blob: 07a03087db331af563a72b709cb7d7d821dc1fe9 [file] [log] [blame]
Will Deacon45ae7cf2013-06-24 18:31:25 +01001/*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 39-bit addressing
28 * - Context fault reporting
29 */
30
31#define pr_fmt(fmt) "arm-smmu: " fmt
32
33#include <linux/delay.h>
34#include <linux/dma-mapping.h>
35#include <linux/err.h>
36#include <linux/interrupt.h>
37#include <linux/io.h>
38#include <linux/iommu.h>
39#include <linux/mm.h>
40#include <linux/module.h>
41#include <linux/of.h>
42#include <linux/platform_device.h>
43#include <linux/slab.h>
44#include <linux/spinlock.h>
45
46#include <linux/amba/bus.h>
47
48#include <asm/pgalloc.h>
49
50/* Maximum number of stream IDs assigned to a single device */
51#define MAX_MASTER_STREAMIDS 8
52
53/* Maximum number of context banks per SMMU */
54#define ARM_SMMU_MAX_CBS 128
55
56/* Maximum number of mapping groups per SMMU */
57#define ARM_SMMU_MAX_SMRS 128
58
59/* Number of VMIDs per SMMU */
60#define ARM_SMMU_NUM_VMIDS 256
61
62/* SMMU global address space */
63#define ARM_SMMU_GR0(smmu) ((smmu)->base)
64#define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize)
65
66/* Page table bits */
67#define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
68#define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
69#define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
70#define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
71#define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
72#define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
73
74#if PAGE_SIZE == SZ_4K
75#define ARM_SMMU_PTE_CONT_ENTRIES 16
76#elif PAGE_SIZE == SZ_64K
77#define ARM_SMMU_PTE_CONT_ENTRIES 32
78#else
79#define ARM_SMMU_PTE_CONT_ENTRIES 1
80#endif
81
82#define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
83#define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
84#define ARM_SMMU_PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(pte_t))
85
86/* Stage-1 PTE */
87#define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
88#define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
89#define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
Will Deacon1463fe42013-07-31 19:21:27 +010090#define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
Will Deacon45ae7cf2013-06-24 18:31:25 +010091
92/* Stage-2 PTE */
93#define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
94#define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
95#define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
96#define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
97#define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
98#define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
99
100/* Configuration registers */
101#define ARM_SMMU_GR0_sCR0 0x0
102#define sCR0_CLIENTPD (1 << 0)
103#define sCR0_GFRE (1 << 1)
104#define sCR0_GFIE (1 << 2)
105#define sCR0_GCFGFRE (1 << 4)
106#define sCR0_GCFGFIE (1 << 5)
107#define sCR0_USFCFG (1 << 10)
108#define sCR0_VMIDPNE (1 << 11)
109#define sCR0_PTM (1 << 12)
110#define sCR0_FB (1 << 13)
111#define sCR0_BSU_SHIFT 14
112#define sCR0_BSU_MASK 0x3
113
114/* Identification registers */
115#define ARM_SMMU_GR0_ID0 0x20
116#define ARM_SMMU_GR0_ID1 0x24
117#define ARM_SMMU_GR0_ID2 0x28
118#define ARM_SMMU_GR0_ID3 0x2c
119#define ARM_SMMU_GR0_ID4 0x30
120#define ARM_SMMU_GR0_ID5 0x34
121#define ARM_SMMU_GR0_ID6 0x38
122#define ARM_SMMU_GR0_ID7 0x3c
123#define ARM_SMMU_GR0_sGFSR 0x48
124#define ARM_SMMU_GR0_sGFSYNR0 0x50
125#define ARM_SMMU_GR0_sGFSYNR1 0x54
126#define ARM_SMMU_GR0_sGFSYNR2 0x58
127#define ARM_SMMU_GR0_PIDR0 0xfe0
128#define ARM_SMMU_GR0_PIDR1 0xfe4
129#define ARM_SMMU_GR0_PIDR2 0xfe8
130
131#define ID0_S1TS (1 << 30)
132#define ID0_S2TS (1 << 29)
133#define ID0_NTS (1 << 28)
134#define ID0_SMS (1 << 27)
135#define ID0_PTFS_SHIFT 24
136#define ID0_PTFS_MASK 0x2
137#define ID0_PTFS_V8_ONLY 0x2
138#define ID0_CTTW (1 << 14)
139#define ID0_NUMIRPT_SHIFT 16
140#define ID0_NUMIRPT_MASK 0xff
141#define ID0_NUMSMRG_SHIFT 0
142#define ID0_NUMSMRG_MASK 0xff
143
144#define ID1_PAGESIZE (1 << 31)
145#define ID1_NUMPAGENDXB_SHIFT 28
146#define ID1_NUMPAGENDXB_MASK 7
147#define ID1_NUMS2CB_SHIFT 16
148#define ID1_NUMS2CB_MASK 0xff
149#define ID1_NUMCB_SHIFT 0
150#define ID1_NUMCB_MASK 0xff
151
152#define ID2_OAS_SHIFT 4
153#define ID2_OAS_MASK 0xf
154#define ID2_IAS_SHIFT 0
155#define ID2_IAS_MASK 0xf
156#define ID2_UBS_SHIFT 8
157#define ID2_UBS_MASK 0xf
158#define ID2_PTFS_4K (1 << 12)
159#define ID2_PTFS_16K (1 << 13)
160#define ID2_PTFS_64K (1 << 14)
161
162#define PIDR2_ARCH_SHIFT 4
163#define PIDR2_ARCH_MASK 0xf
164
165/* Global TLB invalidation */
166#define ARM_SMMU_GR0_STLBIALL 0x60
167#define ARM_SMMU_GR0_TLBIVMID 0x64
168#define ARM_SMMU_GR0_TLBIALLNSNH 0x68
169#define ARM_SMMU_GR0_TLBIALLH 0x6c
170#define ARM_SMMU_GR0_sTLBGSYNC 0x70
171#define ARM_SMMU_GR0_sTLBGSTATUS 0x74
172#define sTLBGSTATUS_GSACTIVE (1 << 0)
173#define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
174
175/* Stream mapping registers */
176#define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
177#define SMR_VALID (1 << 31)
178#define SMR_MASK_SHIFT 16
179#define SMR_MASK_MASK 0x7fff
180#define SMR_ID_SHIFT 0
181#define SMR_ID_MASK 0x7fff
182
183#define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
184#define S2CR_CBNDX_SHIFT 0
185#define S2CR_CBNDX_MASK 0xff
186#define S2CR_TYPE_SHIFT 16
187#define S2CR_TYPE_MASK 0x3
188#define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
189#define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
190#define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
191
192/* Context bank attribute registers */
193#define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
194#define CBAR_VMID_SHIFT 0
195#define CBAR_VMID_MASK 0xff
196#define CBAR_S1_MEMATTR_SHIFT 12
197#define CBAR_S1_MEMATTR_MASK 0xf
198#define CBAR_S1_MEMATTR_WB 0xf
199#define CBAR_TYPE_SHIFT 16
200#define CBAR_TYPE_MASK 0x3
201#define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
202#define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
203#define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
204#define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
205#define CBAR_IRPTNDX_SHIFT 24
206#define CBAR_IRPTNDX_MASK 0xff
207
208#define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
209#define CBA2R_RW64_32BIT (0 << 0)
210#define CBA2R_RW64_64BIT (1 << 0)
211
212/* Translation context bank */
213#define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
214#define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize)
215
216#define ARM_SMMU_CB_SCTLR 0x0
217#define ARM_SMMU_CB_RESUME 0x8
218#define ARM_SMMU_CB_TTBCR2 0x10
219#define ARM_SMMU_CB_TTBR0_LO 0x20
220#define ARM_SMMU_CB_TTBR0_HI 0x24
221#define ARM_SMMU_CB_TTBCR 0x30
222#define ARM_SMMU_CB_S1_MAIR0 0x38
223#define ARM_SMMU_CB_FSR 0x58
224#define ARM_SMMU_CB_FAR_LO 0x60
225#define ARM_SMMU_CB_FAR_HI 0x64
226#define ARM_SMMU_CB_FSYNR0 0x68
Will Deacon1463fe42013-07-31 19:21:27 +0100227#define ARM_SMMU_CB_S1_TLBIASID 0x610
Will Deacon45ae7cf2013-06-24 18:31:25 +0100228
229#define SCTLR_S1_ASIDPNE (1 << 12)
230#define SCTLR_CFCFG (1 << 7)
231#define SCTLR_CFIE (1 << 6)
232#define SCTLR_CFRE (1 << 5)
233#define SCTLR_E (1 << 4)
234#define SCTLR_AFE (1 << 2)
235#define SCTLR_TRE (1 << 1)
236#define SCTLR_M (1 << 0)
237#define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
238
239#define RESUME_RETRY (0 << 0)
240#define RESUME_TERMINATE (1 << 0)
241
242#define TTBCR_EAE (1 << 31)
243
244#define TTBCR_PASIZE_SHIFT 16
245#define TTBCR_PASIZE_MASK 0x7
246
247#define TTBCR_TG0_4K (0 << 14)
248#define TTBCR_TG0_64K (1 << 14)
249
250#define TTBCR_SH0_SHIFT 12
251#define TTBCR_SH0_MASK 0x3
252#define TTBCR_SH_NS 0
253#define TTBCR_SH_OS 2
254#define TTBCR_SH_IS 3
255
256#define TTBCR_ORGN0_SHIFT 10
257#define TTBCR_IRGN0_SHIFT 8
258#define TTBCR_RGN_MASK 0x3
259#define TTBCR_RGN_NC 0
260#define TTBCR_RGN_WBWA 1
261#define TTBCR_RGN_WT 2
262#define TTBCR_RGN_WB 3
263
264#define TTBCR_SL0_SHIFT 6
265#define TTBCR_SL0_MASK 0x3
266#define TTBCR_SL0_LVL_2 0
267#define TTBCR_SL0_LVL_1 1
268
269#define TTBCR_T1SZ_SHIFT 16
270#define TTBCR_T0SZ_SHIFT 0
271#define TTBCR_SZ_MASK 0xf
272
273#define TTBCR2_SEP_SHIFT 15
274#define TTBCR2_SEP_MASK 0x7
275
276#define TTBCR2_PASIZE_SHIFT 0
277#define TTBCR2_PASIZE_MASK 0x7
278
279/* Common definitions for PASize and SEP fields */
280#define TTBCR2_ADDR_32 0
281#define TTBCR2_ADDR_36 1
282#define TTBCR2_ADDR_40 2
283#define TTBCR2_ADDR_42 3
284#define TTBCR2_ADDR_44 4
285#define TTBCR2_ADDR_48 5
286
Will Deacon1463fe42013-07-31 19:21:27 +0100287#define TTBRn_HI_ASID_SHIFT 16
288
Will Deacon45ae7cf2013-06-24 18:31:25 +0100289#define MAIR_ATTR_SHIFT(n) ((n) << 3)
290#define MAIR_ATTR_MASK 0xff
291#define MAIR_ATTR_DEVICE 0x04
292#define MAIR_ATTR_NC 0x44
293#define MAIR_ATTR_WBRWA 0xff
294#define MAIR_ATTR_IDX_NC 0
295#define MAIR_ATTR_IDX_CACHE 1
296#define MAIR_ATTR_IDX_DEV 2
297
298#define FSR_MULTI (1 << 31)
299#define FSR_SS (1 << 30)
300#define FSR_UUT (1 << 8)
301#define FSR_ASF (1 << 7)
302#define FSR_TLBLKF (1 << 6)
303#define FSR_TLBMCF (1 << 5)
304#define FSR_EF (1 << 4)
305#define FSR_PF (1 << 3)
306#define FSR_AFF (1 << 2)
307#define FSR_TF (1 << 1)
308
309#define FSR_IGN (FSR_AFF | FSR_ASF | FSR_TLBMCF | \
310 FSR_TLBLKF)
311#define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
Will Deaconadaba322013-07-31 19:21:26 +0100312 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
Will Deacon45ae7cf2013-06-24 18:31:25 +0100313
314#define FSYNR0_WNR (1 << 4)
315
316struct arm_smmu_smr {
317 u8 idx;
318 u16 mask;
319 u16 id;
320};
321
322struct arm_smmu_master {
323 struct device_node *of_node;
324
325 /*
326 * The following is specific to the master's position in the
327 * SMMU chain.
328 */
329 struct rb_node node;
330 int num_streamids;
331 u16 streamids[MAX_MASTER_STREAMIDS];
332
333 /*
334 * We only need to allocate these on the root SMMU, as we
335 * configure unmatched streams to bypass translation.
336 */
337 struct arm_smmu_smr *smrs;
338};
339
340struct arm_smmu_device {
341 struct device *dev;
342 struct device_node *parent_of_node;
343
344 void __iomem *base;
345 unsigned long size;
346 unsigned long pagesize;
347
348#define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
349#define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
350#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
351#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
352#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
353 u32 features;
354 int version;
355
356 u32 num_context_banks;
357 u32 num_s2_context_banks;
358 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
359 atomic_t irptndx;
360
361 u32 num_mapping_groups;
362 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
363
364 unsigned long input_size;
365 unsigned long s1_output_size;
366 unsigned long s2_output_size;
367
368 u32 num_global_irqs;
369 u32 num_context_irqs;
370 unsigned int *irqs;
371
372 DECLARE_BITMAP(vmid_map, ARM_SMMU_NUM_VMIDS);
373
374 struct list_head list;
375 struct rb_root masters;
376};
377
378struct arm_smmu_cfg {
379 struct arm_smmu_device *smmu;
380 u8 vmid;
381 u8 cbndx;
382 u8 irptndx;
383 u32 cbar;
384 pgd_t *pgd;
385};
386
387struct arm_smmu_domain {
388 /*
389 * A domain can span across multiple, chained SMMUs and requires
390 * all devices within the domain to follow the same translation
391 * path.
392 */
393 struct arm_smmu_device *leaf_smmu;
394 struct arm_smmu_cfg root_cfg;
395 phys_addr_t output_mask;
396
397 spinlock_t lock;
398};
399
400static DEFINE_SPINLOCK(arm_smmu_devices_lock);
401static LIST_HEAD(arm_smmu_devices);
402
403static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
404 struct device_node *dev_node)
405{
406 struct rb_node *node = smmu->masters.rb_node;
407
408 while (node) {
409 struct arm_smmu_master *master;
410 master = container_of(node, struct arm_smmu_master, node);
411
412 if (dev_node < master->of_node)
413 node = node->rb_left;
414 else if (dev_node > master->of_node)
415 node = node->rb_right;
416 else
417 return master;
418 }
419
420 return NULL;
421}
422
423static int insert_smmu_master(struct arm_smmu_device *smmu,
424 struct arm_smmu_master *master)
425{
426 struct rb_node **new, *parent;
427
428 new = &smmu->masters.rb_node;
429 parent = NULL;
430 while (*new) {
431 struct arm_smmu_master *this;
432 this = container_of(*new, struct arm_smmu_master, node);
433
434 parent = *new;
435 if (master->of_node < this->of_node)
436 new = &((*new)->rb_left);
437 else if (master->of_node > this->of_node)
438 new = &((*new)->rb_right);
439 else
440 return -EEXIST;
441 }
442
443 rb_link_node(&master->node, parent, new);
444 rb_insert_color(&master->node, &smmu->masters);
445 return 0;
446}
447
448static int register_smmu_master(struct arm_smmu_device *smmu,
449 struct device *dev,
450 struct of_phandle_args *masterspec)
451{
452 int i;
453 struct arm_smmu_master *master;
454
455 master = find_smmu_master(smmu, masterspec->np);
456 if (master) {
457 dev_err(dev,
458 "rejecting multiple registrations for master device %s\n",
459 masterspec->np->name);
460 return -EBUSY;
461 }
462
463 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
464 dev_err(dev,
465 "reached maximum number (%d) of stream IDs for master device %s\n",
466 MAX_MASTER_STREAMIDS, masterspec->np->name);
467 return -ENOSPC;
468 }
469
470 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
471 if (!master)
472 return -ENOMEM;
473
474 master->of_node = masterspec->np;
475 master->num_streamids = masterspec->args_count;
476
477 for (i = 0; i < master->num_streamids; ++i)
478 master->streamids[i] = masterspec->args[i];
479
480 return insert_smmu_master(smmu, master);
481}
482
483static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
484{
485 struct arm_smmu_device *parent;
486
487 if (!smmu->parent_of_node)
488 return NULL;
489
490 spin_lock(&arm_smmu_devices_lock);
491 list_for_each_entry(parent, &arm_smmu_devices, list)
492 if (parent->dev->of_node == smmu->parent_of_node)
493 goto out_unlock;
494
495 parent = NULL;
496 dev_warn(smmu->dev,
497 "Failed to find SMMU parent despite parent in DT\n");
498out_unlock:
499 spin_unlock(&arm_smmu_devices_lock);
500 return parent;
501}
502
503static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
504{
505 int idx;
506
507 do {
508 idx = find_next_zero_bit(map, end, start);
509 if (idx == end)
510 return -ENOSPC;
511 } while (test_and_set_bit(idx, map));
512
513 return idx;
514}
515
516static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
517{
518 clear_bit(idx, map);
519}
520
521/* Wait for any pending TLB invalidations to complete */
522static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
523{
524 int count = 0;
525 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
526
527 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
528 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
529 & sTLBGSTATUS_GSACTIVE) {
530 cpu_relax();
531 if (++count == TLB_LOOP_TIMEOUT) {
532 dev_err_ratelimited(smmu->dev,
533 "TLB sync timed out -- SMMU may be deadlocked\n");
534 return;
535 }
536 udelay(1);
537 }
538}
539
Will Deacon1463fe42013-07-31 19:21:27 +0100540static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg *cfg)
541{
542 struct arm_smmu_device *smmu = cfg->smmu;
543 void __iomem *base = ARM_SMMU_GR0(smmu);
544 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
545
546 if (stage1) {
547 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
548 writel_relaxed(cfg->vmid, base + ARM_SMMU_CB_S1_TLBIASID);
549 } else {
550 base = ARM_SMMU_GR0(smmu);
551 writel_relaxed(cfg->vmid, base + ARM_SMMU_GR0_TLBIVMID);
552 }
553
554 arm_smmu_tlb_sync(smmu);
555}
556
Will Deacon45ae7cf2013-06-24 18:31:25 +0100557static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
558{
559 int flags, ret;
560 u32 fsr, far, fsynr, resume;
561 unsigned long iova;
562 struct iommu_domain *domain = dev;
563 struct arm_smmu_domain *smmu_domain = domain->priv;
564 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
565 struct arm_smmu_device *smmu = root_cfg->smmu;
566 void __iomem *cb_base;
567
568 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
569 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
570
571 if (!(fsr & FSR_FAULT))
572 return IRQ_NONE;
573
574 if (fsr & FSR_IGN)
575 dev_err_ratelimited(smmu->dev,
576 "Unexpected context fault (fsr 0x%u)\n",
577 fsr);
578
579 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
580 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
581
582 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
583 iova = far;
584#ifdef CONFIG_64BIT
585 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
586 iova |= ((unsigned long)far << 32);
587#endif
588
589 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
590 ret = IRQ_HANDLED;
591 resume = RESUME_RETRY;
592 } else {
593 ret = IRQ_NONE;
594 resume = RESUME_TERMINATE;
595 }
596
597 /* Clear the faulting FSR */
598 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
599
600 /* Retry or terminate any stalled transactions */
601 if (fsr & FSR_SS)
602 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
603
604 return ret;
605}
606
607static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
608{
609 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
610 struct arm_smmu_device *smmu = dev;
611 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
612
613 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
Will Deaconadaba322013-07-31 19:21:26 +0100614 if (!gfsr)
615 return IRQ_NONE;
616
Will Deacon45ae7cf2013-06-24 18:31:25 +0100617 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
618 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
619 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
620
621 dev_err_ratelimited(smmu->dev,
622 "Unexpected global fault, this could be serious\n");
623 dev_err_ratelimited(smmu->dev,
624 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
625 gfsr, gfsynr0, gfsynr1, gfsynr2);
626
627 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
Will Deaconadaba322013-07-31 19:21:26 +0100628 return IRQ_HANDLED;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100629}
630
631static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
632{
633 u32 reg;
634 bool stage1;
635 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
636 struct arm_smmu_device *smmu = root_cfg->smmu;
637 void __iomem *cb_base, *gr0_base, *gr1_base;
638
639 gr0_base = ARM_SMMU_GR0(smmu);
640 gr1_base = ARM_SMMU_GR1(smmu);
641 stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
642 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
643
644 /* CBAR */
Will Deacon1463fe42013-07-31 19:21:27 +0100645 reg = root_cfg->cbar;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100646 if (smmu->version == 1)
647 reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;
648
649 /* Use the weakest memory type, so it is overridden by the pte */
650 if (stage1)
651 reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
Will Deacon1463fe42013-07-31 19:21:27 +0100652 else
653 reg |= root_cfg->vmid << CBAR_VMID_SHIFT;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100654 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));
655
656 if (smmu->version > 1) {
657 /* CBA2R */
658#ifdef CONFIG_64BIT
659 reg = CBA2R_RW64_64BIT;
660#else
661 reg = CBA2R_RW64_32BIT;
662#endif
663 writel_relaxed(reg,
664 gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));
665
666 /* TTBCR2 */
667 switch (smmu->input_size) {
668 case 32:
669 reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
670 break;
671 case 36:
672 reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
673 break;
674 case 39:
675 reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
676 break;
677 case 42:
678 reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
679 break;
680 case 44:
681 reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
682 break;
683 case 48:
684 reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
685 break;
686 }
687
688 switch (smmu->s1_output_size) {
689 case 32:
690 reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
691 break;
692 case 36:
693 reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
694 break;
695 case 39:
696 reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
697 break;
698 case 42:
699 reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
700 break;
701 case 44:
702 reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
703 break;
704 case 48:
705 reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
706 break;
707 }
708
709 if (stage1)
710 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
711 }
712
713 /* TTBR0 */
714 reg = __pa(root_cfg->pgd);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100715 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
716 reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
Will Deacon1463fe42013-07-31 19:21:27 +0100717 if (stage1)
718 reg |= root_cfg->vmid << TTBRn_HI_ASID_SHIFT;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100719 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100720
721 /*
722 * TTBCR
723 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
724 */
725 if (smmu->version > 1) {
726 if (PAGE_SIZE == SZ_4K)
727 reg = TTBCR_TG0_4K;
728 else
729 reg = TTBCR_TG0_64K;
730
731 if (!stage1) {
732 switch (smmu->s2_output_size) {
733 case 32:
734 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
735 break;
736 case 36:
737 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
738 break;
739 case 40:
740 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
741 break;
742 case 42:
743 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
744 break;
745 case 44:
746 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
747 break;
748 case 48:
749 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
750 break;
751 }
752 } else {
753 reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
754 }
755 } else {
756 reg = 0;
757 }
758
759 reg |= TTBCR_EAE |
760 (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
761 (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
762 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
763 (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
764 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
765
766 /* MAIR0 (stage-1 only) */
767 if (stage1) {
768 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
769 (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
770 (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
771 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
772 }
773
Will Deacon45ae7cf2013-06-24 18:31:25 +0100774 /* SCTLR */
775 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
776 if (stage1)
777 reg |= SCTLR_S1_ASIDPNE;
778#ifdef __BIG_ENDIAN
779 reg |= SCTLR_E;
780#endif
781 writel(reg, cb_base + ARM_SMMU_CB_SCTLR);
782}
783
784static int arm_smmu_init_domain_context(struct iommu_domain *domain,
785 struct device *dev)
786{
787 int irq, ret, start;
788 struct arm_smmu_domain *smmu_domain = domain->priv;
789 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
790 struct arm_smmu_device *smmu, *parent;
791
792 /*
793 * Walk the SMMU chain to find the root device for this chain.
794 * We assume that no masters have translations which terminate
795 * early, and therefore check that the root SMMU does indeed have
796 * a StreamID for the master in question.
797 */
798 parent = dev->archdata.iommu;
799 smmu_domain->output_mask = -1;
800 do {
801 smmu = parent;
802 smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
803 } while ((parent = find_parent_smmu(smmu)));
804
805 if (!find_smmu_master(smmu, dev->of_node)) {
806 dev_err(dev, "unable to find root SMMU for device\n");
807 return -ENODEV;
808 }
809
Will Deacon1463fe42013-07-31 19:21:27 +0100810 /* VMID zero is reserved for stage-1 mappings */
811 ret = __arm_smmu_alloc_bitmap(smmu->vmid_map, 1, ARM_SMMU_NUM_VMIDS);
Will Deacon45ae7cf2013-06-24 18:31:25 +0100812 if (IS_ERR_VALUE(ret))
813 return ret;
814
815 root_cfg->vmid = ret;
816 if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
817 /*
818 * We will likely want to change this if/when KVM gets
819 * involved.
820 */
821 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
822 start = smmu->num_s2_context_banks;
823 } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
824 root_cfg->cbar = CBAR_TYPE_S2_TRANS;
825 start = 0;
826 } else {
827 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
828 start = smmu->num_s2_context_banks;
829 }
830
831 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
832 smmu->num_context_banks);
833 if (IS_ERR_VALUE(ret))
834 goto out_free_vmid;
835
836 root_cfg->cbndx = ret;
837
838 if (smmu->version == 1) {
839 root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
840 root_cfg->irptndx %= smmu->num_context_irqs;
841 } else {
842 root_cfg->irptndx = root_cfg->cbndx;
843 }
844
845 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
846 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
847 "arm-smmu-context-fault", domain);
848 if (IS_ERR_VALUE(ret)) {
849 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
850 root_cfg->irptndx, irq);
851 root_cfg->irptndx = -1;
852 goto out_free_context;
853 }
854
855 root_cfg->smmu = smmu;
856 arm_smmu_init_context_bank(smmu_domain);
857 return ret;
858
859out_free_context:
860 __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
861out_free_vmid:
862 __arm_smmu_free_bitmap(smmu->vmid_map, root_cfg->vmid);
863 return ret;
864}
865
866static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
867{
868 struct arm_smmu_domain *smmu_domain = domain->priv;
869 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
870 struct arm_smmu_device *smmu = root_cfg->smmu;
Will Deacon1463fe42013-07-31 19:21:27 +0100871 void __iomem *cb_base;
Will Deacon45ae7cf2013-06-24 18:31:25 +0100872 int irq;
873
874 if (!smmu)
875 return;
876
Will Deacon1463fe42013-07-31 19:21:27 +0100877 /* Disable the context bank and nuke the TLB before freeing it. */
878 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
879 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
880 arm_smmu_tlb_inv_context(root_cfg);
881
Will Deacon45ae7cf2013-06-24 18:31:25 +0100882 if (root_cfg->irptndx != -1) {
883 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
884 free_irq(irq, domain);
885 }
886
887 __arm_smmu_free_bitmap(smmu->vmid_map, root_cfg->vmid);
888 __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
889}
890
891static int arm_smmu_domain_init(struct iommu_domain *domain)
892{
893 struct arm_smmu_domain *smmu_domain;
894 pgd_t *pgd;
895
896 /*
897 * Allocate the domain and initialise some of its data structures.
898 * We can't really do anything meaningful until we've added a
899 * master.
900 */
901 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
902 if (!smmu_domain)
903 return -ENOMEM;
904
905 pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
906 if (!pgd)
907 goto out_free_domain;
908 smmu_domain->root_cfg.pgd = pgd;
909
910 spin_lock_init(&smmu_domain->lock);
911 domain->priv = smmu_domain;
912 return 0;
913
914out_free_domain:
915 kfree(smmu_domain);
916 return -ENOMEM;
917}
918
919static void arm_smmu_free_ptes(pmd_t *pmd)
920{
921 pgtable_t table = pmd_pgtable(*pmd);
922 pgtable_page_dtor(table);
923 __free_page(table);
924}
925
926static void arm_smmu_free_pmds(pud_t *pud)
927{
928 int i;
929 pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
930
931 pmd = pmd_base;
932 for (i = 0; i < PTRS_PER_PMD; ++i) {
933 if (pmd_none(*pmd))
934 continue;
935
936 arm_smmu_free_ptes(pmd);
937 pmd++;
938 }
939
940 pmd_free(NULL, pmd_base);
941}
942
943static void arm_smmu_free_puds(pgd_t *pgd)
944{
945 int i;
946 pud_t *pud, *pud_base = pud_offset(pgd, 0);
947
948 pud = pud_base;
949 for (i = 0; i < PTRS_PER_PUD; ++i) {
950 if (pud_none(*pud))
951 continue;
952
953 arm_smmu_free_pmds(pud);
954 pud++;
955 }
956
957 pud_free(NULL, pud_base);
958}
959
960static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
961{
962 int i;
963 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
964 pgd_t *pgd, *pgd_base = root_cfg->pgd;
965
966 /*
967 * Recursively free the page tables for this domain. We don't
968 * care about speculative TLB filling, because the TLB will be
969 * nuked next time this context bank is re-allocated and no devices
970 * currently map to these tables.
971 */
972 pgd = pgd_base;
973 for (i = 0; i < PTRS_PER_PGD; ++i) {
974 if (pgd_none(*pgd))
975 continue;
976 arm_smmu_free_puds(pgd);
977 pgd++;
978 }
979
980 kfree(pgd_base);
981}
982
983static void arm_smmu_domain_destroy(struct iommu_domain *domain)
984{
985 struct arm_smmu_domain *smmu_domain = domain->priv;
Will Deacon1463fe42013-07-31 19:21:27 +0100986
987 /*
988 * Free the domain resources. We assume that all devices have
989 * already been detached.
990 */
Will Deacon45ae7cf2013-06-24 18:31:25 +0100991 arm_smmu_destroy_domain_context(domain);
992 arm_smmu_free_pgtables(smmu_domain);
993 kfree(smmu_domain);
994}
995
996static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
997 struct arm_smmu_master *master)
998{
999 int i;
1000 struct arm_smmu_smr *smrs;
1001 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1002
1003 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1004 return 0;
1005
1006 if (master->smrs)
1007 return -EEXIST;
1008
1009 smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
1010 if (!smrs) {
1011 dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
1012 master->num_streamids, master->of_node->name);
1013 return -ENOMEM;
1014 }
1015
1016 /* Allocate the SMRs on the root SMMU */
1017 for (i = 0; i < master->num_streamids; ++i) {
1018 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1019 smmu->num_mapping_groups);
1020 if (IS_ERR_VALUE(idx)) {
1021 dev_err(smmu->dev, "failed to allocate free SMR\n");
1022 goto err_free_smrs;
1023 }
1024
1025 smrs[i] = (struct arm_smmu_smr) {
1026 .idx = idx,
1027 .mask = 0, /* We don't currently share SMRs */
1028 .id = master->streamids[i],
1029 };
1030 }
1031
1032 /* It worked! Now, poke the actual hardware */
1033 for (i = 0; i < master->num_streamids; ++i) {
1034 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1035 smrs[i].mask << SMR_MASK_SHIFT;
1036 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1037 }
1038
1039 master->smrs = smrs;
1040 return 0;
1041
1042err_free_smrs:
1043 while (--i >= 0)
1044 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1045 kfree(smrs);
1046 return -ENOSPC;
1047}
1048
1049static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1050 struct arm_smmu_master *master)
1051{
1052 int i;
1053 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1054 struct arm_smmu_smr *smrs = master->smrs;
1055
1056 /* Invalidate the SMRs before freeing back to the allocator */
1057 for (i = 0; i < master->num_streamids; ++i) {
1058 u8 idx = smrs[i].idx;
1059 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1060 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1061 }
1062
1063 master->smrs = NULL;
1064 kfree(smrs);
1065}
1066
1067static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1068 struct arm_smmu_master *master)
1069{
1070 int i;
1071 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1072
1073 for (i = 0; i < master->num_streamids; ++i) {
1074 u16 sid = master->streamids[i];
1075 writel_relaxed(S2CR_TYPE_BYPASS,
1076 gr0_base + ARM_SMMU_GR0_S2CR(sid));
1077 }
1078}
1079
1080static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1081 struct arm_smmu_master *master)
1082{
1083 int i, ret;
1084 struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
1085 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1086
1087 ret = arm_smmu_master_configure_smrs(smmu, master);
1088 if (ret)
1089 return ret;
1090
1091 /* Bypass the leaves */
1092 smmu = smmu_domain->leaf_smmu;
1093 while ((parent = find_parent_smmu(smmu))) {
1094 /*
1095 * We won't have a StreamID match for anything but the root
1096 * smmu, so we only need to worry about StreamID indexing,
1097 * where we must install bypass entries in the S2CRs.
1098 */
1099 if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
1100 continue;
1101
1102 arm_smmu_bypass_stream_mapping(smmu, master);
1103 smmu = parent;
1104 }
1105
1106 /* Now we're at the root, time to point at our context bank */
1107 for (i = 0; i < master->num_streamids; ++i) {
1108 u32 idx, s2cr;
1109 idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
1110 s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) |
1111 (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
1112 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1113 }
1114
1115 return 0;
1116}
1117
1118static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1119 struct arm_smmu_master *master)
1120{
1121 struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;
1122
1123 /*
1124 * We *must* clear the S2CR first, because freeing the SMR means
1125 * that it can be re-allocated immediately.
1126 */
1127 arm_smmu_bypass_stream_mapping(smmu, master);
1128 arm_smmu_master_free_smrs(smmu, master);
1129}
1130
1131static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1132{
1133 int ret = -EINVAL;
1134 struct arm_smmu_domain *smmu_domain = domain->priv;
1135 struct arm_smmu_device *device_smmu = dev->archdata.iommu;
1136 struct arm_smmu_master *master;
1137
1138 if (!device_smmu) {
1139 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1140 return -ENXIO;
1141 }
1142
1143 /*
1144 * Sanity check the domain. We don't currently support domains
1145 * that cross between different SMMU chains.
1146 */
1147 spin_lock(&smmu_domain->lock);
1148 if (!smmu_domain->leaf_smmu) {
1149 /* Now that we have a master, we can finalise the domain */
1150 ret = arm_smmu_init_domain_context(domain, dev);
1151 if (IS_ERR_VALUE(ret))
1152 goto err_unlock;
1153
1154 smmu_domain->leaf_smmu = device_smmu;
1155 } else if (smmu_domain->leaf_smmu != device_smmu) {
1156 dev_err(dev,
1157 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1158 dev_name(smmu_domain->leaf_smmu->dev),
1159 dev_name(device_smmu->dev));
1160 goto err_unlock;
1161 }
1162 spin_unlock(&smmu_domain->lock);
1163
1164 /* Looks ok, so add the device to the domain */
1165 master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1166 if (!master)
1167 return -ENODEV;
1168
1169 return arm_smmu_domain_add_master(smmu_domain, master);
1170
1171err_unlock:
1172 spin_unlock(&smmu_domain->lock);
1173 return ret;
1174}
1175
1176static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1177{
1178 struct arm_smmu_domain *smmu_domain = domain->priv;
1179 struct arm_smmu_master *master;
1180
1181 master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1182 if (master)
1183 arm_smmu_domain_remove_master(smmu_domain, master);
1184}
1185
1186static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
1187 size_t size)
1188{
1189 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1190
1191 /*
1192 * If the SMMU can't walk tables in the CPU caches, treat them
1193 * like non-coherent DMA since we need to flush the new entries
1194 * all the way out to memory. There's no possibility of recursion
1195 * here as the SMMU table walker will not be wired through another
1196 * SMMU.
1197 */
1198 if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK))
1199 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
1200 DMA_TO_DEVICE);
1201}
1202
1203static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1204 unsigned long end)
1205{
1206 return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1207 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1208}
1209
1210static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1211 unsigned long addr, unsigned long end,
1212 unsigned long pfn, int flags, int stage)
1213{
1214 pte_t *pte, *start;
1215 pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1216
1217 if (pmd_none(*pmd)) {
1218 /* Allocate a new set of tables */
1219 pgtable_t table = alloc_page(PGALLOC_GFP);
1220 if (!table)
1221 return -ENOMEM;
1222
1223 arm_smmu_flush_pgtable(smmu, page_address(table),
1224 ARM_SMMU_PTE_HWTABLE_SIZE);
1225 pgtable_page_ctor(table);
1226 pmd_populate(NULL, pmd, table);
1227 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1228 }
1229
1230 if (stage == 1) {
Will Deacon1463fe42013-07-31 19:21:27 +01001231 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001232 if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ))
1233 pteval |= ARM_SMMU_PTE_AP_RDONLY;
1234
1235 if (flags & IOMMU_CACHE)
1236 pteval |= (MAIR_ATTR_IDX_CACHE <<
1237 ARM_SMMU_PTE_ATTRINDX_SHIFT);
1238 } else {
1239 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1240 if (flags & IOMMU_READ)
1241 pteval |= ARM_SMMU_PTE_HAP_READ;
1242 if (flags & IOMMU_WRITE)
1243 pteval |= ARM_SMMU_PTE_HAP_WRITE;
1244 if (flags & IOMMU_CACHE)
1245 pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1246 else
1247 pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1248 }
1249
1250 /* If no access, create a faulting entry to avoid TLB fills */
1251 if (!(flags & (IOMMU_READ | IOMMU_WRITE)))
1252 pteval &= ~ARM_SMMU_PTE_PAGE;
1253
1254 pteval |= ARM_SMMU_PTE_SH_IS;
1255 start = pmd_page_vaddr(*pmd) + pte_index(addr);
1256 pte = start;
1257
1258 /*
1259 * Install the page table entries. This is fairly complicated
1260 * since we attempt to make use of the contiguous hint in the
1261 * ptes where possible. The contiguous hint indicates a series
1262 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1263 * contiguous region with the following constraints:
1264 *
1265 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1266 * - Each pte in the region has the contiguous hint bit set
1267 *
1268 * This complicates unmapping (also handled by this code, when
1269 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1270 * possible, yet highly unlikely, that a client may unmap only
1271 * part of a contiguous range. This requires clearing of the
1272 * contiguous hint bits in the range before installing the new
1273 * faulting entries.
1274 *
1275 * Note that re-mapping an address range without first unmapping
1276 * it is not supported, so TLB invalidation is not required here
1277 * and is instead performed at unmap and domain-init time.
1278 */
1279 do {
1280 int i = 1;
1281 pteval &= ~ARM_SMMU_PTE_CONT;
1282
1283 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1284 i = ARM_SMMU_PTE_CONT_ENTRIES;
1285 pteval |= ARM_SMMU_PTE_CONT;
1286 } else if (pte_val(*pte) &
1287 (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1288 int j;
1289 pte_t *cont_start;
1290 unsigned long idx = pte_index(addr);
1291
1292 idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1293 cont_start = pmd_page_vaddr(*pmd) + idx;
1294 for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1295 pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1296
1297 arm_smmu_flush_pgtable(smmu, cont_start,
1298 sizeof(*pte) *
1299 ARM_SMMU_PTE_CONT_ENTRIES);
1300 }
1301
1302 do {
1303 *pte = pfn_pte(pfn, __pgprot(pteval));
1304 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1305 } while (addr != end);
1306
1307 arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1308 return 0;
1309}
1310
1311static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1312 unsigned long addr, unsigned long end,
1313 phys_addr_t phys, int flags, int stage)
1314{
1315 int ret;
1316 pmd_t *pmd;
1317 unsigned long next, pfn = __phys_to_pfn(phys);
1318
1319#ifndef __PAGETABLE_PMD_FOLDED
1320 if (pud_none(*pud)) {
1321 pmd = pmd_alloc_one(NULL, addr);
1322 if (!pmd)
1323 return -ENOMEM;
1324 } else
1325#endif
1326 pmd = pmd_offset(pud, addr);
1327
1328 do {
1329 next = pmd_addr_end(addr, end);
1330 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn,
1331 flags, stage);
1332 pud_populate(NULL, pud, pmd);
1333 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1334 phys += next - addr;
1335 } while (pmd++, addr = next, addr < end);
1336
1337 return ret;
1338}
1339
1340static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1341 unsigned long addr, unsigned long end,
1342 phys_addr_t phys, int flags, int stage)
1343{
1344 int ret = 0;
1345 pud_t *pud;
1346 unsigned long next;
1347
1348#ifndef __PAGETABLE_PUD_FOLDED
1349 if (pgd_none(*pgd)) {
1350 pud = pud_alloc_one(NULL, addr);
1351 if (!pud)
1352 return -ENOMEM;
1353 } else
1354#endif
1355 pud = pud_offset(pgd, addr);
1356
1357 do {
1358 next = pud_addr_end(addr, end);
1359 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1360 flags, stage);
1361 pgd_populate(NULL, pud, pgd);
1362 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1363 phys += next - addr;
1364 } while (pud++, addr = next, addr < end);
1365
1366 return ret;
1367}
1368
1369static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1370 unsigned long iova, phys_addr_t paddr,
1371 size_t size, int flags)
1372{
1373 int ret, stage;
1374 unsigned long end;
1375 phys_addr_t input_mask, output_mask;
1376 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1377 pgd_t *pgd = root_cfg->pgd;
1378 struct arm_smmu_device *smmu = root_cfg->smmu;
1379
1380 if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
1381 stage = 2;
1382 output_mask = (1ULL << smmu->s2_output_size) - 1;
1383 } else {
1384 stage = 1;
1385 output_mask = (1ULL << smmu->s1_output_size) - 1;
1386 }
1387
1388 if (!pgd)
1389 return -EINVAL;
1390
1391 if (size & ~PAGE_MASK)
1392 return -EINVAL;
1393
1394 input_mask = (1ULL << smmu->input_size) - 1;
1395 if ((phys_addr_t)iova & ~input_mask)
1396 return -ERANGE;
1397
1398 if (paddr & ~output_mask)
1399 return -ERANGE;
1400
1401 spin_lock(&smmu_domain->lock);
1402 pgd += pgd_index(iova);
1403 end = iova + size;
1404 do {
1405 unsigned long next = pgd_addr_end(iova, end);
1406
1407 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1408 flags, stage);
1409 if (ret)
1410 goto out_unlock;
1411
1412 paddr += next - iova;
1413 iova = next;
1414 } while (pgd++, iova != end);
1415
1416out_unlock:
1417 spin_unlock(&smmu_domain->lock);
1418
1419 /* Ensure new page tables are visible to the hardware walker */
1420 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1421 dsb();
1422
1423 return ret;
1424}
1425
1426static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1427 phys_addr_t paddr, size_t size, int flags)
1428{
1429 struct arm_smmu_domain *smmu_domain = domain->priv;
1430 struct arm_smmu_device *smmu = smmu_domain->leaf_smmu;
1431
1432 if (!smmu_domain || !smmu)
1433 return -ENODEV;
1434
1435 /* Check for silent address truncation up the SMMU chain. */
1436 if ((phys_addr_t)iova & ~smmu_domain->output_mask)
1437 return -ERANGE;
1438
1439 return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags);
1440}
1441
1442static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1443 size_t size)
1444{
1445 int ret;
1446 struct arm_smmu_domain *smmu_domain = domain->priv;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001447
1448 ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
Will Deacon1463fe42013-07-31 19:21:27 +01001449 arm_smmu_tlb_inv_context(&smmu_domain->root_cfg);
Will Deacon45ae7cf2013-06-24 18:31:25 +01001450 return ret ? ret : size;
1451}
1452
1453static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1454 dma_addr_t iova)
1455{
1456 pgd_t *pgd;
1457 pud_t *pud;
1458 pmd_t *pmd;
1459 pte_t *pte;
1460 struct arm_smmu_domain *smmu_domain = domain->priv;
1461 struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1462 struct arm_smmu_device *smmu = root_cfg->smmu;
1463
1464 spin_lock(&smmu_domain->lock);
1465 pgd = root_cfg->pgd;
1466 if (!pgd)
1467 goto err_unlock;
1468
1469 pgd += pgd_index(iova);
1470 if (pgd_none_or_clear_bad(pgd))
1471 goto err_unlock;
1472
1473 pud = pud_offset(pgd, iova);
1474 if (pud_none_or_clear_bad(pud))
1475 goto err_unlock;
1476
1477 pmd = pmd_offset(pud, iova);
1478 if (pmd_none_or_clear_bad(pmd))
1479 goto err_unlock;
1480
1481 pte = pmd_page_vaddr(*pmd) + pte_index(iova);
1482 if (pte_none(pte))
1483 goto err_unlock;
1484
1485 spin_unlock(&smmu_domain->lock);
1486 return __pfn_to_phys(pte_pfn(*pte)) | (iova & ~PAGE_MASK);
1487
1488err_unlock:
1489 spin_unlock(&smmu_domain->lock);
1490 dev_warn(smmu->dev,
1491 "invalid (corrupt?) page tables detected for iova 0x%llx\n",
1492 (unsigned long long)iova);
1493 return -EINVAL;
1494}
1495
1496static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1497 unsigned long cap)
1498{
1499 unsigned long caps = 0;
1500 struct arm_smmu_domain *smmu_domain = domain->priv;
1501
1502 if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1503 caps |= IOMMU_CAP_CACHE_COHERENCY;
1504
1505 return !!(cap & caps);
1506}
1507
1508static int arm_smmu_add_device(struct device *dev)
1509{
1510 struct arm_smmu_device *child, *parent, *smmu;
1511 struct arm_smmu_master *master = NULL;
1512
1513 spin_lock(&arm_smmu_devices_lock);
1514 list_for_each_entry(parent, &arm_smmu_devices, list) {
1515 smmu = parent;
1516
1517 /* Try to find a child of the current SMMU. */
1518 list_for_each_entry(child, &arm_smmu_devices, list) {
1519 if (child->parent_of_node == parent->dev->of_node) {
1520 /* Does the child sit above our master? */
1521 master = find_smmu_master(child, dev->of_node);
1522 if (master) {
1523 smmu = NULL;
1524 break;
1525 }
1526 }
1527 }
1528
1529 /* We found some children, so keep searching. */
1530 if (!smmu) {
1531 master = NULL;
1532 continue;
1533 }
1534
1535 master = find_smmu_master(smmu, dev->of_node);
1536 if (master)
1537 break;
1538 }
1539 spin_unlock(&arm_smmu_devices_lock);
1540
1541 if (!master)
1542 return -ENODEV;
1543
1544 dev->archdata.iommu = smmu;
1545 return 0;
1546}
1547
1548static void arm_smmu_remove_device(struct device *dev)
1549{
1550 dev->archdata.iommu = NULL;
1551}
1552
1553static struct iommu_ops arm_smmu_ops = {
1554 .domain_init = arm_smmu_domain_init,
1555 .domain_destroy = arm_smmu_domain_destroy,
1556 .attach_dev = arm_smmu_attach_dev,
1557 .detach_dev = arm_smmu_detach_dev,
1558 .map = arm_smmu_map,
1559 .unmap = arm_smmu_unmap,
1560 .iova_to_phys = arm_smmu_iova_to_phys,
1561 .domain_has_cap = arm_smmu_domain_has_cap,
1562 .add_device = arm_smmu_add_device,
1563 .remove_device = arm_smmu_remove_device,
1564 .pgsize_bitmap = (SECTION_SIZE |
1565 ARM_SMMU_PTE_CONT_SIZE |
1566 PAGE_SIZE),
1567};
1568
1569static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1570{
1571 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
Will Deacon1463fe42013-07-31 19:21:27 +01001572 void __iomem *sctlr_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB_SCTLR;
Will Deacon45ae7cf2013-06-24 18:31:25 +01001573 int i = 0;
1574 u32 scr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0);
1575
1576 /* Mark all SMRn as invalid and all S2CRn as bypass */
1577 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1578 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1579 writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1580 }
1581
Will Deacon1463fe42013-07-31 19:21:27 +01001582 /* Make sure all context banks are disabled */
1583 for (i = 0; i < smmu->num_context_banks; ++i)
1584 writel_relaxed(0, sctlr_base + ARM_SMMU_CB(smmu, i));
1585
Will Deacon45ae7cf2013-06-24 18:31:25 +01001586 /* Invalidate the TLB, just in case */
1587 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1588 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1589 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1590
1591 /* Enable fault reporting */
1592 scr0 |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1593
1594 /* Disable TLB broadcasting. */
1595 scr0 |= (sCR0_VMIDPNE | sCR0_PTM);
1596
1597 /* Enable client access, but bypass when no mapping is found */
1598 scr0 &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1599
1600 /* Disable forced broadcasting */
1601 scr0 &= ~sCR0_FB;
1602
1603 /* Don't upgrade barriers */
1604 scr0 &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1605
1606 /* Push the button */
1607 arm_smmu_tlb_sync(smmu);
1608 writel(scr0, gr0_base + ARM_SMMU_GR0_sCR0);
1609}
1610
1611static int arm_smmu_id_size_to_bits(int size)
1612{
1613 switch (size) {
1614 case 0:
1615 return 32;
1616 case 1:
1617 return 36;
1618 case 2:
1619 return 40;
1620 case 3:
1621 return 42;
1622 case 4:
1623 return 44;
1624 case 5:
1625 default:
1626 return 48;
1627 }
1628}
1629
1630static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1631{
1632 unsigned long size;
1633 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1634 u32 id;
1635
1636 dev_notice(smmu->dev, "probing hardware configuration...\n");
1637
1638 /* Primecell ID */
1639 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1640 smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1641 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1642
1643 /* ID0 */
1644 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1645#ifndef CONFIG_64BIT
1646 if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1647 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1648 return -ENODEV;
1649 }
1650#endif
1651 if (id & ID0_S1TS) {
1652 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1653 dev_notice(smmu->dev, "\tstage 1 translation\n");
1654 }
1655
1656 if (id & ID0_S2TS) {
1657 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1658 dev_notice(smmu->dev, "\tstage 2 translation\n");
1659 }
1660
1661 if (id & ID0_NTS) {
1662 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1663 dev_notice(smmu->dev, "\tnested translation\n");
1664 }
1665
1666 if (!(smmu->features &
1667 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1668 ARM_SMMU_FEAT_TRANS_NESTED))) {
1669 dev_err(smmu->dev, "\tno translation support!\n");
1670 return -ENODEV;
1671 }
1672
1673 if (id & ID0_CTTW) {
1674 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1675 dev_notice(smmu->dev, "\tcoherent table walk\n");
1676 }
1677
1678 if (id & ID0_SMS) {
1679 u32 smr, sid, mask;
1680
1681 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1682 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1683 ID0_NUMSMRG_MASK;
1684 if (smmu->num_mapping_groups == 0) {
1685 dev_err(smmu->dev,
1686 "stream-matching supported, but no SMRs present!\n");
1687 return -ENODEV;
1688 }
1689
1690 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1691 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1692 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1693 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1694
1695 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1696 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1697 if ((mask & sid) != sid) {
1698 dev_err(smmu->dev,
1699 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1700 mask, sid);
1701 return -ENODEV;
1702 }
1703
1704 dev_notice(smmu->dev,
1705 "\tstream matching with %u register groups, mask 0x%x",
1706 smmu->num_mapping_groups, mask);
1707 }
1708
1709 /* ID1 */
1710 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1711 smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1712
1713 /* Check that we ioremapped enough */
1714 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1715 size *= (smmu->pagesize << 1);
1716 if (smmu->size < size)
1717 dev_warn(smmu->dev,
1718 "device is 0x%lx bytes but only mapped 0x%lx!\n",
1719 size, smmu->size);
1720
1721 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1722 ID1_NUMS2CB_MASK;
1723 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1724 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1725 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1726 return -ENODEV;
1727 }
1728 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1729 smmu->num_context_banks, smmu->num_s2_context_banks);
1730
1731 /* ID2 */
1732 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1733 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1734
1735 /*
1736 * Stage-1 output limited by stage-2 input size due to pgd
1737 * allocation (PTRS_PER_PGD).
1738 */
1739#ifdef CONFIG_64BIT
1740 /* Current maximum output size of 39 bits */
1741 smmu->s1_output_size = min(39UL, size);
1742#else
1743 smmu->s1_output_size = min(32UL, size);
1744#endif
1745
1746 /* The stage-2 output mask is also applied for bypass */
1747 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1748 smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1749
1750 if (smmu->version == 1) {
1751 smmu->input_size = 32;
1752 } else {
1753#ifdef CONFIG_64BIT
1754 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1755 size = min(39, arm_smmu_id_size_to_bits(size));
1756#else
1757 size = 32;
1758#endif
1759 smmu->input_size = size;
1760
1761 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1762 (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1763 (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1764 dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1765 PAGE_SIZE);
1766 return -ENODEV;
1767 }
1768 }
1769
1770 dev_notice(smmu->dev,
1771 "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1772 smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1773 return 0;
1774}
1775
1776static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1777{
1778 struct resource *res;
1779 struct arm_smmu_device *smmu;
1780 struct device_node *dev_node;
1781 struct device *dev = &pdev->dev;
1782 struct rb_node *node;
1783 struct of_phandle_args masterspec;
1784 int num_irqs, i, err;
1785
1786 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1787 if (!smmu) {
1788 dev_err(dev, "failed to allocate arm_smmu_device\n");
1789 return -ENOMEM;
1790 }
1791 smmu->dev = dev;
1792
1793 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794 if (!res) {
1795 dev_err(dev, "missing base address/size\n");
1796 return -ENODEV;
1797 }
1798
1799 smmu->size = resource_size(res);
1800 smmu->base = devm_request_and_ioremap(dev, res);
1801 if (!smmu->base)
1802 return -EADDRNOTAVAIL;
1803
1804 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1805 &smmu->num_global_irqs)) {
1806 dev_err(dev, "missing #global-interrupts property\n");
1807 return -ENODEV;
1808 }
1809
1810 num_irqs = 0;
1811 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1812 num_irqs++;
1813 if (num_irqs > smmu->num_global_irqs)
1814 smmu->num_context_irqs++;
1815 }
1816
1817 if (num_irqs < smmu->num_global_irqs) {
1818 dev_warn(dev, "found %d interrupts but expected at least %d\n",
1819 num_irqs, smmu->num_global_irqs);
1820 smmu->num_global_irqs = num_irqs;
1821 }
1822 smmu->num_context_irqs = num_irqs - smmu->num_global_irqs;
1823
1824 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1825 GFP_KERNEL);
1826 if (!smmu->irqs) {
1827 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1828 return -ENOMEM;
1829 }
1830
1831 for (i = 0; i < num_irqs; ++i) {
1832 int irq = platform_get_irq(pdev, i);
1833 if (irq < 0) {
1834 dev_err(dev, "failed to get irq index %d\n", i);
1835 return -ENODEV;
1836 }
1837 smmu->irqs[i] = irq;
1838 }
1839
1840 i = 0;
1841 smmu->masters = RB_ROOT;
1842 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1843 "#stream-id-cells", i,
1844 &masterspec)) {
1845 err = register_smmu_master(smmu, dev, &masterspec);
1846 if (err) {
1847 dev_err(dev, "failed to add master %s\n",
1848 masterspec.np->name);
1849 goto out_put_masters;
1850 }
1851
1852 i++;
1853 }
1854 dev_notice(dev, "registered %d master devices\n", i);
1855
1856 if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
1857 smmu->parent_of_node = dev_node;
1858
1859 err = arm_smmu_device_cfg_probe(smmu);
1860 if (err)
1861 goto out_put_parent;
1862
1863 if (smmu->version > 1 &&
1864 smmu->num_context_banks != smmu->num_context_irqs) {
1865 dev_err(dev,
1866 "found only %d context interrupt(s) but %d required\n",
1867 smmu->num_context_irqs, smmu->num_context_banks);
1868 goto out_put_parent;
1869 }
1870
1871 arm_smmu_device_reset(smmu);
1872
1873 for (i = 0; i < smmu->num_global_irqs; ++i) {
1874 err = request_irq(smmu->irqs[i],
1875 arm_smmu_global_fault,
1876 IRQF_SHARED,
1877 "arm-smmu global fault",
1878 smmu);
1879 if (err) {
1880 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1881 i, smmu->irqs[i]);
1882 goto out_free_irqs;
1883 }
1884 }
1885
1886 INIT_LIST_HEAD(&smmu->list);
1887 spin_lock(&arm_smmu_devices_lock);
1888 list_add(&smmu->list, &arm_smmu_devices);
1889 spin_unlock(&arm_smmu_devices_lock);
1890 return 0;
1891
1892out_free_irqs:
1893 while (i--)
1894 free_irq(smmu->irqs[i], smmu);
1895
1896out_put_parent:
1897 if (smmu->parent_of_node)
1898 of_node_put(smmu->parent_of_node);
1899
1900out_put_masters:
1901 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1902 struct arm_smmu_master *master;
1903 master = container_of(node, struct arm_smmu_master, node);
1904 of_node_put(master->of_node);
1905 }
1906
1907 return err;
1908}
1909
1910static int arm_smmu_device_remove(struct platform_device *pdev)
1911{
1912 int i;
1913 struct device *dev = &pdev->dev;
1914 struct arm_smmu_device *curr, *smmu = NULL;
1915 struct rb_node *node;
1916
1917 spin_lock(&arm_smmu_devices_lock);
1918 list_for_each_entry(curr, &arm_smmu_devices, list) {
1919 if (curr->dev == dev) {
1920 smmu = curr;
1921 list_del(&smmu->list);
1922 break;
1923 }
1924 }
1925 spin_unlock(&arm_smmu_devices_lock);
1926
1927 if (!smmu)
1928 return -ENODEV;
1929
1930 if (smmu->parent_of_node)
1931 of_node_put(smmu->parent_of_node);
1932
1933 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1934 struct arm_smmu_master *master;
1935 master = container_of(node, struct arm_smmu_master, node);
1936 of_node_put(master->of_node);
1937 }
1938
1939 if (!bitmap_empty(smmu->vmid_map, ARM_SMMU_NUM_VMIDS))
1940 dev_err(dev, "removing device with active domains!\n");
1941
1942 for (i = 0; i < smmu->num_global_irqs; ++i)
1943 free_irq(smmu->irqs[i], smmu);
1944
1945 /* Turn the thing off */
1946 writel(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0);
1947 return 0;
1948}
1949
1950#ifdef CONFIG_OF
1951static struct of_device_id arm_smmu_of_match[] = {
1952 { .compatible = "arm,smmu-v1", },
1953 { .compatible = "arm,smmu-v2", },
1954 { .compatible = "arm,mmu-400", },
1955 { .compatible = "arm,mmu-500", },
1956 { },
1957};
1958MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1959#endif
1960
1961static struct platform_driver arm_smmu_driver = {
1962 .driver = {
1963 .owner = THIS_MODULE,
1964 .name = "arm-smmu",
1965 .of_match_table = of_match_ptr(arm_smmu_of_match),
1966 },
1967 .probe = arm_smmu_device_dt_probe,
1968 .remove = arm_smmu_device_remove,
1969};
1970
1971static int __init arm_smmu_init(void)
1972{
1973 int ret;
1974
1975 ret = platform_driver_register(&arm_smmu_driver);
1976 if (ret)
1977 return ret;
1978
1979 /* Oh, for a proper bus abstraction */
1980 if (!iommu_present(&platform_bus_type));
1981 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1982
1983 if (!iommu_present(&amba_bustype));
1984 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1985
1986 return 0;
1987}
1988
1989static void __exit arm_smmu_exit(void)
1990{
1991 return platform_driver_unregister(&arm_smmu_driver);
1992}
1993
1994module_init(arm_smmu_init);
1995module_exit(arm_smmu_exit);
1996
1997MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1998MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1999MODULE_LICENSE("GPL v2");