blob: 598eb45e800860b1ee7b2c2dd48a515f0f7f8acf [file] [log] [blame]
Laxman Dewanganf333a332013-02-22 18:07:39 +05301/*
2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
3 *
4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/clk.h>
20#include <linux/clk/tegra.h>
21#include <linux/completion.h>
22#include <linux/delay.h>
23#include <linux/dmaengine.h>
24#include <linux/dma-mapping.h>
25#include <linux/dmapool.h>
26#include <linux/err.h>
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/kernel.h>
31#include <linux/kthread.h>
32#include <linux/module.h>
33#include <linux/platform_device.h>
34#include <linux/pm_runtime.h>
35#include <linux/of.h>
36#include <linux/of_device.h>
37#include <linux/spi/spi.h>
38
39#define SPI_COMMAND1 0x000
40#define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
41#define SPI_PACKED (1 << 5)
42#define SPI_TX_EN (1 << 11)
43#define SPI_RX_EN (1 << 12)
44#define SPI_BOTH_EN_BYTE (1 << 13)
45#define SPI_BOTH_EN_BIT (1 << 14)
46#define SPI_LSBYTE_FE (1 << 15)
47#define SPI_LSBIT_FE (1 << 16)
48#define SPI_BIDIROE (1 << 17)
49#define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
50#define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
51#define SPI_IDLE_SDA_PULL_LOW (2 << 18)
52#define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
53#define SPI_IDLE_SDA_MASK (3 << 18)
54#define SPI_CS_SS_VAL (1 << 20)
55#define SPI_CS_SW_HW (1 << 21)
56/* SPI_CS_POL_INACTIVE bits are default high */
57#define SPI_CS_POL_INACTIVE 22
58#define SPI_CS_POL_INACTIVE_0 (1 << 22)
59#define SPI_CS_POL_INACTIVE_1 (1 << 23)
60#define SPI_CS_POL_INACTIVE_2 (1 << 24)
61#define SPI_CS_POL_INACTIVE_3 (1 << 25)
62#define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
63
64#define SPI_CS_SEL_0 (0 << 26)
65#define SPI_CS_SEL_1 (1 << 26)
66#define SPI_CS_SEL_2 (2 << 26)
67#define SPI_CS_SEL_3 (3 << 26)
68#define SPI_CS_SEL_MASK (3 << 26)
69#define SPI_CS_SEL(x) (((x) & 0x3) << 26)
70#define SPI_CONTROL_MODE_0 (0 << 28)
71#define SPI_CONTROL_MODE_1 (1 << 28)
72#define SPI_CONTROL_MODE_2 (2 << 28)
73#define SPI_CONTROL_MODE_3 (3 << 28)
74#define SPI_CONTROL_MODE_MASK (3 << 28)
75#define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
76#define SPI_M_S (1 << 30)
77#define SPI_PIO (1 << 31)
78
79#define SPI_COMMAND2 0x004
80#define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
81#define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
82
83#define SPI_CS_TIMING1 0x008
84#define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
85#define SPI_CS_SETUP_HOLD(reg, cs, val) \
86 ((((val) & 0xFFu) << ((cs) * 8)) | \
87 ((reg) & ~(0xFFu << ((cs) * 8))))
88
89#define SPI_CS_TIMING2 0x00C
90#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
91#define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
92#define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
93#define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
94#define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
95#define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
96#define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
97#define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
98#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
99 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
100 ((reg) & ~(1 << ((cs) * 8 + 5))))
101#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
102 (reg = (((val) & 0xF) << ((cs) * 8)) | \
103 ((reg) & ~(0xF << ((cs) * 8))))
104
105#define SPI_TRANS_STATUS 0x010
106#define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
107#define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
108#define SPI_RDY (1 << 30)
109
110#define SPI_FIFO_STATUS 0x014
111#define SPI_RX_FIFO_EMPTY (1 << 0)
112#define SPI_RX_FIFO_FULL (1 << 1)
113#define SPI_TX_FIFO_EMPTY (1 << 2)
114#define SPI_TX_FIFO_FULL (1 << 3)
115#define SPI_RX_FIFO_UNF (1 << 4)
116#define SPI_RX_FIFO_OVF (1 << 5)
117#define SPI_TX_FIFO_UNF (1 << 6)
118#define SPI_TX_FIFO_OVF (1 << 7)
119#define SPI_ERR (1 << 8)
120#define SPI_TX_FIFO_FLUSH (1 << 14)
121#define SPI_RX_FIFO_FLUSH (1 << 15)
122#define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
123#define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
124#define SPI_FRAME_END (1 << 30)
125#define SPI_CS_INACTIVE (1 << 31)
126
127#define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
128 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
129#define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
130
131#define SPI_TX_DATA 0x018
132#define SPI_RX_DATA 0x01C
133
134#define SPI_DMA_CTL 0x020
135#define SPI_TX_TRIG_1 (0 << 15)
136#define SPI_TX_TRIG_4 (1 << 15)
137#define SPI_TX_TRIG_8 (2 << 15)
138#define SPI_TX_TRIG_16 (3 << 15)
139#define SPI_TX_TRIG_MASK (3 << 15)
140#define SPI_RX_TRIG_1 (0 << 19)
141#define SPI_RX_TRIG_4 (1 << 19)
142#define SPI_RX_TRIG_8 (2 << 19)
143#define SPI_RX_TRIG_16 (3 << 19)
144#define SPI_RX_TRIG_MASK (3 << 19)
145#define SPI_IE_TX (1 << 28)
146#define SPI_IE_RX (1 << 29)
147#define SPI_CONT (1 << 30)
148#define SPI_DMA (1 << 31)
149#define SPI_DMA_EN SPI_DMA
150
151#define SPI_DMA_BLK 0x024
152#define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
153
154#define SPI_TX_FIFO 0x108
155#define SPI_RX_FIFO 0x188
156#define MAX_CHIP_SELECT 4
157#define SPI_FIFO_DEPTH 64
158#define DATA_DIR_TX (1 << 0)
159#define DATA_DIR_RX (1 << 1)
160
161#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
162#define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
163#define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
164#define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
165#define MAX_HOLD_CYCLES 16
166#define SPI_DEFAULT_SPEED 25000000
167
168#define MAX_CHIP_SELECT 4
169#define SPI_FIFO_DEPTH 64
170
171struct tegra_spi_data {
172 struct device *dev;
173 struct spi_master *master;
174 spinlock_t lock;
175
176 struct clk *clk;
177 void __iomem *base;
178 phys_addr_t phys;
179 unsigned irq;
180 int dma_req_sel;
181 u32 spi_max_frequency;
182 u32 cur_speed;
183
184 struct spi_device *cur_spi;
185 unsigned cur_pos;
186 unsigned cur_len;
187 unsigned words_per_32bit;
188 unsigned bytes_per_word;
189 unsigned curr_dma_words;
190 unsigned cur_direction;
191
192 unsigned cur_rx_pos;
193 unsigned cur_tx_pos;
194
195 unsigned dma_buf_size;
196 unsigned max_buf_size;
197 bool is_curr_dma_xfer;
198
199 struct completion rx_dma_complete;
200 struct completion tx_dma_complete;
201
202 u32 tx_status;
203 u32 rx_status;
204 u32 status_reg;
205 bool is_packed;
206 unsigned long packed_size;
207
208 u32 command1_reg;
209 u32 dma_control_reg;
210 u32 def_command1_reg;
211 u32 spi_cs_timing;
212
213 struct completion xfer_completion;
214 struct spi_transfer *curr_xfer;
215 struct dma_chan *rx_dma_chan;
216 u32 *rx_dma_buf;
217 dma_addr_t rx_dma_phys;
218 struct dma_async_tx_descriptor *rx_dma_desc;
219
220 struct dma_chan *tx_dma_chan;
221 u32 *tx_dma_buf;
222 dma_addr_t tx_dma_phys;
223 struct dma_async_tx_descriptor *tx_dma_desc;
224};
225
226static int tegra_spi_runtime_suspend(struct device *dev);
227static int tegra_spi_runtime_resume(struct device *dev);
228
229static inline unsigned long tegra_spi_readl(struct tegra_spi_data *tspi,
230 unsigned long reg)
231{
232 return readl(tspi->base + reg);
233}
234
235static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
236 unsigned long val, unsigned long reg)
237{
238 writel(val, tspi->base + reg);
239
240 /* Read back register to make sure that register writes completed */
241 if (reg != SPI_TX_FIFO)
242 readl(tspi->base + SPI_COMMAND1);
243}
244
245static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
246{
247 unsigned long val;
248
249 /* Write 1 to clear status register */
250 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
251 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
252
253 /* Clear fifo status error if any */
254 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
255 if (val & SPI_ERR)
256 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
257 SPI_FIFO_STATUS);
258}
259
260static unsigned tegra_spi_calculate_curr_xfer_param(
261 struct spi_device *spi, struct tegra_spi_data *tspi,
262 struct spi_transfer *t)
263{
264 unsigned remain_len = t->len - tspi->cur_pos;
265 unsigned max_word;
266 unsigned bits_per_word = t->bits_per_word;
267 unsigned max_len;
268 unsigned total_fifo_words;
269
270 tspi->bytes_per_word = (bits_per_word - 1) / 8 + 1;
271
272 if (bits_per_word == 8 || bits_per_word == 16) {
273 tspi->is_packed = 1;
274 tspi->words_per_32bit = 32/bits_per_word;
275 } else {
276 tspi->is_packed = 0;
277 tspi->words_per_32bit = 1;
278 }
279
280 if (tspi->is_packed) {
281 max_len = min(remain_len, tspi->max_buf_size);
282 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
283 total_fifo_words = (max_len + 3) / 4;
284 } else {
285 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
286 max_word = min(max_word, tspi->max_buf_size/4);
287 tspi->curr_dma_words = max_word;
288 total_fifo_words = max_word;
289 }
290 return total_fifo_words;
291}
292
293static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
294 struct tegra_spi_data *tspi, struct spi_transfer *t)
295{
296 unsigned nbytes;
297 unsigned tx_empty_count;
298 unsigned long fifo_status;
299 unsigned max_n_32bit;
300 unsigned i, count;
301 unsigned long x;
302 unsigned int written_words;
303 unsigned fifo_words_left;
304 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
305
306 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
307 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
308
309 if (tspi->is_packed) {
310 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
311 written_words = min(fifo_words_left, tspi->curr_dma_words);
312 nbytes = written_words * tspi->bytes_per_word;
313 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
314 for (count = 0; count < max_n_32bit; count++) {
315 x = 0;
316 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
317 x |= (*tx_buf++) << (i*8);
318 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
319 }
320 } else {
321 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
322 written_words = max_n_32bit;
323 nbytes = written_words * tspi->bytes_per_word;
324 for (count = 0; count < max_n_32bit; count++) {
325 x = 0;
326 for (i = 0; nbytes && (i < tspi->bytes_per_word);
327 i++, nbytes--)
328 x |= ((*tx_buf++) << i*8);
329 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
330 }
331 }
332 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
333 return written_words;
334}
335
336static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
337 struct tegra_spi_data *tspi, struct spi_transfer *t)
338{
339 unsigned rx_full_count;
340 unsigned long fifo_status;
341 unsigned i, count;
342 unsigned long x;
343 unsigned int read_words = 0;
344 unsigned len;
345 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
346
347 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
348 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
349 if (tspi->is_packed) {
350 len = tspi->curr_dma_words * tspi->bytes_per_word;
351 for (count = 0; count < rx_full_count; count++) {
352 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
353 for (i = 0; len && (i < 4); i++, len--)
354 *rx_buf++ = (x >> i*8) & 0xFF;
355 }
356 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
357 read_words += tspi->curr_dma_words;
358 } else {
359 unsigned int rx_mask;
360 unsigned int bits_per_word = t->bits_per_word;
361
362 rx_mask = (1 << bits_per_word) - 1;
363 for (count = 0; count < rx_full_count; count++) {
364 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
365 x &= rx_mask;
366 for (i = 0; (i < tspi->bytes_per_word); i++)
367 *rx_buf++ = (x >> (i*8)) & 0xFF;
368 }
369 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
370 read_words += rx_full_count;
371 }
372 return read_words;
373}
374
375static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
376 struct tegra_spi_data *tspi, struct spi_transfer *t)
377{
378 unsigned len;
379
380 /* Make the dma buffer to read by cpu */
381 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
382 tspi->dma_buf_size, DMA_TO_DEVICE);
383
384 if (tspi->is_packed) {
385 len = tspi->curr_dma_words * tspi->bytes_per_word;
386 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
387 } else {
388 unsigned int i;
389 unsigned int count;
390 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
391 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
392 unsigned int x;
393
394 for (count = 0; count < tspi->curr_dma_words; count++) {
395 x = 0;
396 for (i = 0; consume && (i < tspi->bytes_per_word);
397 i++, consume--)
398 x |= ((*tx_buf++) << i * 8);
399 tspi->tx_dma_buf[count] = x;
400 }
401 }
402 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
403
404 /* Make the dma buffer to read by dma */
405 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
406 tspi->dma_buf_size, DMA_TO_DEVICE);
407}
408
409static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
410 struct tegra_spi_data *tspi, struct spi_transfer *t)
411{
412 unsigned len;
413
414 /* Make the dma buffer to read by cpu */
415 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
416 tspi->dma_buf_size, DMA_FROM_DEVICE);
417
418 if (tspi->is_packed) {
419 len = tspi->curr_dma_words * tspi->bytes_per_word;
420 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
421 } else {
422 unsigned int i;
423 unsigned int count;
424 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
425 unsigned int x;
426 unsigned int rx_mask;
427 unsigned int bits_per_word = t->bits_per_word;
428
429 rx_mask = (1 << bits_per_word) - 1;
430 for (count = 0; count < tspi->curr_dma_words; count++) {
431 x = tspi->rx_dma_buf[count];
432 x &= rx_mask;
433 for (i = 0; (i < tspi->bytes_per_word); i++)
434 *rx_buf++ = (x >> (i*8)) & 0xFF;
435 }
436 }
437 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
438
439 /* Make the dma buffer to read by dma */
440 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
441 tspi->dma_buf_size, DMA_FROM_DEVICE);
442}
443
444static void tegra_spi_dma_complete(void *args)
445{
446 struct completion *dma_complete = args;
447
448 complete(dma_complete);
449}
450
451static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
452{
453 INIT_COMPLETION(tspi->tx_dma_complete);
454 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
455 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
456 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
457 if (!tspi->tx_dma_desc) {
458 dev_err(tspi->dev, "Not able to get desc for Tx\n");
459 return -EIO;
460 }
461
462 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
463 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
464
465 dmaengine_submit(tspi->tx_dma_desc);
466 dma_async_issue_pending(tspi->tx_dma_chan);
467 return 0;
468}
469
470static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
471{
472 INIT_COMPLETION(tspi->rx_dma_complete);
473 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
474 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
475 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
476 if (!tspi->rx_dma_desc) {
477 dev_err(tspi->dev, "Not able to get desc for Rx\n");
478 return -EIO;
479 }
480
481 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
482 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
483
484 dmaengine_submit(tspi->rx_dma_desc);
485 dma_async_issue_pending(tspi->rx_dma_chan);
486 return 0;
487}
488
489static int tegra_spi_start_dma_based_transfer(
490 struct tegra_spi_data *tspi, struct spi_transfer *t)
491{
492 unsigned long val;
493 unsigned int len;
494 int ret = 0;
495 unsigned long status;
496
497 /* Make sure that Rx and Tx fifo are empty */
498 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
499 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
500 dev_err(tspi->dev,
501 "Rx/Tx fifo are not empty status 0x%08lx\n", status);
502 return -EIO;
503 }
504
505 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
506 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
507
508 if (tspi->is_packed)
509 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
510 4) * 4;
511 else
512 len = tspi->curr_dma_words * 4;
513
514 /* Set attention level based on length of transfer */
515 if (len & 0xF)
516 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
517 else if (((len) >> 4) & 0x1)
518 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
519 else
520 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
521
522 if (tspi->cur_direction & DATA_DIR_TX)
523 val |= SPI_IE_TX;
524
525 if (tspi->cur_direction & DATA_DIR_RX)
526 val |= SPI_IE_RX;
527
528 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
529 tspi->dma_control_reg = val;
530
531 if (tspi->cur_direction & DATA_DIR_TX) {
532 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
533 ret = tegra_spi_start_tx_dma(tspi, len);
534 if (ret < 0) {
535 dev_err(tspi->dev,
536 "Starting tx dma failed, err %d\n", ret);
537 return ret;
538 }
539 }
540
541 if (tspi->cur_direction & DATA_DIR_RX) {
542 /* Make the dma buffer to read by dma */
543 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
544 tspi->dma_buf_size, DMA_FROM_DEVICE);
545
546 ret = tegra_spi_start_rx_dma(tspi, len);
547 if (ret < 0) {
548 dev_err(tspi->dev,
549 "Starting rx dma failed, err %d\n", ret);
550 if (tspi->cur_direction & DATA_DIR_TX)
551 dmaengine_terminate_all(tspi->tx_dma_chan);
552 return ret;
553 }
554 }
555 tspi->is_curr_dma_xfer = true;
556 tspi->dma_control_reg = val;
557
558 val |= SPI_DMA_EN;
559 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
560 return ret;
561}
562
563static int tegra_spi_start_cpu_based_transfer(
564 struct tegra_spi_data *tspi, struct spi_transfer *t)
565{
566 unsigned long val;
567 unsigned cur_words;
568
569 if (tspi->cur_direction & DATA_DIR_TX)
570 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
571 else
572 cur_words = tspi->curr_dma_words;
573
574 val = SPI_DMA_BLK_SET(cur_words - 1);
575 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
576
577 val = 0;
578 if (tspi->cur_direction & DATA_DIR_TX)
579 val |= SPI_IE_TX;
580
581 if (tspi->cur_direction & DATA_DIR_RX)
582 val |= SPI_IE_RX;
583
584 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
585 tspi->dma_control_reg = val;
586
587 tspi->is_curr_dma_xfer = false;
588
589 val |= SPI_DMA_EN;
590 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
591 return 0;
592}
593
594static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
595 bool dma_to_memory)
596{
597 struct dma_chan *dma_chan;
598 u32 *dma_buf;
599 dma_addr_t dma_phys;
600 int ret;
601 struct dma_slave_config dma_sconfig;
602 dma_cap_mask_t mask;
603
604 dma_cap_zero(mask);
605 dma_cap_set(DMA_SLAVE, mask);
606 dma_chan = dma_request_channel(mask, NULL, NULL);
607 if (!dma_chan) {
608 dev_err(tspi->dev,
609 "Dma channel is not available, will try later\n");
610 return -EPROBE_DEFER;
611 }
612
613 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
614 &dma_phys, GFP_KERNEL);
615 if (!dma_buf) {
616 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
617 dma_release_channel(dma_chan);
618 return -ENOMEM;
619 }
620
621 dma_sconfig.slave_id = tspi->dma_req_sel;
622 if (dma_to_memory) {
623 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
624 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
625 dma_sconfig.src_maxburst = 0;
626 } else {
627 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
628 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
629 dma_sconfig.dst_maxburst = 0;
630 }
631
632 ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
633 if (ret)
634 goto scrub;
635 if (dma_to_memory) {
636 tspi->rx_dma_chan = dma_chan;
637 tspi->rx_dma_buf = dma_buf;
638 tspi->rx_dma_phys = dma_phys;
639 } else {
640 tspi->tx_dma_chan = dma_chan;
641 tspi->tx_dma_buf = dma_buf;
642 tspi->tx_dma_phys = dma_phys;
643 }
644 return 0;
645
646scrub:
647 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
648 dma_release_channel(dma_chan);
649 return ret;
650}
651
652static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
653 bool dma_to_memory)
654{
655 u32 *dma_buf;
656 dma_addr_t dma_phys;
657 struct dma_chan *dma_chan;
658
659 if (dma_to_memory) {
660 dma_buf = tspi->rx_dma_buf;
661 dma_chan = tspi->rx_dma_chan;
662 dma_phys = tspi->rx_dma_phys;
663 tspi->rx_dma_chan = NULL;
664 tspi->rx_dma_buf = NULL;
665 } else {
666 dma_buf = tspi->tx_dma_buf;
667 dma_chan = tspi->tx_dma_chan;
668 dma_phys = tspi->tx_dma_phys;
669 tspi->tx_dma_buf = NULL;
670 tspi->tx_dma_chan = NULL;
671 }
672 if (!dma_chan)
673 return;
674
675 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
676 dma_release_channel(dma_chan);
677}
678
679static int tegra_spi_start_transfer_one(struct spi_device *spi,
680 struct spi_transfer *t, bool is_first_of_msg,
681 bool is_single_xfer)
682{
683 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
684 u32 speed = t->speed_hz;
685 u8 bits_per_word = t->bits_per_word;
686 unsigned total_fifo_words;
687 int ret;
688 unsigned long command1;
689 int req_mode;
690
691 if (speed != tspi->cur_speed) {
692 clk_set_rate(tspi->clk, speed);
693 tspi->cur_speed = speed;
694 }
695
696 tspi->cur_spi = spi;
697 tspi->cur_pos = 0;
698 tspi->cur_rx_pos = 0;
699 tspi->cur_tx_pos = 0;
700 tspi->curr_xfer = t;
701 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
702
703 if (is_first_of_msg) {
704 tegra_spi_clear_status(tspi);
705
706 command1 = tspi->def_command1_reg;
707 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
708
709 command1 &= ~SPI_CONTROL_MODE_MASK;
710 req_mode = spi->mode & 0x3;
711 if (req_mode == SPI_MODE_0)
712 command1 |= SPI_CONTROL_MODE_0;
713 else if (req_mode == SPI_MODE_1)
714 command1 |= SPI_CONTROL_MODE_1;
715 else if (req_mode == SPI_MODE_2)
716 command1 |= SPI_CONTROL_MODE_2;
717 else if (req_mode == SPI_MODE_3)
718 command1 |= SPI_CONTROL_MODE_3;
719
720 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
721
722 command1 |= SPI_CS_SW_HW;
723 if (spi->mode & SPI_CS_HIGH)
724 command1 |= SPI_CS_SS_VAL;
725 else
726 command1 &= ~SPI_CS_SS_VAL;
727
728 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
729 } else {
730 command1 = tspi->command1_reg;
731 command1 &= ~SPI_BIT_LENGTH(~0);
732 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
733 }
734
735 if (tspi->is_packed)
736 command1 |= SPI_PACKED;
737
738 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
739 tspi->cur_direction = 0;
740 if (t->rx_buf) {
741 command1 |= SPI_RX_EN;
742 tspi->cur_direction |= DATA_DIR_RX;
743 }
744 if (t->tx_buf) {
745 command1 |= SPI_TX_EN;
746 tspi->cur_direction |= DATA_DIR_TX;
747 }
748 command1 |= SPI_CS_SEL(spi->chip_select);
749 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
750 tspi->command1_reg = command1;
751
752 dev_dbg(tspi->dev, "The def 0x%x and written 0x%lx\n",
753 tspi->def_command1_reg, command1);
754
755 if (total_fifo_words > SPI_FIFO_DEPTH)
756 ret = tegra_spi_start_dma_based_transfer(tspi, t);
757 else
758 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
759 return ret;
760}
761
762static int tegra_spi_setup(struct spi_device *spi)
763{
764 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
765 unsigned long val;
766 unsigned long flags;
767 int ret;
768 unsigned int cs_pol_bit[MAX_CHIP_SELECT] = {
769 SPI_CS_POL_INACTIVE_0,
770 SPI_CS_POL_INACTIVE_1,
771 SPI_CS_POL_INACTIVE_2,
772 SPI_CS_POL_INACTIVE_3,
773 };
774
775 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
776 spi->bits_per_word,
777 spi->mode & SPI_CPOL ? "" : "~",
778 spi->mode & SPI_CPHA ? "" : "~",
779 spi->max_speed_hz);
780
781 BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
782
783 /* Set speed to the spi max fequency if spi device has not set */
784 spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
785
786 ret = pm_runtime_get_sync(tspi->dev);
787 if (ret < 0) {
788 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
789 return ret;
790 }
791
792 spin_lock_irqsave(&tspi->lock, flags);
793 val = tspi->def_command1_reg;
794 if (spi->mode & SPI_CS_HIGH)
795 val &= ~cs_pol_bit[spi->chip_select];
796 else
797 val |= cs_pol_bit[spi->chip_select];
798 tspi->def_command1_reg = val;
799 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
800 spin_unlock_irqrestore(&tspi->lock, flags);
801
802 pm_runtime_put(tspi->dev);
803 return 0;
804}
805
806static int tegra_spi_transfer_one_message(struct spi_master *master,
807 struct spi_message *msg)
808{
809 bool is_first_msg = true;
810 int single_xfer;
811 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
812 struct spi_transfer *xfer;
813 struct spi_device *spi = msg->spi;
814 int ret;
815
816 msg->status = 0;
817 msg->actual_length = 0;
818
819 ret = pm_runtime_get_sync(tspi->dev);
820 if (ret < 0) {
821 dev_err(tspi->dev, "runtime PM get failed: %d\n", ret);
822 msg->status = ret;
823 spi_finalize_current_message(master);
824 return ret;
825 }
826
827 single_xfer = list_is_singular(&msg->transfers);
828 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
829 INIT_COMPLETION(tspi->xfer_completion);
830 ret = tegra_spi_start_transfer_one(spi, xfer,
831 is_first_msg, single_xfer);
832 if (ret < 0) {
833 dev_err(tspi->dev,
834 "spi can not start transfer, err %d\n", ret);
835 goto exit;
836 }
837 is_first_msg = false;
838 ret = wait_for_completion_timeout(&tspi->xfer_completion,
839 SPI_DMA_TIMEOUT);
840 if (WARN_ON(ret == 0)) {
841 dev_err(tspi->dev,
842 "spi trasfer timeout, err %d\n", ret);
843 ret = -EIO;
844 goto exit;
845 }
846
847 if (tspi->tx_status || tspi->rx_status) {
848 dev_err(tspi->dev, "Error in Transfer\n");
849 ret = -EIO;
850 goto exit;
851 }
852 msg->actual_length += xfer->len;
853 if (xfer->cs_change && xfer->delay_usecs) {
854 tegra_spi_writel(tspi, tspi->def_command1_reg,
855 SPI_COMMAND1);
856 udelay(xfer->delay_usecs);
857 }
858 }
859 ret = 0;
860exit:
861 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
862 pm_runtime_put(tspi->dev);
863 msg->status = ret;
864 spi_finalize_current_message(master);
865 return ret;
866}
867
868static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
869{
870 struct spi_transfer *t = tspi->curr_xfer;
871 unsigned long flags;
872
873 spin_lock_irqsave(&tspi->lock, flags);
874 if (tspi->tx_status || tspi->rx_status) {
875 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
876 tspi->status_reg);
877 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
878 tspi->command1_reg, tspi->dma_control_reg);
879 tegra_periph_reset_assert(tspi->clk);
880 udelay(2);
881 tegra_periph_reset_deassert(tspi->clk);
882 complete(&tspi->xfer_completion);
883 goto exit;
884 }
885
886 if (tspi->cur_direction & DATA_DIR_RX)
887 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
888
889 if (tspi->cur_direction & DATA_DIR_TX)
890 tspi->cur_pos = tspi->cur_tx_pos;
891 else
892 tspi->cur_pos = tspi->cur_rx_pos;
893
894 if (tspi->cur_pos == t->len) {
895 complete(&tspi->xfer_completion);
896 goto exit;
897 }
898
899 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
900 tegra_spi_start_cpu_based_transfer(tspi, t);
901exit:
902 spin_unlock_irqrestore(&tspi->lock, flags);
903 return IRQ_HANDLED;
904}
905
906static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
907{
908 struct spi_transfer *t = tspi->curr_xfer;
909 long wait_status;
910 int err = 0;
911 unsigned total_fifo_words;
912 unsigned long flags;
913
914 /* Abort dmas if any error */
915 if (tspi->cur_direction & DATA_DIR_TX) {
916 if (tspi->tx_status) {
917 dmaengine_terminate_all(tspi->tx_dma_chan);
918 err += 1;
919 } else {
920 wait_status = wait_for_completion_interruptible_timeout(
921 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
922 if (wait_status <= 0) {
923 dmaengine_terminate_all(tspi->tx_dma_chan);
924 dev_err(tspi->dev, "TxDma Xfer failed\n");
925 err += 1;
926 }
927 }
928 }
929
930 if (tspi->cur_direction & DATA_DIR_RX) {
931 if (tspi->rx_status) {
932 dmaengine_terminate_all(tspi->rx_dma_chan);
933 err += 2;
934 } else {
935 wait_status = wait_for_completion_interruptible_timeout(
936 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
937 if (wait_status <= 0) {
938 dmaengine_terminate_all(tspi->rx_dma_chan);
939 dev_err(tspi->dev, "RxDma Xfer failed\n");
940 err += 2;
941 }
942 }
943 }
944
945 spin_lock_irqsave(&tspi->lock, flags);
946 if (err) {
947 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
948 tspi->status_reg);
949 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
950 tspi->command1_reg, tspi->dma_control_reg);
951 tegra_periph_reset_assert(tspi->clk);
952 udelay(2);
953 tegra_periph_reset_deassert(tspi->clk);
954 complete(&tspi->xfer_completion);
955 spin_unlock_irqrestore(&tspi->lock, flags);
956 return IRQ_HANDLED;
957 }
958
959 if (tspi->cur_direction & DATA_DIR_RX)
960 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
961
962 if (tspi->cur_direction & DATA_DIR_TX)
963 tspi->cur_pos = tspi->cur_tx_pos;
964 else
965 tspi->cur_pos = tspi->cur_rx_pos;
966
967 if (tspi->cur_pos == t->len) {
968 complete(&tspi->xfer_completion);
969 goto exit;
970 }
971
972 /* Continue transfer in current message */
973 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
974 tspi, t);
975 if (total_fifo_words > SPI_FIFO_DEPTH)
976 err = tegra_spi_start_dma_based_transfer(tspi, t);
977 else
978 err = tegra_spi_start_cpu_based_transfer(tspi, t);
979
980exit:
981 spin_unlock_irqrestore(&tspi->lock, flags);
982 return IRQ_HANDLED;
983}
984
985static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
986{
987 struct tegra_spi_data *tspi = context_data;
988
989 if (!tspi->is_curr_dma_xfer)
990 return handle_cpu_based_xfer(tspi);
991 return handle_dma_based_xfer(tspi);
992}
993
994static irqreturn_t tegra_spi_isr(int irq, void *context_data)
995{
996 struct tegra_spi_data *tspi = context_data;
997
998 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
999 if (tspi->cur_direction & DATA_DIR_TX)
1000 tspi->tx_status = tspi->status_reg &
1001 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1002
1003 if (tspi->cur_direction & DATA_DIR_RX)
1004 tspi->rx_status = tspi->status_reg &
1005 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1006 tegra_spi_clear_status(tspi);
1007
1008 return IRQ_WAKE_THREAD;
1009}
1010
1011static void tegra_spi_parse_dt(struct platform_device *pdev,
1012 struct tegra_spi_data *tspi)
1013{
1014 struct device_node *np = pdev->dev.of_node;
1015 u32 of_dma[2];
1016
1017 if (of_property_read_u32_array(np, "nvidia,dma-request-selector",
1018 of_dma, 2) >= 0)
1019 tspi->dma_req_sel = of_dma[1];
1020
1021 if (of_property_read_u32(np, "spi-max-frequency",
1022 &tspi->spi_max_frequency))
1023 tspi->spi_max_frequency = 25000000; /* 25MHz */
1024}
1025
1026static struct of_device_id tegra_spi_of_match[] = {
1027 { .compatible = "nvidia,tegra114-spi", },
1028 {}
1029};
1030MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1031
1032static int tegra_spi_probe(struct platform_device *pdev)
1033{
1034 struct spi_master *master;
1035 struct tegra_spi_data *tspi;
1036 struct resource *r;
1037 int ret, spi_irq;
1038
1039 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1040 if (!master) {
1041 dev_err(&pdev->dev, "master allocation failed\n");
1042 return -ENOMEM;
1043 }
1044 dev_set_drvdata(&pdev->dev, master);
1045 tspi = spi_master_get_devdata(master);
1046
1047 /* Parse DT */
1048 tegra_spi_parse_dt(pdev, tspi);
1049
1050 /* the spi->mode bits understood by this driver: */
1051 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1052 master->setup = tegra_spi_setup;
1053 master->transfer_one_message = tegra_spi_transfer_one_message;
1054 master->num_chipselect = MAX_CHIP_SELECT;
1055 master->bus_num = -1;
1056
1057 tspi->master = master;
1058 tspi->dev = &pdev->dev;
1059 spin_lock_init(&tspi->lock);
1060
1061 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1062 if (!r) {
1063 dev_err(&pdev->dev, "No IO memory resource\n");
1064 ret = -ENODEV;
1065 goto exit_free_master;
1066 }
1067 tspi->phys = r->start;
1068 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1069 if (IS_ERR(tspi->base)) {
1070 ret = PTR_ERR(tspi->base);
1071 dev_err(&pdev->dev, "ioremap failed: err = %d\n", ret);
1072 goto exit_free_master;
1073 }
1074
1075 spi_irq = platform_get_irq(pdev, 0);
1076 tspi->irq = spi_irq;
1077 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1078 tegra_spi_isr_thread, IRQF_ONESHOT,
1079 dev_name(&pdev->dev), tspi);
1080 if (ret < 0) {
1081 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1082 tspi->irq);
1083 goto exit_free_master;
1084 }
1085
1086 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1087 if (IS_ERR(tspi->clk)) {
1088 dev_err(&pdev->dev, "can not get clock\n");
1089 ret = PTR_ERR(tspi->clk);
1090 goto exit_free_irq;
1091 }
1092
1093 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1094 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1095
1096 if (tspi->dma_req_sel) {
1097 ret = tegra_spi_init_dma_param(tspi, true);
1098 if (ret < 0) {
1099 dev_err(&pdev->dev, "RxDma Init failed, err %d\n", ret);
1100 goto exit_free_irq;
1101 }
1102
1103 ret = tegra_spi_init_dma_param(tspi, false);
1104 if (ret < 0) {
1105 dev_err(&pdev->dev, "TxDma Init failed, err %d\n", ret);
1106 goto exit_rx_dma_free;
1107 }
1108 tspi->max_buf_size = tspi->dma_buf_size;
1109 init_completion(&tspi->tx_dma_complete);
1110 init_completion(&tspi->rx_dma_complete);
1111 }
1112
1113 init_completion(&tspi->xfer_completion);
1114
1115 pm_runtime_enable(&pdev->dev);
1116 if (!pm_runtime_enabled(&pdev->dev)) {
1117 ret = tegra_spi_runtime_resume(&pdev->dev);
1118 if (ret)
1119 goto exit_pm_disable;
1120 }
1121
1122 ret = pm_runtime_get_sync(&pdev->dev);
1123 if (ret < 0) {
1124 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1125 goto exit_pm_disable;
1126 }
1127 tspi->def_command1_reg = SPI_M_S;
1128 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1129 pm_runtime_put(&pdev->dev);
1130
1131 master->dev.of_node = pdev->dev.of_node;
1132 ret = spi_register_master(master);
1133 if (ret < 0) {
1134 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1135 goto exit_pm_disable;
1136 }
1137 return ret;
1138
1139exit_pm_disable:
1140 pm_runtime_disable(&pdev->dev);
1141 if (!pm_runtime_status_suspended(&pdev->dev))
1142 tegra_spi_runtime_suspend(&pdev->dev);
1143 tegra_spi_deinit_dma_param(tspi, false);
1144exit_rx_dma_free:
1145 tegra_spi_deinit_dma_param(tspi, true);
1146exit_free_irq:
1147 free_irq(spi_irq, tspi);
1148exit_free_master:
1149 spi_master_put(master);
1150 return ret;
1151}
1152
1153static int tegra_spi_remove(struct platform_device *pdev)
1154{
1155 struct spi_master *master = dev_get_drvdata(&pdev->dev);
1156 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1157
1158 free_irq(tspi->irq, tspi);
1159 spi_unregister_master(master);
1160
1161 if (tspi->tx_dma_chan)
1162 tegra_spi_deinit_dma_param(tspi, false);
1163
1164 if (tspi->rx_dma_chan)
1165 tegra_spi_deinit_dma_param(tspi, true);
1166
1167 pm_runtime_disable(&pdev->dev);
1168 if (!pm_runtime_status_suspended(&pdev->dev))
1169 tegra_spi_runtime_suspend(&pdev->dev);
1170
1171 return 0;
1172}
1173
1174#ifdef CONFIG_PM_SLEEP
1175static int tegra_spi_suspend(struct device *dev)
1176{
1177 struct spi_master *master = dev_get_drvdata(dev);
1178
1179 return spi_master_suspend(master);
1180}
1181
1182static int tegra_spi_resume(struct device *dev)
1183{
1184 struct spi_master *master = dev_get_drvdata(dev);
1185 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1186 int ret;
1187
1188 ret = pm_runtime_get_sync(dev);
1189 if (ret < 0) {
1190 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1191 return ret;
1192 }
1193 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1194 pm_runtime_put(dev);
1195
1196 return spi_master_resume(master);
1197}
1198#endif
1199
1200static int tegra_spi_runtime_suspend(struct device *dev)
1201{
1202 struct spi_master *master = dev_get_drvdata(dev);
1203 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1204
1205 /* Flush all write which are in PPSB queue by reading back */
1206 tegra_spi_readl(tspi, SPI_COMMAND1);
1207
1208 clk_disable_unprepare(tspi->clk);
1209 return 0;
1210}
1211
1212static int tegra_spi_runtime_resume(struct device *dev)
1213{
1214 struct spi_master *master = dev_get_drvdata(dev);
1215 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1216 int ret;
1217
1218 ret = clk_prepare_enable(tspi->clk);
1219 if (ret < 0) {
1220 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1221 return ret;
1222 }
1223 return 0;
1224}
1225
1226static const struct dev_pm_ops tegra_spi_pm_ops = {
1227 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1228 tegra_spi_runtime_resume, NULL)
1229 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1230};
1231static struct platform_driver tegra_spi_driver = {
1232 .driver = {
1233 .name = "spi-tegra114",
1234 .owner = THIS_MODULE,
1235 .pm = &tegra_spi_pm_ops,
1236 .of_match_table = tegra_spi_of_match,
1237 },
1238 .probe = tegra_spi_probe,
1239 .remove = tegra_spi_remove,
1240};
1241module_platform_driver(tegra_spi_driver);
1242
1243MODULE_ALIAS("platform:spi-tegra114");
1244MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1245MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1246MODULE_LICENSE("GPL v2");