blob: 90acc82046c3ab80b459ff076ced3e97ea4b0e3c [file] [log] [blame]
Arne Jansena2de7332011-03-08 14:14:00 +01001/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
Arne Jansena2de7332011-03-08 14:14:00 +010019#include <linux/blkdev.h>
Jan Schmidt558540c2011-06-13 19:59:12 +020020#include <linux/ratelimit.h>
Arne Jansena2de7332011-03-08 14:14:00 +010021#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
Jan Schmidt0ef8e452011-06-13 20:04:15 +020025#include "transaction.h"
Jan Schmidt558540c2011-06-13 19:59:12 +020026#include "backref.h"
Jan Schmidt5da6fcb2011-08-04 18:11:04 +020027#include "extent_io.h"
Stefan Behrens21adbd52011-11-09 13:44:05 +010028#include "check-integrity.h"
Arne Jansena2de7332011-03-08 14:14:00 +010029
30/*
31 * This is only the first step towards a full-features scrub. It reads all
32 * extent and super block and verifies the checksums. In case a bad checksum
33 * is found or the extent cannot be read, good data will be written back if
34 * any can be found.
35 *
36 * Future enhancements:
Arne Jansena2de7332011-03-08 14:14:00 +010037 * - In case an unrepairable extent is encountered, track which files are
38 * affected and report them
Arne Jansena2de7332011-03-08 14:14:00 +010039 * - track and record media errors, throw out bad devices
Arne Jansena2de7332011-03-08 14:14:00 +010040 * - add a mode to also read unallocated space
Arne Jansena2de7332011-03-08 14:14:00 +010041 */
42
Stefan Behrensb5d67f62012-03-27 14:21:27 -040043struct scrub_block;
Arne Jansena2de7332011-03-08 14:14:00 +010044struct scrub_dev;
Arne Jansena2de7332011-03-08 14:14:00 +010045
46#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
47#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
Stefan Behrensb5d67f62012-03-27 14:21:27 -040048#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
Arne Jansena2de7332011-03-08 14:14:00 +010049
50struct scrub_page {
Stefan Behrensb5d67f62012-03-27 14:21:27 -040051 struct scrub_block *sblock;
52 struct page *page;
53 struct block_device *bdev;
Arne Jansena2de7332011-03-08 14:14:00 +010054 u64 flags; /* extent flags */
55 u64 generation;
Stefan Behrensb5d67f62012-03-27 14:21:27 -040056 u64 logical;
57 u64 physical;
58 struct {
59 unsigned int mirror_num:8;
60 unsigned int have_csum:1;
61 unsigned int io_error:1;
62 };
Arne Jansena2de7332011-03-08 14:14:00 +010063 u8 csum[BTRFS_CSUM_SIZE];
64};
65
66struct scrub_bio {
67 int index;
68 struct scrub_dev *sdev;
69 struct bio *bio;
70 int err;
71 u64 logical;
72 u64 physical;
Stefan Behrensb5d67f62012-03-27 14:21:27 -040073 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
74 int page_count;
Arne Jansena2de7332011-03-08 14:14:00 +010075 int next_free;
76 struct btrfs_work work;
77};
78
Stefan Behrensb5d67f62012-03-27 14:21:27 -040079struct scrub_block {
80 struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81 int page_count;
82 atomic_t outstanding_pages;
83 atomic_t ref_count; /* free mem on transition to zero */
84 struct scrub_dev *sdev;
85 struct {
86 unsigned int header_error:1;
87 unsigned int checksum_error:1;
88 unsigned int no_io_error_seen:1;
89 };
90};
91
Arne Jansena2de7332011-03-08 14:14:00 +010092struct scrub_dev {
93 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
94 struct btrfs_device *dev;
95 int first_free;
96 int curr;
97 atomic_t in_flight;
Jan Schmidt0ef8e452011-06-13 20:04:15 +020098 atomic_t fixup_cnt;
Arne Jansena2de7332011-03-08 14:14:00 +010099 spinlock_t list_lock;
100 wait_queue_head_t list_wait;
101 u16 csum_size;
102 struct list_head csum_list;
103 atomic_t cancel_req;
Arne Jansen86287642011-03-23 16:34:19 +0100104 int readonly;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400105 int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
106 u32 sectorsize;
107 u32 nodesize;
108 u32 leafsize;
Arne Jansena2de7332011-03-08 14:14:00 +0100109 /*
110 * statistics
111 */
112 struct btrfs_scrub_progress stat;
113 spinlock_t stat_lock;
114};
115
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200116struct scrub_fixup_nodatasum {
117 struct scrub_dev *sdev;
118 u64 logical;
119 struct btrfs_root *root;
120 struct btrfs_work work;
121 int mirror_num;
122};
123
Jan Schmidt558540c2011-06-13 19:59:12 +0200124struct scrub_warning {
125 struct btrfs_path *path;
126 u64 extent_item_size;
127 char *scratch_buf;
128 char *msg_buf;
129 const char *errstr;
130 sector_t sector;
131 u64 logical;
132 struct btrfs_device *dev;
133 int msg_bufsize;
134 int scratch_bufsize;
135};
136
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400137
138static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
139static int scrub_setup_recheck_block(struct scrub_dev *sdev,
140 struct btrfs_mapping_tree *map_tree,
141 u64 length, u64 logical,
142 struct scrub_block *sblock);
143static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
144 struct scrub_block *sblock, int is_metadata,
145 int have_csum, u8 *csum, u64 generation,
146 u16 csum_size);
147static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
148 struct scrub_block *sblock,
149 int is_metadata, int have_csum,
150 const u8 *csum, u64 generation,
151 u16 csum_size);
152static void scrub_complete_bio_end_io(struct bio *bio, int err);
153static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
154 struct scrub_block *sblock_good,
155 int force_write);
156static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
157 struct scrub_block *sblock_good,
158 int page_num, int force_write);
159static int scrub_checksum_data(struct scrub_block *sblock);
160static int scrub_checksum_tree_block(struct scrub_block *sblock);
161static int scrub_checksum_super(struct scrub_block *sblock);
162static void scrub_block_get(struct scrub_block *sblock);
163static void scrub_block_put(struct scrub_block *sblock);
164static int scrub_add_page_to_bio(struct scrub_dev *sdev,
165 struct scrub_page *spage);
166static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
167 u64 physical, u64 flags, u64 gen, int mirror_num,
168 u8 *csum, int force);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400169static void scrub_bio_end_io(struct bio *bio, int err);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400170static void scrub_bio_end_io_worker(struct btrfs_work *work);
171static void scrub_block_complete(struct scrub_block *sblock);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400172
173
Arne Jansena2de7332011-03-08 14:14:00 +0100174static void scrub_free_csums(struct scrub_dev *sdev)
175{
176 while (!list_empty(&sdev->csum_list)) {
177 struct btrfs_ordered_sum *sum;
178 sum = list_first_entry(&sdev->csum_list,
179 struct btrfs_ordered_sum, list);
180 list_del(&sum->list);
181 kfree(sum);
182 }
183}
184
185static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
186{
187 int i;
Arne Jansena2de7332011-03-08 14:14:00 +0100188
189 if (!sdev)
190 return;
191
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400192 /* this can happen when scrub is cancelled */
193 if (sdev->curr != -1) {
194 struct scrub_bio *sbio = sdev->bios[sdev->curr];
195
196 for (i = 0; i < sbio->page_count; i++) {
197 BUG_ON(!sbio->pagev[i]);
198 BUG_ON(!sbio->pagev[i]->page);
199 scrub_block_put(sbio->pagev[i]->sblock);
200 }
201 bio_put(sbio->bio);
202 }
203
Arne Jansena2de7332011-03-08 14:14:00 +0100204 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
205 struct scrub_bio *sbio = sdev->bios[i];
Arne Jansena2de7332011-03-08 14:14:00 +0100206
207 if (!sbio)
208 break;
Arne Jansena2de7332011-03-08 14:14:00 +0100209 kfree(sbio);
210 }
211
212 scrub_free_csums(sdev);
213 kfree(sdev);
214}
215
216static noinline_for_stack
217struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
218{
219 struct scrub_dev *sdev;
220 int i;
Arne Jansena2de7332011-03-08 14:14:00 +0100221 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400222 int pages_per_bio;
Arne Jansena2de7332011-03-08 14:14:00 +0100223
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400224 pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
225 bio_get_nr_vecs(dev->bdev));
Arne Jansena2de7332011-03-08 14:14:00 +0100226 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
227 if (!sdev)
228 goto nomem;
229 sdev->dev = dev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400230 sdev->pages_per_bio = pages_per_bio;
231 sdev->curr = -1;
Arne Jansena2de7332011-03-08 14:14:00 +0100232 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
Arne Jansena2de7332011-03-08 14:14:00 +0100233 struct scrub_bio *sbio;
234
235 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
236 if (!sbio)
237 goto nomem;
238 sdev->bios[i] = sbio;
239
Arne Jansena2de7332011-03-08 14:14:00 +0100240 sbio->index = i;
241 sbio->sdev = sdev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400242 sbio->page_count = 0;
243 sbio->work.func = scrub_bio_end_io_worker;
Arne Jansena2de7332011-03-08 14:14:00 +0100244
245 if (i != SCRUB_BIOS_PER_DEV-1)
246 sdev->bios[i]->next_free = i + 1;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200247 else
Arne Jansena2de7332011-03-08 14:14:00 +0100248 sdev->bios[i]->next_free = -1;
249 }
250 sdev->first_free = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400251 sdev->nodesize = dev->dev_root->nodesize;
252 sdev->leafsize = dev->dev_root->leafsize;
253 sdev->sectorsize = dev->dev_root->sectorsize;
Arne Jansena2de7332011-03-08 14:14:00 +0100254 atomic_set(&sdev->in_flight, 0);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200255 atomic_set(&sdev->fixup_cnt, 0);
Arne Jansena2de7332011-03-08 14:14:00 +0100256 atomic_set(&sdev->cancel_req, 0);
David Sterba6c417612011-04-13 15:41:04 +0200257 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
Arne Jansena2de7332011-03-08 14:14:00 +0100258 INIT_LIST_HEAD(&sdev->csum_list);
259
260 spin_lock_init(&sdev->list_lock);
261 spin_lock_init(&sdev->stat_lock);
262 init_waitqueue_head(&sdev->list_wait);
263 return sdev;
264
265nomem:
266 scrub_free_dev(sdev);
267 return ERR_PTR(-ENOMEM);
268}
269
Jan Schmidt558540c2011-06-13 19:59:12 +0200270static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
271{
272 u64 isize;
273 u32 nlink;
274 int ret;
275 int i;
276 struct extent_buffer *eb;
277 struct btrfs_inode_item *inode_item;
278 struct scrub_warning *swarn = ctx;
279 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
280 struct inode_fs_paths *ipath = NULL;
281 struct btrfs_root *local_root;
282 struct btrfs_key root_key;
283
284 root_key.objectid = root;
285 root_key.type = BTRFS_ROOT_ITEM_KEY;
286 root_key.offset = (u64)-1;
287 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
288 if (IS_ERR(local_root)) {
289 ret = PTR_ERR(local_root);
290 goto err;
291 }
292
293 ret = inode_item_info(inum, 0, local_root, swarn->path);
294 if (ret) {
295 btrfs_release_path(swarn->path);
296 goto err;
297 }
298
299 eb = swarn->path->nodes[0];
300 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
301 struct btrfs_inode_item);
302 isize = btrfs_inode_size(eb, inode_item);
303 nlink = btrfs_inode_nlink(eb, inode_item);
304 btrfs_release_path(swarn->path);
305
306 ipath = init_ipath(4096, local_root, swarn->path);
Dan Carpenter26bdef52011-11-16 11:28:01 +0300307 if (IS_ERR(ipath)) {
308 ret = PTR_ERR(ipath);
309 ipath = NULL;
310 goto err;
311 }
Jan Schmidt558540c2011-06-13 19:59:12 +0200312 ret = paths_from_inode(inum, ipath);
313
314 if (ret < 0)
315 goto err;
316
317 /*
318 * we deliberately ignore the bit ipath might have been too small to
319 * hold all of the paths here
320 */
321 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
322 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
323 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
324 "length %llu, links %u (path: %s)\n", swarn->errstr,
325 swarn->logical, swarn->dev->name,
326 (unsigned long long)swarn->sector, root, inum, offset,
327 min(isize - offset, (u64)PAGE_SIZE), nlink,
Jeff Mahoney745c4d82011-11-20 07:31:57 -0500328 (char *)(unsigned long)ipath->fspath->val[i]);
Jan Schmidt558540c2011-06-13 19:59:12 +0200329
330 free_ipath(ipath);
331 return 0;
332
333err:
334 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
335 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
336 "resolving failed with ret=%d\n", swarn->errstr,
337 swarn->logical, swarn->dev->name,
338 (unsigned long long)swarn->sector, root, inum, offset, ret);
339
340 free_ipath(ipath);
341 return 0;
342}
343
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400344static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
Jan Schmidt558540c2011-06-13 19:59:12 +0200345{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400346 struct btrfs_device *dev = sblock->sdev->dev;
Jan Schmidt558540c2011-06-13 19:59:12 +0200347 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
348 struct btrfs_path *path;
349 struct btrfs_key found_key;
350 struct extent_buffer *eb;
351 struct btrfs_extent_item *ei;
352 struct scrub_warning swarn;
353 u32 item_size;
354 int ret;
355 u64 ref_root;
356 u8 ref_level;
357 unsigned long ptr = 0;
358 const int bufsize = 4096;
Jan Schmidt4692cf52011-12-02 14:56:41 +0100359 u64 extent_item_pos;
Jan Schmidt558540c2011-06-13 19:59:12 +0200360
361 path = btrfs_alloc_path();
362
363 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
364 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400365 BUG_ON(sblock->page_count < 1);
366 swarn.sector = (sblock->pagev[0].physical) >> 9;
367 swarn.logical = sblock->pagev[0].logical;
Jan Schmidt558540c2011-06-13 19:59:12 +0200368 swarn.errstr = errstr;
369 swarn.dev = dev;
370 swarn.msg_bufsize = bufsize;
371 swarn.scratch_bufsize = bufsize;
372
373 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
374 goto out;
375
376 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
377 if (ret < 0)
378 goto out;
379
Jan Schmidt4692cf52011-12-02 14:56:41 +0100380 extent_item_pos = swarn.logical - found_key.objectid;
Jan Schmidt558540c2011-06-13 19:59:12 +0200381 swarn.extent_item_size = found_key.offset;
382
383 eb = path->nodes[0];
384 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
385 item_size = btrfs_item_size_nr(eb, path->slots[0]);
Jan Schmidt4692cf52011-12-02 14:56:41 +0100386 btrfs_release_path(path);
Jan Schmidt558540c2011-06-13 19:59:12 +0200387
388 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
389 do {
390 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
391 &ref_root, &ref_level);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400392 printk(KERN_WARNING
393 "btrfs: %s at logical %llu on dev %s, "
Jan Schmidt558540c2011-06-13 19:59:12 +0200394 "sector %llu: metadata %s (level %d) in tree "
395 "%llu\n", errstr, swarn.logical, dev->name,
396 (unsigned long long)swarn.sector,
397 ref_level ? "node" : "leaf",
398 ret < 0 ? -1 : ref_level,
399 ret < 0 ? -1 : ref_root);
400 } while (ret != 1);
401 } else {
402 swarn.path = path;
Jan Schmidt7a3ae2f2012-03-23 17:32:28 +0100403 iterate_extent_inodes(fs_info, found_key.objectid,
404 extent_item_pos, 1,
Jan Schmidt558540c2011-06-13 19:59:12 +0200405 scrub_print_warning_inode, &swarn);
406 }
407
408out:
409 btrfs_free_path(path);
410 kfree(swarn.scratch_buf);
411 kfree(swarn.msg_buf);
412}
413
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200414static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
415{
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200416 struct page *page = NULL;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200417 unsigned long index;
418 struct scrub_fixup_nodatasum *fixup = ctx;
419 int ret;
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200420 int corrected = 0;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200421 struct btrfs_key key;
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200422 struct inode *inode = NULL;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200423 u64 end = offset + PAGE_SIZE - 1;
424 struct btrfs_root *local_root;
425
426 key.objectid = root;
427 key.type = BTRFS_ROOT_ITEM_KEY;
428 key.offset = (u64)-1;
429 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
430 if (IS_ERR(local_root))
431 return PTR_ERR(local_root);
432
433 key.type = BTRFS_INODE_ITEM_KEY;
434 key.objectid = inum;
435 key.offset = 0;
436 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
437 if (IS_ERR(inode))
438 return PTR_ERR(inode);
439
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200440 index = offset >> PAGE_CACHE_SHIFT;
441
442 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200443 if (!page) {
444 ret = -ENOMEM;
445 goto out;
446 }
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200447
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200448 if (PageUptodate(page)) {
449 struct btrfs_mapping_tree *map_tree;
450 if (PageDirty(page)) {
451 /*
452 * we need to write the data to the defect sector. the
453 * data that was in that sector is not in memory,
454 * because the page was modified. we must not write the
455 * modified page to that sector.
456 *
457 * TODO: what could be done here: wait for the delalloc
458 * runner to write out that page (might involve
459 * COW) and see whether the sector is still
460 * referenced afterwards.
461 *
462 * For the meantime, we'll treat this error
463 * incorrectable, although there is a chance that a
464 * later scrub will find the bad sector again and that
465 * there's no dirty page in memory, then.
466 */
467 ret = -EIO;
468 goto out;
469 }
470 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
471 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
472 fixup->logical, page,
473 fixup->mirror_num);
474 unlock_page(page);
475 corrected = !ret;
476 } else {
477 /*
478 * we need to get good data first. the general readpage path
479 * will call repair_io_failure for us, we just have to make
480 * sure we read the bad mirror.
481 */
482 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
483 EXTENT_DAMAGED, GFP_NOFS);
484 if (ret) {
485 /* set_extent_bits should give proper error */
486 WARN_ON(ret > 0);
487 if (ret > 0)
488 ret = -EFAULT;
489 goto out;
490 }
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200491
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200492 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
493 btrfs_get_extent,
494 fixup->mirror_num);
495 wait_on_page_locked(page);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200496
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200497 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
498 end, EXTENT_DAMAGED, 0, NULL);
499 if (!corrected)
500 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
501 EXTENT_DAMAGED, GFP_NOFS);
502 }
503
504out:
505 if (page)
506 put_page(page);
507 if (inode)
508 iput(inode);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200509
510 if (ret < 0)
511 return ret;
512
513 if (ret == 0 && corrected) {
514 /*
515 * we only need to call readpage for one of the inodes belonging
516 * to this extent. so make iterate_extent_inodes stop
517 */
518 return 1;
519 }
520
521 return -EIO;
522}
523
524static void scrub_fixup_nodatasum(struct btrfs_work *work)
525{
526 int ret;
527 struct scrub_fixup_nodatasum *fixup;
528 struct scrub_dev *sdev;
529 struct btrfs_trans_handle *trans = NULL;
530 struct btrfs_fs_info *fs_info;
531 struct btrfs_path *path;
532 int uncorrectable = 0;
533
534 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
535 sdev = fixup->sdev;
536 fs_info = fixup->root->fs_info;
537
538 path = btrfs_alloc_path();
539 if (!path) {
540 spin_lock(&sdev->stat_lock);
541 ++sdev->stat.malloc_errors;
542 spin_unlock(&sdev->stat_lock);
543 uncorrectable = 1;
544 goto out;
545 }
546
547 trans = btrfs_join_transaction(fixup->root);
548 if (IS_ERR(trans)) {
549 uncorrectable = 1;
550 goto out;
551 }
552
553 /*
554 * the idea is to trigger a regular read through the standard path. we
555 * read a page from the (failed) logical address by specifying the
556 * corresponding copynum of the failed sector. thus, that readpage is
557 * expected to fail.
558 * that is the point where on-the-fly error correction will kick in
559 * (once it's finished) and rewrite the failed sector if a good copy
560 * can be found.
561 */
562 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
563 path, scrub_fixup_readpage,
564 fixup);
565 if (ret < 0) {
566 uncorrectable = 1;
567 goto out;
568 }
569 WARN_ON(ret != 1);
570
571 spin_lock(&sdev->stat_lock);
572 ++sdev->stat.corrected_errors;
573 spin_unlock(&sdev->stat_lock);
574
575out:
576 if (trans && !IS_ERR(trans))
577 btrfs_end_transaction(trans, fixup->root);
578 if (uncorrectable) {
579 spin_lock(&sdev->stat_lock);
580 ++sdev->stat.uncorrectable_errors;
581 spin_unlock(&sdev->stat_lock);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400582 printk_ratelimited(KERN_ERR
583 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
584 (unsigned long long)fixup->logical, sdev->dev->name);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200585 }
586
587 btrfs_free_path(path);
588 kfree(fixup);
589
590 /* see caller why we're pretending to be paused in the scrub counters */
591 mutex_lock(&fs_info->scrub_lock);
592 atomic_dec(&fs_info->scrubs_running);
593 atomic_dec(&fs_info->scrubs_paused);
594 mutex_unlock(&fs_info->scrub_lock);
595 atomic_dec(&sdev->fixup_cnt);
596 wake_up(&fs_info->scrub_pause_wait);
597 wake_up(&sdev->list_wait);
598}
599
Arne Jansena2de7332011-03-08 14:14:00 +0100600/*
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400601 * scrub_handle_errored_block gets called when either verification of the
602 * pages failed or the bio failed to read, e.g. with EIO. In the latter
603 * case, this function handles all pages in the bio, even though only one
604 * may be bad.
605 * The goal of this function is to repair the errored block by using the
606 * contents of one of the mirrors.
Arne Jansena2de7332011-03-08 14:14:00 +0100607 */
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400608static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
Arne Jansena2de7332011-03-08 14:14:00 +0100609{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400610 struct scrub_dev *sdev = sblock_to_check->sdev;
611 struct btrfs_fs_info *fs_info;
Arne Jansena2de7332011-03-08 14:14:00 +0100612 u64 length;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400613 u64 logical;
614 u64 generation;
615 unsigned int failed_mirror_index;
616 unsigned int is_metadata;
617 unsigned int have_csum;
618 u8 *csum;
619 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
620 struct scrub_block *sblock_bad;
Arne Jansena2de7332011-03-08 14:14:00 +0100621 int ret;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400622 int mirror_index;
623 int page_num;
624 int success;
625 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
626 DEFAULT_RATELIMIT_BURST);
Arne Jansena2de7332011-03-08 14:14:00 +0100627
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400628 BUG_ON(sblock_to_check->page_count < 1);
629 fs_info = sdev->dev->dev_root->fs_info;
630 length = sblock_to_check->page_count * PAGE_SIZE;
631 logical = sblock_to_check->pagev[0].logical;
632 generation = sblock_to_check->pagev[0].generation;
633 BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
634 failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
635 is_metadata = !(sblock_to_check->pagev[0].flags &
636 BTRFS_EXTENT_FLAG_DATA);
637 have_csum = sblock_to_check->pagev[0].have_csum;
638 csum = sblock_to_check->pagev[0].csum;
639
640 /*
641 * read all mirrors one after the other. This includes to
642 * re-read the extent or metadata block that failed (that was
643 * the cause that this fixup code is called) another time,
644 * page by page this time in order to know which pages
645 * caused I/O errors and which ones are good (for all mirrors).
646 * It is the goal to handle the situation when more than one
647 * mirror contains I/O errors, but the errors do not
648 * overlap, i.e. the data can be repaired by selecting the
649 * pages from those mirrors without I/O error on the
650 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
651 * would be that mirror #1 has an I/O error on the first page,
652 * the second page is good, and mirror #2 has an I/O error on
653 * the second page, but the first page is good.
654 * Then the first page of the first mirror can be repaired by
655 * taking the first page of the second mirror, and the
656 * second page of the second mirror can be repaired by
657 * copying the contents of the 2nd page of the 1st mirror.
658 * One more note: if the pages of one mirror contain I/O
659 * errors, the checksum cannot be verified. In order to get
660 * the best data for repairing, the first attempt is to find
661 * a mirror without I/O errors and with a validated checksum.
662 * Only if this is not possible, the pages are picked from
663 * mirrors with I/O errors without considering the checksum.
664 * If the latter is the case, at the end, the checksum of the
665 * repaired area is verified in order to correctly maintain
666 * the statistics.
667 */
668
669 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
670 sizeof(*sblocks_for_recheck),
671 GFP_NOFS);
672 if (!sblocks_for_recheck) {
673 spin_lock(&sdev->stat_lock);
674 sdev->stat.malloc_errors++;
675 sdev->stat.read_errors++;
676 sdev->stat.uncorrectable_errors++;
677 spin_unlock(&sdev->stat_lock);
678 goto out;
679 }
680
681 /* setup the context, map the logical blocks and alloc the pages */
682 ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
683 logical, sblocks_for_recheck);
684 if (ret) {
685 spin_lock(&sdev->stat_lock);
686 sdev->stat.read_errors++;
687 sdev->stat.uncorrectable_errors++;
688 spin_unlock(&sdev->stat_lock);
689 goto out;
690 }
691 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
692 sblock_bad = sblocks_for_recheck + failed_mirror_index;
693
694 /* build and submit the bios for the failed mirror, check checksums */
695 ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
696 csum, generation, sdev->csum_size);
697 if (ret) {
698 spin_lock(&sdev->stat_lock);
699 sdev->stat.read_errors++;
700 sdev->stat.uncorrectable_errors++;
701 spin_unlock(&sdev->stat_lock);
702 goto out;
703 }
704
705 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
706 sblock_bad->no_io_error_seen) {
707 /*
708 * the error disappeared after reading page by page, or
709 * the area was part of a huge bio and other parts of the
710 * bio caused I/O errors, or the block layer merged several
711 * read requests into one and the error is caused by a
712 * different bio (usually one of the two latter cases is
713 * the cause)
714 */
715 spin_lock(&sdev->stat_lock);
716 sdev->stat.unverified_errors++;
717 spin_unlock(&sdev->stat_lock);
718
719 goto out;
720 }
721
722 if (!sblock_bad->no_io_error_seen) {
723 spin_lock(&sdev->stat_lock);
724 sdev->stat.read_errors++;
725 spin_unlock(&sdev->stat_lock);
726 if (__ratelimit(&_rs))
727 scrub_print_warning("i/o error", sblock_to_check);
728 } else if (sblock_bad->checksum_error) {
729 spin_lock(&sdev->stat_lock);
730 sdev->stat.csum_errors++;
731 spin_unlock(&sdev->stat_lock);
732 if (__ratelimit(&_rs))
733 scrub_print_warning("checksum error", sblock_to_check);
734 } else if (sblock_bad->header_error) {
735 spin_lock(&sdev->stat_lock);
736 sdev->stat.verify_errors++;
737 spin_unlock(&sdev->stat_lock);
738 if (__ratelimit(&_rs))
739 scrub_print_warning("checksum/header error",
740 sblock_to_check);
741 }
742
743 if (sdev->readonly)
744 goto did_not_correct_error;
745
746 if (!is_metadata && !have_csum) {
747 struct scrub_fixup_nodatasum *fixup_nodatasum;
748
749 /*
750 * !is_metadata and !have_csum, this means that the data
751 * might not be COW'ed, that it might be modified
752 * concurrently. The general strategy to work on the
753 * commit root does not help in the case when COW is not
754 * used.
755 */
756 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
757 if (!fixup_nodatasum)
758 goto did_not_correct_error;
759 fixup_nodatasum->sdev = sdev;
760 fixup_nodatasum->logical = logical;
761 fixup_nodatasum->root = fs_info->extent_root;
762 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
Arne Jansena2de7332011-03-08 14:14:00 +0100763 /*
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200764 * increment scrubs_running to prevent cancel requests from
765 * completing as long as a fixup worker is running. we must also
766 * increment scrubs_paused to prevent deadlocking on pause
767 * requests used for transactions commits (as the worker uses a
768 * transaction context). it is safe to regard the fixup worker
769 * as paused for all matters practical. effectively, we only
770 * avoid cancellation requests from completing.
Arne Jansena2de7332011-03-08 14:14:00 +0100771 */
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200772 mutex_lock(&fs_info->scrub_lock);
773 atomic_inc(&fs_info->scrubs_running);
774 atomic_inc(&fs_info->scrubs_paused);
775 mutex_unlock(&fs_info->scrub_lock);
776 atomic_inc(&sdev->fixup_cnt);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400777 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
778 btrfs_queue_worker(&fs_info->scrub_workers,
779 &fixup_nodatasum->work);
Arne Jansena2de7332011-03-08 14:14:00 +0100780 goto out;
781 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400782
783 /*
784 * now build and submit the bios for the other mirrors, check
785 * checksums
786 */
787 for (mirror_index = 0;
788 mirror_index < BTRFS_MAX_MIRRORS &&
789 sblocks_for_recheck[mirror_index].page_count > 0;
790 mirror_index++) {
791 if (mirror_index == failed_mirror_index)
792 continue;
793
794 /* build and submit the bios, check checksums */
795 ret = scrub_recheck_block(fs_info,
796 sblocks_for_recheck + mirror_index,
797 is_metadata, have_csum, csum,
798 generation, sdev->csum_size);
799 if (ret)
800 goto did_not_correct_error;
801 }
802
803 /*
804 * first try to pick the mirror which is completely without I/O
805 * errors and also does not have a checksum error.
806 * If one is found, and if a checksum is present, the full block
807 * that is known to contain an error is rewritten. Afterwards
808 * the block is known to be corrected.
809 * If a mirror is found which is completely correct, and no
810 * checksum is present, only those pages are rewritten that had
811 * an I/O error in the block to be repaired, since it cannot be
812 * determined, which copy of the other pages is better (and it
813 * could happen otherwise that a correct page would be
814 * overwritten by a bad one).
815 */
816 for (mirror_index = 0;
817 mirror_index < BTRFS_MAX_MIRRORS &&
818 sblocks_for_recheck[mirror_index].page_count > 0;
819 mirror_index++) {
820 struct scrub_block *sblock_other = sblocks_for_recheck +
821 mirror_index;
822
823 if (!sblock_other->header_error &&
824 !sblock_other->checksum_error &&
825 sblock_other->no_io_error_seen) {
826 int force_write = is_metadata || have_csum;
827
828 ret = scrub_repair_block_from_good_copy(sblock_bad,
829 sblock_other,
830 force_write);
831 if (0 == ret)
832 goto corrected_error;
Arne Jansena2de7332011-03-08 14:14:00 +0100833 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400834 }
835
836 /*
837 * in case of I/O errors in the area that is supposed to be
838 * repaired, continue by picking good copies of those pages.
839 * Select the good pages from mirrors to rewrite bad pages from
840 * the area to fix. Afterwards verify the checksum of the block
841 * that is supposed to be repaired. This verification step is
842 * only done for the purpose of statistic counting and for the
843 * final scrub report, whether errors remain.
844 * A perfect algorithm could make use of the checksum and try
845 * all possible combinations of pages from the different mirrors
846 * until the checksum verification succeeds. For example, when
847 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
848 * of mirror #2 is readable but the final checksum test fails,
849 * then the 2nd page of mirror #3 could be tried, whether now
850 * the final checksum succeedes. But this would be a rare
851 * exception and is therefore not implemented. At least it is
852 * avoided that the good copy is overwritten.
853 * A more useful improvement would be to pick the sectors
854 * without I/O error based on sector sizes (512 bytes on legacy
855 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
856 * mirror could be repaired by taking 512 byte of a different
857 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
858 * area are unreadable.
859 */
860
861 /* can only fix I/O errors from here on */
862 if (sblock_bad->no_io_error_seen)
863 goto did_not_correct_error;
864
865 success = 1;
866 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
867 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
868
869 if (!page_bad->io_error)
870 continue;
871
872 for (mirror_index = 0;
873 mirror_index < BTRFS_MAX_MIRRORS &&
874 sblocks_for_recheck[mirror_index].page_count > 0;
875 mirror_index++) {
876 struct scrub_block *sblock_other = sblocks_for_recheck +
877 mirror_index;
878 struct scrub_page *page_other = sblock_other->pagev +
879 page_num;
880
881 if (!page_other->io_error) {
882 ret = scrub_repair_page_from_good_copy(
883 sblock_bad, sblock_other, page_num, 0);
884 if (0 == ret) {
885 page_bad->io_error = 0;
886 break; /* succeeded for this page */
887 }
Jan Schmidt13db62b2011-06-13 19:56:13 +0200888 }
889 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400890
891 if (page_bad->io_error) {
892 /* did not find a mirror to copy the page from */
893 success = 0;
894 }
895 }
896
897 if (success) {
898 if (is_metadata || have_csum) {
899 /*
900 * need to verify the checksum now that all
901 * sectors on disk are repaired (the write
902 * request for data to be repaired is on its way).
903 * Just be lazy and use scrub_recheck_block()
904 * which re-reads the data before the checksum
905 * is verified, but most likely the data comes out
906 * of the page cache.
907 */
908 ret = scrub_recheck_block(fs_info, sblock_bad,
909 is_metadata, have_csum, csum,
910 generation, sdev->csum_size);
911 if (!ret && !sblock_bad->header_error &&
912 !sblock_bad->checksum_error &&
913 sblock_bad->no_io_error_seen)
914 goto corrected_error;
915 else
916 goto did_not_correct_error;
917 } else {
918corrected_error:
919 spin_lock(&sdev->stat_lock);
920 sdev->stat.corrected_errors++;
921 spin_unlock(&sdev->stat_lock);
922 printk_ratelimited(KERN_ERR
923 "btrfs: fixed up error at logical %llu on dev %s\n",
924 (unsigned long long)logical, sdev->dev->name);
925 }
926 } else {
927did_not_correct_error:
928 spin_lock(&sdev->stat_lock);
929 sdev->stat.uncorrectable_errors++;
930 spin_unlock(&sdev->stat_lock);
931 printk_ratelimited(KERN_ERR
932 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
933 (unsigned long long)logical, sdev->dev->name);
Arne Jansena2de7332011-03-08 14:14:00 +0100934 }
935
936out:
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400937 if (sblocks_for_recheck) {
938 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
939 mirror_index++) {
940 struct scrub_block *sblock = sblocks_for_recheck +
941 mirror_index;
942 int page_index;
943
944 for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
945 page_index++)
946 if (sblock->pagev[page_index].page)
947 __free_page(
948 sblock->pagev[page_index].page);
949 }
950 kfree(sblocks_for_recheck);
951 }
952
953 return 0;
Arne Jansena2de7332011-03-08 14:14:00 +0100954}
955
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400956static int scrub_setup_recheck_block(struct scrub_dev *sdev,
957 struct btrfs_mapping_tree *map_tree,
958 u64 length, u64 logical,
959 struct scrub_block *sblocks_for_recheck)
Arne Jansena2de7332011-03-08 14:14:00 +0100960{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400961 int page_index;
962 int mirror_index;
963 int ret;
964
965 /*
966 * note: the three members sdev, ref_count and outstanding_pages
967 * are not used (and not set) in the blocks that are used for
968 * the recheck procedure
969 */
970
971 page_index = 0;
972 while (length > 0) {
973 u64 sublen = min_t(u64, length, PAGE_SIZE);
974 u64 mapped_length = sublen;
975 struct btrfs_bio *bbio = NULL;
976
977 /*
978 * with a length of PAGE_SIZE, each returned stripe
979 * represents one mirror
980 */
981 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
982 &bbio, 0);
983 if (ret || !bbio || mapped_length < sublen) {
984 kfree(bbio);
985 return -EIO;
986 }
987
988 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
989 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
990 mirror_index++) {
991 struct scrub_block *sblock;
992 struct scrub_page *page;
993
994 if (mirror_index >= BTRFS_MAX_MIRRORS)
995 continue;
996
997 sblock = sblocks_for_recheck + mirror_index;
998 page = sblock->pagev + page_index;
999 page->logical = logical;
1000 page->physical = bbio->stripes[mirror_index].physical;
1001 page->bdev = bbio->stripes[mirror_index].dev->bdev;
1002 page->mirror_num = mirror_index + 1;
1003 page->page = alloc_page(GFP_NOFS);
1004 if (!page->page) {
1005 spin_lock(&sdev->stat_lock);
1006 sdev->stat.malloc_errors++;
1007 spin_unlock(&sdev->stat_lock);
1008 return -ENOMEM;
1009 }
1010 sblock->page_count++;
1011 }
1012 kfree(bbio);
1013 length -= sublen;
1014 logical += sublen;
1015 page_index++;
1016 }
1017
1018 return 0;
1019}
1020
1021/*
1022 * this function will check the on disk data for checksum errors, header
1023 * errors and read I/O errors. If any I/O errors happen, the exact pages
1024 * which are errored are marked as being bad. The goal is to enable scrub
1025 * to take those pages that are not errored from all the mirrors so that
1026 * the pages that are errored in the just handled mirror can be repaired.
1027 */
1028static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1029 struct scrub_block *sblock, int is_metadata,
1030 int have_csum, u8 *csum, u64 generation,
1031 u16 csum_size)
1032{
1033 int page_num;
1034
1035 sblock->no_io_error_seen = 1;
1036 sblock->header_error = 0;
1037 sblock->checksum_error = 0;
1038
1039 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1040 struct bio *bio;
1041 int ret;
1042 struct scrub_page *page = sblock->pagev + page_num;
1043 DECLARE_COMPLETION_ONSTACK(complete);
1044
1045 BUG_ON(!page->page);
1046 bio = bio_alloc(GFP_NOFS, 1);
1047 bio->bi_bdev = page->bdev;
1048 bio->bi_sector = page->physical >> 9;
1049 bio->bi_end_io = scrub_complete_bio_end_io;
1050 bio->bi_private = &complete;
1051
1052 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1053 if (PAGE_SIZE != ret) {
1054 bio_put(bio);
1055 return -EIO;
1056 }
1057 btrfsic_submit_bio(READ, bio);
1058
1059 /* this will also unplug the queue */
1060 wait_for_completion(&complete);
1061
1062 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1063 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1064 sblock->no_io_error_seen = 0;
1065 bio_put(bio);
1066 }
1067
1068 if (sblock->no_io_error_seen)
1069 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1070 have_csum, csum, generation,
1071 csum_size);
1072
1073 return 0;
1074}
1075
1076static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1077 struct scrub_block *sblock,
1078 int is_metadata, int have_csum,
1079 const u8 *csum, u64 generation,
1080 u16 csum_size)
1081{
1082 int page_num;
1083 u8 calculated_csum[BTRFS_CSUM_SIZE];
1084 u32 crc = ~(u32)0;
1085 struct btrfs_root *root = fs_info->extent_root;
1086 void *mapped_buffer;
1087
1088 BUG_ON(!sblock->pagev[0].page);
1089 if (is_metadata) {
1090 struct btrfs_header *h;
1091
Linus Torvalds9613beb2012-03-30 12:44:29 -07001092 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001093 h = (struct btrfs_header *)mapped_buffer;
1094
1095 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1096 generation != le64_to_cpu(h->generation) ||
1097 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1098 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1099 BTRFS_UUID_SIZE))
1100 sblock->header_error = 1;
1101 csum = h->csum;
1102 } else {
1103 if (!have_csum)
1104 return;
1105
Linus Torvalds9613beb2012-03-30 12:44:29 -07001106 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001107 }
1108
1109 for (page_num = 0;;) {
1110 if (page_num == 0 && is_metadata)
1111 crc = btrfs_csum_data(root,
1112 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1113 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1114 else
1115 crc = btrfs_csum_data(root, mapped_buffer, crc,
1116 PAGE_SIZE);
1117
Linus Torvalds9613beb2012-03-30 12:44:29 -07001118 kunmap_atomic(mapped_buffer);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001119 page_num++;
1120 if (page_num >= sblock->page_count)
1121 break;
1122 BUG_ON(!sblock->pagev[page_num].page);
1123
Linus Torvalds9613beb2012-03-30 12:44:29 -07001124 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001125 }
1126
1127 btrfs_csum_final(crc, calculated_csum);
1128 if (memcmp(calculated_csum, csum, csum_size))
1129 sblock->checksum_error = 1;
1130}
1131
1132static void scrub_complete_bio_end_io(struct bio *bio, int err)
1133{
1134 complete((struct completion *)bio->bi_private);
1135}
1136
1137static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1138 struct scrub_block *sblock_good,
1139 int force_write)
1140{
1141 int page_num;
1142 int ret = 0;
1143
1144 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1145 int ret_sub;
1146
1147 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1148 sblock_good,
1149 page_num,
1150 force_write);
1151 if (ret_sub)
1152 ret = ret_sub;
1153 }
1154
1155 return ret;
1156}
1157
1158static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1159 struct scrub_block *sblock_good,
1160 int page_num, int force_write)
1161{
1162 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1163 struct scrub_page *page_good = sblock_good->pagev + page_num;
1164
1165 BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1166 BUG_ON(sblock_good->pagev[page_num].page == NULL);
1167 if (force_write || sblock_bad->header_error ||
1168 sblock_bad->checksum_error || page_bad->io_error) {
1169 struct bio *bio;
1170 int ret;
1171 DECLARE_COMPLETION_ONSTACK(complete);
1172
1173 bio = bio_alloc(GFP_NOFS, 1);
1174 bio->bi_bdev = page_bad->bdev;
1175 bio->bi_sector = page_bad->physical >> 9;
1176 bio->bi_end_io = scrub_complete_bio_end_io;
1177 bio->bi_private = &complete;
1178
1179 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1180 if (PAGE_SIZE != ret) {
1181 bio_put(bio);
1182 return -EIO;
1183 }
1184 btrfsic_submit_bio(WRITE, bio);
1185
1186 /* this will also unplug the queue */
1187 wait_for_completion(&complete);
1188 bio_put(bio);
1189 }
1190
1191 return 0;
1192}
1193
1194static void scrub_checksum(struct scrub_block *sblock)
1195{
1196 u64 flags;
1197 int ret;
1198
1199 BUG_ON(sblock->page_count < 1);
1200 flags = sblock->pagev[0].flags;
1201 ret = 0;
1202 if (flags & BTRFS_EXTENT_FLAG_DATA)
1203 ret = scrub_checksum_data(sblock);
1204 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1205 ret = scrub_checksum_tree_block(sblock);
1206 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1207 (void)scrub_checksum_super(sblock);
1208 else
1209 WARN_ON(1);
1210 if (ret)
1211 scrub_handle_errored_block(sblock);
1212}
1213
1214static int scrub_checksum_data(struct scrub_block *sblock)
1215{
1216 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001217 u8 csum[BTRFS_CSUM_SIZE];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001218 u8 *on_disk_csum;
1219 struct page *page;
1220 void *buffer;
Arne Jansena2de7332011-03-08 14:14:00 +01001221 u32 crc = ~(u32)0;
1222 int fail = 0;
1223 struct btrfs_root *root = sdev->dev->dev_root;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001224 u64 len;
1225 int index;
Arne Jansena2de7332011-03-08 14:14:00 +01001226
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001227 BUG_ON(sblock->page_count < 1);
1228 if (!sblock->pagev[0].have_csum)
Arne Jansena2de7332011-03-08 14:14:00 +01001229 return 0;
1230
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001231 on_disk_csum = sblock->pagev[0].csum;
1232 page = sblock->pagev[0].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001233 buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001234
1235 len = sdev->sectorsize;
1236 index = 0;
1237 for (;;) {
1238 u64 l = min_t(u64, len, PAGE_SIZE);
1239
1240 crc = btrfs_csum_data(root, buffer, crc, l);
Linus Torvalds9613beb2012-03-30 12:44:29 -07001241 kunmap_atomic(buffer);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001242 len -= l;
1243 if (len == 0)
1244 break;
1245 index++;
1246 BUG_ON(index >= sblock->page_count);
1247 BUG_ON(!sblock->pagev[index].page);
1248 page = sblock->pagev[index].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001249 buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001250 }
1251
Arne Jansena2de7332011-03-08 14:14:00 +01001252 btrfs_csum_final(crc, csum);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001253 if (memcmp(csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001254 fail = 1;
1255
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001256 if (fail) {
1257 spin_lock(&sdev->stat_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01001258 ++sdev->stat.csum_errors;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001259 spin_unlock(&sdev->stat_lock);
1260 }
Arne Jansena2de7332011-03-08 14:14:00 +01001261
1262 return fail;
1263}
1264
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001265static int scrub_checksum_tree_block(struct scrub_block *sblock)
Arne Jansena2de7332011-03-08 14:14:00 +01001266{
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001267 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001268 struct btrfs_header *h;
1269 struct btrfs_root *root = sdev->dev->dev_root;
1270 struct btrfs_fs_info *fs_info = root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001271 u8 calculated_csum[BTRFS_CSUM_SIZE];
1272 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1273 struct page *page;
1274 void *mapped_buffer;
1275 u64 mapped_size;
1276 void *p;
Arne Jansena2de7332011-03-08 14:14:00 +01001277 u32 crc = ~(u32)0;
1278 int fail = 0;
1279 int crc_fail = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001280 u64 len;
1281 int index;
1282
1283 BUG_ON(sblock->page_count < 1);
1284 page = sblock->pagev[0].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001285 mapped_buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001286 h = (struct btrfs_header *)mapped_buffer;
1287 memcpy(on_disk_csum, h->csum, sdev->csum_size);
Arne Jansena2de7332011-03-08 14:14:00 +01001288
1289 /*
1290 * we don't use the getter functions here, as we
1291 * a) don't have an extent buffer and
1292 * b) the page is already kmapped
1293 */
Arne Jansena2de7332011-03-08 14:14:00 +01001294
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001295 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
Arne Jansena2de7332011-03-08 14:14:00 +01001296 ++fail;
1297
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001298 if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
Arne Jansena2de7332011-03-08 14:14:00 +01001299 ++fail;
1300
1301 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1302 ++fail;
1303
1304 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1305 BTRFS_UUID_SIZE))
1306 ++fail;
1307
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001308 BUG_ON(sdev->nodesize != sdev->leafsize);
1309 len = sdev->nodesize - BTRFS_CSUM_SIZE;
1310 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1311 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1312 index = 0;
1313 for (;;) {
1314 u64 l = min_t(u64, len, mapped_size);
1315
1316 crc = btrfs_csum_data(root, p, crc, l);
Linus Torvalds9613beb2012-03-30 12:44:29 -07001317 kunmap_atomic(mapped_buffer);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001318 len -= l;
1319 if (len == 0)
1320 break;
1321 index++;
1322 BUG_ON(index >= sblock->page_count);
1323 BUG_ON(!sblock->pagev[index].page);
1324 page = sblock->pagev[index].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001325 mapped_buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001326 mapped_size = PAGE_SIZE;
1327 p = mapped_buffer;
1328 }
1329
1330 btrfs_csum_final(crc, calculated_csum);
1331 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001332 ++crc_fail;
1333
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001334 if (crc_fail || fail) {
1335 spin_lock(&sdev->stat_lock);
1336 if (crc_fail)
1337 ++sdev->stat.csum_errors;
1338 if (fail)
1339 ++sdev->stat.verify_errors;
1340 spin_unlock(&sdev->stat_lock);
1341 }
Arne Jansena2de7332011-03-08 14:14:00 +01001342
1343 return fail || crc_fail;
1344}
1345
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001346static int scrub_checksum_super(struct scrub_block *sblock)
Arne Jansena2de7332011-03-08 14:14:00 +01001347{
1348 struct btrfs_super_block *s;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001349 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001350 struct btrfs_root *root = sdev->dev->dev_root;
1351 struct btrfs_fs_info *fs_info = root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001352 u8 calculated_csum[BTRFS_CSUM_SIZE];
1353 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1354 struct page *page;
1355 void *mapped_buffer;
1356 u64 mapped_size;
1357 void *p;
Arne Jansena2de7332011-03-08 14:14:00 +01001358 u32 crc = ~(u32)0;
1359 int fail = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001360 u64 len;
1361 int index;
Arne Jansena2de7332011-03-08 14:14:00 +01001362
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001363 BUG_ON(sblock->page_count < 1);
1364 page = sblock->pagev[0].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001365 mapped_buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001366 s = (struct btrfs_super_block *)mapped_buffer;
1367 memcpy(on_disk_csum, s->csum, sdev->csum_size);
Arne Jansena2de7332011-03-08 14:14:00 +01001368
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001369 if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
Arne Jansena2de7332011-03-08 14:14:00 +01001370 ++fail;
1371
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001372 if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
Arne Jansena2de7332011-03-08 14:14:00 +01001373 ++fail;
1374
1375 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1376 ++fail;
1377
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001378 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1379 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1380 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1381 index = 0;
1382 for (;;) {
1383 u64 l = min_t(u64, len, mapped_size);
1384
1385 crc = btrfs_csum_data(root, p, crc, l);
Linus Torvalds9613beb2012-03-30 12:44:29 -07001386 kunmap_atomic(mapped_buffer);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001387 len -= l;
1388 if (len == 0)
1389 break;
1390 index++;
1391 BUG_ON(index >= sblock->page_count);
1392 BUG_ON(!sblock->pagev[index].page);
1393 page = sblock->pagev[index].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001394 mapped_buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001395 mapped_size = PAGE_SIZE;
1396 p = mapped_buffer;
1397 }
1398
1399 btrfs_csum_final(crc, calculated_csum);
1400 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001401 ++fail;
1402
1403 if (fail) {
1404 /*
1405 * if we find an error in a super block, we just report it.
1406 * They will get written with the next transaction commit
1407 * anyway
1408 */
1409 spin_lock(&sdev->stat_lock);
1410 ++sdev->stat.super_errors;
1411 spin_unlock(&sdev->stat_lock);
1412 }
1413
1414 return fail;
1415}
1416
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001417static void scrub_block_get(struct scrub_block *sblock)
1418{
1419 atomic_inc(&sblock->ref_count);
1420}
1421
1422static void scrub_block_put(struct scrub_block *sblock)
1423{
1424 if (atomic_dec_and_test(&sblock->ref_count)) {
1425 int i;
1426
1427 for (i = 0; i < sblock->page_count; i++)
1428 if (sblock->pagev[i].page)
1429 __free_page(sblock->pagev[i].page);
1430 kfree(sblock);
1431 }
1432}
1433
Stefan Behrens1623ede2012-03-27 14:21:26 -04001434static void scrub_submit(struct scrub_dev *sdev)
Arne Jansena2de7332011-03-08 14:14:00 +01001435{
1436 struct scrub_bio *sbio;
1437
1438 if (sdev->curr == -1)
Stefan Behrens1623ede2012-03-27 14:21:26 -04001439 return;
Arne Jansena2de7332011-03-08 14:14:00 +01001440
1441 sbio = sdev->bios[sdev->curr];
Arne Jansena2de7332011-03-08 14:14:00 +01001442 sdev->curr = -1;
1443 atomic_inc(&sdev->in_flight);
1444
Stefan Behrens21adbd52011-11-09 13:44:05 +01001445 btrfsic_submit_bio(READ, sbio->bio);
Arne Jansena2de7332011-03-08 14:14:00 +01001446}
1447
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001448static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1449 struct scrub_page *spage)
Arne Jansena2de7332011-03-08 14:14:00 +01001450{
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001451 struct scrub_block *sblock = spage->sblock;
Arne Jansena2de7332011-03-08 14:14:00 +01001452 struct scrub_bio *sbio;
Arne Jansen69f4cb52011-11-11 08:17:10 -05001453 int ret;
Arne Jansena2de7332011-03-08 14:14:00 +01001454
1455again:
1456 /*
1457 * grab a fresh bio or wait for one to become available
1458 */
1459 while (sdev->curr == -1) {
1460 spin_lock(&sdev->list_lock);
1461 sdev->curr = sdev->first_free;
1462 if (sdev->curr != -1) {
1463 sdev->first_free = sdev->bios[sdev->curr]->next_free;
1464 sdev->bios[sdev->curr]->next_free = -1;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001465 sdev->bios[sdev->curr]->page_count = 0;
Arne Jansena2de7332011-03-08 14:14:00 +01001466 spin_unlock(&sdev->list_lock);
1467 } else {
1468 spin_unlock(&sdev->list_lock);
1469 wait_event(sdev->list_wait, sdev->first_free != -1);
1470 }
1471 }
1472 sbio = sdev->bios[sdev->curr];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001473 if (sbio->page_count == 0) {
Arne Jansen69f4cb52011-11-11 08:17:10 -05001474 struct bio *bio;
1475
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001476 sbio->physical = spage->physical;
1477 sbio->logical = spage->logical;
1478 bio = sbio->bio;
1479 if (!bio) {
1480 bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1481 if (!bio)
1482 return -ENOMEM;
1483 sbio->bio = bio;
1484 }
Arne Jansen69f4cb52011-11-11 08:17:10 -05001485
1486 bio->bi_private = sbio;
1487 bio->bi_end_io = scrub_bio_end_io;
1488 bio->bi_bdev = sdev->dev->bdev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001489 bio->bi_sector = spage->physical >> 9;
Arne Jansen69f4cb52011-11-11 08:17:10 -05001490 sbio->err = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001491 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1492 spage->physical ||
1493 sbio->logical + sbio->page_count * PAGE_SIZE !=
1494 spage->logical) {
Stefan Behrens1623ede2012-03-27 14:21:26 -04001495 scrub_submit(sdev);
Arne Jansen69f4cb52011-11-11 08:17:10 -05001496 goto again;
1497 }
1498
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001499 sbio->pagev[sbio->page_count] = spage;
1500 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1501 if (ret != PAGE_SIZE) {
1502 if (sbio->page_count < 1) {
1503 bio_put(sbio->bio);
1504 sbio->bio = NULL;
1505 return -EIO;
1506 }
1507 scrub_submit(sdev);
1508 goto again;
Arne Jansena2de7332011-03-08 14:14:00 +01001509 }
Arne Jansen1bc87792011-05-28 21:57:55 +02001510
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001511 scrub_block_get(sblock); /* one for the added page */
1512 atomic_inc(&sblock->outstanding_pages);
1513 sbio->page_count++;
1514 if (sbio->page_count == sdev->pages_per_bio)
Stefan Behrens1623ede2012-03-27 14:21:26 -04001515 scrub_submit(sdev);
Arne Jansena2de7332011-03-08 14:14:00 +01001516
1517 return 0;
1518}
1519
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001520static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1521 u64 physical, u64 flags, u64 gen, int mirror_num,
1522 u8 *csum, int force)
1523{
1524 struct scrub_block *sblock;
1525 int index;
1526
1527 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1528 if (!sblock) {
1529 spin_lock(&sdev->stat_lock);
1530 sdev->stat.malloc_errors++;
1531 spin_unlock(&sdev->stat_lock);
1532 return -ENOMEM;
1533 }
1534
1535 /* one ref inside this function, plus one for each page later on */
1536 atomic_set(&sblock->ref_count, 1);
1537 sblock->sdev = sdev;
1538 sblock->no_io_error_seen = 1;
1539
1540 for (index = 0; len > 0; index++) {
1541 struct scrub_page *spage = sblock->pagev + index;
1542 u64 l = min_t(u64, len, PAGE_SIZE);
1543
1544 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1545 spage->page = alloc_page(GFP_NOFS);
1546 if (!spage->page) {
1547 spin_lock(&sdev->stat_lock);
1548 sdev->stat.malloc_errors++;
1549 spin_unlock(&sdev->stat_lock);
1550 while (index > 0) {
1551 index--;
1552 __free_page(sblock->pagev[index].page);
1553 }
1554 kfree(sblock);
1555 return -ENOMEM;
1556 }
1557 spage->sblock = sblock;
1558 spage->bdev = sdev->dev->bdev;
1559 spage->flags = flags;
1560 spage->generation = gen;
1561 spage->logical = logical;
1562 spage->physical = physical;
1563 spage->mirror_num = mirror_num;
1564 if (csum) {
1565 spage->have_csum = 1;
1566 memcpy(spage->csum, csum, sdev->csum_size);
1567 } else {
1568 spage->have_csum = 0;
1569 }
1570 sblock->page_count++;
1571 len -= l;
1572 logical += l;
1573 physical += l;
1574 }
1575
1576 BUG_ON(sblock->page_count == 0);
1577 for (index = 0; index < sblock->page_count; index++) {
1578 struct scrub_page *spage = sblock->pagev + index;
1579 int ret;
1580
1581 ret = scrub_add_page_to_bio(sdev, spage);
1582 if (ret) {
1583 scrub_block_put(sblock);
1584 return ret;
1585 }
1586 }
1587
1588 if (force)
1589 scrub_submit(sdev);
1590
1591 /* last one frees, either here or in bio completion for last page */
1592 scrub_block_put(sblock);
1593 return 0;
1594}
1595
1596static void scrub_bio_end_io(struct bio *bio, int err)
1597{
1598 struct scrub_bio *sbio = bio->bi_private;
1599 struct scrub_dev *sdev = sbio->sdev;
1600 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1601
1602 sbio->err = err;
1603 sbio->bio = bio;
1604
1605 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1606}
1607
1608static void scrub_bio_end_io_worker(struct btrfs_work *work)
1609{
1610 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1611 struct scrub_dev *sdev = sbio->sdev;
1612 int i;
1613
1614 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1615 if (sbio->err) {
1616 for (i = 0; i < sbio->page_count; i++) {
1617 struct scrub_page *spage = sbio->pagev[i];
1618
1619 spage->io_error = 1;
1620 spage->sblock->no_io_error_seen = 0;
1621 }
1622 }
1623
1624 /* now complete the scrub_block items that have all pages completed */
1625 for (i = 0; i < sbio->page_count; i++) {
1626 struct scrub_page *spage = sbio->pagev[i];
1627 struct scrub_block *sblock = spage->sblock;
1628
1629 if (atomic_dec_and_test(&sblock->outstanding_pages))
1630 scrub_block_complete(sblock);
1631 scrub_block_put(sblock);
1632 }
1633
1634 if (sbio->err) {
1635 /* what is this good for??? */
1636 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1637 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1638 sbio->bio->bi_phys_segments = 0;
1639 sbio->bio->bi_idx = 0;
1640
1641 for (i = 0; i < sbio->page_count; i++) {
1642 struct bio_vec *bi;
1643 bi = &sbio->bio->bi_io_vec[i];
1644 bi->bv_offset = 0;
1645 bi->bv_len = PAGE_SIZE;
1646 }
1647 }
1648
1649 bio_put(sbio->bio);
1650 sbio->bio = NULL;
1651 spin_lock(&sdev->list_lock);
1652 sbio->next_free = sdev->first_free;
1653 sdev->first_free = sbio->index;
1654 spin_unlock(&sdev->list_lock);
1655 atomic_dec(&sdev->in_flight);
1656 wake_up(&sdev->list_wait);
1657}
1658
1659static void scrub_block_complete(struct scrub_block *sblock)
1660{
1661 if (!sblock->no_io_error_seen)
1662 scrub_handle_errored_block(sblock);
1663 else
1664 scrub_checksum(sblock);
1665}
1666
Arne Jansena2de7332011-03-08 14:14:00 +01001667static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1668 u8 *csum)
1669{
1670 struct btrfs_ordered_sum *sum = NULL;
1671 int ret = 0;
1672 unsigned long i;
1673 unsigned long num_sectors;
Arne Jansena2de7332011-03-08 14:14:00 +01001674
1675 while (!list_empty(&sdev->csum_list)) {
1676 sum = list_first_entry(&sdev->csum_list,
1677 struct btrfs_ordered_sum, list);
1678 if (sum->bytenr > logical)
1679 return 0;
1680 if (sum->bytenr + sum->len > logical)
1681 break;
1682
1683 ++sdev->stat.csum_discards;
1684 list_del(&sum->list);
1685 kfree(sum);
1686 sum = NULL;
1687 }
1688 if (!sum)
1689 return 0;
1690
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001691 num_sectors = sum->len / sdev->sectorsize;
Arne Jansena2de7332011-03-08 14:14:00 +01001692 for (i = 0; i < num_sectors; ++i) {
1693 if (sum->sums[i].bytenr == logical) {
1694 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1695 ret = 1;
1696 break;
1697 }
1698 }
1699 if (ret && i == num_sectors - 1) {
1700 list_del(&sum->list);
1701 kfree(sum);
1702 }
1703 return ret;
1704}
1705
1706/* scrub extent tries to collect up to 64 kB for each bio */
1707static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
Jan Schmidte12fa9c2011-06-17 15:55:21 +02001708 u64 physical, u64 flags, u64 gen, int mirror_num)
Arne Jansena2de7332011-03-08 14:14:00 +01001709{
1710 int ret;
1711 u8 csum[BTRFS_CSUM_SIZE];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001712 u32 blocksize;
1713
1714 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1715 blocksize = sdev->sectorsize;
1716 spin_lock(&sdev->stat_lock);
1717 sdev->stat.data_extents_scrubbed++;
1718 sdev->stat.data_bytes_scrubbed += len;
1719 spin_unlock(&sdev->stat_lock);
1720 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1721 BUG_ON(sdev->nodesize != sdev->leafsize);
1722 blocksize = sdev->nodesize;
1723 spin_lock(&sdev->stat_lock);
1724 sdev->stat.tree_extents_scrubbed++;
1725 sdev->stat.tree_bytes_scrubbed += len;
1726 spin_unlock(&sdev->stat_lock);
1727 } else {
1728 blocksize = sdev->sectorsize;
1729 BUG_ON(1);
1730 }
Arne Jansena2de7332011-03-08 14:14:00 +01001731
1732 while (len) {
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001733 u64 l = min_t(u64, len, blocksize);
Arne Jansena2de7332011-03-08 14:14:00 +01001734 int have_csum = 0;
1735
1736 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1737 /* push csums to sbio */
1738 have_csum = scrub_find_csum(sdev, logical, l, csum);
1739 if (have_csum == 0)
1740 ++sdev->stat.no_csum;
1741 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001742 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1743 mirror_num, have_csum ? csum : NULL, 0);
Arne Jansena2de7332011-03-08 14:14:00 +01001744 if (ret)
1745 return ret;
1746 len -= l;
1747 logical += l;
1748 physical += l;
1749 }
1750 return 0;
1751}
1752
1753static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1754 struct map_lookup *map, int num, u64 base, u64 length)
1755{
1756 struct btrfs_path *path;
1757 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1758 struct btrfs_root *root = fs_info->extent_root;
1759 struct btrfs_root *csum_root = fs_info->csum_root;
1760 struct btrfs_extent_item *extent;
Arne Jansene7786c32011-05-28 20:58:38 +00001761 struct blk_plug plug;
Arne Jansena2de7332011-03-08 14:14:00 +01001762 u64 flags;
1763 int ret;
1764 int slot;
1765 int i;
1766 u64 nstripes;
Arne Jansena2de7332011-03-08 14:14:00 +01001767 struct extent_buffer *l;
1768 struct btrfs_key key;
1769 u64 physical;
1770 u64 logical;
1771 u64 generation;
Jan Schmidte12fa9c2011-06-17 15:55:21 +02001772 int mirror_num;
Arne Jansen7a262852011-06-10 12:39:23 +02001773 struct reada_control *reada1;
1774 struct reada_control *reada2;
1775 struct btrfs_key key_start;
1776 struct btrfs_key key_end;
Arne Jansena2de7332011-03-08 14:14:00 +01001777
1778 u64 increment = map->stripe_len;
1779 u64 offset;
1780
1781 nstripes = length;
1782 offset = 0;
1783 do_div(nstripes, map->stripe_len);
1784 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1785 offset = map->stripe_len * num;
1786 increment = map->stripe_len * map->num_stripes;
Jan Schmidt193ea742011-06-13 19:56:54 +02001787 mirror_num = 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001788 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1789 int factor = map->num_stripes / map->sub_stripes;
1790 offset = map->stripe_len * (num / map->sub_stripes);
1791 increment = map->stripe_len * factor;
Jan Schmidt193ea742011-06-13 19:56:54 +02001792 mirror_num = num % map->sub_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001793 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1794 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001795 mirror_num = num % map->num_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001796 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1797 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001798 mirror_num = num % map->num_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001799 } else {
1800 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001801 mirror_num = 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001802 }
1803
1804 path = btrfs_alloc_path();
1805 if (!path)
1806 return -ENOMEM;
1807
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001808 /*
1809 * work on commit root. The related disk blocks are static as
1810 * long as COW is applied. This means, it is save to rewrite
1811 * them to repair disk errors without any race conditions
1812 */
Arne Jansena2de7332011-03-08 14:14:00 +01001813 path->search_commit_root = 1;
1814 path->skip_locking = 1;
1815
1816 /*
Arne Jansen7a262852011-06-10 12:39:23 +02001817 * trigger the readahead for extent tree csum tree and wait for
1818 * completion. During readahead, the scrub is officially paused
1819 * to not hold off transaction commits
Arne Jansena2de7332011-03-08 14:14:00 +01001820 */
1821 logical = base + offset;
Arne Jansena2de7332011-03-08 14:14:00 +01001822
Arne Jansen7a262852011-06-10 12:39:23 +02001823 wait_event(sdev->list_wait,
1824 atomic_read(&sdev->in_flight) == 0);
1825 atomic_inc(&fs_info->scrubs_paused);
1826 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001827
Arne Jansen7a262852011-06-10 12:39:23 +02001828 /* FIXME it might be better to start readahead at commit root */
1829 key_start.objectid = logical;
1830 key_start.type = BTRFS_EXTENT_ITEM_KEY;
1831 key_start.offset = (u64)0;
1832 key_end.objectid = base + offset + nstripes * increment;
1833 key_end.type = BTRFS_EXTENT_ITEM_KEY;
1834 key_end.offset = (u64)0;
1835 reada1 = btrfs_reada_add(root, &key_start, &key_end);
Arne Jansena2de7332011-03-08 14:14:00 +01001836
Arne Jansen7a262852011-06-10 12:39:23 +02001837 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1838 key_start.type = BTRFS_EXTENT_CSUM_KEY;
1839 key_start.offset = logical;
1840 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1841 key_end.type = BTRFS_EXTENT_CSUM_KEY;
1842 key_end.offset = base + offset + nstripes * increment;
1843 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
Arne Jansena2de7332011-03-08 14:14:00 +01001844
Arne Jansen7a262852011-06-10 12:39:23 +02001845 if (!IS_ERR(reada1))
1846 btrfs_reada_wait(reada1);
1847 if (!IS_ERR(reada2))
1848 btrfs_reada_wait(reada2);
Arne Jansena2de7332011-03-08 14:14:00 +01001849
Arne Jansen7a262852011-06-10 12:39:23 +02001850 mutex_lock(&fs_info->scrub_lock);
1851 while (atomic_read(&fs_info->scrub_pause_req)) {
1852 mutex_unlock(&fs_info->scrub_lock);
1853 wait_event(fs_info->scrub_pause_wait,
1854 atomic_read(&fs_info->scrub_pause_req) == 0);
1855 mutex_lock(&fs_info->scrub_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01001856 }
Arne Jansen7a262852011-06-10 12:39:23 +02001857 atomic_dec(&fs_info->scrubs_paused);
1858 mutex_unlock(&fs_info->scrub_lock);
1859 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001860
1861 /*
1862 * collect all data csums for the stripe to avoid seeking during
1863 * the scrub. This might currently (crc32) end up to be about 1MB
1864 */
Arne Jansene7786c32011-05-28 20:58:38 +00001865 blk_start_plug(&plug);
Arne Jansena2de7332011-03-08 14:14:00 +01001866
Arne Jansena2de7332011-03-08 14:14:00 +01001867 /*
1868 * now find all extents for each stripe and scrub them
1869 */
Arne Jansen7a262852011-06-10 12:39:23 +02001870 logical = base + offset;
1871 physical = map->stripes[num].physical;
Arne Jansena2de7332011-03-08 14:14:00 +01001872 ret = 0;
Arne Jansen7a262852011-06-10 12:39:23 +02001873 for (i = 0; i < nstripes; ++i) {
Arne Jansena2de7332011-03-08 14:14:00 +01001874 /*
1875 * canceled?
1876 */
1877 if (atomic_read(&fs_info->scrub_cancel_req) ||
1878 atomic_read(&sdev->cancel_req)) {
1879 ret = -ECANCELED;
1880 goto out;
1881 }
1882 /*
1883 * check to see if we have to pause
1884 */
1885 if (atomic_read(&fs_info->scrub_pause_req)) {
1886 /* push queued extents */
1887 scrub_submit(sdev);
1888 wait_event(sdev->list_wait,
1889 atomic_read(&sdev->in_flight) == 0);
1890 atomic_inc(&fs_info->scrubs_paused);
1891 wake_up(&fs_info->scrub_pause_wait);
1892 mutex_lock(&fs_info->scrub_lock);
1893 while (atomic_read(&fs_info->scrub_pause_req)) {
1894 mutex_unlock(&fs_info->scrub_lock);
1895 wait_event(fs_info->scrub_pause_wait,
1896 atomic_read(&fs_info->scrub_pause_req) == 0);
1897 mutex_lock(&fs_info->scrub_lock);
1898 }
1899 atomic_dec(&fs_info->scrubs_paused);
1900 mutex_unlock(&fs_info->scrub_lock);
1901 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001902 }
1903
Arne Jansen7a262852011-06-10 12:39:23 +02001904 ret = btrfs_lookup_csums_range(csum_root, logical,
1905 logical + map->stripe_len - 1,
1906 &sdev->csum_list, 1);
1907 if (ret)
1908 goto out;
1909
Arne Jansena2de7332011-03-08 14:14:00 +01001910 key.objectid = logical;
1911 key.type = BTRFS_EXTENT_ITEM_KEY;
1912 key.offset = (u64)0;
1913
1914 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1915 if (ret < 0)
1916 goto out;
Arne Jansen8c510322011-06-03 10:09:26 +02001917 if (ret > 0) {
Arne Jansena2de7332011-03-08 14:14:00 +01001918 ret = btrfs_previous_item(root, path, 0,
1919 BTRFS_EXTENT_ITEM_KEY);
1920 if (ret < 0)
1921 goto out;
Arne Jansen8c510322011-06-03 10:09:26 +02001922 if (ret > 0) {
1923 /* there's no smaller item, so stick with the
1924 * larger one */
1925 btrfs_release_path(path);
1926 ret = btrfs_search_slot(NULL, root, &key,
1927 path, 0, 0);
1928 if (ret < 0)
1929 goto out;
1930 }
Arne Jansena2de7332011-03-08 14:14:00 +01001931 }
1932
1933 while (1) {
1934 l = path->nodes[0];
1935 slot = path->slots[0];
1936 if (slot >= btrfs_header_nritems(l)) {
1937 ret = btrfs_next_leaf(root, path);
1938 if (ret == 0)
1939 continue;
1940 if (ret < 0)
1941 goto out;
1942
1943 break;
1944 }
1945 btrfs_item_key_to_cpu(l, &key, slot);
1946
1947 if (key.objectid + key.offset <= logical)
1948 goto next;
1949
1950 if (key.objectid >= logical + map->stripe_len)
1951 break;
1952
1953 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1954 goto next;
1955
1956 extent = btrfs_item_ptr(l, slot,
1957 struct btrfs_extent_item);
1958 flags = btrfs_extent_flags(l, extent);
1959 generation = btrfs_extent_generation(l, extent);
1960
1961 if (key.objectid < logical &&
1962 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1963 printk(KERN_ERR
1964 "btrfs scrub: tree block %llu spanning "
1965 "stripes, ignored. logical=%llu\n",
1966 (unsigned long long)key.objectid,
1967 (unsigned long long)logical);
1968 goto next;
1969 }
1970
1971 /*
1972 * trim extent to this stripe
1973 */
1974 if (key.objectid < logical) {
1975 key.offset -= logical - key.objectid;
1976 key.objectid = logical;
1977 }
1978 if (key.objectid + key.offset >
1979 logical + map->stripe_len) {
1980 key.offset = logical + map->stripe_len -
1981 key.objectid;
1982 }
1983
1984 ret = scrub_extent(sdev, key.objectid, key.offset,
1985 key.objectid - logical + physical,
1986 flags, generation, mirror_num);
1987 if (ret)
1988 goto out;
1989
1990next:
1991 path->slots[0]++;
1992 }
Chris Mason71267332011-05-23 06:30:52 -04001993 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01001994 logical += increment;
1995 physical += map->stripe_len;
1996 spin_lock(&sdev->stat_lock);
1997 sdev->stat.last_physical = physical;
1998 spin_unlock(&sdev->stat_lock);
1999 }
2000 /* push queued extents */
2001 scrub_submit(sdev);
2002
2003out:
Arne Jansene7786c32011-05-28 20:58:38 +00002004 blk_finish_plug(&plug);
Arne Jansena2de7332011-03-08 14:14:00 +01002005 btrfs_free_path(path);
2006 return ret < 0 ? ret : 0;
2007}
2008
2009static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
Arne Jansen859acaf2012-02-09 15:09:02 +01002010 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2011 u64 dev_offset)
Arne Jansena2de7332011-03-08 14:14:00 +01002012{
2013 struct btrfs_mapping_tree *map_tree =
2014 &sdev->dev->dev_root->fs_info->mapping_tree;
2015 struct map_lookup *map;
2016 struct extent_map *em;
2017 int i;
2018 int ret = -EINVAL;
2019
2020 read_lock(&map_tree->map_tree.lock);
2021 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2022 read_unlock(&map_tree->map_tree.lock);
2023
2024 if (!em)
2025 return -EINVAL;
2026
2027 map = (struct map_lookup *)em->bdev;
2028 if (em->start != chunk_offset)
2029 goto out;
2030
2031 if (em->len < length)
2032 goto out;
2033
2034 for (i = 0; i < map->num_stripes; ++i) {
Arne Jansen859acaf2012-02-09 15:09:02 +01002035 if (map->stripes[i].dev == sdev->dev &&
2036 map->stripes[i].physical == dev_offset) {
Arne Jansena2de7332011-03-08 14:14:00 +01002037 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2038 if (ret)
2039 goto out;
2040 }
2041 }
2042out:
2043 free_extent_map(em);
2044
2045 return ret;
2046}
2047
2048static noinline_for_stack
2049int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2050{
2051 struct btrfs_dev_extent *dev_extent = NULL;
2052 struct btrfs_path *path;
2053 struct btrfs_root *root = sdev->dev->dev_root;
2054 struct btrfs_fs_info *fs_info = root->fs_info;
2055 u64 length;
2056 u64 chunk_tree;
2057 u64 chunk_objectid;
2058 u64 chunk_offset;
2059 int ret;
2060 int slot;
2061 struct extent_buffer *l;
2062 struct btrfs_key key;
2063 struct btrfs_key found_key;
2064 struct btrfs_block_group_cache *cache;
2065
2066 path = btrfs_alloc_path();
2067 if (!path)
2068 return -ENOMEM;
2069
2070 path->reada = 2;
2071 path->search_commit_root = 1;
2072 path->skip_locking = 1;
2073
2074 key.objectid = sdev->dev->devid;
2075 key.offset = 0ull;
2076 key.type = BTRFS_DEV_EXTENT_KEY;
2077
2078
2079 while (1) {
2080 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2081 if (ret < 0)
Arne Jansen8c510322011-06-03 10:09:26 +02002082 break;
2083 if (ret > 0) {
2084 if (path->slots[0] >=
2085 btrfs_header_nritems(path->nodes[0])) {
2086 ret = btrfs_next_leaf(root, path);
2087 if (ret)
2088 break;
2089 }
2090 }
Arne Jansena2de7332011-03-08 14:14:00 +01002091
2092 l = path->nodes[0];
2093 slot = path->slots[0];
2094
2095 btrfs_item_key_to_cpu(l, &found_key, slot);
2096
2097 if (found_key.objectid != sdev->dev->devid)
2098 break;
2099
Arne Jansen8c510322011-06-03 10:09:26 +02002100 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
Arne Jansena2de7332011-03-08 14:14:00 +01002101 break;
2102
2103 if (found_key.offset >= end)
2104 break;
2105
2106 if (found_key.offset < key.offset)
2107 break;
2108
2109 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2110 length = btrfs_dev_extent_length(l, dev_extent);
2111
2112 if (found_key.offset + length <= start) {
2113 key.offset = found_key.offset + length;
Chris Mason71267332011-05-23 06:30:52 -04002114 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01002115 continue;
2116 }
2117
2118 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2119 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2120 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2121
2122 /*
2123 * get a reference on the corresponding block group to prevent
2124 * the chunk from going away while we scrub it
2125 */
2126 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2127 if (!cache) {
2128 ret = -ENOENT;
Arne Jansen8c510322011-06-03 10:09:26 +02002129 break;
Arne Jansena2de7332011-03-08 14:14:00 +01002130 }
2131 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
Arne Jansen859acaf2012-02-09 15:09:02 +01002132 chunk_offset, length, found_key.offset);
Arne Jansena2de7332011-03-08 14:14:00 +01002133 btrfs_put_block_group(cache);
2134 if (ret)
2135 break;
2136
2137 key.offset = found_key.offset + length;
Chris Mason71267332011-05-23 06:30:52 -04002138 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01002139 }
2140
Arne Jansena2de7332011-03-08 14:14:00 +01002141 btrfs_free_path(path);
Arne Jansen8c510322011-06-03 10:09:26 +02002142
2143 /*
2144 * ret can still be 1 from search_slot or next_leaf,
2145 * that's not an error
2146 */
2147 return ret < 0 ? ret : 0;
Arne Jansena2de7332011-03-08 14:14:00 +01002148}
2149
2150static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2151{
2152 int i;
2153 u64 bytenr;
2154 u64 gen;
2155 int ret;
2156 struct btrfs_device *device = sdev->dev;
2157 struct btrfs_root *root = device->dev_root;
2158
Jeff Mahoney79787ea2012-03-12 16:03:00 +01002159 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2160 return -EIO;
2161
Arne Jansena2de7332011-03-08 14:14:00 +01002162 gen = root->fs_info->last_trans_committed;
2163
2164 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2165 bytenr = btrfs_sb_offset(i);
Stefan Behrens1623ede2012-03-27 14:21:26 -04002166 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
Arne Jansena2de7332011-03-08 14:14:00 +01002167 break;
2168
Stefan Behrensb5d67f62012-03-27 14:21:27 -04002169 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2170 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
Arne Jansena2de7332011-03-08 14:14:00 +01002171 if (ret)
2172 return ret;
2173 }
2174 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2175
2176 return 0;
2177}
2178
2179/*
2180 * get a reference count on fs_info->scrub_workers. start worker if necessary
2181 */
2182static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2183{
2184 struct btrfs_fs_info *fs_info = root->fs_info;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002185 int ret = 0;
Arne Jansena2de7332011-03-08 14:14:00 +01002186
2187 mutex_lock(&fs_info->scrub_lock);
Arne Jansen632dd772011-06-10 12:07:07 +02002188 if (fs_info->scrub_workers_refcnt == 0) {
2189 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2190 fs_info->thread_pool_size, &fs_info->generic_worker);
2191 fs_info->scrub_workers.idle_thresh = 4;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002192 ret = btrfs_start_workers(&fs_info->scrub_workers);
2193 if (ret)
2194 goto out;
Arne Jansen632dd772011-06-10 12:07:07 +02002195 }
Arne Jansena2de7332011-03-08 14:14:00 +01002196 ++fs_info->scrub_workers_refcnt;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002197out:
Arne Jansena2de7332011-03-08 14:14:00 +01002198 mutex_unlock(&fs_info->scrub_lock);
2199
Josef Bacik0dc3b842011-11-18 14:37:27 -05002200 return ret;
Arne Jansena2de7332011-03-08 14:14:00 +01002201}
2202
2203static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2204{
2205 struct btrfs_fs_info *fs_info = root->fs_info;
2206
2207 mutex_lock(&fs_info->scrub_lock);
2208 if (--fs_info->scrub_workers_refcnt == 0)
2209 btrfs_stop_workers(&fs_info->scrub_workers);
2210 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2211 mutex_unlock(&fs_info->scrub_lock);
2212}
2213
2214
2215int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
Arne Jansen86287642011-03-23 16:34:19 +01002216 struct btrfs_scrub_progress *progress, int readonly)
Arne Jansena2de7332011-03-08 14:14:00 +01002217{
2218 struct scrub_dev *sdev;
2219 struct btrfs_fs_info *fs_info = root->fs_info;
2220 int ret;
2221 struct btrfs_device *dev;
2222
David Sterba7841cb22011-05-31 18:07:27 +02002223 if (btrfs_fs_closing(root->fs_info))
Arne Jansena2de7332011-03-08 14:14:00 +01002224 return -EINVAL;
2225
2226 /*
2227 * check some assumptions
2228 */
Stefan Behrensb5d67f62012-03-27 14:21:27 -04002229 if (root->nodesize != root->leafsize) {
2230 printk(KERN_ERR
2231 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2232 root->nodesize, root->leafsize);
2233 return -EINVAL;
2234 }
2235
2236 if (root->nodesize > BTRFS_STRIPE_LEN) {
2237 /*
2238 * in this case scrub is unable to calculate the checksum
2239 * the way scrub is implemented. Do not handle this
2240 * situation at all because it won't ever happen.
2241 */
2242 printk(KERN_ERR
2243 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2244 root->nodesize, BTRFS_STRIPE_LEN);
2245 return -EINVAL;
2246 }
2247
2248 if (root->sectorsize != PAGE_SIZE) {
2249 /* not supported for data w/o checksums */
2250 printk(KERN_ERR
2251 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2252 root->sectorsize, (unsigned long long)PAGE_SIZE);
Arne Jansena2de7332011-03-08 14:14:00 +01002253 return -EINVAL;
2254 }
2255
2256 ret = scrub_workers_get(root);
2257 if (ret)
2258 return ret;
2259
2260 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2261 dev = btrfs_find_device(root, devid, NULL, NULL);
2262 if (!dev || dev->missing) {
2263 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2264 scrub_workers_put(root);
2265 return -ENODEV;
2266 }
2267 mutex_lock(&fs_info->scrub_lock);
2268
2269 if (!dev->in_fs_metadata) {
2270 mutex_unlock(&fs_info->scrub_lock);
2271 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2272 scrub_workers_put(root);
2273 return -ENODEV;
2274 }
2275
2276 if (dev->scrub_device) {
2277 mutex_unlock(&fs_info->scrub_lock);
2278 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2279 scrub_workers_put(root);
2280 return -EINPROGRESS;
2281 }
2282 sdev = scrub_setup_dev(dev);
2283 if (IS_ERR(sdev)) {
2284 mutex_unlock(&fs_info->scrub_lock);
2285 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2286 scrub_workers_put(root);
2287 return PTR_ERR(sdev);
2288 }
Arne Jansen86287642011-03-23 16:34:19 +01002289 sdev->readonly = readonly;
Arne Jansena2de7332011-03-08 14:14:00 +01002290 dev->scrub_device = sdev;
2291
2292 atomic_inc(&fs_info->scrubs_running);
2293 mutex_unlock(&fs_info->scrub_lock);
2294 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2295
2296 down_read(&fs_info->scrub_super_lock);
2297 ret = scrub_supers(sdev);
2298 up_read(&fs_info->scrub_super_lock);
2299
2300 if (!ret)
2301 ret = scrub_enumerate_chunks(sdev, start, end);
2302
2303 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
Arne Jansena2de7332011-03-08 14:14:00 +01002304 atomic_dec(&fs_info->scrubs_running);
2305 wake_up(&fs_info->scrub_pause_wait);
2306
Jan Schmidt0ef8e452011-06-13 20:04:15 +02002307 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2308
Arne Jansena2de7332011-03-08 14:14:00 +01002309 if (progress)
2310 memcpy(progress, &sdev->stat, sizeof(*progress));
2311
2312 mutex_lock(&fs_info->scrub_lock);
2313 dev->scrub_device = NULL;
2314 mutex_unlock(&fs_info->scrub_lock);
2315
2316 scrub_free_dev(sdev);
2317 scrub_workers_put(root);
2318
2319 return ret;
2320}
2321
Jeff Mahoney143bede2012-03-01 14:56:26 +01002322void btrfs_scrub_pause(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002323{
2324 struct btrfs_fs_info *fs_info = root->fs_info;
2325
2326 mutex_lock(&fs_info->scrub_lock);
2327 atomic_inc(&fs_info->scrub_pause_req);
2328 while (atomic_read(&fs_info->scrubs_paused) !=
2329 atomic_read(&fs_info->scrubs_running)) {
2330 mutex_unlock(&fs_info->scrub_lock);
2331 wait_event(fs_info->scrub_pause_wait,
2332 atomic_read(&fs_info->scrubs_paused) ==
2333 atomic_read(&fs_info->scrubs_running));
2334 mutex_lock(&fs_info->scrub_lock);
2335 }
2336 mutex_unlock(&fs_info->scrub_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002337}
2338
Jeff Mahoney143bede2012-03-01 14:56:26 +01002339void btrfs_scrub_continue(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002340{
2341 struct btrfs_fs_info *fs_info = root->fs_info;
2342
2343 atomic_dec(&fs_info->scrub_pause_req);
2344 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01002345}
2346
Jeff Mahoney143bede2012-03-01 14:56:26 +01002347void btrfs_scrub_pause_super(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002348{
2349 down_write(&root->fs_info->scrub_super_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002350}
2351
Jeff Mahoney143bede2012-03-01 14:56:26 +01002352void btrfs_scrub_continue_super(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002353{
2354 up_write(&root->fs_info->scrub_super_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002355}
2356
Jeff Mahoney49b25e02012-03-01 17:24:58 +01002357int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
Arne Jansena2de7332011-03-08 14:14:00 +01002358{
Arne Jansena2de7332011-03-08 14:14:00 +01002359
2360 mutex_lock(&fs_info->scrub_lock);
2361 if (!atomic_read(&fs_info->scrubs_running)) {
2362 mutex_unlock(&fs_info->scrub_lock);
2363 return -ENOTCONN;
2364 }
2365
2366 atomic_inc(&fs_info->scrub_cancel_req);
2367 while (atomic_read(&fs_info->scrubs_running)) {
2368 mutex_unlock(&fs_info->scrub_lock);
2369 wait_event(fs_info->scrub_pause_wait,
2370 atomic_read(&fs_info->scrubs_running) == 0);
2371 mutex_lock(&fs_info->scrub_lock);
2372 }
2373 atomic_dec(&fs_info->scrub_cancel_req);
2374 mutex_unlock(&fs_info->scrub_lock);
2375
2376 return 0;
2377}
2378
Jeff Mahoney49b25e02012-03-01 17:24:58 +01002379int btrfs_scrub_cancel(struct btrfs_root *root)
2380{
2381 return __btrfs_scrub_cancel(root->fs_info);
2382}
2383
Arne Jansena2de7332011-03-08 14:14:00 +01002384int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2385{
2386 struct btrfs_fs_info *fs_info = root->fs_info;
2387 struct scrub_dev *sdev;
2388
2389 mutex_lock(&fs_info->scrub_lock);
2390 sdev = dev->scrub_device;
2391 if (!sdev) {
2392 mutex_unlock(&fs_info->scrub_lock);
2393 return -ENOTCONN;
2394 }
2395 atomic_inc(&sdev->cancel_req);
2396 while (dev->scrub_device) {
2397 mutex_unlock(&fs_info->scrub_lock);
2398 wait_event(fs_info->scrub_pause_wait,
2399 dev->scrub_device == NULL);
2400 mutex_lock(&fs_info->scrub_lock);
2401 }
2402 mutex_unlock(&fs_info->scrub_lock);
2403
2404 return 0;
2405}
Stefan Behrens1623ede2012-03-27 14:21:26 -04002406
Arne Jansena2de7332011-03-08 14:14:00 +01002407int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2408{
2409 struct btrfs_fs_info *fs_info = root->fs_info;
2410 struct btrfs_device *dev;
2411 int ret;
2412
2413 /*
2414 * we have to hold the device_list_mutex here so the device
2415 * does not go away in cancel_dev. FIXME: find a better solution
2416 */
2417 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2418 dev = btrfs_find_device(root, devid, NULL, NULL);
2419 if (!dev) {
2420 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2421 return -ENODEV;
2422 }
2423 ret = btrfs_scrub_cancel_dev(root, dev);
2424 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2425
2426 return ret;
2427}
2428
2429int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2430 struct btrfs_scrub_progress *progress)
2431{
2432 struct btrfs_device *dev;
2433 struct scrub_dev *sdev = NULL;
2434
2435 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2436 dev = btrfs_find_device(root, devid, NULL, NULL);
2437 if (dev)
2438 sdev = dev->scrub_device;
2439 if (sdev)
2440 memcpy(progress, &sdev->stat, sizeof(*progress));
2441 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2442
2443 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2444}