blob: cfbf792a0bf49bb0f7998957747bd5dccb18951e [file] [log] [blame]
john stultz5d0cf412006-06-26 00:25:12 -07001#include <linux/clocksource.h>
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -08002#include <linux/clockchips.h>
john stultz5d0cf412006-06-26 00:25:12 -07003#include <linux/errno.h>
4#include <linux/hpet.h>
5#include <linux/init.h>
Maxim Levitsky399afa42007-03-29 15:46:48 +02006#include <linux/sysdev.h>
7#include <linux/pm.h>
john stultz5d0cf412006-06-26 00:25:12 -07008
9#include <asm/hpet.h>
10#include <asm/io.h>
11
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -080012extern struct clock_event_device *global_clock_event;
13
Jim Cromie7f9f3032006-06-26 00:25:15 -070014#define HPET_MASK CLOCKSOURCE_MASK(32)
john stultz5d0cf412006-06-26 00:25:12 -070015#define HPET_SHIFT 22
16
17/* FSEC = 10^-15 NSEC = 10^-9 */
18#define FSEC_PER_NSEC 1000000
19
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -080020/*
21 * HPET address is set in acpi/boot.c, when an ACPI entry exists
22 */
23unsigned long hpet_address;
24static void __iomem * hpet_virt_address;
john stultz5d0cf412006-06-26 00:25:12 -070025
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -080026static inline unsigned long hpet_readl(unsigned long a)
27{
28 return readl(hpet_virt_address + a);
29}
30
31static inline void hpet_writel(unsigned long d, unsigned long a)
32{
33 writel(d, hpet_virt_address + a);
34}
35
36/*
37 * HPET command line enable / disable
38 */
39static int boot_hpet_disable;
40
41static int __init hpet_setup(char* str)
42{
43 if (str) {
44 if (!strncmp("disable", str, 7))
45 boot_hpet_disable = 1;
46 }
47 return 1;
48}
49__setup("hpet=", hpet_setup);
50
51static inline int is_hpet_capable(void)
52{
53 return (!boot_hpet_disable && hpet_address);
54}
55
56/*
57 * HPET timer interrupt enable / disable
58 */
59static int hpet_legacy_int_enabled;
60
61/**
62 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
63 */
64int is_hpet_enabled(void)
65{
66 return is_hpet_capable() && hpet_legacy_int_enabled;
67}
68
69/*
70 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
71 * timer 0 and timer 1 in case of RTC emulation.
72 */
73#ifdef CONFIG_HPET
74static void hpet_reserve_platform_timers(unsigned long id)
75{
76 struct hpet __iomem *hpet = hpet_virt_address;
77 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
78 unsigned int nrtimers, i;
79 struct hpet_data hd;
80
81 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
82
83 memset(&hd, 0, sizeof (hd));
84 hd.hd_phys_address = hpet_address;
85 hd.hd_address = hpet_virt_address;
86 hd.hd_nirqs = nrtimers;
87 hd.hd_flags = HPET_DATA_PLATFORM;
88 hpet_reserve_timer(&hd, 0);
89
90#ifdef CONFIG_HPET_EMULATE_RTC
91 hpet_reserve_timer(&hd, 1);
92#endif
93
94 hd.hd_irq[0] = HPET_LEGACY_8254;
95 hd.hd_irq[1] = HPET_LEGACY_RTC;
96
97 for (i = 2; i < nrtimers; timer++, i++)
98 hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
99 Tn_INT_ROUTE_CNF_SHIFT;
100
101 hpet_alloc(&hd);
102
103}
104#else
105static void hpet_reserve_platform_timers(unsigned long id) { }
106#endif
107
108/*
109 * Common hpet info
110 */
111static unsigned long hpet_period;
112
113static void hpet_set_mode(enum clock_event_mode mode,
114 struct clock_event_device *evt);
115static int hpet_next_event(unsigned long delta,
116 struct clock_event_device *evt);
117
118/*
119 * The hpet clock event device
120 */
121static struct clock_event_device hpet_clockevent = {
122 .name = "hpet",
123 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
124 .set_mode = hpet_set_mode,
125 .set_next_event = hpet_next_event,
126 .shift = 32,
127 .irq = 0,
128};
129
130static void hpet_start_counter(void)
131{
132 unsigned long cfg = hpet_readl(HPET_CFG);
133
134 cfg &= ~HPET_CFG_ENABLE;
135 hpet_writel(cfg, HPET_CFG);
136 hpet_writel(0, HPET_COUNTER);
137 hpet_writel(0, HPET_COUNTER + 4);
138 cfg |= HPET_CFG_ENABLE;
139 hpet_writel(cfg, HPET_CFG);
140}
141
142static void hpet_enable_int(void)
143{
144 unsigned long cfg = hpet_readl(HPET_CFG);
145
146 cfg |= HPET_CFG_LEGACY;
147 hpet_writel(cfg, HPET_CFG);
148 hpet_legacy_int_enabled = 1;
149}
150
151static void hpet_set_mode(enum clock_event_mode mode,
152 struct clock_event_device *evt)
153{
154 unsigned long cfg, cmp, now;
155 uint64_t delta;
156
157 switch(mode) {
158 case CLOCK_EVT_MODE_PERIODIC:
159 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
160 delta >>= hpet_clockevent.shift;
161 now = hpet_readl(HPET_COUNTER);
162 cmp = now + (unsigned long) delta;
163 cfg = hpet_readl(HPET_T0_CFG);
164 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
165 HPET_TN_SETVAL | HPET_TN_32BIT;
166 hpet_writel(cfg, HPET_T0_CFG);
167 /*
168 * The first write after writing TN_SETVAL to the
169 * config register sets the counter value, the second
170 * write sets the period.
171 */
172 hpet_writel(cmp, HPET_T0_CMP);
173 udelay(1);
174 hpet_writel((unsigned long) delta, HPET_T0_CMP);
175 break;
176
177 case CLOCK_EVT_MODE_ONESHOT:
178 cfg = hpet_readl(HPET_T0_CFG);
179 cfg &= ~HPET_TN_PERIODIC;
180 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
181 hpet_writel(cfg, HPET_T0_CFG);
182 break;
183
184 case CLOCK_EVT_MODE_UNUSED:
185 case CLOCK_EVT_MODE_SHUTDOWN:
186 cfg = hpet_readl(HPET_T0_CFG);
187 cfg &= ~HPET_TN_ENABLE;
188 hpet_writel(cfg, HPET_T0_CFG);
189 break;
Thomas Gleixner18de5bc2007-07-21 04:37:34 -0700190
191 case CLOCK_EVT_MODE_RESUME:
192 hpet_enable_int();
193 break;
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -0800194 }
195}
196
197static int hpet_next_event(unsigned long delta,
198 struct clock_event_device *evt)
199{
200 unsigned long cnt;
201
202 cnt = hpet_readl(HPET_COUNTER);
203 cnt += delta;
204 hpet_writel(cnt, HPET_T0_CMP);
205
Thomas Gleixnerc7f6d152007-03-27 09:08:26 +0200206 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -0800207}
208
209/*
john stultz6bb74df2007-03-05 00:30:50 -0800210 * Clock source related code
211 */
212static cycle_t read_hpet(void)
213{
214 return (cycle_t)hpet_readl(HPET_COUNTER);
215}
216
217static struct clocksource clocksource_hpet = {
218 .name = "hpet",
219 .rating = 250,
220 .read = read_hpet,
221 .mask = HPET_MASK,
222 .shift = HPET_SHIFT,
223 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
Thomas Gleixner18de5bc2007-07-21 04:37:34 -0700224 .resume = hpet_start_counter,
john stultz6bb74df2007-03-05 00:30:50 -0800225};
226
227/*
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -0800228 * Try to setup the HPET timer
229 */
230int __init hpet_enable(void)
231{
232 unsigned long id;
233 uint64_t hpet_freq;
john stultz6bb74df2007-03-05 00:30:50 -0800234 u64 tmp;
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -0800235
236 if (!is_hpet_capable())
237 return 0;
238
239 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
240
241 /*
242 * Read the period and check for a sane value:
243 */
244 hpet_period = hpet_readl(HPET_PERIOD);
245 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
246 goto out_nohpet;
247
248 /*
249 * The period is a femto seconds value. We need to calculate the
250 * scaled math multiplication factor for nanosecond to hpet tick
251 * conversion.
252 */
253 hpet_freq = 1000000000000000ULL;
254 do_div(hpet_freq, hpet_period);
255 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
256 NSEC_PER_SEC, 32);
257 /* Calculate the min / max delta */
258 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
259 &hpet_clockevent);
260 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
261 &hpet_clockevent);
262
263 /*
264 * Read the HPET ID register to retrieve the IRQ routing
265 * information and the number of channels
266 */
267 id = hpet_readl(HPET_ID);
268
269#ifdef CONFIG_HPET_EMULATE_RTC
270 /*
271 * The legacy routing mode needs at least two channels, tick timer
272 * and the rtc emulation channel.
273 */
274 if (!(id & HPET_ID_NUMBER))
275 goto out_nohpet;
276#endif
277
278 /* Start the counter */
279 hpet_start_counter();
280
john stultz6bb74df2007-03-05 00:30:50 -0800281 /* Initialize and register HPET clocksource
282 *
283 * hpet period is in femto seconds per cycle
284 * so we need to convert this to ns/cyc units
285 * aproximated by mult/2^shift
286 *
287 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
288 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
289 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
290 * (fsec/cyc << shift)/1000000 = mult
291 * (hpet_period << shift)/FSEC_PER_NSEC = mult
292 */
293 tmp = (u64)hpet_period << HPET_SHIFT;
294 do_div(tmp, FSEC_PER_NSEC);
295 clocksource_hpet.mult = (u32)tmp;
296
297 clocksource_register(&clocksource_hpet);
298
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -0800299 if (id & HPET_ID_LEGSUP) {
300 hpet_enable_int();
301 hpet_reserve_platform_timers(id);
302 /*
303 * Start hpet with the boot cpu mask and make it
304 * global after the IO_APIC has been initialized.
305 */
306 hpet_clockevent.cpumask =cpumask_of_cpu(0);
307 clockevents_register_device(&hpet_clockevent);
308 global_clock_event = &hpet_clockevent;
309 return 1;
310 }
311 return 0;
312
313out_nohpet:
314 iounmap(hpet_virt_address);
315 hpet_virt_address = NULL;
Maxim Levitsky399afa42007-03-29 15:46:48 +0200316 boot_hpet_disable = 1;
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -0800317 return 0;
318}
319
Thomas Gleixnere9e2cdb2007-02-16 01:28:04 -0800320
321#ifdef CONFIG_HPET_EMULATE_RTC
322
323/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
324 * is enabled, we support RTC interrupt functionality in software.
325 * RTC has 3 kinds of interrupts:
326 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
327 * is updated
328 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
329 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
330 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
331 * (1) and (2) above are implemented using polling at a frequency of
332 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
333 * overhead. (DEFAULT_RTC_INT_FREQ)
334 * For (3), we use interrupts at 64Hz or user specified periodic
335 * frequency, whichever is higher.
336 */
337#include <linux/mc146818rtc.h>
338#include <linux/rtc.h>
339
340#define DEFAULT_RTC_INT_FREQ 64
341#define DEFAULT_RTC_SHIFT 6
342#define RTC_NUM_INTS 1
343
344static unsigned long hpet_rtc_flags;
345static unsigned long hpet_prev_update_sec;
346static struct rtc_time hpet_alarm_time;
347static unsigned long hpet_pie_count;
348static unsigned long hpet_t1_cmp;
349static unsigned long hpet_default_delta;
350static unsigned long hpet_pie_delta;
351static unsigned long hpet_pie_limit;
352
353/*
354 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
355 * is not supported by all HPET implementations for timer 1.
356 *
357 * hpet_rtc_timer_init() is called when the rtc is initialized.
358 */
359int hpet_rtc_timer_init(void)
360{
361 unsigned long cfg, cnt, delta, flags;
362
363 if (!is_hpet_enabled())
364 return 0;
365
366 if (!hpet_default_delta) {
367 uint64_t clc;
368
369 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
370 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
371 hpet_default_delta = (unsigned long) clc;
372 }
373
374 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
375 delta = hpet_default_delta;
376 else
377 delta = hpet_pie_delta;
378
379 local_irq_save(flags);
380
381 cnt = delta + hpet_readl(HPET_COUNTER);
382 hpet_writel(cnt, HPET_T1_CMP);
383 hpet_t1_cmp = cnt;
384
385 cfg = hpet_readl(HPET_T1_CFG);
386 cfg &= ~HPET_TN_PERIODIC;
387 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
388 hpet_writel(cfg, HPET_T1_CFG);
389
390 local_irq_restore(flags);
391
392 return 1;
393}
394
395/*
396 * The functions below are called from rtc driver.
397 * Return 0 if HPET is not being used.
398 * Otherwise do the necessary changes and return 1.
399 */
400int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
401{
402 if (!is_hpet_enabled())
403 return 0;
404
405 hpet_rtc_flags &= ~bit_mask;
406 return 1;
407}
408
409int hpet_set_rtc_irq_bit(unsigned long bit_mask)
410{
411 unsigned long oldbits = hpet_rtc_flags;
412
413 if (!is_hpet_enabled())
414 return 0;
415
416 hpet_rtc_flags |= bit_mask;
417
418 if (!oldbits)
419 hpet_rtc_timer_init();
420
421 return 1;
422}
423
424int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
425 unsigned char sec)
426{
427 if (!is_hpet_enabled())
428 return 0;
429
430 hpet_alarm_time.tm_hour = hrs;
431 hpet_alarm_time.tm_min = min;
432 hpet_alarm_time.tm_sec = sec;
433
434 return 1;
435}
436
437int hpet_set_periodic_freq(unsigned long freq)
438{
439 uint64_t clc;
440
441 if (!is_hpet_enabled())
442 return 0;
443
444 if (freq <= DEFAULT_RTC_INT_FREQ)
445 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
446 else {
447 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
448 do_div(clc, freq);
449 clc >>= hpet_clockevent.shift;
450 hpet_pie_delta = (unsigned long) clc;
451 }
452 return 1;
453}
454
455int hpet_rtc_dropped_irq(void)
456{
457 return is_hpet_enabled();
458}
459
460static void hpet_rtc_timer_reinit(void)
461{
462 unsigned long cfg, delta;
463 int lost_ints = -1;
464
465 if (unlikely(!hpet_rtc_flags)) {
466 cfg = hpet_readl(HPET_T1_CFG);
467 cfg &= ~HPET_TN_ENABLE;
468 hpet_writel(cfg, HPET_T1_CFG);
469 return;
470 }
471
472 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
473 delta = hpet_default_delta;
474 else
475 delta = hpet_pie_delta;
476
477 /*
478 * Increment the comparator value until we are ahead of the
479 * current count.
480 */
481 do {
482 hpet_t1_cmp += delta;
483 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
484 lost_ints++;
485 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
486
487 if (lost_ints) {
488 if (hpet_rtc_flags & RTC_PIE)
489 hpet_pie_count += lost_ints;
490 if (printk_ratelimit())
491 printk(KERN_WARNING "rtc: lost %d interrupts\n",
492 lost_ints);
493 }
494}
495
496irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
497{
498 struct rtc_time curr_time;
499 unsigned long rtc_int_flag = 0;
500
501 hpet_rtc_timer_reinit();
502
503 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
504 rtc_get_rtc_time(&curr_time);
505
506 if (hpet_rtc_flags & RTC_UIE &&
507 curr_time.tm_sec != hpet_prev_update_sec) {
508 rtc_int_flag = RTC_UF;
509 hpet_prev_update_sec = curr_time.tm_sec;
510 }
511
512 if (hpet_rtc_flags & RTC_PIE &&
513 ++hpet_pie_count >= hpet_pie_limit) {
514 rtc_int_flag |= RTC_PF;
515 hpet_pie_count = 0;
516 }
517
518 if (hpet_rtc_flags & RTC_PIE &&
519 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
520 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
521 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
522 rtc_int_flag |= RTC_AF;
523
524 if (rtc_int_flag) {
525 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
526 rtc_interrupt(rtc_int_flag, dev_id);
527 }
528 return IRQ_HANDLED;
529}
530#endif