
| 195 | |
| 196 | sch_tree_lock(sch); |
| 197 | |
| 198 | /* convert from microseconds to pschedtime */ |
| 199 | if (tb[TCA_PIE_TARGET]) { |
| 200 | /* target is in us */ |
| 201 | u32 target = nla_get_u32(tb[TCA_PIE_TARGET]); |
| 202 | |
| 203 | /* convert to pschedtime */ |
| 204 | q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC); |
| 205 | } |
| 206 | |
| 207 | /* tupdate is in jiffies */ |
| 208 | if (tb[TCA_PIE_TUPDATE]) |
| 209 | q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE])); |
| 210 | |
| 211 | if (tb[TCA_PIE_LIMIT]) { |
| 212 | u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]); |
| 213 | |
| 214 | q->params.limit = limit; |
| 215 | sch->limit = limit; |
| 216 | } |
| 217 | |
| 218 | if (tb[TCA_PIE_ALPHA]) |
| 219 | q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]); |
| 220 | |
| 221 | if (tb[TCA_PIE_BETA]) |
| 222 | q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]); |
| 223 | |
| 224 | if (tb[TCA_PIE_ECN]) |
| 225 | q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]); |
| 226 | |
| 227 | if (tb[TCA_PIE_BYTEMODE]) |
| 228 | q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]); |
| 229 | |
| 230 | /* Drop excess packets if new limit is lower */ |
| 231 | qlen = sch->q.qlen; |
| 232 | while (sch->q.qlen > sch->limit) { |
| 233 | struct sk_buff *skb = __skb_dequeue(&sch->q); |
| 234 | |
| 235 | sch->qstats.backlog -= qdisc_pkt_len(skb); |
| 236 | qdisc_drop(skb, sch); |
| 237 | } |
| 238 | qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen); |
| 239 | |
| 240 | sch_tree_unlock(sch); |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb) |
| 245 | { |
| 246 | |
| 247 | struct pie_sched_data *q = qdisc_priv(sch); |
| 248 | int qlen = sch->qstats.backlog; /* current queue size in bytes */ |
| 249 | |
| 250 | /* If current queue is about 10 packets or more and dq_count is unset |
| 251 | * we have enough packets to calculate the drain rate. Save |
| 252 | * current time as dq_tstamp and start measurement cycle. |
| 253 | */ |
| 254 | if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) { |
| 255 | q->vars.dq_tstamp = psched_get_time(); |
| 256 | q->vars.dq_count = 0; |
| 257 | } |
| 258 | |
| 259 | /* Calculate the average drain rate from this value. If queue length |
| 260 | * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset |
| 261 | * the dq_count to -1 as we don't have enough packets to calculate the |
| 262 | * drain rate anymore The following if block is entered only when we |
| 263 | * have a substantial queue built up (QUEUE_THRESHOLD bytes or more) |
| 264 | * and we calculate the drain rate for the threshold here. dq_count is |
| 265 | * in bytes, time difference in psched_time, hence rate is in |
| 266 | * bytes/psched_time. |
| 267 | */ |
| 268 | if (q->vars.dq_count != DQCOUNT_INVALID) { |
| 269 | q->vars.dq_count += skb->len; |
| 270 | |
| 271 | if (q->vars.dq_count >= QUEUE_THRESHOLD) { |
| 272 | psched_time_t now = psched_get_time(); |
| 273 | u32 dtime = now - q->vars.dq_tstamp; |
| 274 | u32 count = q->vars.dq_count << PIE_SCALE; |
| 275 | |
| 276 | if (dtime == 0) |
| 277 | return; |
| 278 | |
| 279 | count = count / dtime; |
| 280 | |
| 281 | if (q->vars.avg_dq_rate == 0) |
| 282 | q->vars.avg_dq_rate = count; |
| 283 | else |
| 284 | q->vars.avg_dq_rate = |
| 285 | (q->vars.avg_dq_rate - |
| 286 | (q->vars.avg_dq_rate >> 3)) + (count >> 3); |
| 287 | |
| 288 | /* If the queue has receded below the threshold, we hold |
| 289 | * on to the last drain rate calculated, else we reset |
| 290 | * dq_count to 0 to re-enter the if block when the next |
| 291 | * packet is dequeued |
| 292 | */ |
| 293 | if (qlen < QUEUE_THRESHOLD) |
| 294 | q->vars.dq_count = DQCOUNT_INVALID; |
| 295 | else { |
| 296 | q->vars.dq_count = 0; |
| 297 | q->vars.dq_tstamp = psched_get_time(); |
| 298 | } |
| 299 | |
| 300 | if (q->vars.burst_time > 0) { |
| 301 | if (q->vars.burst_time > dtime) |
| 302 | q->vars.burst_time -= dtime; |
| 303 | else |
| 304 | q->vars.burst_time = 0; |
| 305 | } |
| 306 | } |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | static void calculate_probability(struct Qdisc *sch) |
| 311 | { |
| 312 | struct pie_sched_data *q = qdisc_priv(sch); |
| 313 | u32 qlen = sch->qstats.backlog; /* queue size in bytes */ |
| 314 | psched_time_t qdelay = 0; /* in pschedtime */ |
| 315 | psched_time_t qdelay_old = q->vars.qdelay; /* in pschedtime */ |
| 316 | s32 delta = 0; /* determines the change in probability */ |
| 317 | u32 oldprob; |
| 318 | u32 alpha, beta; |
| 319 | bool update_prob = true; |
| 320 | |
| 321 | q->vars.qdelay_old = q->vars.qdelay; |
| 322 | |
| 323 | if (q->vars.avg_dq_rate > 0) |
| 324 | qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate; |
| 325 | else |
| 326 | qdelay = 0; |
| 327 | |
| 328 | /* If qdelay is zero and qlen is not, it means qlen is very small, less |
| 329 | * than dequeue_rate, so we do not update probabilty in this round |
| 330 | */ |
| 331 | if (qdelay == 0 && qlen != 0) |
| 332 | update_prob = false; |
| 333 | |
Vijay Subramanian | 219e288 | 2014-02-12 18:58:21 -0800 | [diff] [blame] | 334 | /* In the algorithm, alpha and beta are between 0 and 2 with typical |
| 335 | * value for alpha as 0.125. In this implementation, we use values 0-32 |
| 336 | * passed from user space to represent this. Also, alpha and beta have |
| 337 | * unit of HZ and need to be scaled before they can used to update |
| 338 | * probability. alpha/beta are updated locally below by 1) scaling them |
| 339 | * appropriately 2) scaling down by 16 to come to 0-2 range. |
| 340 | * Please see paper for details. |
| 341 | * |
| 342 | * We scale alpha and beta differently depending on whether we are in |
| 343 | * light, medium or high dropping mode. |
Vijay Subramanian | d4b3621 | 2014-01-04 17:33:55 -0800 | [diff] [blame] | 344 | */ |
| 345 | if (q->vars.prob < MAX_PROB / 100) { |
| 346 | alpha = |
| 347 | (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7; |
| 348 | beta = |
| 349 | (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7; |
| 350 | } else if (q->vars.prob < MAX_PROB / 10) { |
| 351 | alpha = |
| 352 | (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5; |
| 353 | beta = |
| 354 | (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5; |
| 355 | } else { |
| 356 | alpha = |
| 357 | (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; |
| 358 | beta = |
| 359 | (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; |
| 360 | } |
| 361 | |
| 362 | /* alpha and beta should be between 0 and 32, in multiples of 1/16 */ |
| 363 | delta += alpha * ((qdelay - q->params.target)); |
| 364 | delta += beta * ((qdelay - qdelay_old)); |
| 365 | |
| 366 | oldprob = q->vars.prob; |
| 367 | |
| 368 | /* to ensure we increase probability in steps of no more than 2% */ |
| 369 | if (delta > (s32) (MAX_PROB / (100 / 2)) && |
| 370 | q->vars.prob >= MAX_PROB / 10) |
| 371 | delta = (MAX_PROB / 100) * 2; |
| 372 | |
| 373 | /* Non-linear drop: |
| 374 | * Tune drop probability to increase quickly for high delays(>= 250ms) |
| 375 | * 250ms is derived through experiments and provides error protection |
| 376 | */ |
| 377 | |
| 378 | if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC))) |
| 379 | delta += MAX_PROB / (100 / 2); |
| 380 | |
| 381 | q->vars.prob += delta; |
| 382 | |
| 383 | if (delta > 0) { |
| 384 | /* prevent overflow */ |
| 385 | if (q->vars.prob < oldprob) { |
| 386 | q->vars.prob = MAX_PROB; |
| 387 | /* Prevent normalization error. If probability is at |
| 388 | * maximum value already, we normalize it here, and |
| 389 | * skip the check to do a non-linear drop in the next |
| 390 | * section. |
| 391 | */ |
| 392 | update_prob = false; |
| 393 | } |
| 394 | } else { |
| 395 | /* prevent underflow */ |
| 396 | if (q->vars.prob > oldprob) |
| 397 | q->vars.prob = 0; |
| 398 | } |
| 399 | |
| 400 | /* Non-linear drop in probability: Reduce drop probability quickly if |
| 401 | * delay is 0 for 2 consecutive Tupdate periods. |
| 402 | */ |
| 403 | |
| 404 | if ((qdelay == 0) && (qdelay_old == 0) && update_prob) |
| 405 | q->vars.prob = (q->vars.prob * 98) / 100; |
| 406 | |
| 407 | q->vars.qdelay = qdelay; |
| 408 | q->vars.qlen_old = qlen; |
| 409 | |
| 410 | /* We restart the measurement cycle if the following conditions are met |
| 411 | * 1. If the delay has been low for 2 consecutive Tupdate periods |
| 412 | * 2. Calculated drop probability is zero |
| 413 | * 3. We have atleast one estimate for the avg_dq_rate ie., |
| 414 | * is a non-zero value |
| 415 | */ |
| 416 | if ((q->vars.qdelay < q->params.target / 2) && |
| 417 | (q->vars.qdelay_old < q->params.target / 2) && |
| 418 | (q->vars.prob == 0) && |
| 419 | (q->vars.avg_dq_rate > 0)) |
| 420 | pie_vars_init(&q->vars); |
| 421 | } |
| 422 | |
| 423 | static void pie_timer(unsigned long arg) |
| 424 | { |
| 425 | struct Qdisc *sch = (struct Qdisc *)arg; |
| 426 | struct pie_sched_data *q = qdisc_priv(sch); |
| 427 | spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch)); |
| 428 | |
| 429 | spin_lock(root_lock); |
| 430 | calculate_probability(sch); |
| 431 | |
| 432 | /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */ |
| 433 | if (q->params.tupdate) |
| 434 | mod_timer(&q->adapt_timer, jiffies + q->params.tupdate); |
| 435 | spin_unlock(root_lock); |
| 436 | |
| 437 | } |
| 438 | |
| 439 | static int pie_init(struct Qdisc *sch, struct nlattr *opt) |
| 440 | { |
| 441 | struct pie_sched_data *q = qdisc_priv(sch); |
| 442 | |
| 443 | pie_params_init(&q->params); |
| 444 | pie_vars_init(&q->vars); |
| 445 | sch->limit = q->params.limit; |
| 446 | |
| 447 | setup_timer(&q->adapt_timer, pie_timer, (unsigned long)sch); |
| 448 | mod_timer(&q->adapt_timer, jiffies + HZ / 2); |
| 449 | |
| 450 | if (opt) { |
| 451 | int err = pie_change(sch, opt); |
| 452 | |
| 453 | if (err) |
| 454 | return err; |
| 455 | } |
| 456 | |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | static int pie_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 461 | { |
| 462 | struct pie_sched_data *q = qdisc_priv(sch); |
| 463 | struct nlattr *opts; |
| 464 | |
| 465 | opts = nla_nest_start(skb, TCA_OPTIONS); |
| 466 | if (opts == NULL) |
| 467 | goto nla_put_failure; |
| 468 | |
| 469 | /* convert target from pschedtime to us */ |
| 470 | if (nla_put_u32(skb, TCA_PIE_TARGET, |
| 471 | ((u32) PSCHED_TICKS2NS(q->params.target)) / |
| 472 | NSEC_PER_USEC) || |
| 473 | nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) || |
| 474 | nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) || |
| 475 | nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) || |
| 476 | nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) || |
| 477 | nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) || |
| 478 | nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode)) |
| 479 | goto nla_put_failure; |
| 480 | |
| 481 | return nla_nest_end(skb, opts); |
| 482 | |
| 483 | nla_put_failure: |
| 484 | nla_nest_cancel(skb, opts); |
| 485 | return -1; |
| 486 | |
| 487 | } |
| 488 | |
| 489 | static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
| 490 | { |
| 491 | struct pie_sched_data *q = qdisc_priv(sch); |
| 492 | struct tc_pie_xstats st = { |
| 493 | .prob = q->vars.prob, |
| 494 | .delay = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) / |
| 495 | NSEC_PER_USEC, |
| 496 | /* unscale and return dq_rate in bytes per sec */ |
| 497 | .avg_dq_rate = q->vars.avg_dq_rate * |
| 498 | (PSCHED_TICKS_PER_SEC) >> PIE_SCALE, |
| 499 | .packets_in = q->stats.packets_in, |
| 500 | .overlimit = q->stats.overlimit, |
| 501 | .maxq = q->stats.maxq, |
| 502 | .dropped = q->stats.dropped, |
| 503 | .ecn_mark = q->stats.ecn_mark, |
| 504 | }; |
| 505 | |
| 506 | return gnet_stats_copy_app(d, &st, sizeof(st)); |
| 507 | } |
| 508 | |
| 509 | static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch) |
| 510 | { |
| 511 | struct sk_buff *skb; |
| 512 | skb = __qdisc_dequeue_head(sch, &sch->q); |
| 513 | |
| 514 | if (!skb) |
| 515 | return NULL; |
| 516 | |
| 517 | pie_process_dequeue(sch, skb); |
| 518 | return skb; |
| 519 | } |
| 520 | |
| 521 | static void pie_reset(struct Qdisc *sch) |
| 522 | { |
| 523 | struct pie_sched_data *q = qdisc_priv(sch); |
| 524 | qdisc_reset_queue(sch); |
| 525 | pie_vars_init(&q->vars); |
| 526 | } |
| 527 | |
| 528 | static void pie_destroy(struct Qdisc *sch) |
| 529 | { |
| 530 | struct pie_sched_data *q = qdisc_priv(sch); |
| 531 | q->params.tupdate = 0; |
| 532 | del_timer_sync(&q->adapt_timer); |
| 533 | } |
| 534 | |
| 535 | static struct Qdisc_ops pie_qdisc_ops __read_mostly = { |
| 536 | .id = "pie", |
| 537 | .priv_size = sizeof(struct pie_sched_data), |
| 538 | .enqueue = pie_qdisc_enqueue, |
| 539 | .dequeue = pie_qdisc_dequeue, |
| 540 | .peek = qdisc_peek_dequeued, |
| 541 | .init = pie_init, |
| 542 | .destroy = pie_destroy, |
| 543 | .reset = pie_reset, |
| 544 | .change = pie_change, |
| 545 | .dump = pie_dump, |
| 546 | .dump_stats = pie_dump_stats, |
| 547 | .owner = THIS_MODULE, |
| 548 | }; |
| 549 | |
| 550 | static int __init pie_module_init(void) |
| 551 | { |
| 552 | return register_qdisc(&pie_qdisc_ops); |
| 553 | } |
| 554 | |
| 555 | static void __exit pie_module_exit(void) |
| 556 | { |
| 557 | unregister_qdisc(&pie_qdisc_ops); |
| 558 | } |
| 559 | |
| 560 | module_init(pie_module_init); |
| 561 | module_exit(pie_module_exit); |
| 562 | |
| 563 | MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler"); |
| 564 | MODULE_AUTHOR("Vijay Subramanian"); |
| 565 | MODULE_AUTHOR("Mythili Prabhu"); |
| 566 | MODULE_LICENSE("GPL"); |