blob: 32350707b940d93234a2f1f5d337437b40967d3f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/******************************************************************************
2** Device driver for the PCI-SCSI NCR538XX controller family.
3**
4** Copyright (C) 1994 Wolfgang Stanglmeier
5**
6** This program is free software; you can redistribute it and/or modify
7** it under the terms of the GNU General Public License as published by
8** the Free Software Foundation; either version 2 of the License, or
9** (at your option) any later version.
10**
11** This program is distributed in the hope that it will be useful,
12** but WITHOUT ANY WARRANTY; without even the implied warranty of
13** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14** GNU General Public License for more details.
15**
16** You should have received a copy of the GNU General Public License
17** along with this program; if not, write to the Free Software
18** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19**
20**-----------------------------------------------------------------------------
21**
22** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
23** and is currently maintained by
24**
25** Gerard Roudier <groudier@free.fr>
26**
27** Being given that this driver originates from the FreeBSD version, and
28** in order to keep synergy on both, any suggested enhancements and corrections
29** received on Linux are automatically a potential candidate for the FreeBSD
30** version.
31**
32** The original driver has been written for 386bsd and FreeBSD by
33** Wolfgang Stanglmeier <wolf@cologne.de>
34** Stefan Esser <se@mi.Uni-Koeln.de>
35**
36** And has been ported to NetBSD by
37** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
38**
39**-----------------------------------------------------------------------------
40**
41** Brief history
42**
43** December 10 1995 by Gerard Roudier:
44** Initial port to Linux.
45**
46** June 23 1996 by Gerard Roudier:
47** Support for 64 bits architectures (Alpha).
48**
49** November 30 1996 by Gerard Roudier:
50** Support for Fast-20 scsi.
51** Support for large DMA fifo and 128 dwords bursting.
52**
53** February 27 1997 by Gerard Roudier:
54** Support for Fast-40 scsi.
55** Support for on-Board RAM.
56**
57** May 3 1997 by Gerard Roudier:
58** Full support for scsi scripts instructions pre-fetching.
59**
60** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
61** Support for NvRAM detection and reading.
62**
63** August 18 1997 by Cort <cort@cs.nmt.edu>:
64** Support for Power/PC (Big Endian).
65**
66** June 20 1998 by Gerard Roudier
67** Support for up to 64 tags per lun.
68** O(1) everywhere (C and SCRIPTS) for normal cases.
69** Low PCI traffic for command handling when on-chip RAM is present.
70** Aggressive SCSI SCRIPTS optimizations.
71**
72*******************************************************************************
73*/
74
75/*
76** Supported SCSI-II features:
77** Synchronous negotiation
78** Wide negotiation (depends on the NCR Chip)
79** Enable disconnection
80** Tagged command queuing
81** Parity checking
82** Etc...
83**
84** Supported NCR/SYMBIOS chips:
85** 53C720 (Wide, Fast SCSI-2, intfly problems)
86*/
87
88/* Name and version of the driver */
89#define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
90
91#define SCSI_NCR_DEBUG_FLAGS (0)
92
93/*==========================================================
94**
95** Include files
96**
97**==========================================================
98*/
99
100#include <linux/blkdev.h>
101#include <linux/delay.h>
102#include <linux/dma-mapping.h>
103#include <linux/errno.h>
104#include <linux/init.h>
105#include <linux/interrupt.h>
106#include <linux/ioport.h>
107#include <linux/mm.h>
108#include <linux/module.h>
109#include <linux/sched.h>
110#include <linux/signal.h>
111#include <linux/spinlock.h>
112#include <linux/stat.h>
113#include <linux/string.h>
114#include <linux/time.h>
115#include <linux/timer.h>
116#include <linux/types.h>
117
118#include <asm/dma.h>
119#include <asm/io.h>
120#include <asm/system.h>
121
122#include <scsi/scsi.h>
123#include <scsi/scsi_cmnd.h>
124#include <scsi/scsi_device.h>
125#include <scsi/scsi_tcq.h>
126#include <scsi/scsi_transport.h>
127#include <scsi/scsi_transport_spi.h>
128
129#include "ncr53c8xx.h"
130
131#define NAME53C "ncr53c"
132#define NAME53C8XX "ncr53c8xx"
133
Matthew Wilcox19c65092005-12-16 12:50:53 -0500134
135/*==========================================================
136**
137** Debugging tags
138**
139**==========================================================
140*/
141
142#define DEBUG_ALLOC (0x0001)
143#define DEBUG_PHASE (0x0002)
144#define DEBUG_QUEUE (0x0008)
145#define DEBUG_RESULT (0x0010)
146#define DEBUG_POINTER (0x0020)
147#define DEBUG_SCRIPT (0x0040)
148#define DEBUG_TINY (0x0080)
149#define DEBUG_TIMING (0x0100)
150#define DEBUG_NEGO (0x0200)
151#define DEBUG_TAGS (0x0400)
152#define DEBUG_SCATTER (0x0800)
153#define DEBUG_IC (0x1000)
154
155/*
156** Enable/Disable debug messages.
157** Can be changed at runtime too.
158*/
159
160#ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
161static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
162 #define DEBUG_FLAGS ncr_debug
163#else
164 #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
165#endif
166
167static inline struct list_head *ncr_list_pop(struct list_head *head)
168{
169 if (!list_empty(head)) {
170 struct list_head *elem = head->next;
171
172 list_del(elem);
173 return elem;
174 }
175
176 return NULL;
177}
178
179/*==========================================================
180**
181** Simple power of two buddy-like allocator.
182**
183** This simple code is not intended to be fast, but to
184** provide power of 2 aligned memory allocations.
185** Since the SCRIPTS processor only supplies 8 bit
186** arithmetic, this allocator allows simple and fast
187** address calculations from the SCRIPTS code.
188** In addition, cache line alignment is guaranteed for
189** power of 2 cache line size.
190** Enhanced in linux-2.3.44 to provide a memory pool
191** per pcidev to support dynamic dma mapping. (I would
192** have preferred a real bus astraction, btw).
193**
194**==========================================================
195*/
196
197#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
198#if PAGE_SIZE >= 8192
199#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
200#else
201#define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
202#endif
203#define MEMO_FREE_UNUSED /* Free unused pages immediately */
204#define MEMO_WARN 1
205#define MEMO_GFP_FLAGS GFP_ATOMIC
206#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
207#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
208#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
209
210typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
211typedef struct device *m_bush_t; /* Something that addresses DMAable */
212
213typedef struct m_link { /* Link between free memory chunks */
214 struct m_link *next;
215} m_link_s;
216
217typedef struct m_vtob { /* Virtual to Bus address translation */
218 struct m_vtob *next;
219 m_addr_t vaddr;
220 m_addr_t baddr;
221} m_vtob_s;
222#define VTOB_HASH_SHIFT 5
223#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
224#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
225#define VTOB_HASH_CODE(m) \
226 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
227
228typedef struct m_pool { /* Memory pool of a given kind */
229 m_bush_t bush;
230 m_addr_t (*getp)(struct m_pool *);
231 void (*freep)(struct m_pool *, m_addr_t);
232 int nump;
233 m_vtob_s *(vtob[VTOB_HASH_SIZE]);
234 struct m_pool *next;
235 struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
236} m_pool_s;
237
238static void *___m_alloc(m_pool_s *mp, int size)
239{
240 int i = 0;
241 int s = (1 << MEMO_SHIFT);
242 int j;
243 m_addr_t a;
244 m_link_s *h = mp->h;
245
246 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
247 return NULL;
248
249 while (size > s) {
250 s <<= 1;
251 ++i;
252 }
253
254 j = i;
255 while (!h[j].next) {
256 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
257 h[j].next = (m_link_s *)mp->getp(mp);
258 if (h[j].next)
259 h[j].next->next = NULL;
260 break;
261 }
262 ++j;
263 s <<= 1;
264 }
265 a = (m_addr_t) h[j].next;
266 if (a) {
267 h[j].next = h[j].next->next;
268 while (j > i) {
269 j -= 1;
270 s >>= 1;
271 h[j].next = (m_link_s *) (a+s);
272 h[j].next->next = NULL;
273 }
274 }
275#ifdef DEBUG
276 printk("___m_alloc(%d) = %p\n", size, (void *) a);
277#endif
278 return (void *) a;
279}
280
281static void ___m_free(m_pool_s *mp, void *ptr, int size)
282{
283 int i = 0;
284 int s = (1 << MEMO_SHIFT);
285 m_link_s *q;
286 m_addr_t a, b;
287 m_link_s *h = mp->h;
288
289#ifdef DEBUG
290 printk("___m_free(%p, %d)\n", ptr, size);
291#endif
292
293 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
294 return;
295
296 while (size > s) {
297 s <<= 1;
298 ++i;
299 }
300
301 a = (m_addr_t) ptr;
302
303 while (1) {
304#ifdef MEMO_FREE_UNUSED
305 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
306 mp->freep(mp, a);
307 break;
308 }
309#endif
310 b = a ^ s;
311 q = &h[i];
312 while (q->next && q->next != (m_link_s *) b) {
313 q = q->next;
314 }
315 if (!q->next) {
316 ((m_link_s *) a)->next = h[i].next;
317 h[i].next = (m_link_s *) a;
318 break;
319 }
320 q->next = q->next->next;
321 a = a & b;
322 s <<= 1;
323 ++i;
324 }
325}
326
327static DEFINE_SPINLOCK(ncr53c8xx_lock);
328
329static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
330{
331 void *p;
332
333 p = ___m_alloc(mp, size);
334
335 if (DEBUG_FLAGS & DEBUG_ALLOC)
336 printk ("new %-10s[%4d] @%p.\n", name, size, p);
337
338 if (p)
339 memset(p, 0, size);
340 else if (uflags & MEMO_WARN)
341 printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
342
343 return p;
344}
345
346#define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
347
348static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
349{
350 if (DEBUG_FLAGS & DEBUG_ALLOC)
351 printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
352
353 ___m_free(mp, ptr, size);
354
355}
356
357/*
358 * With pci bus iommu support, we use a default pool of unmapped memory
359 * for memory we donnot need to DMA from/to and one pool per pcidev for
360 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
361 */
362
363static m_addr_t ___mp0_getp(m_pool_s *mp)
364{
365 m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
366 if (m)
367 ++mp->nump;
368 return m;
369}
370
371static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
372{
373 free_pages(m, MEMO_PAGE_ORDER);
374 --mp->nump;
375}
376
377static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
378
379/*
380 * DMAable pools.
381 */
382
383/*
384 * With pci bus iommu support, we maintain one pool per pcidev and a
385 * hashed reverse table for virtual to bus physical address translations.
386 */
387static m_addr_t ___dma_getp(m_pool_s *mp)
388{
389 m_addr_t vp;
390 m_vtob_s *vbp;
391
392 vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
393 if (vbp) {
394 dma_addr_t daddr;
395 vp = (m_addr_t) dma_alloc_coherent(mp->bush,
396 PAGE_SIZE<<MEMO_PAGE_ORDER,
397 &daddr, GFP_ATOMIC);
398 if (vp) {
399 int hc = VTOB_HASH_CODE(vp);
400 vbp->vaddr = vp;
401 vbp->baddr = daddr;
402 vbp->next = mp->vtob[hc];
403 mp->vtob[hc] = vbp;
404 ++mp->nump;
405 return vp;
406 }
407 }
408 if (vbp)
409 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
410 return 0;
411}
412
413static void ___dma_freep(m_pool_s *mp, m_addr_t m)
414{
415 m_vtob_s **vbpp, *vbp;
416 int hc = VTOB_HASH_CODE(m);
417
418 vbpp = &mp->vtob[hc];
419 while (*vbpp && (*vbpp)->vaddr != m)
420 vbpp = &(*vbpp)->next;
421 if (*vbpp) {
422 vbp = *vbpp;
423 *vbpp = (*vbpp)->next;
424 dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
425 (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
426 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
427 --mp->nump;
428 }
429}
430
431static inline m_pool_s *___get_dma_pool(m_bush_t bush)
432{
433 m_pool_s *mp;
434 for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
435 return mp;
436}
437
438static m_pool_s *___cre_dma_pool(m_bush_t bush)
439{
440 m_pool_s *mp;
441 mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
442 if (mp) {
443 memset(mp, 0, sizeof(*mp));
444 mp->bush = bush;
445 mp->getp = ___dma_getp;
446 mp->freep = ___dma_freep;
447 mp->next = mp0.next;
448 mp0.next = mp;
449 }
450 return mp;
451}
452
453static void ___del_dma_pool(m_pool_s *p)
454{
455 struct m_pool **pp = &mp0.next;
456
457 while (*pp && *pp != p)
458 pp = &(*pp)->next;
459 if (*pp) {
460 *pp = (*pp)->next;
461 __m_free(&mp0, p, sizeof(*p), "MPOOL");
462 }
463}
464
465static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
466{
467 u_long flags;
468 struct m_pool *mp;
469 void *m = NULL;
470
471 spin_lock_irqsave(&ncr53c8xx_lock, flags);
472 mp = ___get_dma_pool(bush);
473 if (!mp)
474 mp = ___cre_dma_pool(bush);
475 if (mp)
476 m = __m_calloc(mp, size, name);
477 if (mp && !mp->nump)
478 ___del_dma_pool(mp);
479 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
480
481 return m;
482}
483
484static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
485{
486 u_long flags;
487 struct m_pool *mp;
488
489 spin_lock_irqsave(&ncr53c8xx_lock, flags);
490 mp = ___get_dma_pool(bush);
491 if (mp)
492 __m_free(mp, m, size, name);
493 if (mp && !mp->nump)
494 ___del_dma_pool(mp);
495 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
496}
497
498static m_addr_t __vtobus(m_bush_t bush, void *m)
499{
500 u_long flags;
501 m_pool_s *mp;
502 int hc = VTOB_HASH_CODE(m);
503 m_vtob_s *vp = NULL;
504 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
505
506 spin_lock_irqsave(&ncr53c8xx_lock, flags);
507 mp = ___get_dma_pool(bush);
508 if (mp) {
509 vp = mp->vtob[hc];
510 while (vp && (m_addr_t) vp->vaddr != a)
511 vp = vp->next;
512 }
513 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
514 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
515}
516
517#define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
518#define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
519#define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
520#define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
521#define _vtobus(np, p) __vtobus(np->dev, p)
522#define vtobus(p) _vtobus(np, p)
523
524/*
525 * Deal with DMA mapping/unmapping.
526 */
527
528/* To keep track of the dma mapping (sg/single) that has been set */
529#define __data_mapped SCp.phase
530#define __data_mapping SCp.have_data_in
531
532static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
533{
534 switch(cmd->__data_mapped) {
535 case 2:
536 dma_unmap_sg(dev, cmd->buffer, cmd->use_sg,
537 cmd->sc_data_direction);
538 break;
539 case 1:
540 dma_unmap_single(dev, cmd->__data_mapping,
541 cmd->request_bufflen,
542 cmd->sc_data_direction);
543 break;
544 }
545 cmd->__data_mapped = 0;
546}
547
548static u_long __map_scsi_single_data(struct device *dev, struct scsi_cmnd *cmd)
549{
550 dma_addr_t mapping;
551
552 if (cmd->request_bufflen == 0)
553 return 0;
554
555 mapping = dma_map_single(dev, cmd->request_buffer,
556 cmd->request_bufflen,
557 cmd->sc_data_direction);
558 cmd->__data_mapped = 1;
559 cmd->__data_mapping = mapping;
560
561 return mapping;
562}
563
564static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
565{
566 int use_sg;
567
568 if (cmd->use_sg == 0)
569 return 0;
570
571 use_sg = dma_map_sg(dev, cmd->buffer, cmd->use_sg,
572 cmd->sc_data_direction);
573 cmd->__data_mapped = 2;
574 cmd->__data_mapping = use_sg;
575
576 return use_sg;
577}
578
579#define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
580#define map_scsi_single_data(np, cmd) __map_scsi_single_data(np->dev, cmd)
581#define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
582
583/*==========================================================
584**
585** Driver setup.
586**
587** This structure is initialized from linux config
588** options. It can be overridden at boot-up by the boot
589** command line.
590**
591**==========================================================
592*/
593static struct ncr_driver_setup
594 driver_setup = SCSI_NCR_DRIVER_SETUP;
595
596#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
597static struct ncr_driver_setup
598 driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
599#endif
600
601#define initverbose (driver_setup.verbose)
602#define bootverbose (np->verbose)
603
604
605/*===================================================================
606**
607** Driver setup from the boot command line
608**
609**===================================================================
610*/
611
612#ifdef MODULE
613#define ARG_SEP ' '
614#else
615#define ARG_SEP ','
616#endif
617
618#define OPT_TAGS 1
619#define OPT_MASTER_PARITY 2
620#define OPT_SCSI_PARITY 3
621#define OPT_DISCONNECTION 4
622#define OPT_SPECIAL_FEATURES 5
623#define OPT_UNUSED_1 6
624#define OPT_FORCE_SYNC_NEGO 7
625#define OPT_REVERSE_PROBE 8
626#define OPT_DEFAULT_SYNC 9
627#define OPT_VERBOSE 10
628#define OPT_DEBUG 11
629#define OPT_BURST_MAX 12
630#define OPT_LED_PIN 13
631#define OPT_MAX_WIDE 14
632#define OPT_SETTLE_DELAY 15
633#define OPT_DIFF_SUPPORT 16
634#define OPT_IRQM 17
635#define OPT_PCI_FIX_UP 18
636#define OPT_BUS_CHECK 19
637#define OPT_OPTIMIZE 20
638#define OPT_RECOVERY 21
639#define OPT_SAFE_SETUP 22
640#define OPT_USE_NVRAM 23
641#define OPT_EXCLUDE 24
642#define OPT_HOST_ID 25
643
644#ifdef SCSI_NCR_IARB_SUPPORT
645#define OPT_IARB 26
646#endif
647
648static char setup_token[] __initdata =
649 "tags:" "mpar:"
650 "spar:" "disc:"
651 "specf:" "ultra:"
652 "fsn:" "revprob:"
653 "sync:" "verb:"
654 "debug:" "burst:"
655 "led:" "wide:"
656 "settle:" "diff:"
657 "irqm:" "pcifix:"
658 "buschk:" "optim:"
659 "recovery:"
660 "safe:" "nvram:"
661 "excl:" "hostid:"
662#ifdef SCSI_NCR_IARB_SUPPORT
663 "iarb:"
664#endif
665 ; /* DONNOT REMOVE THIS ';' */
666
667#ifdef MODULE
668#define ARG_SEP ' '
669#else
670#define ARG_SEP ','
671#endif
672
673static int __init get_setup_token(char *p)
674{
675 char *cur = setup_token;
676 char *pc;
677 int i = 0;
678
679 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
680 ++pc;
681 ++i;
682 if (!strncmp(p, cur, pc - cur))
683 return i;
684 cur = pc;
685 }
686 return 0;
687}
688
689
690static int __init sym53c8xx__setup(char *str)
691{
692#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
693 char *cur = str;
694 char *pc, *pv;
695 int i, val, c;
696 int xi = 0;
697
698 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
699 char *pe;
700
701 val = 0;
702 pv = pc;
703 c = *++pv;
704
705 if (c == 'n')
706 val = 0;
707 else if (c == 'y')
708 val = 1;
709 else
710 val = (int) simple_strtoul(pv, &pe, 0);
711
712 switch (get_setup_token(cur)) {
713 case OPT_TAGS:
714 driver_setup.default_tags = val;
715 if (pe && *pe == '/') {
716 i = 0;
717 while (*pe && *pe != ARG_SEP &&
718 i < sizeof(driver_setup.tag_ctrl)-1) {
719 driver_setup.tag_ctrl[i++] = *pe++;
720 }
721 driver_setup.tag_ctrl[i] = '\0';
722 }
723 break;
724 case OPT_MASTER_PARITY:
725 driver_setup.master_parity = val;
726 break;
727 case OPT_SCSI_PARITY:
728 driver_setup.scsi_parity = val;
729 break;
730 case OPT_DISCONNECTION:
731 driver_setup.disconnection = val;
732 break;
733 case OPT_SPECIAL_FEATURES:
734 driver_setup.special_features = val;
735 break;
736 case OPT_FORCE_SYNC_NEGO:
737 driver_setup.force_sync_nego = val;
738 break;
739 case OPT_REVERSE_PROBE:
740 driver_setup.reverse_probe = val;
741 break;
742 case OPT_DEFAULT_SYNC:
743 driver_setup.default_sync = val;
744 break;
745 case OPT_VERBOSE:
746 driver_setup.verbose = val;
747 break;
748 case OPT_DEBUG:
749 driver_setup.debug = val;
750 break;
751 case OPT_BURST_MAX:
752 driver_setup.burst_max = val;
753 break;
754 case OPT_LED_PIN:
755 driver_setup.led_pin = val;
756 break;
757 case OPT_MAX_WIDE:
758 driver_setup.max_wide = val? 1:0;
759 break;
760 case OPT_SETTLE_DELAY:
761 driver_setup.settle_delay = val;
762 break;
763 case OPT_DIFF_SUPPORT:
764 driver_setup.diff_support = val;
765 break;
766 case OPT_IRQM:
767 driver_setup.irqm = val;
768 break;
769 case OPT_PCI_FIX_UP:
770 driver_setup.pci_fix_up = val;
771 break;
772 case OPT_BUS_CHECK:
773 driver_setup.bus_check = val;
774 break;
775 case OPT_OPTIMIZE:
776 driver_setup.optimize = val;
777 break;
778 case OPT_RECOVERY:
779 driver_setup.recovery = val;
780 break;
781 case OPT_USE_NVRAM:
782 driver_setup.use_nvram = val;
783 break;
784 case OPT_SAFE_SETUP:
785 memcpy(&driver_setup, &driver_safe_setup,
786 sizeof(driver_setup));
787 break;
788 case OPT_EXCLUDE:
789 if (xi < SCSI_NCR_MAX_EXCLUDES)
790 driver_setup.excludes[xi++] = val;
791 break;
792 case OPT_HOST_ID:
793 driver_setup.host_id = val;
794 break;
795#ifdef SCSI_NCR_IARB_SUPPORT
796 case OPT_IARB:
797 driver_setup.iarb = val;
798 break;
799#endif
800 default:
801 printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
802 break;
803 }
804
805 if ((cur = strchr(cur, ARG_SEP)) != NULL)
806 ++cur;
807 }
808#endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
809 return 1;
810}
811
812/*===================================================================
813**
814** Get device queue depth from boot command line.
815**
816**===================================================================
817*/
818#define DEF_DEPTH (driver_setup.default_tags)
819#define ALL_TARGETS -2
820#define NO_TARGET -1
821#define ALL_LUNS -2
822#define NO_LUN -1
823
824static int device_queue_depth(int unit, int target, int lun)
825{
826 int c, h, t, u, v;
827 char *p = driver_setup.tag_ctrl;
828 char *ep;
829
830 h = -1;
831 t = NO_TARGET;
832 u = NO_LUN;
833 while ((c = *p++) != 0) {
834 v = simple_strtoul(p, &ep, 0);
835 switch(c) {
836 case '/':
837 ++h;
838 t = ALL_TARGETS;
839 u = ALL_LUNS;
840 break;
841 case 't':
842 if (t != target)
843 t = (target == v) ? v : NO_TARGET;
844 u = ALL_LUNS;
845 break;
846 case 'u':
847 if (u != lun)
848 u = (lun == v) ? v : NO_LUN;
849 break;
850 case 'q':
851 if (h == unit &&
852 (t == ALL_TARGETS || t == target) &&
853 (u == ALL_LUNS || u == lun))
854 return v;
855 break;
856 case '-':
857 t = ALL_TARGETS;
858 u = ALL_LUNS;
859 break;
860 default:
861 break;
862 }
863 p = ep;
864 }
865 return DEF_DEPTH;
866}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867
868
869/*==========================================================
870**
871** The CCB done queue uses an array of CCB virtual
872** addresses. Empty entries are flagged using the bogus
873** virtual address 0xffffffff.
874**
875** Since PCI ensures that only aligned DWORDs are accessed
876** atomically, 64 bit little-endian architecture requires
877** to test the high order DWORD of the entry to determine
878** if it is empty or valid.
879**
880** BTW, I will make things differently as soon as I will
881** have a better idea, but this is simple and should work.
882**
883**==========================================================
884*/
885
886#define SCSI_NCR_CCB_DONE_SUPPORT
887#ifdef SCSI_NCR_CCB_DONE_SUPPORT
888
889#define MAX_DONE 24
890#define CCB_DONE_EMPTY 0xffffffffUL
891
892/* All 32 bit architectures */
893#if BITS_PER_LONG == 32
894#define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
895
896/* All > 32 bit (64 bit) architectures regardless endian-ness */
897#else
898#define CCB_DONE_VALID(cp) \
899 ((((u_long) cp) & 0xffffffff00000000ul) && \
900 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
901#endif
902
903#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
904
905/*==========================================================
906**
907** Configuration and Debugging
908**
909**==========================================================
910*/
911
912/*
913** SCSI address of this device.
914** The boot routines should have set it.
915** If not, use this.
916*/
917
918#ifndef SCSI_NCR_MYADDR
919#define SCSI_NCR_MYADDR (7)
920#endif
921
922/*
923** The maximum number of tags per logic unit.
924** Used only for disk devices that support tags.
925*/
926
927#ifndef SCSI_NCR_MAX_TAGS
928#define SCSI_NCR_MAX_TAGS (8)
929#endif
930
931/*
932** TAGS are actually limited to 64 tags/lun.
933** We need to deal with power of 2, for alignment constraints.
934*/
935#if SCSI_NCR_MAX_TAGS > 64
936#define MAX_TAGS (64)
937#else
938#define MAX_TAGS SCSI_NCR_MAX_TAGS
939#endif
940
941#define NO_TAG (255)
942
943/*
944** Choose appropriate type for tag bitmap.
945*/
946#if MAX_TAGS > 32
947typedef u64 tagmap_t;
948#else
949typedef u32 tagmap_t;
950#endif
951
952/*
953** Number of targets supported by the driver.
954** n permits target numbers 0..n-1.
955** Default is 16, meaning targets #0..#15.
956** #7 .. is myself.
957*/
958
959#ifdef SCSI_NCR_MAX_TARGET
960#define MAX_TARGET (SCSI_NCR_MAX_TARGET)
961#else
962#define MAX_TARGET (16)
963#endif
964
965/*
966** Number of logic units supported by the driver.
967** n enables logic unit numbers 0..n-1.
968** The common SCSI devices require only
969** one lun, so take 1 as the default.
970*/
971
972#ifdef SCSI_NCR_MAX_LUN
973#define MAX_LUN SCSI_NCR_MAX_LUN
974#else
975#define MAX_LUN (1)
976#endif
977
978/*
979** Asynchronous pre-scaler (ns). Shall be 40
980*/
981
982#ifndef SCSI_NCR_MIN_ASYNC
983#define SCSI_NCR_MIN_ASYNC (40)
984#endif
985
986/*
987** The maximum number of jobs scheduled for starting.
988** There should be one slot per target, and one slot
989** for each tag of each target in use.
990** The calculation below is actually quite silly ...
991*/
992
993#ifdef SCSI_NCR_CAN_QUEUE
994#define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
995#else
996#define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
997#endif
998
999/*
1000** We limit the max number of pending IO to 250.
1001** since we donnot want to allocate more than 1
1002** PAGE for 'scripth'.
1003*/
1004#if MAX_START > 250
1005#undef MAX_START
1006#define MAX_START 250
1007#endif
1008
1009/*
1010** The maximum number of segments a transfer is split into.
1011** We support up to 127 segments for both read and write.
1012** The data scripts are broken into 2 sub-scripts.
1013** 80 (MAX_SCATTERL) segments are moved from a sub-script
1014** in on-chip RAM. This makes data transfers shorter than
1015** 80k (assuming 1k fs) as fast as possible.
1016*/
1017
1018#define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
1019
1020#if (MAX_SCATTER > 80)
1021#define MAX_SCATTERL 80
1022#define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
1023#else
1024#define MAX_SCATTERL (MAX_SCATTER-1)
1025#define MAX_SCATTERH 1
1026#endif
1027
1028/*
1029** other
1030*/
1031
1032#define NCR_SNOOP_TIMEOUT (1000000)
1033
1034/*
1035** Other definitions
1036*/
1037
1038#define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1039
1040#define initverbose (driver_setup.verbose)
1041#define bootverbose (np->verbose)
1042
1043/*==========================================================
1044**
1045** Command control block states.
1046**
1047**==========================================================
1048*/
1049
1050#define HS_IDLE (0)
1051#define HS_BUSY (1)
1052#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
1053#define HS_DISCONNECT (3) /* Disconnected by target */
1054
1055#define HS_DONEMASK (0x80)
1056#define HS_COMPLETE (4|HS_DONEMASK)
1057#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
1058#define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
1059#define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
1060#define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
1061#define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
1062#define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
1063
1064/*
1065** Invalid host status values used by the SCRIPTS processor
1066** when the nexus is not fully identified.
1067** Shall never appear in a CCB.
1068*/
1069
1070#define HS_INVALMASK (0x40)
1071#define HS_SELECTING (0|HS_INVALMASK)
1072#define HS_IN_RESELECT (1|HS_INVALMASK)
1073#define HS_STARTING (2|HS_INVALMASK)
1074
1075/*
1076** Flags set by the SCRIPT processor for commands
1077** that have been skipped.
1078*/
1079#define HS_SKIPMASK (0x20)
1080
1081/*==========================================================
1082**
1083** Software Interrupt Codes
1084**
1085**==========================================================
1086*/
1087
1088#define SIR_BAD_STATUS (1)
1089#define SIR_XXXXXXXXXX (2)
1090#define SIR_NEGO_SYNC (3)
1091#define SIR_NEGO_WIDE (4)
1092#define SIR_NEGO_FAILED (5)
1093#define SIR_NEGO_PROTO (6)
1094#define SIR_REJECT_RECEIVED (7)
1095#define SIR_REJECT_SENT (8)
1096#define SIR_IGN_RESIDUE (9)
1097#define SIR_MISSING_SAVE (10)
1098#define SIR_RESEL_NO_MSG_IN (11)
1099#define SIR_RESEL_NO_IDENTIFY (12)
1100#define SIR_RESEL_BAD_LUN (13)
1101#define SIR_RESEL_BAD_TARGET (14)
1102#define SIR_RESEL_BAD_I_T_L (15)
1103#define SIR_RESEL_BAD_I_T_L_Q (16)
1104#define SIR_DONE_OVERFLOW (17)
1105#define SIR_INTFLY (18)
1106#define SIR_MAX (18)
1107
1108/*==========================================================
1109**
1110** Extended error codes.
1111** xerr_status field of struct ccb.
1112**
1113**==========================================================
1114*/
1115
1116#define XE_OK (0)
1117#define XE_EXTRA_DATA (1) /* unexpected data phase */
1118#define XE_BAD_PHASE (2) /* illegal phase (4/5) */
1119
1120/*==========================================================
1121**
1122** Negotiation status.
1123** nego_status field of struct ccb.
1124**
1125**==========================================================
1126*/
1127
1128#define NS_NOCHANGE (0)
1129#define NS_SYNC (1)
1130#define NS_WIDE (2)
1131#define NS_PPR (4)
1132
1133/*==========================================================
1134**
1135** Misc.
1136**
1137**==========================================================
1138*/
1139
1140#define CCB_MAGIC (0xf2691ad2)
1141
1142/*==========================================================
1143**
1144** Declaration of structs.
1145**
1146**==========================================================
1147*/
1148
1149static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1150
1151struct tcb;
1152struct lcb;
1153struct ccb;
1154struct ncb;
1155struct script;
1156
1157struct link {
1158 ncrcmd l_cmd;
1159 ncrcmd l_paddr;
1160};
1161
1162struct usrcmd {
1163 u_long target;
1164 u_long lun;
1165 u_long data;
1166 u_long cmd;
1167};
1168
1169#define UC_SETSYNC 10
1170#define UC_SETTAGS 11
1171#define UC_SETDEBUG 12
1172#define UC_SETORDER 13
1173#define UC_SETWIDE 14
1174#define UC_SETFLAG 15
1175#define UC_SETVERBOSE 17
1176
1177#define UF_TRACE (0x01)
1178#define UF_NODISC (0x02)
1179#define UF_NOSCAN (0x04)
1180
1181/*========================================================================
1182**
1183** Declaration of structs: target control block
1184**
1185**========================================================================
1186*/
1187struct tcb {
1188 /*----------------------------------------------------------------
1189 ** During reselection the ncr jumps to this point with SFBR
1190 ** set to the encoded target number with bit 7 set.
1191 ** if it's not this target, jump to the next.
1192 **
1193 ** JUMP IF (SFBR != #target#), @(next tcb)
1194 **----------------------------------------------------------------
1195 */
1196 struct link jump_tcb;
1197
1198 /*----------------------------------------------------------------
1199 ** Load the actual values for the sxfer and the scntl3
1200 ** register (sync/wide mode).
1201 **
1202 ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
1203 ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1204 **----------------------------------------------------------------
1205 */
1206 ncrcmd getscr[6];
1207
1208 /*----------------------------------------------------------------
1209 ** Get the IDENTIFY message and load the LUN to SFBR.
1210 **
1211 ** CALL, <RESEL_LUN>
1212 **----------------------------------------------------------------
1213 */
1214 struct link call_lun;
1215
1216 /*----------------------------------------------------------------
1217 ** Now look for the right lun.
1218 **
1219 ** For i = 0 to 3
1220 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1221 **
1222 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1223 ** It is kind of hashcoding.
1224 **----------------------------------------------------------------
1225 */
1226 struct link jump_lcb[4]; /* JUMPs for reselection */
1227 struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
1228
1229 /*----------------------------------------------------------------
1230 ** Pointer to the ccb used for negotiation.
1231 ** Prevent from starting a negotiation for all queued commands
1232 ** when tagged command queuing is enabled.
1233 **----------------------------------------------------------------
1234 */
1235 struct ccb * nego_cp;
1236
1237 /*----------------------------------------------------------------
1238 ** statistical data
1239 **----------------------------------------------------------------
1240 */
1241 u_long transfers;
1242 u_long bytes;
1243
1244 /*----------------------------------------------------------------
1245 ** negotiation of wide and synch transfer and device quirks.
1246 **----------------------------------------------------------------
1247 */
1248#ifdef SCSI_NCR_BIG_ENDIAN
1249/*0*/ u16 period;
1250/*2*/ u_char sval;
1251/*3*/ u_char minsync;
1252/*0*/ u_char wval;
1253/*1*/ u_char widedone;
1254/*2*/ u_char quirks;
1255/*3*/ u_char maxoffs;
1256#else
1257/*0*/ u_char minsync;
1258/*1*/ u_char sval;
1259/*2*/ u16 period;
1260/*0*/ u_char maxoffs;
1261/*1*/ u_char quirks;
1262/*2*/ u_char widedone;
1263/*3*/ u_char wval;
1264#endif
1265
1266 /* User settable limits and options. */
1267 u_char usrsync;
1268 u_char usrwide;
1269 u_char usrtags;
1270 u_char usrflag;
1271 struct scsi_target *starget;
1272};
1273
1274/*========================================================================
1275**
1276** Declaration of structs: lun control block
1277**
1278**========================================================================
1279*/
1280struct lcb {
1281 /*----------------------------------------------------------------
1282 ** During reselection the ncr jumps to this point
1283 ** with SFBR set to the "Identify" message.
1284 ** if it's not this lun, jump to the next.
1285 **
1286 ** JUMP IF (SFBR != #lun#), @(next lcb of this target)
1287 **
1288 ** It is this lun. Load TEMP with the nexus jumps table
1289 ** address and jump to RESEL_TAG (or RESEL_NOTAG).
1290 **
1291 ** SCR_COPY (4), p_jump_ccb, TEMP,
1292 ** SCR_JUMP, <RESEL_TAG>
1293 **----------------------------------------------------------------
1294 */
1295 struct link jump_lcb;
1296 ncrcmd load_jump_ccb[3];
1297 struct link jump_tag;
1298 ncrcmd p_jump_ccb; /* Jump table bus address */
1299
1300 /*----------------------------------------------------------------
1301 ** Jump table used by the script processor to directly jump
1302 ** to the CCB corresponding to the reselected nexus.
1303 ** Address is allocated on 256 bytes boundary in order to
1304 ** allow 8 bit calculation of the tag jump entry for up to
1305 ** 64 possible tags.
1306 **----------------------------------------------------------------
1307 */
1308 u32 jump_ccb_0; /* Default table if no tags */
1309 u32 *jump_ccb; /* Virtual address */
1310
1311 /*----------------------------------------------------------------
1312 ** CCB queue management.
1313 **----------------------------------------------------------------
1314 */
1315 struct list_head free_ccbq; /* Queue of available CCBs */
1316 struct list_head busy_ccbq; /* Queue of busy CCBs */
1317 struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
1318 struct list_head skip_ccbq; /* Queue of skipped CCBs */
1319 u_char actccbs; /* Number of allocated CCBs */
1320 u_char busyccbs; /* CCBs busy for this lun */
1321 u_char queuedccbs; /* CCBs queued to the controller*/
1322 u_char queuedepth; /* Queue depth for this lun */
1323 u_char scdev_depth; /* SCSI device queue depth */
1324 u_char maxnxs; /* Max possible nexuses */
1325
1326 /*----------------------------------------------------------------
1327 ** Control of tagged command queuing.
1328 ** Tags allocation is performed using a circular buffer.
1329 ** This avoids using a loop for tag allocation.
1330 **----------------------------------------------------------------
1331 */
1332 u_char ia_tag; /* Allocation index */
1333 u_char if_tag; /* Freeing index */
1334 u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
1335 u_char usetags; /* Command queuing is active */
1336 u_char maxtags; /* Max nr of tags asked by user */
1337 u_char numtags; /* Current number of tags */
1338
1339 /*----------------------------------------------------------------
1340 ** QUEUE FULL control and ORDERED tag control.
1341 **----------------------------------------------------------------
1342 */
1343 /*----------------------------------------------------------------
1344 ** QUEUE FULL and ORDERED tag control.
1345 **----------------------------------------------------------------
1346 */
1347 u16 num_good; /* Nr of GOOD since QUEUE FULL */
1348 tagmap_t tags_umap; /* Used tags bitmap */
1349 tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
1350 u_long tags_stime; /* Last time we set smap=umap */
1351 struct ccb * held_ccb; /* CCB held for QUEUE FULL */
1352};
1353
1354/*========================================================================
1355**
1356** Declaration of structs: the launch script.
1357**
1358**========================================================================
1359**
1360** It is part of the CCB and is called by the scripts processor to
1361** start or restart the data structure (nexus).
1362** This 6 DWORDs mini script makes use of prefetching.
1363**
1364**------------------------------------------------------------------------
1365*/
1366struct launch {
1367 /*----------------------------------------------------------------
1368 ** SCR_COPY(4), @(p_phys), @(dsa register)
1369 ** SCR_JUMP, @(scheduler_point)
1370 **----------------------------------------------------------------
1371 */
1372 ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
1373 struct link schedule; /* Jump to scheduler point */
1374 ncrcmd p_phys; /* 'phys' header bus address */
1375};
1376
1377/*========================================================================
1378**
1379** Declaration of structs: global HEADER.
1380**
1381**========================================================================
1382**
1383** This substructure is copied from the ccb to a global address after
1384** selection (or reselection) and copied back before disconnect.
1385**
1386** These fields are accessible to the script processor.
1387**
1388**------------------------------------------------------------------------
1389*/
1390
1391struct head {
1392 /*----------------------------------------------------------------
1393 ** Saved data pointer.
1394 ** Points to the position in the script responsible for the
1395 ** actual transfer transfer of data.
1396 ** It's written after reception of a SAVE_DATA_POINTER message.
1397 ** The goalpointer points after the last transfer command.
1398 **----------------------------------------------------------------
1399 */
1400 u32 savep;
1401 u32 lastp;
1402 u32 goalp;
1403
1404 /*----------------------------------------------------------------
1405 ** Alternate data pointer.
1406 ** They are copied back to savep/lastp/goalp by the SCRIPTS
1407 ** when the direction is unknown and the device claims data out.
1408 **----------------------------------------------------------------
1409 */
1410 u32 wlastp;
1411 u32 wgoalp;
1412
1413 /*----------------------------------------------------------------
1414 ** The virtual address of the ccb containing this header.
1415 **----------------------------------------------------------------
1416 */
1417 struct ccb * cp;
1418
1419 /*----------------------------------------------------------------
1420 ** Status fields.
1421 **----------------------------------------------------------------
1422 */
1423 u_char scr_st[4]; /* script status */
1424 u_char status[4]; /* host status. must be the */
1425 /* last DWORD of the header. */
1426};
1427
1428/*
1429** The status bytes are used by the host and the script processor.
1430**
1431** The byte corresponding to the host_status must be stored in the
1432** last DWORD of the CCB header since it is used for command
1433** completion (ncr_wakeup()). Doing so, we are sure that the header
1434** has been entirely copied back to the CCB when the host_status is
1435** seen complete by the CPU.
1436**
1437** The last four bytes (status[4]) are copied to the scratchb register
1438** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1439** and copied back just after disconnecting.
1440** Inside the script the XX_REG are used.
1441**
1442** The first four bytes (scr_st[4]) are used inside the script by
1443** "COPY" commands.
1444** Because source and destination must have the same alignment
1445** in a DWORD, the fields HAVE to be at the choosen offsets.
1446** xerr_st 0 (0x34) scratcha
1447** sync_st 1 (0x05) sxfer
1448** wide_st 3 (0x03) scntl3
1449*/
1450
1451/*
1452** Last four bytes (script)
1453*/
1454#define QU_REG scr0
1455#define HS_REG scr1
1456#define HS_PRT nc_scr1
1457#define SS_REG scr2
1458#define SS_PRT nc_scr2
1459#define PS_REG scr3
1460
1461/*
1462** Last four bytes (host)
1463*/
1464#ifdef SCSI_NCR_BIG_ENDIAN
1465#define actualquirks phys.header.status[3]
1466#define host_status phys.header.status[2]
1467#define scsi_status phys.header.status[1]
1468#define parity_status phys.header.status[0]
1469#else
1470#define actualquirks phys.header.status[0]
1471#define host_status phys.header.status[1]
1472#define scsi_status phys.header.status[2]
1473#define parity_status phys.header.status[3]
1474#endif
1475
1476/*
1477** First four bytes (script)
1478*/
1479#define xerr_st header.scr_st[0]
1480#define sync_st header.scr_st[1]
1481#define nego_st header.scr_st[2]
1482#define wide_st header.scr_st[3]
1483
1484/*
1485** First four bytes (host)
1486*/
1487#define xerr_status phys.xerr_st
1488#define nego_status phys.nego_st
1489
1490#if 0
1491#define sync_status phys.sync_st
1492#define wide_status phys.wide_st
1493#endif
1494
1495/*==========================================================
1496**
1497** Declaration of structs: Data structure block
1498**
1499**==========================================================
1500**
1501** During execution of a ccb by the script processor,
1502** the DSA (data structure address) register points
1503** to this substructure of the ccb.
1504** This substructure contains the header with
1505** the script-processor-changable data and
1506** data blocks for the indirect move commands.
1507**
1508**----------------------------------------------------------
1509*/
1510
1511struct dsb {
1512
1513 /*
1514 ** Header.
1515 */
1516
1517 struct head header;
1518
1519 /*
1520 ** Table data for Script
1521 */
1522
1523 struct scr_tblsel select;
1524 struct scr_tblmove smsg ;
1525 struct scr_tblmove cmd ;
1526 struct scr_tblmove sense ;
1527 struct scr_tblmove data[MAX_SCATTER];
1528};
1529
1530
1531/*========================================================================
1532**
1533** Declaration of structs: Command control block.
1534**
1535**========================================================================
1536*/
1537struct ccb {
1538 /*----------------------------------------------------------------
1539 ** This is the data structure which is pointed by the DSA
1540 ** register when it is executed by the script processor.
1541 ** It must be the first entry because it contains the header
1542 ** as first entry that must be cache line aligned.
1543 **----------------------------------------------------------------
1544 */
1545 struct dsb phys;
1546
1547 /*----------------------------------------------------------------
1548 ** Mini-script used at CCB execution start-up.
1549 ** Load the DSA with the data structure address (phys) and
1550 ** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1551 **----------------------------------------------------------------
1552 */
1553 struct launch start;
1554
1555 /*----------------------------------------------------------------
1556 ** Mini-script used at CCB relection to restart the nexus.
1557 ** Load the DSA with the data structure address (phys) and
1558 ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1559 **----------------------------------------------------------------
1560 */
1561 struct launch restart;
1562
1563 /*----------------------------------------------------------------
1564 ** If a data transfer phase is terminated too early
1565 ** (after reception of a message (i.e. DISCONNECT)),
1566 ** we have to prepare a mini script to transfer
1567 ** the rest of the data.
1568 **----------------------------------------------------------------
1569 */
1570 ncrcmd patch[8];
1571
1572 /*----------------------------------------------------------------
1573 ** The general SCSI driver provides a
1574 ** pointer to a control block.
1575 **----------------------------------------------------------------
1576 */
1577 struct scsi_cmnd *cmd; /* SCSI command */
1578 u_char cdb_buf[16]; /* Copy of CDB */
1579 u_char sense_buf[64];
1580 int data_len; /* Total data length */
1581
1582 /*----------------------------------------------------------------
1583 ** Message areas.
1584 ** We prepare a message to be sent after selection.
1585 ** We may use a second one if the command is rescheduled
1586 ** due to GETCC or QFULL.
1587 ** Contents are IDENTIFY and SIMPLE_TAG.
1588 ** While negotiating sync or wide transfer,
1589 ** a SDTR or WDTR message is appended.
1590 **----------------------------------------------------------------
1591 */
1592 u_char scsi_smsg [8];
1593 u_char scsi_smsg2[8];
1594
1595 /*----------------------------------------------------------------
1596 ** Other fields.
1597 **----------------------------------------------------------------
1598 */
1599 u_long p_ccb; /* BUS address of this CCB */
1600 u_char sensecmd[6]; /* Sense command */
1601 u_char tag; /* Tag for this transfer */
1602 /* 255 means no tag */
1603 u_char target;
1604 u_char lun;
1605 u_char queued;
1606 u_char auto_sense;
1607 struct ccb * link_ccb; /* Host adapter CCB chain */
1608 struct list_head link_ccbq; /* Link to unit CCB queue */
1609 u32 startp; /* Initial data pointer */
1610 u_long magic; /* Free / busy CCB flag */
1611};
1612
1613#define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
1614
1615
1616/*========================================================================
1617**
1618** Declaration of structs: NCR device descriptor
1619**
1620**========================================================================
1621*/
1622struct ncb {
1623 /*----------------------------------------------------------------
1624 ** The global header.
1625 ** It is accessible to both the host and the script processor.
1626 ** Must be cache line size aligned (32 for x86) in order to
1627 ** allow cache line bursting when it is copied to/from CCB.
1628 **----------------------------------------------------------------
1629 */
1630 struct head header;
1631
1632 /*----------------------------------------------------------------
1633 ** CCBs management queues.
1634 **----------------------------------------------------------------
1635 */
1636 struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
1637 /* when lcb is not allocated. */
1638 struct scsi_cmnd *done_list; /* Commands waiting for done() */
1639 /* callback to be invoked. */
1640 spinlock_t smp_lock; /* Lock for SMP threading */
1641
1642 /*----------------------------------------------------------------
1643 ** Chip and controller indentification.
1644 **----------------------------------------------------------------
1645 */
1646 int unit; /* Unit number */
1647 char inst_name[16]; /* ncb instance name */
1648
1649 /*----------------------------------------------------------------
1650 ** Initial value of some IO register bits.
1651 ** These values are assumed to have been set by BIOS, and may
1652 ** be used for probing adapter implementation differences.
1653 **----------------------------------------------------------------
1654 */
1655 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1656 sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1657
1658 /*----------------------------------------------------------------
1659 ** Actual initial value of IO register bits used by the
1660 ** driver. They are loaded at initialisation according to
1661 ** features that are to be enabled.
1662 **----------------------------------------------------------------
1663 */
1664 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1665 rv_ctest4, rv_ctest5, rv_stest2;
1666
1667 /*----------------------------------------------------------------
1668 ** Targets management.
1669 ** During reselection the ncr jumps to jump_tcb.
1670 ** The SFBR register is loaded with the encoded target id.
1671 ** For i = 0 to 3
1672 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1673 **
1674 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1675 ** It is kind of hashcoding.
1676 **----------------------------------------------------------------
1677 */
1678 struct link jump_tcb[4]; /* JUMPs for reselection */
1679 struct tcb target[MAX_TARGET]; /* Target data */
1680
1681 /*----------------------------------------------------------------
1682 ** Virtual and physical bus addresses of the chip.
1683 **----------------------------------------------------------------
1684 */
1685 void __iomem *vaddr; /* Virtual and bus address of */
1686 unsigned long paddr; /* chip's IO registers. */
1687 unsigned long paddr2; /* On-chip RAM bus address. */
1688 volatile /* Pointer to volatile for */
1689 struct ncr_reg __iomem *reg; /* memory mapped IO. */
1690
1691 /*----------------------------------------------------------------
1692 ** SCRIPTS virtual and physical bus addresses.
1693 ** 'script' is loaded in the on-chip RAM if present.
1694 ** 'scripth' stays in main memory.
1695 **----------------------------------------------------------------
1696 */
1697 struct script *script0; /* Copies of script and scripth */
1698 struct scripth *scripth0; /* relocated for this ncb. */
1699 struct scripth *scripth; /* Actual scripth virt. address */
1700 u_long p_script; /* Actual script and scripth */
1701 u_long p_scripth; /* bus addresses. */
1702
1703 /*----------------------------------------------------------------
1704 ** General controller parameters and configuration.
1705 **----------------------------------------------------------------
1706 */
1707 struct device *dev;
1708 u_char revision_id; /* PCI device revision id */
1709 u32 irq; /* IRQ level */
1710 u32 features; /* Chip features map */
1711 u_char myaddr; /* SCSI id of the adapter */
1712 u_char maxburst; /* log base 2 of dwords burst */
1713 u_char maxwide; /* Maximum transfer width */
1714 u_char minsync; /* Minimum sync period factor */
1715 u_char maxsync; /* Maximum sync period factor */
1716 u_char maxoffs; /* Max scsi offset */
1717 u_char multiplier; /* Clock multiplier (1,2,4) */
1718 u_char clock_divn; /* Number of clock divisors */
1719 u_long clock_khz; /* SCSI clock frequency in KHz */
1720
1721 /*----------------------------------------------------------------
1722 ** Start queue management.
1723 ** It is filled up by the host processor and accessed by the
1724 ** SCRIPTS processor in order to start SCSI commands.
1725 **----------------------------------------------------------------
1726 */
1727 u16 squeueput; /* Next free slot of the queue */
1728 u16 actccbs; /* Number of allocated CCBs */
1729 u16 queuedccbs; /* Number of CCBs in start queue*/
1730 u16 queuedepth; /* Start queue depth */
1731
1732 /*----------------------------------------------------------------
1733 ** Timeout handler.
1734 **----------------------------------------------------------------
1735 */
1736 struct timer_list timer; /* Timer handler link header */
1737 u_long lasttime;
1738 u_long settle_time; /* Resetting the SCSI BUS */
1739
1740 /*----------------------------------------------------------------
1741 ** Debugging and profiling.
1742 **----------------------------------------------------------------
1743 */
1744 struct ncr_reg regdump; /* Register dump */
1745 u_long regtime; /* Time it has been done */
1746
1747 /*----------------------------------------------------------------
1748 ** Miscellaneous buffers accessed by the scripts-processor.
1749 ** They shall be DWORD aligned, because they may be read or
1750 ** written with a SCR_COPY script command.
1751 **----------------------------------------------------------------
1752 */
1753 u_char msgout[8]; /* Buffer for MESSAGE OUT */
1754 u_char msgin [8]; /* Buffer for MESSAGE IN */
1755 u32 lastmsg; /* Last SCSI message sent */
1756 u_char scratch; /* Scratch for SCSI receive */
1757
1758 /*----------------------------------------------------------------
1759 ** Miscellaneous configuration and status parameters.
1760 **----------------------------------------------------------------
1761 */
1762 u_char disc; /* Diconnection allowed */
1763 u_char scsi_mode; /* Current SCSI BUS mode */
1764 u_char order; /* Tag order to use */
1765 u_char verbose; /* Verbosity for this controller*/
1766 int ncr_cache; /* Used for cache test at init. */
1767 u_long p_ncb; /* BUS address of this NCB */
1768
1769 /*----------------------------------------------------------------
1770 ** Command completion handling.
1771 **----------------------------------------------------------------
1772 */
1773#ifdef SCSI_NCR_CCB_DONE_SUPPORT
1774 struct ccb *(ccb_done[MAX_DONE]);
1775 int ccb_done_ic;
1776#endif
1777 /*----------------------------------------------------------------
1778 ** Fields that should be removed or changed.
1779 **----------------------------------------------------------------
1780 */
1781 struct ccb *ccb; /* Global CCB */
1782 struct usrcmd user; /* Command from user */
1783 volatile u_char release_stage; /* Synchronisation stage on release */
1784};
1785
1786#define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
1787#define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1788
1789/*==========================================================
1790**
1791**
1792** Script for NCR-Processor.
1793**
1794** Use ncr_script_fill() to create the variable parts.
1795** Use ncr_script_copy_and_bind() to make a copy and
1796** bind to physical addresses.
1797**
1798**
1799**==========================================================
1800**
1801** We have to know the offsets of all labels before
1802** we reach them (for forward jumps).
1803** Therefore we declare a struct here.
1804** If you make changes inside the script,
1805** DONT FORGET TO CHANGE THE LENGTHS HERE!
1806**
1807**----------------------------------------------------------
1808*/
1809
1810/*
1811** For HP Zalon/53c720 systems, the Zalon interface
1812** between CPU and 53c720 does prefetches, which causes
1813** problems with self modifying scripts. The problem
1814** is overcome by calling a dummy subroutine after each
1815** modification, to force a refetch of the script on
1816** return from the subroutine.
1817*/
1818
1819#ifdef CONFIG_NCR53C8XX_PREFETCH
1820#define PREFETCH_FLUSH_CNT 2
1821#define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
1822#else
1823#define PREFETCH_FLUSH_CNT 0
1824#define PREFETCH_FLUSH
1825#endif
1826
1827/*
1828** Script fragments which are loaded into the on-chip RAM
1829** of 825A, 875 and 895 chips.
1830*/
1831struct script {
1832 ncrcmd start [ 5];
1833 ncrcmd startpos [ 1];
1834 ncrcmd select [ 6];
1835 ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT];
1836 ncrcmd loadpos [ 4];
1837 ncrcmd send_ident [ 9];
1838 ncrcmd prepare [ 6];
1839 ncrcmd prepare2 [ 7];
1840 ncrcmd command [ 6];
1841 ncrcmd dispatch [ 32];
1842 ncrcmd clrack [ 4];
1843 ncrcmd no_data [ 17];
1844 ncrcmd status [ 8];
1845 ncrcmd msg_in [ 2];
1846 ncrcmd msg_in2 [ 16];
1847 ncrcmd msg_bad [ 4];
1848 ncrcmd setmsg [ 7];
1849 ncrcmd cleanup [ 6];
1850 ncrcmd complete [ 9];
1851 ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT];
1852 ncrcmd cleanup0 [ 1];
1853#ifndef SCSI_NCR_CCB_DONE_SUPPORT
1854 ncrcmd signal [ 12];
1855#else
1856 ncrcmd signal [ 9];
1857 ncrcmd done_pos [ 1];
1858 ncrcmd done_plug [ 2];
1859 ncrcmd done_end [ 7];
1860#endif
1861 ncrcmd save_dp [ 7];
1862 ncrcmd restore_dp [ 5];
1863 ncrcmd disconnect [ 10];
1864 ncrcmd msg_out [ 9];
1865 ncrcmd msg_out_done [ 7];
1866 ncrcmd idle [ 2];
1867 ncrcmd reselect [ 8];
1868 ncrcmd reselected [ 8];
1869 ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT];
1870 ncrcmd loadpos1 [ 4];
1871 ncrcmd resel_lun [ 6];
1872 ncrcmd resel_tag [ 6];
1873 ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT];
1874 ncrcmd nexus_indirect [ 4];
1875 ncrcmd resel_notag [ 4];
1876 ncrcmd data_in [MAX_SCATTERL * 4];
1877 ncrcmd data_in2 [ 4];
1878 ncrcmd data_out [MAX_SCATTERL * 4];
1879 ncrcmd data_out2 [ 4];
1880};
1881
1882/*
1883** Script fragments which stay in main memory for all chips.
1884*/
1885struct scripth {
1886 ncrcmd tryloop [MAX_START*2];
1887 ncrcmd tryloop2 [ 2];
1888#ifdef SCSI_NCR_CCB_DONE_SUPPORT
1889 ncrcmd done_queue [MAX_DONE*5];
1890 ncrcmd done_queue2 [ 2];
1891#endif
1892 ncrcmd select_no_atn [ 8];
1893 ncrcmd cancel [ 4];
1894 ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT];
1895 ncrcmd skip2 [ 19];
1896 ncrcmd par_err_data_in [ 6];
1897 ncrcmd par_err_other [ 4];
1898 ncrcmd msg_reject [ 8];
1899 ncrcmd msg_ign_residue [ 24];
1900 ncrcmd msg_extended [ 10];
1901 ncrcmd msg_ext_2 [ 10];
1902 ncrcmd msg_wdtr [ 14];
1903 ncrcmd send_wdtr [ 7];
1904 ncrcmd msg_ext_3 [ 10];
1905 ncrcmd msg_sdtr [ 14];
1906 ncrcmd send_sdtr [ 7];
1907 ncrcmd nego_bad_phase [ 4];
1908 ncrcmd msg_out_abort [ 10];
1909 ncrcmd hdata_in [MAX_SCATTERH * 4];
1910 ncrcmd hdata_in2 [ 2];
1911 ncrcmd hdata_out [MAX_SCATTERH * 4];
1912 ncrcmd hdata_out2 [ 2];
1913 ncrcmd reset [ 4];
1914 ncrcmd aborttag [ 4];
1915 ncrcmd abort [ 2];
1916 ncrcmd abort_resel [ 20];
1917 ncrcmd resend_ident [ 4];
1918 ncrcmd clratn_go_on [ 3];
1919 ncrcmd nxtdsp_go_on [ 1];
1920 ncrcmd sdata_in [ 8];
1921 ncrcmd data_io [ 18];
1922 ncrcmd bad_identify [ 12];
1923 ncrcmd bad_i_t_l [ 4];
1924 ncrcmd bad_i_t_l_q [ 4];
1925 ncrcmd bad_target [ 8];
1926 ncrcmd bad_status [ 8];
1927 ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT];
1928 ncrcmd start_ram0 [ 4];
1929 ncrcmd sto_restart [ 5];
1930 ncrcmd wait_dma [ 2];
1931 ncrcmd snooptest [ 9];
1932 ncrcmd snoopend [ 2];
1933};
1934
1935/*==========================================================
1936**
1937**
1938** Function headers.
1939**
1940**
1941**==========================================================
1942*/
1943
1944static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
1945static void ncr_complete (struct ncb *np, struct ccb *cp);
1946static void ncr_exception (struct ncb *np);
1947static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
1948static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
1949static void ncr_init_tcb (struct ncb *np, u_char tn);
1950static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
1951static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
1952static void ncr_getclock (struct ncb *np, int mult);
1953static void ncr_selectclock (struct ncb *np, u_char scntl3);
1954static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
1955static void ncr_chip_reset (struct ncb *np, int delay);
1956static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
1957static int ncr_int_sbmc (struct ncb *np);
1958static int ncr_int_par (struct ncb *np);
1959static void ncr_int_ma (struct ncb *np);
1960static void ncr_int_sir (struct ncb *np);
1961static void ncr_int_sto (struct ncb *np);
1962static void ncr_negotiate (struct ncb* np, struct tcb* tp);
1963static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1964
1965static void ncr_script_copy_and_bind
1966 (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1967static void ncr_script_fill (struct script * scr, struct scripth * scripth);
1968static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1969static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1970static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1971static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
1972static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1973static int ncr_snooptest (struct ncb *np);
1974static void ncr_timeout (struct ncb *np);
1975static void ncr_wakeup (struct ncb *np, u_long code);
1976static void ncr_wakeup_done (struct ncb *np);
1977static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1978static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1979
1980static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1981static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1982static void process_waiting_list(struct ncb *np, int sts);
1983
1984#define remove_from_waiting_list(np, cmd) \
1985 retrieve_from_waiting_list(1, (np), (cmd))
1986#define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1987#define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1988
1989static inline char *ncr_name (struct ncb *np)
1990{
1991 return np->inst_name;
1992}
1993
1994
1995/*==========================================================
1996**
1997**
1998** Scripts for NCR-Processor.
1999**
2000** Use ncr_script_bind for binding to physical addresses.
2001**
2002**
2003**==========================================================
2004**
2005** NADDR generates a reference to a field of the controller data.
2006** PADDR generates a reference to another part of the script.
2007** RADDR generates a reference to a script processor register.
2008** FADDR generates a reference to a script processor register
2009** with offset.
2010**
2011**----------------------------------------------------------
2012*/
2013
2014#define RELOC_SOFTC 0x40000000
2015#define RELOC_LABEL 0x50000000
2016#define RELOC_REGISTER 0x60000000
2017#if 0
2018#define RELOC_KVAR 0x70000000
2019#endif
2020#define RELOC_LABELH 0x80000000
2021#define RELOC_MASK 0xf0000000
2022
2023#define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
2024#define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
2025#define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
2026#define RADDR(label) (RELOC_REGISTER | REG(label))
2027#define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
2028#if 0
2029#define KVAR(which) (RELOC_KVAR | (which))
2030#endif
2031
2032#if 0
2033#define SCRIPT_KVAR_JIFFIES (0)
2034#define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES
2035#define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES
2036/*
2037 * Kernel variables referenced in the scripts.
2038 * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2039 */
2040static void *script_kvars[] __initdata =
2041 { (void *)&jiffies };
2042#endif
2043
2044static struct script script0 __initdata = {
2045/*--------------------------< START >-----------------------*/ {
2046 /*
2047 ** This NOP will be patched with LED ON
2048 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2049 */
2050 SCR_NO_OP,
2051 0,
2052 /*
2053 ** Clear SIGP.
2054 */
2055 SCR_FROM_REG (ctest2),
2056 0,
2057 /*
2058 ** Then jump to a certain point in tryloop.
2059 ** Due to the lack of indirect addressing the code
2060 ** is self modifying here.
2061 */
2062 SCR_JUMP,
2063}/*-------------------------< STARTPOS >--------------------*/,{
2064 PADDRH(tryloop),
2065
2066}/*-------------------------< SELECT >----------------------*/,{
2067 /*
2068 ** DSA contains the address of a scheduled
2069 ** data structure.
2070 **
2071 ** SCRATCHA contains the address of the script,
2072 ** which starts the next entry.
2073 **
2074 ** Set Initiator mode.
2075 **
2076 ** (Target mode is left as an exercise for the reader)
2077 */
2078
2079 SCR_CLR (SCR_TRG),
2080 0,
2081 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2082 0,
2083
2084 /*
2085 ** And try to select this target.
2086 */
2087 SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2088 PADDR (reselect),
2089
2090}/*-------------------------< SELECT2 >----------------------*/,{
2091 /*
2092 ** Now there are 4 possibilities:
2093 **
2094 ** (1) The ncr loses arbitration.
2095 ** This is ok, because it will try again,
2096 ** when the bus becomes idle.
2097 ** (But beware of the timeout function!)
2098 **
2099 ** (2) The ncr is reselected.
2100 ** Then the script processor takes the jump
2101 ** to the RESELECT label.
2102 **
2103 ** (3) The ncr wins arbitration.
2104 ** Then it will execute SCRIPTS instruction until
2105 ** the next instruction that checks SCSI phase.
2106 ** Then will stop and wait for selection to be
2107 ** complete or selection time-out to occur.
2108 ** As a result the SCRIPTS instructions until
2109 ** LOADPOS + 2 should be executed in parallel with
2110 ** the SCSI core performing selection.
2111 */
2112
2113 /*
2114 ** The M_REJECT problem seems to be due to a selection
2115 ** timing problem.
2116 ** Wait immediately for the selection to complete.
2117 ** (2.5x behaves so)
2118 */
2119 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2120 0,
2121
2122 /*
2123 ** Next time use the next slot.
2124 */
2125 SCR_COPY (4),
2126 RADDR (temp),
2127 PADDR (startpos),
2128 /*
2129 ** The ncr doesn't have an indirect load
2130 ** or store command. So we have to
2131 ** copy part of the control block to a
2132 ** fixed place, where we can access it.
2133 **
2134 ** We patch the address part of a
2135 ** COPY command with the DSA-register.
2136 */
2137 SCR_COPY_F (4),
2138 RADDR (dsa),
2139 PADDR (loadpos),
2140 /*
2141 ** Flush script prefetch if required
2142 */
2143 PREFETCH_FLUSH
2144 /*
2145 ** then we do the actual copy.
2146 */
2147 SCR_COPY (sizeof (struct head)),
2148 /*
2149 ** continued after the next label ...
2150 */
2151}/*-------------------------< LOADPOS >---------------------*/,{
2152 0,
2153 NADDR (header),
2154 /*
2155 ** Wait for the next phase or the selection
2156 ** to complete or time-out.
2157 */
2158 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2159 PADDR (prepare),
2160
2161}/*-------------------------< SEND_IDENT >----------------------*/,{
2162 /*
2163 ** Selection complete.
2164 ** Send the IDENTIFY and SIMPLE_TAG messages
2165 ** (and the M_X_SYNC_REQ message)
2166 */
2167 SCR_MOVE_TBL ^ SCR_MSG_OUT,
2168 offsetof (struct dsb, smsg),
2169 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2170 PADDRH (resend_ident),
2171 SCR_LOAD_REG (scratcha, 0x80),
2172 0,
2173 SCR_COPY (1),
2174 RADDR (scratcha),
2175 NADDR (lastmsg),
2176}/*-------------------------< PREPARE >----------------------*/,{
2177 /*
2178 ** load the savep (saved pointer) into
2179 ** the TEMP register (actual pointer)
2180 */
2181 SCR_COPY (4),
2182 NADDR (header.savep),
2183 RADDR (temp),
2184 /*
2185 ** Initialize the status registers
2186 */
2187 SCR_COPY (4),
2188 NADDR (header.status),
2189 RADDR (scr0),
2190}/*-------------------------< PREPARE2 >---------------------*/,{
2191 /*
2192 ** Initialize the msgout buffer with a NOOP message.
2193 */
2194 SCR_LOAD_REG (scratcha, M_NOOP),
2195 0,
2196 SCR_COPY (1),
2197 RADDR (scratcha),
2198 NADDR (msgout),
2199#if 0
2200 SCR_COPY (1),
2201 RADDR (scratcha),
2202 NADDR (msgin),
2203#endif
2204 /*
2205 ** Anticipate the COMMAND phase.
2206 ** This is the normal case for initial selection.
2207 */
2208 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2209 PADDR (dispatch),
2210
2211}/*-------------------------< COMMAND >--------------------*/,{
2212 /*
2213 ** ... and send the command
2214 */
2215 SCR_MOVE_TBL ^ SCR_COMMAND,
2216 offsetof (struct dsb, cmd),
2217 /*
2218 ** If status is still HS_NEGOTIATE, negotiation failed.
2219 ** We check this here, since we want to do that
2220 ** only once.
2221 */
2222 SCR_FROM_REG (HS_REG),
2223 0,
2224 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2225 SIR_NEGO_FAILED,
2226
2227}/*-----------------------< DISPATCH >----------------------*/,{
2228 /*
2229 ** MSG_IN is the only phase that shall be
2230 ** entered at least once for each (re)selection.
2231 ** So we test it first.
2232 */
2233 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2234 PADDR (msg_in),
2235
2236 SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2237 0,
2238 /*
2239 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2240 ** Possible data corruption during Memory Write and Invalidate.
2241 ** This work-around resets the addressing logic prior to the
2242 ** start of the first MOVE of a DATA IN phase.
2243 ** (See Documentation/scsi/ncr53c8xx.txt for more information)
2244 */
2245 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2246 20,
2247 SCR_COPY (4),
2248 RADDR (scratcha),
2249 RADDR (scratcha),
2250 SCR_RETURN,
2251 0,
2252 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2253 PADDR (status),
2254 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2255 PADDR (command),
2256 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2257 PADDR (msg_out),
2258 /*
2259 ** Discard one illegal phase byte, if required.
2260 */
2261 SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2262 0,
2263 SCR_COPY (1),
2264 RADDR (scratcha),
2265 NADDR (xerr_st),
2266 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2267 8,
2268 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2269 NADDR (scratch),
2270 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2271 8,
2272 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2273 NADDR (scratch),
2274 SCR_JUMP,
2275 PADDR (dispatch),
2276
2277}/*-------------------------< CLRACK >----------------------*/,{
2278 /*
2279 ** Terminate possible pending message phase.
2280 */
2281 SCR_CLR (SCR_ACK),
2282 0,
2283 SCR_JUMP,
2284 PADDR (dispatch),
2285
2286}/*-------------------------< NO_DATA >--------------------*/,{
2287 /*
2288 ** The target wants to tranfer too much data
2289 ** or in the wrong direction.
2290 ** Remember that in extended error.
2291 */
2292 SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2293 0,
2294 SCR_COPY (1),
2295 RADDR (scratcha),
2296 NADDR (xerr_st),
2297 /*
2298 ** Discard one data byte, if required.
2299 */
2300 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2301 8,
2302 SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2303 NADDR (scratch),
2304 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2305 8,
2306 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2307 NADDR (scratch),
2308 /*
2309 ** .. and repeat as required.
2310 */
2311 SCR_CALL,
2312 PADDR (dispatch),
2313 SCR_JUMP,
2314 PADDR (no_data),
2315
2316}/*-------------------------< STATUS >--------------------*/,{
2317 /*
2318 ** get the status
2319 */
2320 SCR_MOVE_ABS (1) ^ SCR_STATUS,
2321 NADDR (scratch),
2322 /*
2323 ** save status to scsi_status.
2324 ** mark as complete.
2325 */
2326 SCR_TO_REG (SS_REG),
2327 0,
2328 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2329 0,
2330 SCR_JUMP,
2331 PADDR (dispatch),
2332}/*-------------------------< MSG_IN >--------------------*/,{
2333 /*
2334 ** Get the first byte of the message
2335 ** and save it to SCRATCHA.
2336 **
2337 ** The script processor doesn't negate the
2338 ** ACK signal after this transfer.
2339 */
2340 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2341 NADDR (msgin[0]),
2342}/*-------------------------< MSG_IN2 >--------------------*/,{
2343 /*
2344 ** Handle this message.
2345 */
2346 SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
2347 PADDR (complete),
2348 SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
2349 PADDR (disconnect),
2350 SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
2351 PADDR (save_dp),
2352 SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
2353 PADDR (restore_dp),
2354 SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
2355 PADDRH (msg_extended),
2356 SCR_JUMP ^ IFTRUE (DATA (M_NOOP)),
2357 PADDR (clrack),
2358 SCR_JUMP ^ IFTRUE (DATA (M_REJECT)),
2359 PADDRH (msg_reject),
2360 SCR_JUMP ^ IFTRUE (DATA (M_IGN_RESIDUE)),
2361 PADDRH (msg_ign_residue),
2362 /*
2363 ** Rest of the messages left as
2364 ** an exercise ...
2365 **
2366 ** Unimplemented messages:
2367 ** fall through to MSG_BAD.
2368 */
2369}/*-------------------------< MSG_BAD >------------------*/,{
2370 /*
2371 ** unimplemented message - reject it.
2372 */
2373 SCR_INT,
2374 SIR_REJECT_SENT,
2375 SCR_LOAD_REG (scratcha, M_REJECT),
2376 0,
2377}/*-------------------------< SETMSG >----------------------*/,{
2378 SCR_COPY (1),
2379 RADDR (scratcha),
2380 NADDR (msgout),
2381 SCR_SET (SCR_ATN),
2382 0,
2383 SCR_JUMP,
2384 PADDR (clrack),
2385}/*-------------------------< CLEANUP >-------------------*/,{
2386 /*
2387 ** dsa: Pointer to ccb
2388 ** or xxxxxxFF (no ccb)
2389 **
2390 ** HS_REG: Host-Status (<>0!)
2391 */
2392 SCR_FROM_REG (dsa),
2393 0,
2394 SCR_JUMP ^ IFTRUE (DATA (0xff)),
2395 PADDR (start),
2396 /*
2397 ** dsa is valid.
2398 ** complete the cleanup.
2399 */
2400 SCR_JUMP,
2401 PADDR (cleanup_ok),
2402
2403}/*-------------------------< COMPLETE >-----------------*/,{
2404 /*
2405 ** Complete message.
2406 **
2407 ** Copy TEMP register to LASTP in header.
2408 */
2409 SCR_COPY (4),
2410 RADDR (temp),
2411 NADDR (header.lastp),
2412 /*
2413 ** When we terminate the cycle by clearing ACK,
2414 ** the target may disconnect immediately.
2415 **
2416 ** We don't want to be told of an
2417 ** "unexpected disconnect",
2418 ** so we disable this feature.
2419 */
2420 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2421 0,
2422 /*
2423 ** Terminate cycle ...
2424 */
2425 SCR_CLR (SCR_ACK|SCR_ATN),
2426 0,
2427 /*
2428 ** ... and wait for the disconnect.
2429 */
2430 SCR_WAIT_DISC,
2431 0,
2432}/*-------------------------< CLEANUP_OK >----------------*/,{
2433 /*
2434 ** Save host status to header.
2435 */
2436 SCR_COPY (4),
2437 RADDR (scr0),
2438 NADDR (header.status),
2439 /*
2440 ** and copy back the header to the ccb.
2441 */
2442 SCR_COPY_F (4),
2443 RADDR (dsa),
2444 PADDR (cleanup0),
2445 /*
2446 ** Flush script prefetch if required
2447 */
2448 PREFETCH_FLUSH
2449 SCR_COPY (sizeof (struct head)),
2450 NADDR (header),
2451}/*-------------------------< CLEANUP0 >--------------------*/,{
2452 0,
2453}/*-------------------------< SIGNAL >----------------------*/,{
2454 /*
2455 ** if job not completed ...
2456 */
2457 SCR_FROM_REG (HS_REG),
2458 0,
2459 /*
2460 ** ... start the next command.
2461 */
2462 SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2463 PADDR(start),
2464 /*
2465 ** If command resulted in not GOOD status,
2466 ** call the C code if needed.
2467 */
2468 SCR_FROM_REG (SS_REG),
2469 0,
2470 SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2471 PADDRH (bad_status),
2472
2473#ifndef SCSI_NCR_CCB_DONE_SUPPORT
2474
2475 /*
2476 ** ... signal completion to the host
2477 */
2478 SCR_INT,
2479 SIR_INTFLY,
2480 /*
2481 ** Auf zu neuen Schandtaten!
2482 */
2483 SCR_JUMP,
2484 PADDR(start),
2485
2486#else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
2487
2488 /*
2489 ** ... signal completion to the host
2490 */
2491 SCR_JUMP,
2492}/*------------------------< DONE_POS >---------------------*/,{
2493 PADDRH (done_queue),
2494}/*------------------------< DONE_PLUG >--------------------*/,{
2495 SCR_INT,
2496 SIR_DONE_OVERFLOW,
2497}/*------------------------< DONE_END >---------------------*/,{
2498 SCR_INT,
2499 SIR_INTFLY,
2500 SCR_COPY (4),
2501 RADDR (temp),
2502 PADDR (done_pos),
2503 SCR_JUMP,
2504 PADDR (start),
2505
2506#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2507
2508}/*-------------------------< SAVE_DP >------------------*/,{
2509 /*
2510 ** SAVE_DP message:
2511 ** Copy TEMP register to SAVEP in header.
2512 */
2513 SCR_COPY (4),
2514 RADDR (temp),
2515 NADDR (header.savep),
2516 SCR_CLR (SCR_ACK),
2517 0,
2518 SCR_JUMP,
2519 PADDR (dispatch),
2520}/*-------------------------< RESTORE_DP >---------------*/,{
2521 /*
2522 ** RESTORE_DP message:
2523 ** Copy SAVEP in header to TEMP register.
2524 */
2525 SCR_COPY (4),
2526 NADDR (header.savep),
2527 RADDR (temp),
2528 SCR_JUMP,
2529 PADDR (clrack),
2530
2531}/*-------------------------< DISCONNECT >---------------*/,{
2532 /*
2533 ** DISCONNECTing ...
2534 **
2535 ** disable the "unexpected disconnect" feature,
2536 ** and remove the ACK signal.
2537 */
2538 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2539 0,
2540 SCR_CLR (SCR_ACK|SCR_ATN),
2541 0,
2542 /*
2543 ** Wait for the disconnect.
2544 */
2545 SCR_WAIT_DISC,
2546 0,
2547 /*
2548 ** Status is: DISCONNECTED.
2549 */
2550 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2551 0,
2552 SCR_JUMP,
2553 PADDR (cleanup_ok),
2554
2555}/*-------------------------< MSG_OUT >-------------------*/,{
2556 /*
2557 ** The target requests a message.
2558 */
2559 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2560 NADDR (msgout),
2561 SCR_COPY (1),
2562 NADDR (msgout),
2563 NADDR (lastmsg),
2564 /*
2565 ** If it was no ABORT message ...
2566 */
2567 SCR_JUMP ^ IFTRUE (DATA (M_ABORT)),
2568 PADDRH (msg_out_abort),
2569 /*
2570 ** ... wait for the next phase
2571 ** if it's a message out, send it again, ...
2572 */
2573 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2574 PADDR (msg_out),
2575}/*-------------------------< MSG_OUT_DONE >--------------*/,{
2576 /*
2577 ** ... else clear the message ...
2578 */
2579 SCR_LOAD_REG (scratcha, M_NOOP),
2580 0,
2581 SCR_COPY (4),
2582 RADDR (scratcha),
2583 NADDR (msgout),
2584 /*
2585 ** ... and process the next phase
2586 */
2587 SCR_JUMP,
2588 PADDR (dispatch),
2589}/*-------------------------< IDLE >------------------------*/,{
2590 /*
2591 ** Nothing to do?
2592 ** Wait for reselect.
2593 ** This NOP will be patched with LED OFF
2594 ** SCR_REG_REG (gpreg, SCR_OR, 0x01)
2595 */
2596 SCR_NO_OP,
2597 0,
2598}/*-------------------------< RESELECT >--------------------*/,{
2599 /*
2600 ** make the DSA invalid.
2601 */
2602 SCR_LOAD_REG (dsa, 0xff),
2603 0,
2604 SCR_CLR (SCR_TRG),
2605 0,
2606 SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2607 0,
2608 /*
2609 ** Sleep waiting for a reselection.
2610 ** If SIGP is set, special treatment.
2611 **
2612 ** Zu allem bereit ..
2613 */
2614 SCR_WAIT_RESEL,
2615 PADDR(start),
2616}/*-------------------------< RESELECTED >------------------*/,{
2617 /*
2618 ** This NOP will be patched with LED ON
2619 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2620 */
2621 SCR_NO_OP,
2622 0,
2623 /*
2624 ** ... zu nichts zu gebrauchen ?
2625 **
2626 ** load the target id into the SFBR
2627 ** and jump to the control block.
2628 **
2629 ** Look at the declarations of
2630 ** - struct ncb
2631 ** - struct tcb
2632 ** - struct lcb
2633 ** - struct ccb
2634 ** to understand what's going on.
2635 */
2636 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2637 0,
2638 SCR_TO_REG (sdid),
2639 0,
2640 SCR_JUMP,
2641 NADDR (jump_tcb),
2642
2643}/*-------------------------< RESEL_DSA >-------------------*/,{
2644 /*
2645 ** Ack the IDENTIFY or TAG previously received.
2646 */
2647 SCR_CLR (SCR_ACK),
2648 0,
2649 /*
2650 ** The ncr doesn't have an indirect load
2651 ** or store command. So we have to
2652 ** copy part of the control block to a
2653 ** fixed place, where we can access it.
2654 **
2655 ** We patch the address part of a
2656 ** COPY command with the DSA-register.
2657 */
2658 SCR_COPY_F (4),
2659 RADDR (dsa),
2660 PADDR (loadpos1),
2661 /*
2662 ** Flush script prefetch if required
2663 */
2664 PREFETCH_FLUSH
2665 /*
2666 ** then we do the actual copy.
2667 */
2668 SCR_COPY (sizeof (struct head)),
2669 /*
2670 ** continued after the next label ...
2671 */
2672
2673}/*-------------------------< LOADPOS1 >-------------------*/,{
2674 0,
2675 NADDR (header),
2676 /*
2677 ** The DSA contains the data structure address.
2678 */
2679 SCR_JUMP,
2680 PADDR (prepare),
2681
2682}/*-------------------------< RESEL_LUN >-------------------*/,{
2683 /*
2684 ** come back to this point
2685 ** to get an IDENTIFY message
2686 ** Wait for a msg_in phase.
2687 */
2688 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2689 SIR_RESEL_NO_MSG_IN,
2690 /*
2691 ** message phase.
2692 ** Read the data directly from the BUS DATA lines.
2693 ** This helps to support very old SCSI devices that
2694 ** may reselect without sending an IDENTIFY.
2695 */
2696 SCR_FROM_REG (sbdl),
2697 0,
2698 /*
2699 ** It should be an Identify message.
2700 */
2701 SCR_RETURN,
2702 0,
2703}/*-------------------------< RESEL_TAG >-------------------*/,{
2704 /*
2705 ** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2706 ** Agressive optimization, is'nt it?
2707 ** No need to test the SIMPLE TAG message, since the
2708 ** driver only supports conformant devices for tags. ;-)
2709 */
2710 SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2711 NADDR (msgin),
2712 /*
2713 ** Read the TAG from the SIDL.
2714 ** Still an aggressive optimization. ;-)
2715 ** Compute the CCB indirect jump address which
2716 ** is (#TAG*2 & 0xfc) due to tag numbering using
2717 ** 1,3,5..MAXTAGS*2+1 actual values.
2718 */
2719 SCR_REG_SFBR (sidl, SCR_SHL, 0),
2720 0,
2721 SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2722 0,
2723}/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2724 SCR_COPY_F (4),
2725 RADDR (temp),
2726 PADDR (nexus_indirect),
2727 /*
2728 ** Flush script prefetch if required
2729 */
2730 PREFETCH_FLUSH
2731 SCR_COPY (4),
2732}/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2733 0,
2734 RADDR (temp),
2735 SCR_RETURN,
2736 0,
2737}/*-------------------------< RESEL_NOTAG >-------------------*/,{
2738 /*
2739 ** No tag expected.
2740 ** Read an throw away the IDENTIFY.
2741 */
2742 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2743 NADDR (msgin),
2744 SCR_JUMP,
2745 PADDR (jump_to_nexus),
2746}/*-------------------------< DATA_IN >--------------------*/,{
2747/*
2748** Because the size depends on the
2749** #define MAX_SCATTERL parameter,
2750** it is filled in at runtime.
2751**
2752** ##===========< i=0; i<MAX_SCATTERL >=========
2753** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2754** || PADDR (dispatch),
2755** || SCR_MOVE_TBL ^ SCR_DATA_IN,
2756** || offsetof (struct dsb, data[ i]),
2757** ##==========================================
2758**
2759**---------------------------------------------------------
2760*/
27610
2762}/*-------------------------< DATA_IN2 >-------------------*/,{
2763 SCR_CALL,
2764 PADDR (dispatch),
2765 SCR_JUMP,
2766 PADDR (no_data),
2767}/*-------------------------< DATA_OUT >--------------------*/,{
2768/*
2769** Because the size depends on the
2770** #define MAX_SCATTERL parameter,
2771** it is filled in at runtime.
2772**
2773** ##===========< i=0; i<MAX_SCATTERL >=========
2774** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2775** || PADDR (dispatch),
2776** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
2777** || offsetof (struct dsb, data[ i]),
2778** ##==========================================
2779**
2780**---------------------------------------------------------
2781*/
27820
2783}/*-------------------------< DATA_OUT2 >-------------------*/,{
2784 SCR_CALL,
2785 PADDR (dispatch),
2786 SCR_JUMP,
2787 PADDR (no_data),
2788}/*--------------------------------------------------------*/
2789};
2790
2791static struct scripth scripth0 __initdata = {
2792/*-------------------------< TRYLOOP >---------------------*/{
2793/*
2794** Start the next entry.
2795** Called addresses point to the launch script in the CCB.
2796** They are patched by the main processor.
2797**
2798** Because the size depends on the
2799** #define MAX_START parameter, it is filled
2800** in at runtime.
2801**
2802**-----------------------------------------------------------
2803**
2804** ##===========< I=0; i<MAX_START >===========
2805** || SCR_CALL,
2806** || PADDR (idle),
2807** ##==========================================
2808**
2809**-----------------------------------------------------------
2810*/
28110
2812}/*------------------------< TRYLOOP2 >---------------------*/,{
2813 SCR_JUMP,
2814 PADDRH(tryloop),
2815
2816#ifdef SCSI_NCR_CCB_DONE_SUPPORT
2817
2818}/*------------------------< DONE_QUEUE >-------------------*/,{
2819/*
2820** Copy the CCB address to the next done entry.
2821** Because the size depends on the
2822** #define MAX_DONE parameter, it is filled
2823** in at runtime.
2824**
2825**-----------------------------------------------------------
2826**
2827** ##===========< I=0; i<MAX_DONE >===========
2828** || SCR_COPY (sizeof(struct ccb *),
2829** || NADDR (header.cp),
2830** || NADDR (ccb_done[i]),
2831** || SCR_CALL,
2832** || PADDR (done_end),
2833** ##==========================================
2834**
2835**-----------------------------------------------------------
2836*/
28370
2838}/*------------------------< DONE_QUEUE2 >------------------*/,{
2839 SCR_JUMP,
2840 PADDRH (done_queue),
2841
2842#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2843}/*------------------------< SELECT_NO_ATN >-----------------*/,{
2844 /*
2845 ** Set Initiator mode.
2846 ** And try to select this target without ATN.
2847 */
2848
2849 SCR_CLR (SCR_TRG),
2850 0,
2851 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2852 0,
2853 SCR_SEL_TBL ^ offsetof (struct dsb, select),
2854 PADDR (reselect),
2855 SCR_JUMP,
2856 PADDR (select2),
2857
2858}/*-------------------------< CANCEL >------------------------*/,{
2859
2860 SCR_LOAD_REG (scratcha, HS_ABORTED),
2861 0,
2862 SCR_JUMPR,
2863 8,
2864}/*-------------------------< SKIP >------------------------*/,{
2865 SCR_LOAD_REG (scratcha, 0),
2866 0,
2867 /*
2868 ** This entry has been canceled.
2869 ** Next time use the next slot.
2870 */
2871 SCR_COPY (4),
2872 RADDR (temp),
2873 PADDR (startpos),
2874 /*
2875 ** The ncr doesn't have an indirect load
2876 ** or store command. So we have to
2877 ** copy part of the control block to a
2878 ** fixed place, where we can access it.
2879 **
2880 ** We patch the address part of a
2881 ** COPY command with the DSA-register.
2882 */
2883 SCR_COPY_F (4),
2884 RADDR (dsa),
2885 PADDRH (skip2),
2886 /*
2887 ** Flush script prefetch if required
2888 */
2889 PREFETCH_FLUSH
2890 /*
2891 ** then we do the actual copy.
2892 */
2893 SCR_COPY (sizeof (struct head)),
2894 /*
2895 ** continued after the next label ...
2896 */
2897}/*-------------------------< SKIP2 >---------------------*/,{
2898 0,
2899 NADDR (header),
2900 /*
2901 ** Initialize the status registers
2902 */
2903 SCR_COPY (4),
2904 NADDR (header.status),
2905 RADDR (scr0),
2906 /*
2907 ** Force host status.
2908 */
2909 SCR_FROM_REG (scratcha),
2910 0,
2911 SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2912 16,
2913 SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2914 0,
2915 SCR_JUMPR,
2916 8,
2917 SCR_TO_REG (HS_REG),
2918 0,
2919 SCR_LOAD_REG (SS_REG, S_GOOD),
2920 0,
2921 SCR_JUMP,
2922 PADDR (cleanup_ok),
2923
2924},/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2925 /*
2926 ** Ignore all data in byte, until next phase
2927 */
2928 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2929 PADDRH (par_err_other),
2930 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2931 NADDR (scratch),
2932 SCR_JUMPR,
2933 -24,
2934},/*-------------------------< PAR_ERR_OTHER >------------------*/{
2935 /*
2936 ** count it.
2937 */
2938 SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2939 0,
2940 /*
2941 ** jump to dispatcher.
2942 */
2943 SCR_JUMP,
2944 PADDR (dispatch),
2945}/*-------------------------< MSG_REJECT >---------------*/,{
2946 /*
2947 ** If a negotiation was in progress,
2948 ** negotiation failed.
2949 ** Otherwise, let the C code print
2950 ** some message.
2951 */
2952 SCR_FROM_REG (HS_REG),
2953 0,
2954 SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2955 SIR_REJECT_RECEIVED,
2956 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2957 SIR_NEGO_FAILED,
2958 SCR_JUMP,
2959 PADDR (clrack),
2960
2961}/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2962 /*
2963 ** Terminate cycle
2964 */
2965 SCR_CLR (SCR_ACK),
2966 0,
2967 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2968 PADDR (dispatch),
2969 /*
2970 ** get residue size.
2971 */
2972 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2973 NADDR (msgin[1]),
2974 /*
2975 ** Size is 0 .. ignore message.
2976 */
2977 SCR_JUMP ^ IFTRUE (DATA (0)),
2978 PADDR (clrack),
2979 /*
2980 ** Size is not 1 .. have to interrupt.
2981 */
2982 SCR_JUMPR ^ IFFALSE (DATA (1)),
2983 40,
2984 /*
2985 ** Check for residue byte in swide register
2986 */
2987 SCR_FROM_REG (scntl2),
2988 0,
2989 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2990 16,
2991 /*
2992 ** There IS data in the swide register.
2993 ** Discard it.
2994 */
2995 SCR_REG_REG (scntl2, SCR_OR, WSR),
2996 0,
2997 SCR_JUMP,
2998 PADDR (clrack),
2999 /*
3000 ** Load again the size to the sfbr register.
3001 */
3002 SCR_FROM_REG (scratcha),
3003 0,
3004 SCR_INT,
3005 SIR_IGN_RESIDUE,
3006 SCR_JUMP,
3007 PADDR (clrack),
3008
3009}/*-------------------------< MSG_EXTENDED >-------------*/,{
3010 /*
3011 ** Terminate cycle
3012 */
3013 SCR_CLR (SCR_ACK),
3014 0,
3015 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3016 PADDR (dispatch),
3017 /*
3018 ** get length.
3019 */
3020 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3021 NADDR (msgin[1]),
3022 /*
3023 */
3024 SCR_JUMP ^ IFTRUE (DATA (3)),
3025 PADDRH (msg_ext_3),
3026 SCR_JUMP ^ IFFALSE (DATA (2)),
3027 PADDR (msg_bad),
3028}/*-------------------------< MSG_EXT_2 >----------------*/,{
3029 SCR_CLR (SCR_ACK),
3030 0,
3031 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3032 PADDR (dispatch),
3033 /*
3034 ** get extended message code.
3035 */
3036 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3037 NADDR (msgin[2]),
3038 SCR_JUMP ^ IFTRUE (DATA (M_X_WIDE_REQ)),
3039 PADDRH (msg_wdtr),
3040 /*
3041 ** unknown extended message
3042 */
3043 SCR_JUMP,
3044 PADDR (msg_bad)
3045}/*-------------------------< MSG_WDTR >-----------------*/,{
3046 SCR_CLR (SCR_ACK),
3047 0,
3048 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3049 PADDR (dispatch),
3050 /*
3051 ** get data bus width
3052 */
3053 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3054 NADDR (msgin[3]),
3055 /*
3056 ** let the host do the real work.
3057 */
3058 SCR_INT,
3059 SIR_NEGO_WIDE,
3060 /*
3061 ** let the target fetch our answer.
3062 */
3063 SCR_SET (SCR_ATN),
3064 0,
3065 SCR_CLR (SCR_ACK),
3066 0,
3067 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3068 PADDRH (nego_bad_phase),
3069
3070}/*-------------------------< SEND_WDTR >----------------*/,{
3071 /*
3072 ** Send the M_X_WIDE_REQ
3073 */
3074 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3075 NADDR (msgout),
3076 SCR_COPY (1),
3077 NADDR (msgout),
3078 NADDR (lastmsg),
3079 SCR_JUMP,
3080 PADDR (msg_out_done),
3081
3082}/*-------------------------< MSG_EXT_3 >----------------*/,{
3083 SCR_CLR (SCR_ACK),
3084 0,
3085 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3086 PADDR (dispatch),
3087 /*
3088 ** get extended message code.
3089 */
3090 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3091 NADDR (msgin[2]),
3092 SCR_JUMP ^ IFTRUE (DATA (M_X_SYNC_REQ)),
3093 PADDRH (msg_sdtr),
3094 /*
3095 ** unknown extended message
3096 */
3097 SCR_JUMP,
3098 PADDR (msg_bad)
3099
3100}/*-------------------------< MSG_SDTR >-----------------*/,{
3101 SCR_CLR (SCR_ACK),
3102 0,
3103 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3104 PADDR (dispatch),
3105 /*
3106 ** get period and offset
3107 */
3108 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3109 NADDR (msgin[3]),
3110 /*
3111 ** let the host do the real work.
3112 */
3113 SCR_INT,
3114 SIR_NEGO_SYNC,
3115 /*
3116 ** let the target fetch our answer.
3117 */
3118 SCR_SET (SCR_ATN),
3119 0,
3120 SCR_CLR (SCR_ACK),
3121 0,
3122 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3123 PADDRH (nego_bad_phase),
3124
3125}/*-------------------------< SEND_SDTR >-------------*/,{
3126 /*
3127 ** Send the M_X_SYNC_REQ
3128 */
3129 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3130 NADDR (msgout),
3131 SCR_COPY (1),
3132 NADDR (msgout),
3133 NADDR (lastmsg),
3134 SCR_JUMP,
3135 PADDR (msg_out_done),
3136
3137}/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3138 SCR_INT,
3139 SIR_NEGO_PROTO,
3140 SCR_JUMP,
3141 PADDR (dispatch),
3142
3143}/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3144 /*
3145 ** After ABORT message,
3146 **
3147 ** expect an immediate disconnect, ...
3148 */
3149 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3150 0,
3151 SCR_CLR (SCR_ACK|SCR_ATN),
3152 0,
3153 SCR_WAIT_DISC,
3154 0,
3155 /*
3156 ** ... and set the status to "ABORTED"
3157 */
3158 SCR_LOAD_REG (HS_REG, HS_ABORTED),
3159 0,
3160 SCR_JUMP,
3161 PADDR (cleanup),
3162
3163}/*-------------------------< HDATA_IN >-------------------*/,{
3164/*
3165** Because the size depends on the
3166** #define MAX_SCATTERH parameter,
3167** it is filled in at runtime.
3168**
3169** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3170** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3171** || PADDR (dispatch),
3172** || SCR_MOVE_TBL ^ SCR_DATA_IN,
3173** || offsetof (struct dsb, data[ i]),
3174** ##===================================================
3175**
3176**---------------------------------------------------------
3177*/
31780
3179}/*-------------------------< HDATA_IN2 >------------------*/,{
3180 SCR_JUMP,
3181 PADDR (data_in),
3182
3183}/*-------------------------< HDATA_OUT >-------------------*/,{
3184/*
3185** Because the size depends on the
3186** #define MAX_SCATTERH parameter,
3187** it is filled in at runtime.
3188**
3189** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3190** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3191** || PADDR (dispatch),
3192** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
3193** || offsetof (struct dsb, data[ i]),
3194** ##===================================================
3195**
3196**---------------------------------------------------------
3197*/
31980
3199}/*-------------------------< HDATA_OUT2 >------------------*/,{
3200 SCR_JUMP,
3201 PADDR (data_out),
3202
3203}/*-------------------------< RESET >----------------------*/,{
3204 /*
3205 ** Send a M_RESET message if bad IDENTIFY
3206 ** received on reselection.
3207 */
3208 SCR_LOAD_REG (scratcha, M_ABORT_TAG),
3209 0,
3210 SCR_JUMP,
3211 PADDRH (abort_resel),
3212}/*-------------------------< ABORTTAG >-------------------*/,{
3213 /*
3214 ** Abort a wrong tag received on reselection.
3215 */
3216 SCR_LOAD_REG (scratcha, M_ABORT_TAG),
3217 0,
3218 SCR_JUMP,
3219 PADDRH (abort_resel),
3220}/*-------------------------< ABORT >----------------------*/,{
3221 /*
3222 ** Abort a reselection when no active CCB.
3223 */
3224 SCR_LOAD_REG (scratcha, M_ABORT),
3225 0,
3226}/*-------------------------< ABORT_RESEL >----------------*/,{
3227 SCR_COPY (1),
3228 RADDR (scratcha),
3229 NADDR (msgout),
3230 SCR_SET (SCR_ATN),
3231 0,
3232 SCR_CLR (SCR_ACK),
3233 0,
3234 /*
3235 ** and send it.
3236 ** we expect an immediate disconnect
3237 */
3238 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3239 0,
3240 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3241 NADDR (msgout),
3242 SCR_COPY (1),
3243 NADDR (msgout),
3244 NADDR (lastmsg),
3245 SCR_CLR (SCR_ACK|SCR_ATN),
3246 0,
3247 SCR_WAIT_DISC,
3248 0,
3249 SCR_JUMP,
3250 PADDR (start),
3251}/*-------------------------< RESEND_IDENT >-------------------*/,{
3252 /*
3253 ** The target stays in MSG OUT phase after having acked
3254 ** Identify [+ Tag [+ Extended message ]]. Targets shall
3255 ** behave this way on parity error.
3256 ** We must send it again all the messages.
3257 */
3258 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
3259 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3260 SCR_JUMP,
3261 PADDR (send_ident),
3262}/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3263 SCR_CLR (SCR_ATN),
3264 0,
3265 SCR_JUMP,
3266}/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3267 0,
3268}/*-------------------------< SDATA_IN >-------------------*/,{
3269 SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3270 PADDR (dispatch),
3271 SCR_MOVE_TBL ^ SCR_DATA_IN,
3272 offsetof (struct dsb, sense),
3273 SCR_CALL,
3274 PADDR (dispatch),
3275 SCR_JUMP,
3276 PADDR (no_data),
3277}/*-------------------------< DATA_IO >--------------------*/,{
3278 /*
3279 ** We jump here if the data direction was unknown at the
3280 ** time we had to queue the command to the scripts processor.
3281 ** Pointers had been set as follow in this situation:
3282 ** savep --> DATA_IO
3283 ** lastp --> start pointer when DATA_IN
3284 ** goalp --> goal pointer when DATA_IN
3285 ** wlastp --> start pointer when DATA_OUT
3286 ** wgoalp --> goal pointer when DATA_OUT
3287 ** This script sets savep/lastp/goalp according to the
3288 ** direction chosen by the target.
3289 */
3290 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3291 32,
3292 /*
3293 ** Direction is DATA IN.
3294 ** Warning: we jump here, even when phase is DATA OUT.
3295 */
3296 SCR_COPY (4),
3297 NADDR (header.lastp),
3298 NADDR (header.savep),
3299
3300 /*
3301 ** Jump to the SCRIPTS according to actual direction.
3302 */
3303 SCR_COPY (4),
3304 NADDR (header.savep),
3305 RADDR (temp),
3306 SCR_RETURN,
3307 0,
3308 /*
3309 ** Direction is DATA OUT.
3310 */
3311 SCR_COPY (4),
3312 NADDR (header.wlastp),
3313 NADDR (header.lastp),
3314 SCR_COPY (4),
3315 NADDR (header.wgoalp),
3316 NADDR (header.goalp),
3317 SCR_JUMPR,
3318 -64,
3319}/*-------------------------< BAD_IDENTIFY >---------------*/,{
3320 /*
3321 ** If message phase but not an IDENTIFY,
3322 ** get some help from the C code.
3323 ** Old SCSI device may behave so.
3324 */
3325 SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3326 16,
3327 SCR_INT,
3328 SIR_RESEL_NO_IDENTIFY,
3329 SCR_JUMP,
3330 PADDRH (reset),
3331 /*
3332 ** Message is an IDENTIFY, but lun is unknown.
3333 ** Read the message, since we got it directly
3334 ** from the SCSI BUS data lines.
3335 ** Signal problem to C code for logging the event.
3336 ** Send a M_ABORT to clear all pending tasks.
3337 */
3338 SCR_INT,
3339 SIR_RESEL_BAD_LUN,
3340 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3341 NADDR (msgin),
3342 SCR_JUMP,
3343 PADDRH (abort),
3344}/*-------------------------< BAD_I_T_L >------------------*/,{
3345 /*
3346 ** We donnot have a task for that I_T_L.
3347 ** Signal problem to C code for logging the event.
3348 ** Send a M_ABORT message.
3349 */
3350 SCR_INT,
3351 SIR_RESEL_BAD_I_T_L,
3352 SCR_JUMP,
3353 PADDRH (abort),
3354}/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3355 /*
3356 ** We donnot have a task that matches the tag.
3357 ** Signal problem to C code for logging the event.
3358 ** Send a M_ABORTTAG message.
3359 */
3360 SCR_INT,
3361 SIR_RESEL_BAD_I_T_L_Q,
3362 SCR_JUMP,
3363 PADDRH (aborttag),
3364}/*-------------------------< BAD_TARGET >-----------------*/,{
3365 /*
3366 ** We donnot know the target that reselected us.
3367 ** Grab the first message if any (IDENTIFY).
3368 ** Signal problem to C code for logging the event.
3369 ** M_RESET message.
3370 */
3371 SCR_INT,
3372 SIR_RESEL_BAD_TARGET,
3373 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3374 8,
3375 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3376 NADDR (msgin),
3377 SCR_JUMP,
3378 PADDRH (reset),
3379}/*-------------------------< BAD_STATUS >-----------------*/,{
3380 /*
3381 ** If command resulted in either QUEUE FULL,
3382 ** CHECK CONDITION or COMMAND TERMINATED,
3383 ** call the C code.
3384 */
3385 SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
3386 SIR_BAD_STATUS,
3387 SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
3388 SIR_BAD_STATUS,
3389 SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
3390 SIR_BAD_STATUS,
3391 SCR_RETURN,
3392 0,
3393}/*-------------------------< START_RAM >-------------------*/,{
3394 /*
3395 ** Load the script into on-chip RAM,
3396 ** and jump to start point.
3397 */
3398 SCR_COPY_F (4),
3399 RADDR (scratcha),
3400 PADDRH (start_ram0),
3401 /*
3402 ** Flush script prefetch if required
3403 */
3404 PREFETCH_FLUSH
3405 SCR_COPY (sizeof (struct script)),
3406}/*-------------------------< START_RAM0 >--------------------*/,{
3407 0,
3408 PADDR (start),
3409 SCR_JUMP,
3410 PADDR (start),
3411}/*-------------------------< STO_RESTART >-------------------*/,{
3412 /*
3413 **
3414 ** Repair start queue (e.g. next time use the next slot)
3415 ** and jump to start point.
3416 */
3417 SCR_COPY (4),
3418 RADDR (temp),
3419 PADDR (startpos),
3420 SCR_JUMP,
3421 PADDR (start),
3422}/*-------------------------< WAIT_DMA >-------------------*/,{
3423 /*
3424 ** For HP Zalon/53c720 systems, the Zalon interface
3425 ** between CPU and 53c720 does prefetches, which causes
3426 ** problems with self modifying scripts. The problem
3427 ** is overcome by calling a dummy subroutine after each
3428 ** modification, to force a refetch of the script on
3429 ** return from the subroutine.
3430 */
3431 SCR_RETURN,
3432 0,
3433}/*-------------------------< SNOOPTEST >-------------------*/,{
3434 /*
3435 ** Read the variable.
3436 */
3437 SCR_COPY (4),
3438 NADDR(ncr_cache),
3439 RADDR (scratcha),
3440 /*
3441 ** Write the variable.
3442 */
3443 SCR_COPY (4),
3444 RADDR (temp),
3445 NADDR(ncr_cache),
3446 /*
3447 ** Read back the variable.
3448 */
3449 SCR_COPY (4),
3450 NADDR(ncr_cache),
3451 RADDR (temp),
3452}/*-------------------------< SNOOPEND >-------------------*/,{
3453 /*
3454 ** And stop.
3455 */
3456 SCR_INT,
3457 99,
3458}/*--------------------------------------------------------*/
3459};
3460
3461/*==========================================================
3462**
3463**
3464** Fill in #define dependent parts of the script
3465**
3466**
3467**==========================================================
3468*/
3469
3470void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3471{
3472 int i;
3473 ncrcmd *p;
3474
3475 p = scrh->tryloop;
3476 for (i=0; i<MAX_START; i++) {
3477 *p++ =SCR_CALL;
3478 *p++ =PADDR (idle);
3479 }
3480
3481 BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3482
3483#ifdef SCSI_NCR_CCB_DONE_SUPPORT
3484
3485 p = scrh->done_queue;
3486 for (i = 0; i<MAX_DONE; i++) {
3487 *p++ =SCR_COPY (sizeof(struct ccb *));
3488 *p++ =NADDR (header.cp);
3489 *p++ =NADDR (ccb_done[i]);
3490 *p++ =SCR_CALL;
3491 *p++ =PADDR (done_end);
3492 }
3493
3494 BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3495
3496#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3497
3498 p = scrh->hdata_in;
3499 for (i=0; i<MAX_SCATTERH; i++) {
3500 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3501 *p++ =PADDR (dispatch);
3502 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3503 *p++ =offsetof (struct dsb, data[i]);
3504 }
3505
3506 BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3507
3508 p = scr->data_in;
3509 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3510 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3511 *p++ =PADDR (dispatch);
3512 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3513 *p++ =offsetof (struct dsb, data[i]);
3514 }
3515
3516 BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3517
3518 p = scrh->hdata_out;
3519 for (i=0; i<MAX_SCATTERH; i++) {
3520 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3521 *p++ =PADDR (dispatch);
3522 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3523 *p++ =offsetof (struct dsb, data[i]);
3524 }
3525
3526 BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3527
3528 p = scr->data_out;
3529 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3530 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3531 *p++ =PADDR (dispatch);
3532 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3533 *p++ =offsetof (struct dsb, data[i]);
3534 }
3535
3536 BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3537}
3538
3539/*==========================================================
3540**
3541**
3542** Copy and rebind a script.
3543**
3544**
3545**==========================================================
3546*/
3547
3548static void __init
3549ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3550{
3551 ncrcmd opcode, new, old, tmp1, tmp2;
3552 ncrcmd *start, *end;
3553 int relocs;
3554 int opchanged = 0;
3555
3556 start = src;
3557 end = src + len/4;
3558
3559 while (src < end) {
3560
3561 opcode = *src++;
3562 *dst++ = cpu_to_scr(opcode);
3563
3564 /*
3565 ** If we forget to change the length
3566 ** in struct script, a field will be
3567 ** padded with 0. This is an illegal
3568 ** command.
3569 */
3570
3571 if (opcode == 0) {
3572 printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3573 ncr_name(np), (int) (src-start-1));
3574 mdelay(1000);
3575 }
3576
3577 if (DEBUG_FLAGS & DEBUG_SCRIPT)
3578 printk (KERN_DEBUG "%p: <%x>\n",
3579 (src-1), (unsigned)opcode);
3580
3581 /*
3582 ** We don't have to decode ALL commands
3583 */
3584 switch (opcode >> 28) {
3585
3586 case 0xc:
3587 /*
3588 ** COPY has TWO arguments.
3589 */
3590 relocs = 2;
3591 tmp1 = src[0];
3592#ifdef RELOC_KVAR
3593 if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3594 tmp1 = 0;
3595#endif
3596 tmp2 = src[1];
3597#ifdef RELOC_KVAR
3598 if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3599 tmp2 = 0;
3600#endif
3601 if ((tmp1 ^ tmp2) & 3) {
3602 printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3603 ncr_name(np), (int) (src-start-1));
3604 mdelay(1000);
3605 }
3606 /*
3607 ** If PREFETCH feature not enabled, remove
3608 ** the NO FLUSH bit if present.
3609 */
3610 if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3611 dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3612 ++opchanged;
3613 }
3614 break;
3615
3616 case 0x0:
3617 /*
3618 ** MOVE (absolute address)
3619 */
3620 relocs = 1;
3621 break;
3622
3623 case 0x8:
3624 /*
3625 ** JUMP / CALL
3626 ** don't relocate if relative :-)
3627 */
3628 if (opcode & 0x00800000)
3629 relocs = 0;
3630 else
3631 relocs = 1;
3632 break;
3633
3634 case 0x4:
3635 case 0x5:
3636 case 0x6:
3637 case 0x7:
3638 relocs = 1;
3639 break;
3640
3641 default:
3642 relocs = 0;
3643 break;
3644 }
3645
3646 if (relocs) {
3647 while (relocs--) {
3648 old = *src++;
3649
3650 switch (old & RELOC_MASK) {
3651 case RELOC_REGISTER:
3652 new = (old & ~RELOC_MASK) + np->paddr;
3653 break;
3654 case RELOC_LABEL:
3655 new = (old & ~RELOC_MASK) + np->p_script;
3656 break;
3657 case RELOC_LABELH:
3658 new = (old & ~RELOC_MASK) + np->p_scripth;
3659 break;
3660 case RELOC_SOFTC:
3661 new = (old & ~RELOC_MASK) + np->p_ncb;
3662 break;
3663#ifdef RELOC_KVAR
3664 case RELOC_KVAR:
3665 if (((old & ~RELOC_MASK) <
3666 SCRIPT_KVAR_FIRST) ||
3667 ((old & ~RELOC_MASK) >
3668 SCRIPT_KVAR_LAST))
3669 panic("ncr KVAR out of range");
3670 new = vtophys(script_kvars[old &
3671 ~RELOC_MASK]);
3672 break;
3673#endif
3674 case 0:
3675 /* Don't relocate a 0 address. */
3676 if (old == 0) {
3677 new = old;
3678 break;
3679 }
3680 /* fall through */
3681 default:
3682 panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3683 break;
3684 }
3685
3686 *dst++ = cpu_to_scr(new);
3687 }
3688 } else
3689 *dst++ = cpu_to_scr(*src++);
3690
3691 }
3692}
3693
3694/*
3695** Linux host data structure
3696*/
3697
3698struct host_data {
3699 struct ncb *ncb;
3700};
3701
3702#define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3703
3704static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3705{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003706 PRINT_ADDR(cp->cmd, "%s: ", label);
3707
Matthew Wilcoxcd453c62005-12-16 12:50:53 -05003708 spi_print_msg(msg);
3709 printk("\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003710}
3711
3712/*==========================================================
3713**
3714** NCR chip clock divisor table.
3715** Divisors are multiplied by 10,000,000 in order to make
3716** calculations more simple.
3717**
3718**==========================================================
3719*/
3720
3721#define _5M 5000000
3722static u_long div_10M[] =
3723 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3724
3725
3726/*===============================================================
3727**
3728** Prepare io register values used by ncr_init() according
3729** to selected and supported features.
3730**
3731** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3732** transfers. 32,64,128 are only supported by 875 and 895 chips.
3733** We use log base 2 (burst length) as internal code, with
3734** value 0 meaning "burst disabled".
3735**
3736**===============================================================
3737*/
3738
3739/*
3740 * Burst length from burst code.
3741 */
3742#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3743
3744/*
3745 * Burst code from io register bits. Burst enable is ctest0 for c720
3746 */
3747#define burst_code(dmode, ctest0) \
3748 (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3749
3750/*
3751 * Set initial io register bits from burst code.
3752 */
3753static inline void ncr_init_burst(struct ncb *np, u_char bc)
3754{
3755 u_char *be = &np->rv_ctest0;
3756 *be &= ~0x80;
3757 np->rv_dmode &= ~(0x3 << 6);
3758 np->rv_ctest5 &= ~0x4;
3759
3760 if (!bc) {
3761 *be |= 0x80;
3762 } else {
3763 --bc;
3764 np->rv_dmode |= ((bc & 0x3) << 6);
3765 np->rv_ctest5 |= (bc & 0x4);
3766 }
3767}
3768
3769static void __init ncr_prepare_setting(struct ncb *np)
3770{
3771 u_char burst_max;
3772 u_long period;
3773 int i;
3774
3775 /*
3776 ** Save assumed BIOS setting
3777 */
3778
3779 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
3780 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
3781 np->sv_dmode = INB(nc_dmode) & 0xce;
3782 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
3783 np->sv_ctest0 = INB(nc_ctest0) & 0x84;
3784 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
3785 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
3786 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
3787 np->sv_gpcntl = INB(nc_gpcntl);
3788 np->sv_stest2 = INB(nc_stest2) & 0x20;
3789 np->sv_stest4 = INB(nc_stest4);
3790
3791 /*
3792 ** Wide ?
3793 */
3794
3795 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
3796
3797 /*
3798 * Guess the frequency of the chip's clock.
3799 */
3800 if (np->features & FE_ULTRA)
3801 np->clock_khz = 80000;
3802 else
3803 np->clock_khz = 40000;
3804
3805 /*
3806 * Get the clock multiplier factor.
3807 */
3808 if (np->features & FE_QUAD)
3809 np->multiplier = 4;
3810 else if (np->features & FE_DBLR)
3811 np->multiplier = 2;
3812 else
3813 np->multiplier = 1;
3814
3815 /*
3816 * Measure SCSI clock frequency for chips
3817 * it may vary from assumed one.
3818 */
3819 if (np->features & FE_VARCLK)
3820 ncr_getclock(np, np->multiplier);
3821
3822 /*
3823 * Divisor to be used for async (timer pre-scaler).
3824 */
3825 i = np->clock_divn - 1;
3826 while (--i >= 0) {
3827 if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3828 ++i;
3829 break;
3830 }
3831 }
3832 np->rv_scntl3 = i+1;
3833
3834 /*
3835 * Minimum synchronous period factor supported by the chip.
3836 * Btw, 'period' is in tenths of nanoseconds.
3837 */
3838
3839 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3840 if (period <= 250) np->minsync = 10;
3841 else if (period <= 303) np->minsync = 11;
3842 else if (period <= 500) np->minsync = 12;
3843 else np->minsync = (period + 40 - 1) / 40;
3844
3845 /*
3846 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3847 */
3848
3849 if (np->minsync < 25 && !(np->features & FE_ULTRA))
3850 np->minsync = 25;
3851
3852 /*
3853 * Maximum synchronous period factor supported by the chip.
3854 */
3855
3856 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3857 np->maxsync = period > 2540 ? 254 : period / 10;
3858
3859 /*
3860 ** Prepare initial value of other IO registers
3861 */
3862#if defined SCSI_NCR_TRUST_BIOS_SETTING
3863 np->rv_scntl0 = np->sv_scntl0;
3864 np->rv_dmode = np->sv_dmode;
3865 np->rv_dcntl = np->sv_dcntl;
3866 np->rv_ctest0 = np->sv_ctest0;
3867 np->rv_ctest3 = np->sv_ctest3;
3868 np->rv_ctest4 = np->sv_ctest4;
3869 np->rv_ctest5 = np->sv_ctest5;
3870 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3871#else
3872
3873 /*
3874 ** Select burst length (dwords)
3875 */
3876 burst_max = driver_setup.burst_max;
3877 if (burst_max == 255)
3878 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3879 if (burst_max > 7)
3880 burst_max = 7;
3881 if (burst_max > np->maxburst)
3882 burst_max = np->maxburst;
3883
3884 /*
3885 ** Select all supported special features
3886 */
3887 if (np->features & FE_ERL)
3888 np->rv_dmode |= ERL; /* Enable Read Line */
3889 if (np->features & FE_BOF)
3890 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
3891 if (np->features & FE_ERMP)
3892 np->rv_dmode |= ERMP; /* Enable Read Multiple */
3893 if (np->features & FE_PFEN)
3894 np->rv_dcntl |= PFEN; /* Prefetch Enable */
3895 if (np->features & FE_CLSE)
3896 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
3897 if (np->features & FE_WRIE)
3898 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
3899 if (np->features & FE_DFS)
3900 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
3901 if (np->features & FE_MUX)
3902 np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
3903 if (np->features & FE_EA)
3904 np->rv_dcntl |= EA; /* Enable ACK */
3905 if (np->features & FE_EHP)
3906 np->rv_ctest0 |= EHP; /* Even host parity */
3907
3908 /*
3909 ** Select some other
3910 */
3911 if (driver_setup.master_parity)
3912 np->rv_ctest4 |= MPEE; /* Master parity checking */
3913 if (driver_setup.scsi_parity)
3914 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
3915
3916 /*
3917 ** Get SCSI addr of host adapter (set by bios?).
3918 */
3919 if (np->myaddr == 255) {
3920 np->myaddr = INB(nc_scid) & 0x07;
3921 if (!np->myaddr)
3922 np->myaddr = SCSI_NCR_MYADDR;
3923 }
3924
3925#endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3926
3927 /*
3928 * Prepare initial io register bits for burst length
3929 */
3930 ncr_init_burst(np, burst_max);
3931
3932 /*
3933 ** Set SCSI BUS mode.
3934 **
3935 ** - ULTRA2 chips (895/895A/896) report the current
3936 ** BUS mode through the STEST4 IO register.
3937 ** - For previous generation chips (825/825A/875),
3938 ** user has to tell us how to check against HVD,
3939 ** since a 100% safe algorithm is not possible.
3940 */
3941 np->scsi_mode = SMODE_SE;
3942 if (np->features & FE_DIFF) {
3943 switch(driver_setup.diff_support) {
3944 case 4: /* Trust previous settings if present, then GPIO3 */
3945 if (np->sv_scntl3) {
3946 if (np->sv_stest2 & 0x20)
3947 np->scsi_mode = SMODE_HVD;
3948 break;
3949 }
3950 case 3: /* SYMBIOS controllers report HVD through GPIO3 */
3951 if (INB(nc_gpreg) & 0x08)
3952 break;
3953 case 2: /* Set HVD unconditionally */
3954 np->scsi_mode = SMODE_HVD;
3955 case 1: /* Trust previous settings for HVD */
3956 if (np->sv_stest2 & 0x20)
3957 np->scsi_mode = SMODE_HVD;
3958 break;
3959 default:/* Don't care about HVD */
3960 break;
3961 }
3962 }
3963 if (np->scsi_mode == SMODE_HVD)
3964 np->rv_stest2 |= 0x20;
3965
3966 /*
3967 ** Set LED support from SCRIPTS.
3968 ** Ignore this feature for boards known to use a
3969 ** specific GPIO wiring and for the 895A or 896
3970 ** that drive the LED directly.
3971 ** Also probe initial setting of GPIO0 as output.
3972 */
3973 if ((driver_setup.led_pin) &&
3974 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3975 np->features |= FE_LED0;
3976
3977 /*
3978 ** Set irq mode.
3979 */
3980 switch(driver_setup.irqm & 3) {
3981 case 2:
3982 np->rv_dcntl |= IRQM;
3983 break;
3984 case 1:
3985 np->rv_dcntl |= (np->sv_dcntl & IRQM);
3986 break;
3987 default:
3988 break;
3989 }
3990
3991 /*
3992 ** Configure targets according to driver setup.
3993 ** Allow to override sync, wide and NOSCAN from
3994 ** boot command line.
3995 */
3996 for (i = 0 ; i < MAX_TARGET ; i++) {
3997 struct tcb *tp = &np->target[i];
3998
3999 tp->usrsync = driver_setup.default_sync;
4000 tp->usrwide = driver_setup.max_wide;
4001 tp->usrtags = MAX_TAGS;
4002 tp->period = 0xffff;
4003 if (!driver_setup.disconnection)
4004 np->target[i].usrflag = UF_NODISC;
4005 }
4006
4007 /*
4008 ** Announce all that stuff to user.
4009 */
4010
4011 printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
4012 np->myaddr,
4013 np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
4014 (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
4015 (np->rv_stest2 & 0x20) ? ", Differential" : "");
4016
4017 if (bootverbose > 1) {
4018 printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4019 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4020 ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
4021 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
4022
4023 printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4024 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4025 ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4026 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4027 }
4028
4029 if (bootverbose && np->paddr2)
4030 printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4031 ncr_name(np), np->paddr2);
4032}
4033
4034/*==========================================================
4035**
4036**
4037** Done SCSI commands list management.
4038**
4039** We donnot enter the scsi_done() callback immediately
4040** after a command has been seen as completed but we
4041** insert it into a list which is flushed outside any kind
4042** of driver critical section.
4043** This allows to do minimal stuff under interrupt and
4044** inside critical sections and to also avoid locking up
4045** on recursive calls to driver entry points under SMP.
4046** In fact, the only kernel point which is entered by the
4047** driver with a driver lock set is kmalloc(GFP_ATOMIC)
4048** that shall not reenter the driver under any circumstances,
4049** AFAIK.
4050**
4051**==========================================================
4052*/
4053static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4054{
4055 unmap_scsi_data(np, cmd);
4056 cmd->host_scribble = (char *) np->done_list;
4057 np->done_list = cmd;
4058}
4059
4060static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4061{
4062 struct scsi_cmnd *cmd;
4063
4064 while (lcmd) {
4065 cmd = lcmd;
4066 lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4067 cmd->scsi_done(cmd);
4068 }
4069}
4070
4071/*==========================================================
4072**
4073**
4074** Prepare the next negotiation message if needed.
4075**
4076** Fill in the part of message buffer that contains the
4077** negotiation and the nego_status field of the CCB.
4078** Returns the size of the message in bytes.
4079**
4080**
4081**==========================================================
4082*/
4083
4084
4085static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4086{
4087 struct tcb *tp = &np->target[cp->target];
4088 int msglen = 0;
4089 int nego = 0;
4090 struct scsi_target *starget = tp->starget;
4091
4092 /* negotiate wide transfers ? */
4093 if (!tp->widedone) {
4094 if (spi_support_wide(starget)) {
4095 nego = NS_WIDE;
4096 } else
4097 tp->widedone=1;
4098 }
4099
4100 /* negotiate synchronous transfers? */
4101 if (!nego && !tp->period) {
4102 if (spi_support_sync(starget)) {
4103 nego = NS_SYNC;
4104 } else {
4105 tp->period =0xffff;
4106 dev_info(&starget->dev, "target did not report SYNC.\n");
4107 }
4108 }
4109
4110 switch (nego) {
4111 case NS_SYNC:
4112 msgptr[msglen++] = M_EXTENDED;
4113 msgptr[msglen++] = 3;
4114 msgptr[msglen++] = M_X_SYNC_REQ;
4115 msgptr[msglen++] = tp->maxoffs ? tp->minsync : 0;
4116 msgptr[msglen++] = tp->maxoffs;
4117 break;
4118 case NS_WIDE:
4119 msgptr[msglen++] = M_EXTENDED;
4120 msgptr[msglen++] = 2;
4121 msgptr[msglen++] = M_X_WIDE_REQ;
4122 msgptr[msglen++] = tp->usrwide;
4123 break;
4124 }
4125
4126 cp->nego_status = nego;
4127
4128 if (nego) {
4129 tp->nego_cp = cp;
4130 if (DEBUG_FLAGS & DEBUG_NEGO) {
4131 ncr_print_msg(cp, nego == NS_WIDE ?
4132 "wide msgout":"sync_msgout", msgptr);
4133 }
4134 }
4135
4136 return msglen;
4137}
4138
4139
4140
4141/*==========================================================
4142**
4143**
4144** Start execution of a SCSI command.
4145** This is called from the generic SCSI driver.
4146**
4147**
4148**==========================================================
4149*/
4150static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4151{
4152 struct scsi_device *sdev = cmd->device;
4153 struct tcb *tp = &np->target[sdev->id];
4154 struct lcb *lp = tp->lp[sdev->lun];
4155 struct ccb *cp;
4156
4157 int segments;
4158 u_char idmsg, *msgptr;
4159 u32 msglen;
4160 int direction;
4161 u32 lastp, goalp;
4162
4163 /*---------------------------------------------
4164 **
4165 ** Some shortcuts ...
4166 **
4167 **---------------------------------------------
4168 */
4169 if ((sdev->id == np->myaddr ) ||
4170 (sdev->id >= MAX_TARGET) ||
4171 (sdev->lun >= MAX_LUN )) {
4172 return(DID_BAD_TARGET);
4173 }
4174
4175 /*---------------------------------------------
4176 **
4177 ** Complete the 1st TEST UNIT READY command
4178 ** with error condition if the device is
4179 ** flagged NOSCAN, in order to speed up
4180 ** the boot.
4181 **
4182 **---------------------------------------------
4183 */
4184 if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4185 (tp->usrflag & UF_NOSCAN)) {
4186 tp->usrflag &= ~UF_NOSCAN;
4187 return DID_BAD_TARGET;
4188 }
4189
4190 if (DEBUG_FLAGS & DEBUG_TINY) {
4191 PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4192 }
4193
4194 /*---------------------------------------------------
4195 **
4196 ** Assign a ccb / bind cmd.
4197 ** If resetting, shorten settle_time if necessary
4198 ** in order to avoid spurious timeouts.
4199 ** If resetting or no free ccb,
4200 ** insert cmd into the waiting list.
4201 **
4202 **----------------------------------------------------
4203 */
4204 if (np->settle_time && cmd->timeout_per_command >= HZ) {
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06004205 u_long tlimit = jiffies + cmd->timeout_per_command - HZ;
4206 if (time_after(np->settle_time, tlimit))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004207 np->settle_time = tlimit;
4208 }
4209
4210 if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4211 insert_into_waiting_list(np, cmd);
4212 return(DID_OK);
4213 }
4214 cp->cmd = cmd;
4215
4216 /*----------------------------------------------------
4217 **
4218 ** Build the identify / tag / sdtr message
4219 **
4220 **----------------------------------------------------
4221 */
4222
4223 idmsg = M_IDENTIFY | sdev->lun;
4224
4225 if (cp ->tag != NO_TAG ||
4226 (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4227 idmsg |= 0x40;
4228
4229 msgptr = cp->scsi_smsg;
4230 msglen = 0;
4231 msgptr[msglen++] = idmsg;
4232
4233 if (cp->tag != NO_TAG) {
4234 char order = np->order;
4235
4236 /*
4237 ** Force ordered tag if necessary to avoid timeouts
4238 ** and to preserve interactivity.
4239 */
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06004240 if (lp && time_after(jiffies, lp->tags_stime)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004241 if (lp->tags_smap) {
4242 order = M_ORDERED_TAG;
4243 if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4244 PRINT_ADDR(cmd,
4245 "ordered tag forced.\n");
4246 }
4247 }
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06004248 lp->tags_stime = jiffies + 3*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004249 lp->tags_smap = lp->tags_umap;
4250 }
4251
4252 if (order == 0) {
4253 /*
4254 ** Ordered write ops, unordered read ops.
4255 */
4256 switch (cmd->cmnd[0]) {
4257 case 0x08: /* READ_SMALL (6) */
4258 case 0x28: /* READ_BIG (10) */
4259 case 0xa8: /* READ_HUGE (12) */
4260 order = M_SIMPLE_TAG;
4261 break;
4262 default:
4263 order = M_ORDERED_TAG;
4264 }
4265 }
4266 msgptr[msglen++] = order;
4267 /*
4268 ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4269 ** since we may have to deal with devices that have
4270 ** problems with #TAG 0 or too great #TAG numbers.
4271 */
4272 msgptr[msglen++] = (cp->tag << 1) + 1;
4273 }
4274
4275 /*----------------------------------------------------
4276 **
4277 ** Build the data descriptors
4278 **
4279 **----------------------------------------------------
4280 */
4281
4282 direction = cmd->sc_data_direction;
4283 if (direction != DMA_NONE) {
4284 segments = ncr_scatter(np, cp, cp->cmd);
4285 if (segments < 0) {
4286 ncr_free_ccb(np, cp);
4287 return(DID_ERROR);
4288 }
4289 }
4290 else {
4291 cp->data_len = 0;
4292 segments = 0;
4293 }
4294
4295 /*---------------------------------------------------
4296 **
4297 ** negotiation required?
4298 **
4299 ** (nego_status is filled by ncr_prepare_nego())
4300 **
4301 **---------------------------------------------------
4302 */
4303
4304 cp->nego_status = 0;
4305
4306 if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4307 msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4308 }
4309
4310 /*----------------------------------------------------
4311 **
4312 ** Determine xfer direction.
4313 **
4314 **----------------------------------------------------
4315 */
4316 if (!cp->data_len)
4317 direction = DMA_NONE;
4318
4319 /*
4320 ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4321 ** but prepare alternate pointers for TO_DEVICE in case
4322 ** of our speculation will be just wrong.
4323 ** SCRIPTS will swap values if needed.
4324 */
4325 switch(direction) {
4326 case DMA_BIDIRECTIONAL:
4327 case DMA_TO_DEVICE:
4328 goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4329 if (segments <= MAX_SCATTERL)
4330 lastp = goalp - 8 - (segments * 16);
4331 else {
4332 lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4333 lastp -= (segments - MAX_SCATTERL) * 16;
4334 }
4335 if (direction != DMA_BIDIRECTIONAL)
4336 break;
4337 cp->phys.header.wgoalp = cpu_to_scr(goalp);
4338 cp->phys.header.wlastp = cpu_to_scr(lastp);
4339 /* fall through */
4340 case DMA_FROM_DEVICE:
4341 goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4342 if (segments <= MAX_SCATTERL)
4343 lastp = goalp - 8 - (segments * 16);
4344 else {
4345 lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4346 lastp -= (segments - MAX_SCATTERL) * 16;
4347 }
4348 break;
4349 default:
4350 case DMA_NONE:
4351 lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4352 break;
4353 }
4354
4355 /*
4356 ** Set all pointers values needed by SCRIPTS.
4357 ** If direction is unknown, start at data_io.
4358 */
4359 cp->phys.header.lastp = cpu_to_scr(lastp);
4360 cp->phys.header.goalp = cpu_to_scr(goalp);
4361
4362 if (direction == DMA_BIDIRECTIONAL)
4363 cp->phys.header.savep =
4364 cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4365 else
4366 cp->phys.header.savep= cpu_to_scr(lastp);
4367
4368 /*
4369 ** Save the initial data pointer in order to be able
4370 ** to redo the command.
4371 */
4372 cp->startp = cp->phys.header.savep;
4373
4374 /*----------------------------------------------------
4375 **
4376 ** fill in ccb
4377 **
4378 **----------------------------------------------------
4379 **
4380 **
4381 ** physical -> virtual backlink
4382 ** Generic SCSI command
4383 */
4384
4385 /*
4386 ** Startqueue
4387 */
4388 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4389 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4390 /*
4391 ** select
4392 */
Jeff Garzik422c0d62005-10-24 18:05:09 -04004393 cp->phys.select.sel_id = sdev_id(sdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004394 cp->phys.select.sel_scntl3 = tp->wval;
4395 cp->phys.select.sel_sxfer = tp->sval;
4396 /*
4397 ** message
4398 */
4399 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4400 cp->phys.smsg.size = cpu_to_scr(msglen);
4401
4402 /*
4403 ** command
4404 */
4405 memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4406 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4407 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
4408
4409 /*
4410 ** status
4411 */
4412 cp->actualquirks = 0;
4413 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4414 cp->scsi_status = S_ILLEGAL;
4415 cp->parity_status = 0;
4416
4417 cp->xerr_status = XE_OK;
4418#if 0
4419 cp->sync_status = tp->sval;
4420 cp->wide_status = tp->wval;
4421#endif
4422
4423 /*----------------------------------------------------
4424 **
4425 ** Critical region: start this job.
4426 **
4427 **----------------------------------------------------
4428 */
4429
4430 /* activate this job. */
4431 cp->magic = CCB_MAGIC;
4432
4433 /*
4434 ** insert next CCBs into start queue.
4435 ** 2 max at a time is enough to flush the CCB wait queue.
4436 */
4437 cp->auto_sense = 0;
4438 if (lp)
4439 ncr_start_next_ccb(np, lp, 2);
4440 else
4441 ncr_put_start_queue(np, cp);
4442
4443 /* Command is successfully queued. */
4444
4445 return DID_OK;
4446}
4447
4448
4449/*==========================================================
4450**
4451**
4452** Insert a CCB into the start queue and wake up the
4453** SCRIPTS processor.
4454**
4455**
4456**==========================================================
4457*/
4458
4459static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4460{
4461 struct list_head *qp;
4462 struct ccb *cp;
4463
4464 if (lp->held_ccb)
4465 return;
4466
4467 while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4468 qp = ncr_list_pop(&lp->wait_ccbq);
4469 if (!qp)
4470 break;
4471 ++lp->queuedccbs;
4472 cp = list_entry(qp, struct ccb, link_ccbq);
4473 list_add_tail(qp, &lp->busy_ccbq);
4474 lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4475 cpu_to_scr(CCB_PHYS (cp, restart));
4476 ncr_put_start_queue(np, cp);
4477 }
4478}
4479
4480static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4481{
4482 u16 qidx;
4483
4484 /*
4485 ** insert into start queue.
4486 */
4487 if (!np->squeueput) np->squeueput = 1;
4488 qidx = np->squeueput + 2;
4489 if (qidx >= MAX_START + MAX_START) qidx = 1;
4490
4491 np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4492 MEMORY_BARRIER();
4493 np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4494
4495 np->squeueput = qidx;
4496 ++np->queuedccbs;
4497 cp->queued = 1;
4498
4499 if (DEBUG_FLAGS & DEBUG_QUEUE)
4500 printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4501
4502 /*
4503 ** Script processor may be waiting for reselect.
4504 ** Wake it up.
4505 */
4506 MEMORY_BARRIER();
4507 OUTB (nc_istat, SIGP);
4508}
4509
4510
4511static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4512{
4513 u32 term;
4514 int retv = 0;
4515
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06004516 np->settle_time = jiffies + settle_delay * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004517
4518 if (bootverbose > 1)
4519 printk("%s: resetting, "
4520 "command processing suspended for %d seconds\n",
4521 ncr_name(np), settle_delay);
4522
4523 ncr_chip_reset(np, 100);
4524 udelay(2000); /* The 895 needs time for the bus mode to settle */
4525 if (enab_int)
4526 OUTW (nc_sien, RST);
4527 /*
4528 ** Enable Tolerant, reset IRQD if present and
4529 ** properly set IRQ mode, prior to resetting the bus.
4530 */
4531 OUTB (nc_stest3, TE);
4532 OUTB (nc_scntl1, CRST);
4533 udelay(200);
4534
4535 if (!driver_setup.bus_check)
4536 goto out;
4537 /*
4538 ** Check for no terminators or SCSI bus shorts to ground.
4539 ** Read SCSI data bus, data parity bits and control signals.
4540 ** We are expecting RESET to be TRUE and other signals to be
4541 ** FALSE.
4542 */
4543
4544 term = INB(nc_sstat0);
4545 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
4546 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
4547 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
4548 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
4549 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
4550
4551 if (!(np->features & FE_WIDE))
4552 term &= 0x3ffff;
4553
4554 if (term != (2<<7)) {
4555 printk("%s: suspicious SCSI data while resetting the BUS.\n",
4556 ncr_name(np));
4557 printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4558 "0x%lx, expecting 0x%lx\n",
4559 ncr_name(np),
4560 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
4561 (u_long)term, (u_long)(2<<7));
4562 if (driver_setup.bus_check == 1)
4563 retv = 1;
4564 }
4565out:
4566 OUTB (nc_scntl1, 0);
4567 return retv;
4568}
4569
4570/*
4571 * Start reset process.
4572 * If reset in progress do nothing.
4573 * The interrupt handler will reinitialize the chip.
4574 * The timeout handler will wait for settle_time before
4575 * clearing it and so resuming command processing.
4576 */
4577static void ncr_start_reset(struct ncb *np)
4578{
4579 if (!np->settle_time) {
4580 ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4581 }
4582}
4583
4584/*==========================================================
4585**
4586**
4587** Reset the SCSI BUS.
4588** This is called from the generic SCSI driver.
4589**
4590**
4591**==========================================================
4592*/
4593static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4594{
4595/* struct scsi_device *device = cmd->device; */
4596 struct ccb *cp;
4597 int found;
4598
4599/*
4600 * Return immediately if reset is in progress.
4601 */
4602 if (np->settle_time) {
4603 return FAILED;
4604 }
4605/*
4606 * Start the reset process.
4607 * The script processor is then assumed to be stopped.
4608 * Commands will now be queued in the waiting list until a settle
4609 * delay of 2 seconds will be completed.
4610 */
4611 ncr_start_reset(np);
4612/*
4613 * First, look in the wakeup list
4614 */
4615 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4616 /*
4617 ** look for the ccb of this command.
4618 */
4619 if (cp->host_status == HS_IDLE) continue;
4620 if (cp->cmd == cmd) {
4621 found = 1;
4622 break;
4623 }
4624 }
4625/*
4626 * Then, look in the waiting list
4627 */
4628 if (!found && retrieve_from_waiting_list(0, np, cmd))
4629 found = 1;
4630/*
4631 * Wake-up all awaiting commands with DID_RESET.
4632 */
4633 reset_waiting_list(np);
4634/*
4635 * Wake-up all pending commands with HS_RESET -> DID_RESET.
4636 */
4637 ncr_wakeup(np, HS_RESET);
4638/*
4639 * If the involved command was not in a driver queue, and the
4640 * scsi driver told us reset is synchronous, and the command is not
4641 * currently in the waiting list, complete it with DID_RESET status,
4642 * in order to keep it alive.
4643 */
4644 if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4645 cmd->result = ScsiResult(DID_RESET, 0);
4646 ncr_queue_done_cmd(np, cmd);
4647 }
4648
4649 return SUCCESS;
4650}
4651
4652#if 0 /* unused and broken.. */
4653/*==========================================================
4654**
4655**
4656** Abort an SCSI command.
4657** This is called from the generic SCSI driver.
4658**
4659**
4660**==========================================================
4661*/
4662static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4663{
4664/* struct scsi_device *device = cmd->device; */
4665 struct ccb *cp;
4666 int found;
4667 int retv;
4668
4669/*
4670 * First, look for the scsi command in the waiting list
4671 */
4672 if (remove_from_waiting_list(np, cmd)) {
4673 cmd->result = ScsiResult(DID_ABORT, 0);
4674 ncr_queue_done_cmd(np, cmd);
4675 return SCSI_ABORT_SUCCESS;
4676 }
4677
4678/*
4679 * Then, look in the wakeup list
4680 */
4681 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4682 /*
4683 ** look for the ccb of this command.
4684 */
4685 if (cp->host_status == HS_IDLE) continue;
4686 if (cp->cmd == cmd) {
4687 found = 1;
4688 break;
4689 }
4690 }
4691
4692 if (!found) {
4693 return SCSI_ABORT_NOT_RUNNING;
4694 }
4695
4696 if (np->settle_time) {
4697 return SCSI_ABORT_SNOOZE;
4698 }
4699
4700 /*
4701 ** If the CCB is active, patch schedule jumps for the
4702 ** script to abort the command.
4703 */
4704
4705 switch(cp->host_status) {
4706 case HS_BUSY:
4707 case HS_NEGOTIATE:
4708 printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4709 cp->start.schedule.l_paddr =
4710 cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4711 retv = SCSI_ABORT_PENDING;
4712 break;
4713 case HS_DISCONNECT:
4714 cp->restart.schedule.l_paddr =
4715 cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4716 retv = SCSI_ABORT_PENDING;
4717 break;
4718 default:
4719 retv = SCSI_ABORT_NOT_RUNNING;
4720 break;
4721
4722 }
4723
4724 /*
4725 ** If there are no requests, the script
4726 ** processor will sleep on SEL_WAIT_RESEL.
4727 ** Let's wake it up, since it may have to work.
4728 */
4729 OUTB (nc_istat, SIGP);
4730
4731 return retv;
4732}
4733#endif
4734
4735static void ncr_detach(struct ncb *np)
4736{
4737 struct ccb *cp;
4738 struct tcb *tp;
4739 struct lcb *lp;
4740 int target, lun;
4741 int i;
4742 char inst_name[16];
4743
4744 /* Local copy so we don't access np after freeing it! */
4745 strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4746
4747 printk("%s: releasing host resources\n", ncr_name(np));
4748
4749/*
4750** Stop the ncr_timeout process
4751** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4752*/
4753
4754#ifdef DEBUG_NCR53C8XX
4755 printk("%s: stopping the timer\n", ncr_name(np));
4756#endif
4757 np->release_stage = 1;
4758 for (i = 50 ; i && np->release_stage != 2 ; i--)
4759 mdelay(100);
4760 if (np->release_stage != 2)
4761 printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4762 else np->release_stage = 2;
4763
4764/*
4765** Disable chip interrupts
4766*/
4767
4768#ifdef DEBUG_NCR53C8XX
4769 printk("%s: disabling chip interrupts\n", ncr_name(np));
4770#endif
4771 OUTW (nc_sien , 0);
4772 OUTB (nc_dien , 0);
4773
4774 /*
4775 ** Reset NCR chip
4776 ** Restore bios setting for automatic clock detection.
4777 */
4778
4779 printk("%s: resetting chip\n", ncr_name(np));
4780 ncr_chip_reset(np, 100);
4781
4782 OUTB(nc_dmode, np->sv_dmode);
4783 OUTB(nc_dcntl, np->sv_dcntl);
4784 OUTB(nc_ctest0, np->sv_ctest0);
4785 OUTB(nc_ctest3, np->sv_ctest3);
4786 OUTB(nc_ctest4, np->sv_ctest4);
4787 OUTB(nc_ctest5, np->sv_ctest5);
4788 OUTB(nc_gpcntl, np->sv_gpcntl);
4789 OUTB(nc_stest2, np->sv_stest2);
4790
4791 ncr_selectclock(np, np->sv_scntl3);
4792
4793 /*
4794 ** Free allocated ccb(s)
4795 */
4796
4797 while ((cp=np->ccb->link_ccb) != NULL) {
4798 np->ccb->link_ccb = cp->link_ccb;
4799 if (cp->host_status) {
4800 printk("%s: shall free an active ccb (host_status=%d)\n",
4801 ncr_name(np), cp->host_status);
4802 }
4803#ifdef DEBUG_NCR53C8XX
4804 printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4805#endif
4806 m_free_dma(cp, sizeof(*cp), "CCB");
4807 }
4808
4809 /* Free allocated tp(s) */
4810
4811 for (target = 0; target < MAX_TARGET ; target++) {
4812 tp=&np->target[target];
4813 for (lun = 0 ; lun < MAX_LUN ; lun++) {
4814 lp = tp->lp[lun];
4815 if (lp) {
4816#ifdef DEBUG_NCR53C8XX
4817 printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4818#endif
4819 if (lp->jump_ccb != &lp->jump_ccb_0)
4820 m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4821 m_free_dma(lp, sizeof(*lp), "LCB");
4822 }
4823 }
4824 }
4825
4826 if (np->scripth0)
4827 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4828 if (np->script0)
4829 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4830 if (np->ccb)
4831 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4832 m_free_dma(np, sizeof(struct ncb), "NCB");
4833
4834 printk("%s: host resources successfully released\n", inst_name);
4835}
4836
4837/*==========================================================
4838**
4839**
4840** Complete execution of a SCSI command.
4841** Signal completion to the generic SCSI driver.
4842**
4843**
4844**==========================================================
4845*/
4846
4847void ncr_complete (struct ncb *np, struct ccb *cp)
4848{
4849 struct scsi_cmnd *cmd;
4850 struct tcb *tp;
4851 struct lcb *lp;
4852
4853 /*
4854 ** Sanity check
4855 */
4856
4857 if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4858 return;
4859
4860 /*
4861 ** Print minimal debug information.
4862 */
4863
4864 if (DEBUG_FLAGS & DEBUG_TINY)
4865 printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4866 cp->host_status,cp->scsi_status);
4867
4868 /*
4869 ** Get command, target and lun pointers.
4870 */
4871
4872 cmd = cp->cmd;
4873 cp->cmd = NULL;
4874 tp = &np->target[cmd->device->id];
4875 lp = tp->lp[cmd->device->lun];
4876
4877 /*
4878 ** We donnot queue more than 1 ccb per target
4879 ** with negotiation at any time. If this ccb was
4880 ** used for negotiation, clear this info in the tcb.
4881 */
4882
4883 if (cp == tp->nego_cp)
4884 tp->nego_cp = NULL;
4885
4886 /*
4887 ** If auto-sense performed, change scsi status.
4888 */
4889 if (cp->auto_sense) {
4890 cp->scsi_status = cp->auto_sense;
4891 }
4892
4893 /*
4894 ** If we were recovering from queue full or performing
4895 ** auto-sense, requeue skipped CCBs to the wait queue.
4896 */
4897
4898 if (lp && lp->held_ccb) {
4899 if (cp == lp->held_ccb) {
4900 list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4901 lp->held_ccb = NULL;
4902 }
4903 }
4904
4905 /*
4906 ** Check for parity errors.
4907 */
4908
4909 if (cp->parity_status > 1) {
4910 PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4911 }
4912
4913 /*
4914 ** Check for extended errors.
4915 */
4916
4917 if (cp->xerr_status != XE_OK) {
4918 switch (cp->xerr_status) {
4919 case XE_EXTRA_DATA:
4920 PRINT_ADDR(cmd, "extraneous data discarded.\n");
4921 break;
4922 case XE_BAD_PHASE:
4923 PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4924 break;
4925 default:
4926 PRINT_ADDR(cmd, "extended error %d.\n",
4927 cp->xerr_status);
4928 break;
4929 }
4930 if (cp->host_status==HS_COMPLETE)
4931 cp->host_status = HS_FAIL;
4932 }
4933
4934 /*
4935 ** Print out any error for debugging purpose.
4936 */
4937 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4938 if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4939 PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4940 "scsi_status=%x\n", cmd->cmnd[0],
4941 cp->host_status, cp->scsi_status);
4942 }
4943 }
4944
4945 /*
4946 ** Check the status.
4947 */
4948 if ( (cp->host_status == HS_COMPLETE)
4949 && (cp->scsi_status == S_GOOD ||
4950 cp->scsi_status == S_COND_MET)) {
4951 /*
4952 * All went well (GOOD status).
4953 * CONDITION MET status is returned on
4954 * `Pre-Fetch' or `Search data' success.
4955 */
4956 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4957
4958 /*
4959 ** @RESID@
4960 ** Could dig out the correct value for resid,
4961 ** but it would be quite complicated.
4962 */
4963 /* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4964
4965 /*
4966 ** Allocate the lcb if not yet.
4967 */
4968 if (!lp)
4969 ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4970
4971 tp->bytes += cp->data_len;
4972 tp->transfers ++;
4973
4974 /*
4975 ** If tags was reduced due to queue full,
4976 ** increase tags if 1000 good status received.
4977 */
4978 if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4979 ++lp->num_good;
4980 if (lp->num_good >= 1000) {
4981 lp->num_good = 0;
4982 ++lp->numtags;
4983 ncr_setup_tags (np, cmd->device);
4984 }
4985 }
4986 } else if ((cp->host_status == HS_COMPLETE)
4987 && (cp->scsi_status == S_CHECK_COND)) {
4988 /*
4989 ** Check condition code
4990 */
4991 cmd->result = ScsiResult(DID_OK, S_CHECK_COND);
4992
4993 /*
4994 ** Copy back sense data to caller's buffer.
4995 */
4996 memcpy(cmd->sense_buffer, cp->sense_buf,
4997 min(sizeof(cmd->sense_buffer), sizeof(cp->sense_buf)));
4998
4999 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
5000 u_char * p = (u_char*) & cmd->sense_buffer;
5001 int i;
5002 PRINT_ADDR(cmd, "sense data:");
5003 for (i=0; i<14; i++) printk (" %x", *p++);
5004 printk (".\n");
5005 }
5006 } else if ((cp->host_status == HS_COMPLETE)
5007 && (cp->scsi_status == S_CONFLICT)) {
5008 /*
5009 ** Reservation Conflict condition code
5010 */
5011 cmd->result = ScsiResult(DID_OK, S_CONFLICT);
5012
5013 } else if ((cp->host_status == HS_COMPLETE)
5014 && (cp->scsi_status == S_BUSY ||
5015 cp->scsi_status == S_QUEUE_FULL)) {
5016
5017 /*
5018 ** Target is busy.
5019 */
5020 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
5021
5022 } else if ((cp->host_status == HS_SEL_TIMEOUT)
5023 || (cp->host_status == HS_TIMEOUT)) {
5024
5025 /*
5026 ** No response
5027 */
5028 cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
5029
5030 } else if (cp->host_status == HS_RESET) {
5031
5032 /*
5033 ** SCSI bus reset
5034 */
5035 cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
5036
5037 } else if (cp->host_status == HS_ABORTED) {
5038
5039 /*
5040 ** Transfer aborted
5041 */
5042 cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5043
5044 } else {
5045
5046 /*
5047 ** Other protocol messes
5048 */
5049 PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5050 cp->host_status, cp->scsi_status, cp);
5051
5052 cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5053 }
5054
5055 /*
5056 ** trace output
5057 */
5058
5059 if (tp->usrflag & UF_TRACE) {
5060 u_char * p;
5061 int i;
5062 PRINT_ADDR(cmd, " CMD:");
5063 p = (u_char*) &cmd->cmnd[0];
5064 for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5065
5066 if (cp->host_status==HS_COMPLETE) {
5067 switch (cp->scsi_status) {
5068 case S_GOOD:
5069 printk (" GOOD");
5070 break;
5071 case S_CHECK_COND:
5072 printk (" SENSE:");
5073 p = (u_char*) &cmd->sense_buffer;
5074 for (i=0; i<14; i++)
5075 printk (" %x", *p++);
5076 break;
5077 default:
5078 printk (" STAT: %x\n", cp->scsi_status);
5079 break;
5080 }
5081 } else printk (" HOSTERROR: %x", cp->host_status);
5082 printk ("\n");
5083 }
5084
5085 /*
5086 ** Free this ccb
5087 */
5088 ncr_free_ccb (np, cp);
5089
5090 /*
5091 ** requeue awaiting scsi commands for this lun.
5092 */
5093 if (lp && lp->queuedccbs < lp->queuedepth &&
5094 !list_empty(&lp->wait_ccbq))
5095 ncr_start_next_ccb(np, lp, 2);
5096
5097 /*
5098 ** requeue awaiting scsi commands for this controller.
5099 */
5100 if (np->waiting_list)
5101 requeue_waiting_list(np);
5102
5103 /*
5104 ** signal completion to generic driver.
5105 */
5106 ncr_queue_done_cmd(np, cmd);
5107}
5108
5109/*==========================================================
5110**
5111**
5112** Signal all (or one) control block done.
5113**
5114**
5115**==========================================================
5116*/
5117
5118/*
5119** This CCB has been skipped by the NCR.
5120** Queue it in the correponding unit queue.
5121*/
5122static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5123{
5124 struct tcb *tp = &np->target[cp->target];
5125 struct lcb *lp = tp->lp[cp->lun];
5126
5127 if (lp && cp != np->ccb) {
5128 cp->host_status &= ~HS_SKIPMASK;
5129 cp->start.schedule.l_paddr =
5130 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
5131 list_del(&cp->link_ccbq);
5132 list_add_tail(&cp->link_ccbq, &lp->skip_ccbq);
5133 if (cp->queued) {
5134 --lp->queuedccbs;
5135 }
5136 }
5137 if (cp->queued) {
5138 --np->queuedccbs;
5139 cp->queued = 0;
5140 }
5141}
5142
5143/*
5144** The NCR has completed CCBs.
5145** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5146*/
5147void ncr_wakeup_done (struct ncb *np)
5148{
5149 struct ccb *cp;
5150#ifdef SCSI_NCR_CCB_DONE_SUPPORT
5151 int i, j;
5152
5153 i = np->ccb_done_ic;
5154 while (1) {
5155 j = i+1;
5156 if (j >= MAX_DONE)
5157 j = 0;
5158
5159 cp = np->ccb_done[j];
5160 if (!CCB_DONE_VALID(cp))
5161 break;
5162
5163 np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5164 np->scripth->done_queue[5*j + 4] =
5165 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5166 MEMORY_BARRIER();
5167 np->scripth->done_queue[5*i + 4] =
5168 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5169
5170 if (cp->host_status & HS_DONEMASK)
5171 ncr_complete (np, cp);
5172 else if (cp->host_status & HS_SKIPMASK)
5173 ncr_ccb_skipped (np, cp);
5174
5175 i = j;
5176 }
5177 np->ccb_done_ic = i;
5178#else
5179 cp = np->ccb;
5180 while (cp) {
5181 if (cp->host_status & HS_DONEMASK)
5182 ncr_complete (np, cp);
5183 else if (cp->host_status & HS_SKIPMASK)
5184 ncr_ccb_skipped (np, cp);
5185 cp = cp->link_ccb;
5186 }
5187#endif
5188}
5189
5190/*
5191** Complete all active CCBs.
5192*/
5193void ncr_wakeup (struct ncb *np, u_long code)
5194{
5195 struct ccb *cp = np->ccb;
5196
5197 while (cp) {
5198 if (cp->host_status != HS_IDLE) {
5199 cp->host_status = code;
5200 ncr_complete (np, cp);
5201 }
5202 cp = cp->link_ccb;
5203 }
5204}
5205
5206/*
5207** Reset ncr chip.
5208*/
5209
5210/* Some initialisation must be done immediately following reset, for 53c720,
5211 * at least. EA (dcntl bit 5) isn't set here as it is set once only in
5212 * the _detect function.
5213 */
5214static void ncr_chip_reset(struct ncb *np, int delay)
5215{
5216 OUTB (nc_istat, SRST);
5217 udelay(delay);
5218 OUTB (nc_istat, 0 );
5219
5220 if (np->features & FE_EHP)
5221 OUTB (nc_ctest0, EHP);
5222 if (np->features & FE_MUX)
5223 OUTB (nc_ctest4, MUX);
5224}
5225
5226
5227/*==========================================================
5228**
5229**
5230** Start NCR chip.
5231**
5232**
5233**==========================================================
5234*/
5235
5236void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5237{
5238 int i;
5239
5240 /*
5241 ** Reset chip if asked, otherwise just clear fifos.
5242 */
5243
5244 if (reset) {
5245 OUTB (nc_istat, SRST);
5246 udelay(100);
5247 }
5248 else {
5249 OUTB (nc_stest3, TE|CSF);
5250 OUTONB (nc_ctest3, CLF);
5251 }
5252
5253 /*
5254 ** Message.
5255 */
5256
5257 if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5258
5259 /*
5260 ** Clear Start Queue
5261 */
5262 np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
5263 for (i = 1; i < MAX_START + MAX_START; i += 2)
5264 np->scripth0->tryloop[i] =
5265 cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5266
5267 /*
5268 ** Start at first entry.
5269 */
5270 np->squeueput = 0;
5271 np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5272
5273#ifdef SCSI_NCR_CCB_DONE_SUPPORT
5274 /*
5275 ** Clear Done Queue
5276 */
5277 for (i = 0; i < MAX_DONE; i++) {
5278 np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5279 np->scripth0->done_queue[5*i + 4] =
5280 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5281 }
5282#endif
5283
5284 /*
5285 ** Start at first entry.
5286 */
5287 np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5288 np->ccb_done_ic = MAX_DONE-1;
5289 np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5290 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5291
5292 /*
5293 ** Wakeup all pending jobs.
5294 */
5295 ncr_wakeup (np, code);
5296
5297 /*
5298 ** Init chip.
5299 */
5300
5301 /*
5302 ** Remove reset; big delay because the 895 needs time for the
5303 ** bus mode to settle
5304 */
5305 ncr_chip_reset(np, 2000);
5306
5307 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5308 /* full arb., ena parity, par->ATN */
5309 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
5310
5311 ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
5312
5313 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
5314 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
5315 OUTB (nc_istat , SIGP ); /* Signal Process */
5316 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
5317 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
5318
5319 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
5320 OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
5321 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
5322 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
5323
5324 OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
5325 OUTB (nc_stest3, TE); /* TolerANT enable */
5326 OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
5327
5328 /*
5329 ** Disable disconnects.
5330 */
5331
5332 np->disc = 0;
5333
5334 /*
5335 ** Enable GPIO0 pin for writing if LED support.
5336 */
5337
5338 if (np->features & FE_LED0) {
5339 OUTOFFB (nc_gpcntl, 0x01);
5340 }
5341
5342 /*
5343 ** enable ints
5344 */
5345
5346 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5347 OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5348
5349 /*
5350 ** Fill in target structure.
5351 ** Reinitialize usrsync.
5352 ** Reinitialize usrwide.
5353 ** Prepare sync negotiation according to actual SCSI bus mode.
5354 */
5355
5356 for (i=0;i<MAX_TARGET;i++) {
5357 struct tcb *tp = &np->target[i];
5358
5359 tp->sval = 0;
5360 tp->wval = np->rv_scntl3;
5361
5362 if (tp->usrsync != 255) {
5363 if (tp->usrsync <= np->maxsync) {
5364 if (tp->usrsync < np->minsync) {
5365 tp->usrsync = np->minsync;
5366 }
5367 }
5368 else
5369 tp->usrsync = 255;
5370 }
5371
5372 if (tp->usrwide > np->maxwide)
5373 tp->usrwide = np->maxwide;
5374
5375 }
5376
5377 /*
5378 ** Start script processor.
5379 */
5380 if (np->paddr2) {
5381 if (bootverbose)
5382 printk ("%s: Downloading SCSI SCRIPTS.\n",
5383 ncr_name(np));
5384 OUTL (nc_scratcha, vtobus(np->script0));
5385 OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5386 }
5387 else
5388 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5389}
5390
5391/*==========================================================
5392**
5393** Prepare the negotiation values for wide and
5394** synchronous transfers.
5395**
5396**==========================================================
5397*/
5398
5399static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5400{
5401 /*
5402 ** minsync unit is 4ns !
5403 */
5404
5405 u_long minsync = tp->usrsync;
5406
5407 /*
5408 ** SCSI bus mode limit
5409 */
5410
5411 if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5412 if (minsync < 12) minsync = 12;
5413 }
5414
5415 /*
5416 ** our limit ..
5417 */
5418
5419 if (minsync < np->minsync)
5420 minsync = np->minsync;
5421
5422 /*
5423 ** divider limit
5424 */
5425
5426 if (minsync > np->maxsync)
5427 minsync = 255;
5428
5429 if (tp->maxoffs > np->maxoffs)
5430 tp->maxoffs = np->maxoffs;
5431
5432 tp->minsync = minsync;
5433 tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5434
5435 /*
5436 ** period=0: has to negotiate sync transfer
5437 */
5438
5439 tp->period=0;
5440
5441 /*
5442 ** widedone=0: has to negotiate wide transfer
5443 */
5444 tp->widedone=0;
5445}
5446
5447/*==========================================================
5448**
5449** Get clock factor and sync divisor for a given
5450** synchronous factor period.
5451** Returns the clock factor (in sxfer) and scntl3
5452** synchronous divisor field.
5453**
5454**==========================================================
5455*/
5456
5457static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5458{
5459 u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
5460 int div = np->clock_divn; /* Number of divisors supported */
5461 u_long fak; /* Sync factor in sxfer */
5462 u_long per; /* Period in tenths of ns */
5463 u_long kpc; /* (per * clk) */
5464
5465 /*
5466 ** Compute the synchronous period in tenths of nano-seconds
5467 */
5468 if (sfac <= 10) per = 250;
5469 else if (sfac == 11) per = 303;
5470 else if (sfac == 12) per = 500;
5471 else per = 40 * sfac;
5472
5473 /*
5474 ** Look for the greatest clock divisor that allows an
5475 ** input speed faster than the period.
5476 */
5477 kpc = per * clk;
5478 while (--div >= 0)
5479 if (kpc >= (div_10M[div] << 2)) break;
5480
5481 /*
5482 ** Calculate the lowest clock factor that allows an output
5483 ** speed not faster than the period.
5484 */
5485 fak = (kpc - 1) / div_10M[div] + 1;
5486
5487#if 0 /* This optimization does not seem very useful */
5488
5489 per = (fak * div_10M[div]) / clk;
5490
5491 /*
5492 ** Why not to try the immediate lower divisor and to choose
5493 ** the one that allows the fastest output speed ?
5494 ** We don't want input speed too much greater than output speed.
5495 */
5496 if (div >= 1 && fak < 8) {
5497 u_long fak2, per2;
5498 fak2 = (kpc - 1) / div_10M[div-1] + 1;
5499 per2 = (fak2 * div_10M[div-1]) / clk;
5500 if (per2 < per && fak2 <= 8) {
5501 fak = fak2;
5502 per = per2;
5503 --div;
5504 }
5505 }
5506#endif
5507
5508 if (fak < 4) fak = 4; /* Should never happen, too bad ... */
5509
5510 /*
5511 ** Compute and return sync parameters for the ncr
5512 */
5513 *fakp = fak - 4;
5514 *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5515}
5516
5517
5518/*==========================================================
5519**
5520** Set actual values, sync status and patch all ccbs of
5521** a target according to new sync/wide agreement.
5522**
5523**==========================================================
5524*/
5525
5526static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5527{
5528 struct ccb *cp;
5529 struct tcb *tp = &np->target[target];
5530
5531 /*
5532 ** set actual value and sync_status
5533 */
5534 OUTB (nc_sxfer, tp->sval);
5535 np->sync_st = tp->sval;
5536 OUTB (nc_scntl3, tp->wval);
5537 np->wide_st = tp->wval;
5538
5539 /*
5540 ** patch ALL ccbs of this target.
5541 */
5542 for (cp = np->ccb; cp; cp = cp->link_ccb) {
5543 if (!cp->cmd) continue;
Jeff Garzik422c0d62005-10-24 18:05:09 -04005544 if (scmd_id(cp->cmd) != target) continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005545#if 0
5546 cp->sync_status = tp->sval;
5547 cp->wide_status = tp->wval;
5548#endif
5549 cp->phys.select.sel_scntl3 = tp->wval;
5550 cp->phys.select.sel_sxfer = tp->sval;
5551 }
5552}
5553
5554/*==========================================================
5555**
5556** Switch sync mode for current job and it's target
5557**
5558**==========================================================
5559*/
5560
5561static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5562{
5563 struct scsi_cmnd *cmd = cp->cmd;
5564 struct tcb *tp;
5565 u_char target = INB (nc_sdid) & 0x0f;
5566 u_char idiv;
5567
Jeff Garzik422c0d62005-10-24 18:05:09 -04005568 BUG_ON(target != (scmd_id(cmd) & 0xf));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005569
5570 tp = &np->target[target];
5571
5572 if (!scntl3 || !(sxfer & 0x1f))
5573 scntl3 = np->rv_scntl3;
5574 scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5575
5576 /*
5577 ** Deduce the value of controller sync period from scntl3.
5578 ** period is in tenths of nano-seconds.
5579 */
5580
5581 idiv = ((scntl3 >> 4) & 0x7);
5582 if ((sxfer & 0x1f) && idiv)
5583 tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5584 else
5585 tp->period = 0xffff;
5586
5587 /* Stop there if sync parameters are unchanged */
5588 if (tp->sval == sxfer && tp->wval == scntl3)
5589 return;
5590 tp->sval = sxfer;
5591 tp->wval = scntl3;
5592
5593 if (sxfer & 0x01f) {
5594 /* Disable extended Sreq/Sack filtering */
5595 if (tp->period <= 2000)
5596 OUTOFFB(nc_stest2, EXT);
5597 }
5598
5599 spi_display_xfer_agreement(tp->starget);
5600
5601 /*
5602 ** set actual value and sync_status
5603 ** patch ALL ccbs of this target.
5604 */
5605 ncr_set_sync_wide_status(np, target);
5606}
5607
5608/*==========================================================
5609**
5610** Switch wide mode for current job and it's target
5611** SCSI specs say: a SCSI device that accepts a WDTR
5612** message shall reset the synchronous agreement to
5613** asynchronous mode.
5614**
5615**==========================================================
5616*/
5617
5618static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5619{
5620 struct scsi_cmnd *cmd = cp->cmd;
5621 u16 target = INB (nc_sdid) & 0x0f;
5622 struct tcb *tp;
5623 u_char scntl3;
5624 u_char sxfer;
5625
Jeff Garzik422c0d62005-10-24 18:05:09 -04005626 BUG_ON(target != (scmd_id(cmd) & 0xf));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005627
5628 tp = &np->target[target];
5629 tp->widedone = wide+1;
5630 scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5631
5632 sxfer = ack ? 0 : tp->sval;
5633
5634 /*
5635 ** Stop there if sync/wide parameters are unchanged
5636 */
5637 if (tp->sval == sxfer && tp->wval == scntl3) return;
5638 tp->sval = sxfer;
5639 tp->wval = scntl3;
5640
5641 /*
5642 ** Bells and whistles ;-)
5643 */
5644 if (bootverbose >= 2) {
5645 dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5646 (scntl3 & EWS) ? "en" : "dis");
5647 }
5648
5649 /*
5650 ** set actual value and sync_status
5651 ** patch ALL ccbs of this target.
5652 */
5653 ncr_set_sync_wide_status(np, target);
5654}
5655
5656/*==========================================================
5657**
5658** Switch tagged mode for a target.
5659**
5660**==========================================================
5661*/
5662
5663static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5664{
5665 unsigned char tn = sdev->id, ln = sdev->lun;
5666 struct tcb *tp = &np->target[tn];
5667 struct lcb *lp = tp->lp[ln];
5668 u_char reqtags, maxdepth;
5669
5670 /*
5671 ** Just in case ...
5672 */
5673 if ((!tp) || (!lp) || !sdev)
5674 return;
5675
5676 /*
5677 ** If SCSI device queue depth is not yet set, leave here.
5678 */
5679 if (!lp->scdev_depth)
5680 return;
5681
5682 /*
5683 ** Donnot allow more tags than the SCSI driver can queue
5684 ** for this device.
5685 ** Donnot allow more tags than we can handle.
5686 */
5687 maxdepth = lp->scdev_depth;
5688 if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
5689 if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
5690 if (lp->numtags > maxdepth) lp->numtags = maxdepth;
5691
5692 /*
5693 ** only devices conformant to ANSI Version >= 2
5694 ** only devices capable of tagged commands
5695 ** only if enabled by user ..
5696 */
5697 if (sdev->tagged_supported && lp->numtags > 1) {
5698 reqtags = lp->numtags;
5699 } else {
5700 reqtags = 1;
5701 }
5702
5703 /*
5704 ** Update max number of tags
5705 */
5706 lp->numtags = reqtags;
5707 if (lp->numtags > lp->maxtags)
5708 lp->maxtags = lp->numtags;
5709
5710 /*
5711 ** If we want to switch tag mode, we must wait
5712 ** for no CCB to be active.
5713 */
5714 if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
5715 if (lp->queuedepth == reqtags) /* Already announced */
5716 return;
5717 lp->queuedepth = reqtags;
5718 }
5719 else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
5720 lp->queuedepth = reqtags;
5721 return;
5722 }
5723 else { /* Want to switch tag mode */
5724 if (lp->busyccbs) /* If not yet safe, return */
5725 return;
5726 lp->queuedepth = reqtags;
5727 lp->usetags = reqtags > 1 ? 1 : 0;
5728 }
5729
5730 /*
5731 ** Patch the lun mini-script, according to tag mode.
5732 */
5733 lp->jump_tag.l_paddr = lp->usetags?
5734 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5735 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5736
5737 /*
5738 ** Announce change to user.
5739 */
5740 if (bootverbose) {
5741 if (lp->usetags) {
5742 dev_info(&sdev->sdev_gendev,
5743 "tagged command queue depth set to %d\n",
5744 reqtags);
5745 } else {
5746 dev_info(&sdev->sdev_gendev,
5747 "tagged command queueing disabled\n");
5748 }
5749 }
5750}
5751
5752/*==========================================================
5753**
5754**
5755** ncr timeout handler.
5756**
5757**
5758**==========================================================
5759**
5760** Misused to keep the driver running when
5761** interrupts are not configured correctly.
5762**
5763**----------------------------------------------------------
5764*/
5765
5766static void ncr_timeout (struct ncb *np)
5767{
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06005768 u_long thistime = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005769
5770 /*
5771 ** If release process in progress, let's go
5772 ** Set the release stage from 1 to 2 to synchronize
5773 ** with the release process.
5774 */
5775
5776 if (np->release_stage) {
5777 if (np->release_stage == 1) np->release_stage = 2;
5778 return;
5779 }
5780
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06005781 np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005782 add_timer(&np->timer);
5783
5784 /*
5785 ** If we are resetting the ncr, wait for settle_time before
5786 ** clearing it. Then command processing will be resumed.
5787 */
5788 if (np->settle_time) {
5789 if (np->settle_time <= thistime) {
5790 if (bootverbose > 1)
5791 printk("%s: command processing resumed\n", ncr_name(np));
5792 np->settle_time = 0;
5793 np->disc = 1;
5794 requeue_waiting_list(np);
5795 }
5796 return;
5797 }
5798
5799 /*
5800 ** Since the generic scsi driver only allows us 0.5 second
5801 ** to perform abort of a command, we must look at ccbs about
5802 ** every 0.25 second.
5803 */
5804 if (np->lasttime + 4*HZ < thistime) {
5805 /*
5806 ** block ncr interrupts
5807 */
5808 np->lasttime = thistime;
5809 }
5810
5811#ifdef SCSI_NCR_BROKEN_INTR
5812 if (INB(nc_istat) & (INTF|SIP|DIP)) {
5813
5814 /*
5815 ** Process pending interrupts.
5816 */
5817 if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5818 ncr_exception (np);
5819 if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5820 }
5821#endif /* SCSI_NCR_BROKEN_INTR */
5822}
5823
5824/*==========================================================
5825**
5826** log message for real hard errors
5827**
5828** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5829** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5830**
5831** exception register:
5832** ds: dstat
5833** si: sist
5834**
5835** SCSI bus lines:
5836** so: control lines as driver by NCR.
5837** si: control lines as seen by NCR.
5838** sd: scsi data lines as seen by NCR.
5839**
5840** wide/fastmode:
5841** sxfer: (see the manual)
5842** scntl3: (see the manual)
5843**
5844** current script command:
5845** dsp: script address (relative to start of script).
5846** dbc: first word of script command.
5847**
5848** First 16 register of the chip:
5849** r0..rf
5850**
5851**==========================================================
5852*/
5853
5854static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5855{
5856 u32 dsp;
5857 int script_ofs;
5858 int script_size;
5859 char *script_name;
5860 u_char *script_base;
5861 int i;
5862
5863 dsp = INL (nc_dsp);
5864
5865 if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5866 script_ofs = dsp - np->p_script;
5867 script_size = sizeof(struct script);
5868 script_base = (u_char *) np->script0;
5869 script_name = "script";
5870 }
5871 else if (np->p_scripth < dsp &&
5872 dsp <= np->p_scripth + sizeof(struct scripth)) {
5873 script_ofs = dsp - np->p_scripth;
5874 script_size = sizeof(struct scripth);
5875 script_base = (u_char *) np->scripth0;
5876 script_name = "scripth";
5877 } else {
5878 script_ofs = dsp;
5879 script_size = 0;
5880 script_base = NULL;
5881 script_name = "mem";
5882 }
5883
5884 printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5885 ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5886 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5887 (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5888 (unsigned)INL (nc_dbc));
5889
5890 if (((script_ofs & 3) == 0) &&
5891 (unsigned)script_ofs < script_size) {
5892 printk ("%s: script cmd = %08x\n", ncr_name(np),
5893 scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5894 }
5895
5896 printk ("%s: regdump:", ncr_name(np));
5897 for (i=0; i<16;i++)
5898 printk (" %02x", (unsigned)INB_OFF(i));
5899 printk (".\n");
5900}
5901
5902/*============================================================
5903**
5904** ncr chip exception handler.
5905**
5906**============================================================
5907**
5908** In normal cases, interrupt conditions occur one at a
5909** time. The ncr is able to stack in some extra registers
5910** other interrupts that will occurs after the first one.
5911** But severall interrupts may occur at the same time.
5912**
5913** We probably should only try to deal with the normal
5914** case, but it seems that multiple interrupts occur in
5915** some cases that are not abnormal at all.
5916**
5917** The most frequent interrupt condition is Phase Mismatch.
5918** We should want to service this interrupt quickly.
5919** A SCSI parity error may be delivered at the same time.
5920** The SIR interrupt is not very frequent in this driver,
5921** since the INTFLY is likely used for command completion
5922** signaling.
5923** The Selection Timeout interrupt may be triggered with
5924** IID and/or UDC.
5925** The SBMC interrupt (SCSI Bus Mode Change) may probably
5926** occur at any time.
5927**
5928** This handler try to deal as cleverly as possible with all
5929** the above.
5930**
5931**============================================================
5932*/
5933
5934void ncr_exception (struct ncb *np)
5935{
5936 u_char istat, dstat;
5937 u16 sist;
5938 int i;
5939
5940 /*
5941 ** interrupt on the fly ?
5942 ** Since the global header may be copied back to a CCB
5943 ** using a posted PCI memory write, the last operation on
5944 ** the istat register is a READ in order to flush posted
5945 ** PCI write commands.
5946 */
5947 istat = INB (nc_istat);
5948 if (istat & INTF) {
5949 OUTB (nc_istat, (istat & SIGP) | INTF);
5950 istat = INB (nc_istat);
5951 if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5952 ncr_wakeup_done (np);
5953 }
5954
5955 if (!(istat & (SIP|DIP)))
5956 return;
5957
5958 if (istat & CABRT)
5959 OUTB (nc_istat, CABRT);
5960
5961 /*
5962 ** Steinbach's Guideline for Systems Programming:
5963 ** Never test for an error condition you don't know how to handle.
5964 */
5965
5966 sist = (istat & SIP) ? INW (nc_sist) : 0;
5967 dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5968
5969 if (DEBUG_FLAGS & DEBUG_TINY)
5970 printk ("<%d|%x:%x|%x:%x>",
5971 (int)INB(nc_scr0),
5972 dstat,sist,
5973 (unsigned)INL(nc_dsp),
5974 (unsigned)INL(nc_dbc));
5975
5976 /*========================================================
5977 ** First, interrupts we want to service cleanly.
5978 **
5979 ** Phase mismatch is the most frequent interrupt, and
5980 ** so we have to service it as quickly and as cleanly
5981 ** as possible.
5982 ** Programmed interrupts are rarely used in this driver,
5983 ** but we must handle them cleanly anyway.
5984 ** We try to deal with PAR and SBMC combined with
5985 ** some other interrupt(s).
5986 **=========================================================
5987 */
5988
5989 if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
5990 !(dstat & (MDPE|BF|ABRT|IID))) {
5991 if ((sist & SBMC) && ncr_int_sbmc (np))
5992 return;
5993 if ((sist & PAR) && ncr_int_par (np))
5994 return;
5995 if (sist & MA) {
5996 ncr_int_ma (np);
5997 return;
5998 }
5999 if (dstat & SIR) {
6000 ncr_int_sir (np);
6001 return;
6002 }
6003 /*
6004 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
6005 */
6006 if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
6007 printk( "%s: unknown interrupt(s) ignored, "
6008 "ISTAT=%x DSTAT=%x SIST=%x\n",
6009 ncr_name(np), istat, dstat, sist);
6010 return;
6011 }
6012 OUTONB_STD ();
6013 return;
6014 }
6015
6016 /*========================================================
6017 ** Now, interrupts that need some fixing up.
6018 ** Order and multiple interrupts is so less important.
6019 **
6020 ** If SRST has been asserted, we just reset the chip.
6021 **
6022 ** Selection is intirely handled by the chip. If the
6023 ** chip says STO, we trust it. Seems some other
6024 ** interrupts may occur at the same time (UDC, IID), so
6025 ** we ignore them. In any case we do enough fix-up
6026 ** in the service routine.
6027 ** We just exclude some fatal dma errors.
6028 **=========================================================
6029 */
6030
6031 if (sist & RST) {
6032 ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6033 return;
6034 }
6035
6036 if ((sist & STO) &&
6037 !(dstat & (MDPE|BF|ABRT))) {
6038 /*
6039 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6040 */
6041 OUTONB (nc_ctest3, CLF);
6042
6043 ncr_int_sto (np);
6044 return;
6045 }
6046
6047 /*=========================================================
6048 ** Now, interrupts we are not able to recover cleanly.
6049 ** (At least for the moment).
6050 **
6051 ** Do the register dump.
6052 ** Log message for real hard errors.
6053 ** Clear all fifos.
6054 ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6055 ** BUS and the chip.
6056 ** We are more soft for UDC.
6057 **=========================================================
6058 */
6059
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06006060 if (time_after(jiffies, np->regtime)) {
6061 np->regtime = jiffies + 10*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006062 for (i = 0; i<sizeof(np->regdump); i++)
6063 ((char*)&np->regdump)[i] = INB_OFF(i);
6064 np->regdump.nc_dstat = dstat;
6065 np->regdump.nc_sist = sist;
6066 }
6067
6068 ncr_log_hard_error(np, sist, dstat);
6069
6070 printk ("%s: have to clear fifos.\n", ncr_name (np));
6071 OUTB (nc_stest3, TE|CSF);
6072 OUTONB (nc_ctest3, CLF);
6073
6074 if ((sist & (SGE)) ||
6075 (dstat & (MDPE|BF|ABRT|IID))) {
6076 ncr_start_reset(np);
6077 return;
6078 }
6079
6080 if (sist & HTH) {
6081 printk ("%s: handshake timeout\n", ncr_name(np));
6082 ncr_start_reset(np);
6083 return;
6084 }
6085
6086 if (sist & UDC) {
6087 printk ("%s: unexpected disconnect\n", ncr_name(np));
6088 OUTB (HS_PRT, HS_UNEXPECTED);
6089 OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6090 return;
6091 }
6092
6093 /*=========================================================
6094 ** We just miss the cause of the interrupt. :(
6095 ** Print a message. The timeout will do the real work.
6096 **=========================================================
6097 */
6098 printk ("%s: unknown interrupt\n", ncr_name(np));
6099}
6100
6101/*==========================================================
6102**
6103** ncr chip exception handler for selection timeout
6104**
6105**==========================================================
6106**
6107** There seems to be a bug in the 53c810.
6108** Although a STO-Interrupt is pending,
6109** it continues executing script commands.
6110** But it will fail and interrupt (IID) on
6111** the next instruction where it's looking
6112** for a valid phase.
6113**
6114**----------------------------------------------------------
6115*/
6116
6117void ncr_int_sto (struct ncb *np)
6118{
6119 u_long dsa;
6120 struct ccb *cp;
6121 if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6122
6123 /*
6124 ** look for ccb and set the status.
6125 */
6126
6127 dsa = INL (nc_dsa);
6128 cp = np->ccb;
6129 while (cp && (CCB_PHYS (cp, phys) != dsa))
6130 cp = cp->link_ccb;
6131
6132 if (cp) {
6133 cp-> host_status = HS_SEL_TIMEOUT;
6134 ncr_complete (np, cp);
6135 }
6136
6137 /*
6138 ** repair start queue and jump to start point.
6139 */
6140
6141 OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6142 return;
6143}
6144
6145/*==========================================================
6146**
6147** ncr chip exception handler for SCSI bus mode change
6148**
6149**==========================================================
6150**
6151** spi2-r12 11.2.3 says a transceiver mode change must
6152** generate a reset event and a device that detects a reset
6153** event shall initiate a hard reset. It says also that a
6154** device that detects a mode change shall set data transfer
6155** mode to eight bit asynchronous, etc...
6156** So, just resetting should be enough.
6157**
6158**
6159**----------------------------------------------------------
6160*/
6161
6162static int ncr_int_sbmc (struct ncb *np)
6163{
6164 u_char scsi_mode = INB (nc_stest4) & SMODE;
6165
6166 if (scsi_mode != np->scsi_mode) {
6167 printk("%s: SCSI bus mode change from %x to %x.\n",
6168 ncr_name(np), np->scsi_mode, scsi_mode);
6169
6170 np->scsi_mode = scsi_mode;
6171
6172
6173 /*
6174 ** Suspend command processing for 1 second and
6175 ** reinitialize all except the chip.
6176 */
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06006177 np->settle_time = jiffies + HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006178 ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6179 return 1;
6180 }
6181 return 0;
6182}
6183
6184/*==========================================================
6185**
6186** ncr chip exception handler for SCSI parity error.
6187**
6188**==========================================================
6189**
6190**
6191**----------------------------------------------------------
6192*/
6193
6194static int ncr_int_par (struct ncb *np)
6195{
6196 u_char hsts = INB (HS_PRT);
6197 u32 dbc = INL (nc_dbc);
6198 u_char sstat1 = INB (nc_sstat1);
6199 int phase = -1;
6200 int msg = -1;
6201 u32 jmp;
6202
6203 printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6204 ncr_name(np), hsts, dbc, sstat1);
6205
6206 /*
6207 * Ignore the interrupt if the NCR is not connected
6208 * to the SCSI bus, since the right work should have
6209 * been done on unexpected disconnection handling.
6210 */
6211 if (!(INB (nc_scntl1) & ISCON))
6212 return 0;
6213
6214 /*
6215 * If the nexus is not clearly identified, reset the bus.
6216 * We will try to do better later.
6217 */
6218 if (hsts & HS_INVALMASK)
6219 goto reset_all;
6220
6221 /*
6222 * If the SCSI parity error occurs in MSG IN phase, prepare a
6223 * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6224 * ERROR message and let the device decide to retry the command
6225 * or to terminate with check condition. If we were in MSG IN
6226 * phase waiting for the response of a negotiation, we will
6227 * get SIR_NEGO_FAILED at dispatch.
6228 */
6229 if (!(dbc & 0xc0000000))
6230 phase = (dbc >> 24) & 7;
6231 if (phase == 7)
6232 msg = M_PARITY;
6233 else
6234 msg = M_ID_ERROR;
6235
6236
6237 /*
6238 * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6239 * script that will ignore all data in bytes until phase
6240 * change, since we are not sure the chip will wait the phase
6241 * change prior to delivering the interrupt.
6242 */
6243 if (phase == 1)
6244 jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6245 else
6246 jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6247
6248 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6249 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6250
6251 np->msgout[0] = msg;
6252 OUTL_DSP (jmp);
6253 return 1;
6254
6255reset_all:
6256 ncr_start_reset(np);
6257 return 1;
6258}
6259
6260/*==========================================================
6261**
6262**
6263** ncr chip exception handler for phase errors.
6264**
6265**
6266**==========================================================
6267**
6268** We have to construct a new transfer descriptor,
6269** to transfer the rest of the current block.
6270**
6271**----------------------------------------------------------
6272*/
6273
6274static void ncr_int_ma (struct ncb *np)
6275{
6276 u32 dbc;
6277 u32 rest;
6278 u32 dsp;
6279 u32 dsa;
6280 u32 nxtdsp;
6281 u32 newtmp;
6282 u32 *vdsp;
6283 u32 oadr, olen;
6284 u32 *tblp;
6285 ncrcmd *newcmd;
6286 u_char cmd, sbcl;
6287 struct ccb *cp;
6288
6289 dsp = INL (nc_dsp);
6290 dbc = INL (nc_dbc);
6291 sbcl = INB (nc_sbcl);
6292
6293 cmd = dbc >> 24;
6294 rest = dbc & 0xffffff;
6295
6296 /*
6297 ** Take into account dma fifo and various buffers and latches,
6298 ** only if the interrupted phase is an OUTPUT phase.
6299 */
6300
6301 if ((cmd & 1) == 0) {
6302 u_char ctest5, ss0, ss2;
6303 u16 delta;
6304
6305 ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6306 if (ctest5 & DFS)
6307 delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6308 else
6309 delta=(INB (nc_dfifo) - rest) & 0x7f;
6310
6311 /*
6312 ** The data in the dma fifo has not been transferred to
6313 ** the target -> add the amount to the rest
6314 ** and clear the data.
6315 ** Check the sstat2 register in case of wide transfer.
6316 */
6317
6318 rest += delta;
6319 ss0 = INB (nc_sstat0);
6320 if (ss0 & OLF) rest++;
6321 if (ss0 & ORF) rest++;
6322 if (INB(nc_scntl3) & EWS) {
6323 ss2 = INB (nc_sstat2);
6324 if (ss2 & OLF1) rest++;
6325 if (ss2 & ORF1) rest++;
6326 }
6327
6328 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6329 printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6330 (unsigned) rest, (unsigned) delta, ss0);
6331
6332 } else {
6333 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6334 printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6335 }
6336
6337 /*
6338 ** Clear fifos.
6339 */
6340 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6341 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6342
6343 /*
6344 ** locate matching cp.
6345 ** if the interrupted phase is DATA IN or DATA OUT,
6346 ** trust the global header.
6347 */
6348 dsa = INL (nc_dsa);
6349 if (!(cmd & 6)) {
6350 cp = np->header.cp;
6351 if (CCB_PHYS(cp, phys) != dsa)
6352 cp = NULL;
6353 } else {
6354 cp = np->ccb;
6355 while (cp && (CCB_PHYS (cp, phys) != dsa))
6356 cp = cp->link_ccb;
6357 }
6358
6359 /*
6360 ** try to find the interrupted script command,
6361 ** and the address at which to continue.
6362 */
6363 vdsp = NULL;
6364 nxtdsp = 0;
6365 if (dsp > np->p_script &&
6366 dsp <= np->p_script + sizeof(struct script)) {
6367 vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6368 nxtdsp = dsp;
6369 }
6370 else if (dsp > np->p_scripth &&
6371 dsp <= np->p_scripth + sizeof(struct scripth)) {
6372 vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6373 nxtdsp = dsp;
6374 }
6375 else if (cp) {
6376 if (dsp == CCB_PHYS (cp, patch[2])) {
6377 vdsp = &cp->patch[0];
6378 nxtdsp = scr_to_cpu(vdsp[3]);
6379 }
6380 else if (dsp == CCB_PHYS (cp, patch[6])) {
6381 vdsp = &cp->patch[4];
6382 nxtdsp = scr_to_cpu(vdsp[3]);
6383 }
6384 }
6385
6386 /*
6387 ** log the information
6388 */
6389
6390 if (DEBUG_FLAGS & DEBUG_PHASE) {
6391 printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6392 cp, np->header.cp,
6393 (unsigned)dsp,
6394 (unsigned)nxtdsp, vdsp, cmd);
6395 }
6396
6397 /*
6398 ** cp=0 means that the DSA does not point to a valid control
6399 ** block. This should not happen since we donnot use multi-byte
6400 ** move while we are being reselected ot after command complete.
6401 ** We are not able to recover from such a phase error.
6402 */
6403 if (!cp) {
6404 printk ("%s: SCSI phase error fixup: "
6405 "CCB already dequeued (0x%08lx)\n",
6406 ncr_name (np), (u_long) np->header.cp);
6407 goto reset_all;
6408 }
6409
6410 /*
6411 ** get old startaddress and old length.
6412 */
6413
6414 oadr = scr_to_cpu(vdsp[1]);
6415
6416 if (cmd & 0x10) { /* Table indirect */
6417 tblp = (u32 *) ((char*) &cp->phys + oadr);
6418 olen = scr_to_cpu(tblp[0]);
6419 oadr = scr_to_cpu(tblp[1]);
6420 } else {
6421 tblp = (u32 *) 0;
6422 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6423 }
6424
6425 if (DEBUG_FLAGS & DEBUG_PHASE) {
6426 printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6427 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6428 tblp,
6429 (unsigned) olen,
6430 (unsigned) oadr);
6431 }
6432
6433 /*
6434 ** check cmd against assumed interrupted script command.
6435 */
6436
6437 if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6438 PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6439 ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6440
6441 goto reset_all;
6442 }
6443
6444 /*
6445 ** cp != np->header.cp means that the header of the CCB
6446 ** currently being processed has not yet been copied to
6447 ** the global header area. That may happen if the device did
6448 ** not accept all our messages after having been selected.
6449 */
6450 if (cp != np->header.cp) {
6451 printk ("%s: SCSI phase error fixup: "
6452 "CCB address mismatch (0x%08lx != 0x%08lx)\n",
6453 ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6454 }
6455
6456 /*
6457 ** if old phase not dataphase, leave here.
6458 */
6459
6460 if (cmd & 0x06) {
6461 PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6462 cmd&7, sbcl&7, (unsigned)olen,
6463 (unsigned)oadr, (unsigned)rest);
6464 goto unexpected_phase;
6465 }
6466
6467 /*
6468 ** choose the correct patch area.
6469 ** if savep points to one, choose the other.
6470 */
6471
6472 newcmd = cp->patch;
6473 newtmp = CCB_PHYS (cp, patch);
6474 if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6475 newcmd = &cp->patch[4];
6476 newtmp = CCB_PHYS (cp, patch[4]);
6477 }
6478
6479 /*
6480 ** fillin the commands
6481 */
6482
6483 newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6484 newcmd[1] = cpu_to_scr(oadr + olen - rest);
6485 newcmd[2] = cpu_to_scr(SCR_JUMP);
6486 newcmd[3] = cpu_to_scr(nxtdsp);
6487
6488 if (DEBUG_FLAGS & DEBUG_PHASE) {
6489 PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6490 (int) (newcmd - cp->patch),
6491 (unsigned)scr_to_cpu(newcmd[0]),
6492 (unsigned)scr_to_cpu(newcmd[1]),
6493 (unsigned)scr_to_cpu(newcmd[2]),
6494 (unsigned)scr_to_cpu(newcmd[3]));
6495 }
6496 /*
6497 ** fake the return address (to the patch).
6498 ** and restart script processor at dispatcher.
6499 */
6500 OUTL (nc_temp, newtmp);
6501 OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6502 return;
6503
6504 /*
6505 ** Unexpected phase changes that occurs when the current phase
6506 ** is not a DATA IN or DATA OUT phase are due to error conditions.
6507 ** Such event may only happen when the SCRIPTS is using a
6508 ** multibyte SCSI MOVE.
6509 **
6510 ** Phase change Some possible cause
6511 **
6512 ** COMMAND --> MSG IN SCSI parity error detected by target.
6513 ** COMMAND --> STATUS Bad command or refused by target.
6514 ** MSG OUT --> MSG IN Message rejected by target.
6515 ** MSG OUT --> COMMAND Bogus target that discards extended
6516 ** negotiation messages.
6517 **
6518 ** The code below does not care of the new phase and so
6519 ** trusts the target. Why to annoy it ?
6520 ** If the interrupted phase is COMMAND phase, we restart at
6521 ** dispatcher.
6522 ** If a target does not get all the messages after selection,
6523 ** the code assumes blindly that the target discards extended
6524 ** messages and clears the negotiation status.
6525 ** If the target does not want all our response to negotiation,
6526 ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6527 ** bloat for such a should_not_happen situation).
6528 ** In all other situation, we reset the BUS.
6529 ** Are these assumptions reasonnable ? (Wait and see ...)
6530 */
6531unexpected_phase:
6532 dsp -= 8;
6533 nxtdsp = 0;
6534
6535 switch (cmd & 7) {
6536 case 2: /* COMMAND phase */
6537 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6538 break;
6539#if 0
6540 case 3: /* STATUS phase */
6541 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6542 break;
6543#endif
6544 case 6: /* MSG OUT phase */
6545 np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6546 if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6547 cp->host_status = HS_BUSY;
6548 nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6549 }
6550 else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6551 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6552 nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6553 }
6554 break;
6555#if 0
6556 case 7: /* MSG IN phase */
6557 nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6558 break;
6559#endif
6560 }
6561
6562 if (nxtdsp) {
6563 OUTL_DSP (nxtdsp);
6564 return;
6565 }
6566
6567reset_all:
6568 ncr_start_reset(np);
6569}
6570
6571
6572static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6573{
6574 struct scsi_cmnd *cmd = cp->cmd;
6575 struct tcb *tp = &np->target[cmd->device->id];
6576 struct lcb *lp = tp->lp[cmd->device->lun];
6577 struct list_head *qp;
6578 struct ccb * cp2;
6579 int disc_cnt = 0;
6580 int busy_cnt = 0;
6581 u32 startp;
6582 u_char s_status = INB (SS_PRT);
6583
6584 /*
6585 ** Let the SCRIPTS processor skip all not yet started CCBs,
6586 ** and count disconnected CCBs. Since the busy queue is in
6587 ** the same order as the chip start queue, disconnected CCBs
6588 ** are before cp and busy ones after.
6589 */
6590 if (lp) {
6591 qp = lp->busy_ccbq.prev;
6592 while (qp != &lp->busy_ccbq) {
6593 cp2 = list_entry(qp, struct ccb, link_ccbq);
6594 qp = qp->prev;
6595 ++busy_cnt;
6596 if (cp2 == cp)
6597 break;
6598 cp2->start.schedule.l_paddr =
6599 cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6600 }
6601 lp->held_ccb = cp; /* Requeue when this one completes */
6602 disc_cnt = lp->queuedccbs - busy_cnt;
6603 }
6604
6605 switch(s_status) {
6606 default: /* Just for safety, should never happen */
6607 case S_QUEUE_FULL:
6608 /*
6609 ** Decrease number of tags to the number of
6610 ** disconnected commands.
6611 */
6612 if (!lp)
6613 goto out;
6614 if (bootverbose >= 1) {
6615 PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6616 "CCBs\n", busy_cnt, disc_cnt);
6617 }
6618 if (disc_cnt < lp->numtags) {
6619 lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
6620 lp->num_good = 0;
6621 ncr_setup_tags (np, cmd->device);
6622 }
6623 /*
6624 ** Requeue the command to the start queue.
6625 ** If any disconnected commands,
6626 ** Clear SIGP.
6627 ** Jump to reselect.
6628 */
6629 cp->phys.header.savep = cp->startp;
6630 cp->host_status = HS_BUSY;
6631 cp->scsi_status = S_ILLEGAL;
6632
6633 ncr_put_start_queue(np, cp);
6634 if (disc_cnt)
6635 INB (nc_ctest2); /* Clear SIGP */
6636 OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6637 return;
6638 case S_TERMINATED:
6639 case S_CHECK_COND:
6640 /*
6641 ** If we were requesting sense, give up.
6642 */
6643 if (cp->auto_sense)
6644 goto out;
6645
6646 /*
6647 ** Device returned CHECK CONDITION status.
6648 ** Prepare all needed data strutures for getting
6649 ** sense data.
6650 **
6651 ** identify message
6652 */
6653 cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
6654 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6655 cp->phys.smsg.size = cpu_to_scr(1);
6656
6657 /*
6658 ** sense command
6659 */
6660 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
6661 cp->phys.cmd.size = cpu_to_scr(6);
6662
6663 /*
6664 ** patch requested size into sense command
6665 */
6666 cp->sensecmd[0] = 0x03;
6667 cp->sensecmd[1] = cmd->device->lun << 5;
6668 cp->sensecmd[4] = sizeof(cp->sense_buf);
6669
6670 /*
6671 ** sense data
6672 */
6673 memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6674 cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6675 cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
6676
6677 /*
6678 ** requeue the command.
6679 */
6680 startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6681
6682 cp->phys.header.savep = startp;
6683 cp->phys.header.goalp = startp + 24;
6684 cp->phys.header.lastp = startp;
6685 cp->phys.header.wgoalp = startp + 24;
6686 cp->phys.header.wlastp = startp;
6687
6688 cp->host_status = HS_BUSY;
6689 cp->scsi_status = S_ILLEGAL;
6690 cp->auto_sense = s_status;
6691
6692 cp->start.schedule.l_paddr =
6693 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6694
6695 /*
6696 ** Select without ATN for quirky devices.
6697 */
6698 if (cmd->device->select_no_atn)
6699 cp->start.schedule.l_paddr =
6700 cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6701
6702 ncr_put_start_queue(np, cp);
6703
6704 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6705 return;
6706 }
6707
6708out:
6709 OUTONB_STD ();
6710 return;
6711}
6712
6713
6714/*==========================================================
6715**
6716**
6717** ncr chip exception handler for programmed interrupts.
6718**
6719**
6720**==========================================================
6721*/
6722
6723void ncr_int_sir (struct ncb *np)
6724{
6725 u_char scntl3;
6726 u_char chg, ofs, per, fak, wide;
6727 u_char num = INB (nc_dsps);
6728 struct ccb *cp=NULL;
6729 u_long dsa = INL (nc_dsa);
6730 u_char target = INB (nc_sdid) & 0x0f;
6731 struct tcb *tp = &np->target[target];
6732 struct scsi_target *starget = tp->starget;
6733
6734 if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6735
6736 switch (num) {
6737 case SIR_INTFLY:
6738 /*
6739 ** This is used for HP Zalon/53c720 where INTFLY
6740 ** operation is currently broken.
6741 */
6742 ncr_wakeup_done(np);
6743#ifdef SCSI_NCR_CCB_DONE_SUPPORT
6744 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6745#else
6746 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6747#endif
6748 return;
6749 case SIR_RESEL_NO_MSG_IN:
6750 case SIR_RESEL_NO_IDENTIFY:
6751 /*
6752 ** If devices reselecting without sending an IDENTIFY
6753 ** message still exist, this should help.
6754 ** We just assume lun=0, 1 CCB, no tag.
6755 */
6756 if (tp->lp[0]) {
6757 OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6758 return;
6759 }
6760 case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
6761 case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
6762 case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
6763 case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
6764 printk ("%s:%d: SIR %d, "
6765 "incorrect nexus identification on reselection\n",
6766 ncr_name (np), target, num);
6767 goto out;
6768 case SIR_DONE_OVERFLOW:
6769 printk ("%s:%d: SIR %d, "
6770 "CCB done queue overflow\n",
6771 ncr_name (np), target, num);
6772 goto out;
6773 case SIR_BAD_STATUS:
6774 cp = np->header.cp;
6775 if (!cp || CCB_PHYS (cp, phys) != dsa)
6776 goto out;
6777 ncr_sir_to_redo(np, num, cp);
6778 return;
6779 default:
6780 /*
6781 ** lookup the ccb
6782 */
6783 cp = np->ccb;
6784 while (cp && (CCB_PHYS (cp, phys) != dsa))
6785 cp = cp->link_ccb;
6786
6787 BUG_ON(!cp);
6788 BUG_ON(cp != np->header.cp);
6789
6790 if (!cp || cp != np->header.cp)
6791 goto out;
6792 }
6793
6794 switch (num) {
6795/*-----------------------------------------------------------------------------
6796**
6797** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6798**
6799** We try to negotiate sync and wide transfer only after
6800** a successful inquire command. We look at byte 7 of the
6801** inquire data to determine the capabilities of the target.
6802**
6803** When we try to negotiate, we append the negotiation message
6804** to the identify and (maybe) simple tag message.
6805** The host status field is set to HS_NEGOTIATE to mark this
6806** situation.
6807**
6808** If the target doesn't answer this message immidiately
6809** (as required by the standard), the SIR_NEGO_FAIL interrupt
6810** will be raised eventually.
6811** The handler removes the HS_NEGOTIATE status, and sets the
6812** negotiated value to the default (async / nowide).
6813**
6814** If we receive a matching answer immediately, we check it
6815** for validity, and set the values.
6816**
6817** If we receive a Reject message immediately, we assume the
6818** negotiation has failed, and fall back to standard values.
6819**
6820** If we receive a negotiation message while not in HS_NEGOTIATE
6821** state, it's a target initiated negotiation. We prepare a
6822** (hopefully) valid answer, set our parameters, and send back
6823** this answer to the target.
6824**
6825** If the target doesn't fetch the answer (no message out phase),
6826** we assume the negotiation has failed, and fall back to default
6827** settings.
6828**
6829** When we set the values, we adjust them in all ccbs belonging
6830** to this target, in the controller's register, and in the "phys"
6831** field of the controller's struct ncb.
6832**
6833** Possible cases: hs sir msg_in value send goto
6834** We try to negotiate:
6835** -> target doesn't msgin NEG FAIL noop defa. - dispatch
6836** -> target rejected our msg NEG FAIL reject defa. - dispatch
6837** -> target answered (ok) NEG SYNC sdtr set - clrack
6838** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
6839** -> target answered (ok) NEG WIDE wdtr set - clrack
6840** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
6841** -> any other msgin NEG FAIL noop defa. - dispatch
6842**
6843** Target tries to negotiate:
6844** -> incoming message --- SYNC sdtr set SDTR -
6845** -> incoming message --- WIDE wdtr set WDTR -
6846** We sent our answer:
6847** -> target doesn't msgout --- PROTO ? defa. - dispatch
6848**
6849**-----------------------------------------------------------------------------
6850*/
6851
6852 case SIR_NEGO_FAILED:
6853 /*-------------------------------------------------------
6854 **
6855 ** Negotiation failed.
6856 ** Target doesn't send an answer message,
6857 ** or target rejected our message.
6858 **
6859 ** Remove negotiation request.
6860 **
6861 **-------------------------------------------------------
6862 */
6863 OUTB (HS_PRT, HS_BUSY);
6864
6865 /* fall through */
6866
6867 case SIR_NEGO_PROTO:
6868 /*-------------------------------------------------------
6869 **
6870 ** Negotiation failed.
6871 ** Target doesn't fetch the answer message.
6872 **
6873 **-------------------------------------------------------
6874 */
6875
6876 if (DEBUG_FLAGS & DEBUG_NEGO) {
6877 PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6878 "status=%x.\n", num, cp->nego_status);
6879 }
6880
6881 /*
6882 ** any error in negotiation:
6883 ** fall back to default mode.
6884 */
6885 switch (cp->nego_status) {
6886
6887 case NS_SYNC:
6888 spi_period(starget) = 0;
6889 spi_offset(starget) = 0;
6890 ncr_setsync (np, cp, 0, 0xe0);
6891 break;
6892
6893 case NS_WIDE:
6894 spi_width(starget) = 0;
6895 ncr_setwide (np, cp, 0, 0);
6896 break;
6897
6898 }
6899 np->msgin [0] = M_NOOP;
6900 np->msgout[0] = M_NOOP;
6901 cp->nego_status = 0;
6902 break;
6903
6904 case SIR_NEGO_SYNC:
6905 if (DEBUG_FLAGS & DEBUG_NEGO) {
6906 ncr_print_msg(cp, "sync msgin", np->msgin);
6907 }
6908
6909 chg = 0;
6910 per = np->msgin[3];
6911 ofs = np->msgin[4];
6912 if (ofs==0) per=255;
6913
6914 /*
6915 ** if target sends SDTR message,
6916 ** it CAN transfer synch.
6917 */
6918
6919 if (ofs && starget)
6920 spi_support_sync(starget) = 1;
6921
6922 /*
6923 ** check values against driver limits.
6924 */
6925
6926 if (per < np->minsync)
6927 {chg = 1; per = np->minsync;}
6928 if (per < tp->minsync)
6929 {chg = 1; per = tp->minsync;}
6930 if (ofs > tp->maxoffs)
6931 {chg = 1; ofs = tp->maxoffs;}
6932
6933 /*
6934 ** Check against controller limits.
6935 */
6936 fak = 7;
6937 scntl3 = 0;
6938 if (ofs != 0) {
6939 ncr_getsync(np, per, &fak, &scntl3);
6940 if (fak > 7) {
6941 chg = 1;
6942 ofs = 0;
6943 }
6944 }
6945 if (ofs == 0) {
6946 fak = 7;
6947 per = 0;
6948 scntl3 = 0;
6949 tp->minsync = 0;
6950 }
6951
6952 if (DEBUG_FLAGS & DEBUG_NEGO) {
6953 PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6954 "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6955 }
6956
6957 if (INB (HS_PRT) == HS_NEGOTIATE) {
6958 OUTB (HS_PRT, HS_BUSY);
6959 switch (cp->nego_status) {
6960
6961 case NS_SYNC:
6962 /* This was an answer message */
6963 if (chg) {
6964 /* Answer wasn't acceptable. */
6965 spi_period(starget) = 0;
6966 spi_offset(starget) = 0;
6967 ncr_setsync(np, cp, 0, 0xe0);
6968 OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6969 } else {
6970 /* Answer is ok. */
6971 spi_period(starget) = per;
6972 spi_offset(starget) = ofs;
6973 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6974 OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6975 }
6976 return;
6977
6978 case NS_WIDE:
6979 spi_width(starget) = 0;
6980 ncr_setwide(np, cp, 0, 0);
6981 break;
6982 }
6983 }
6984
6985 /*
6986 ** It was a request. Set value and
6987 ** prepare an answer message
6988 */
6989
6990 spi_period(starget) = per;
6991 spi_offset(starget) = ofs;
6992 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6993
6994 np->msgout[0] = M_EXTENDED;
6995 np->msgout[1] = 3;
6996 np->msgout[2] = M_X_SYNC_REQ;
6997 np->msgout[3] = per;
6998 np->msgout[4] = ofs;
6999
7000 cp->nego_status = NS_SYNC;
7001
7002 if (DEBUG_FLAGS & DEBUG_NEGO) {
7003 ncr_print_msg(cp, "sync msgout", np->msgout);
7004 }
7005
7006 if (!ofs) {
7007 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7008 return;
7009 }
7010 np->msgin [0] = M_NOOP;
7011
7012 break;
7013
7014 case SIR_NEGO_WIDE:
7015 /*
7016 ** Wide request message received.
7017 */
7018 if (DEBUG_FLAGS & DEBUG_NEGO) {
7019 ncr_print_msg(cp, "wide msgin", np->msgin);
7020 }
7021
7022 /*
7023 ** get requested values.
7024 */
7025
7026 chg = 0;
7027 wide = np->msgin[3];
7028
7029 /*
7030 ** if target sends WDTR message,
7031 ** it CAN transfer wide.
7032 */
7033
7034 if (wide && starget)
7035 spi_support_wide(starget) = 1;
7036
7037 /*
7038 ** check values against driver limits.
7039 */
7040
7041 if (wide > tp->usrwide)
7042 {chg = 1; wide = tp->usrwide;}
7043
7044 if (DEBUG_FLAGS & DEBUG_NEGO) {
7045 PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7046 chg);
7047 }
7048
7049 if (INB (HS_PRT) == HS_NEGOTIATE) {
7050 OUTB (HS_PRT, HS_BUSY);
7051 switch (cp->nego_status) {
7052
7053 case NS_WIDE:
7054 /*
7055 ** This was an answer message
7056 */
7057 if (chg) {
7058 /* Answer wasn't acceptable. */
7059 spi_width(starget) = 0;
7060 ncr_setwide(np, cp, 0, 1);
7061 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7062 } else {
7063 /* Answer is ok. */
7064 spi_width(starget) = wide;
7065 ncr_setwide(np, cp, wide, 1);
7066 OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7067 }
7068 return;
7069
7070 case NS_SYNC:
7071 spi_period(starget) = 0;
7072 spi_offset(starget) = 0;
7073 ncr_setsync(np, cp, 0, 0xe0);
7074 break;
7075 }
7076 }
7077
7078 /*
7079 ** It was a request, set value and
7080 ** prepare an answer message
7081 */
7082
7083 spi_width(starget) = wide;
7084 ncr_setwide(np, cp, wide, 1);
7085
7086 np->msgout[0] = M_EXTENDED;
7087 np->msgout[1] = 2;
7088 np->msgout[2] = M_X_WIDE_REQ;
7089 np->msgout[3] = wide;
7090
7091 np->msgin [0] = M_NOOP;
7092
7093 cp->nego_status = NS_WIDE;
7094
7095 if (DEBUG_FLAGS & DEBUG_NEGO) {
7096 ncr_print_msg(cp, "wide msgout", np->msgin);
7097 }
7098 break;
7099
7100/*--------------------------------------------------------------------
7101**
7102** Processing of special messages
7103**
7104**--------------------------------------------------------------------
7105*/
7106
7107 case SIR_REJECT_RECEIVED:
7108 /*-----------------------------------------------
7109 **
7110 ** We received a M_REJECT message.
7111 **
7112 **-----------------------------------------------
7113 */
7114
7115 PRINT_ADDR(cp->cmd, "M_REJECT received (%x:%x).\n",
7116 (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7117 break;
7118
7119 case SIR_REJECT_SENT:
7120 /*-----------------------------------------------
7121 **
7122 ** We received an unknown message
7123 **
7124 **-----------------------------------------------
7125 */
7126
7127 ncr_print_msg(cp, "M_REJECT sent for", np->msgin);
7128 break;
7129
7130/*--------------------------------------------------------------------
7131**
7132** Processing of special messages
7133**
7134**--------------------------------------------------------------------
7135*/
7136
7137 case SIR_IGN_RESIDUE:
7138 /*-----------------------------------------------
7139 **
7140 ** We received an IGNORE RESIDUE message,
7141 ** which couldn't be handled by the script.
7142 **
7143 **-----------------------------------------------
7144 */
7145
7146 PRINT_ADDR(cp->cmd, "M_IGN_RESIDUE received, but not yet "
7147 "implemented.\n");
7148 break;
7149#if 0
7150 case SIR_MISSING_SAVE:
7151 /*-----------------------------------------------
7152 **
7153 ** We received an DISCONNECT message,
7154 ** but the datapointer wasn't saved before.
7155 **
7156 **-----------------------------------------------
7157 */
7158
7159 PRINT_ADDR(cp->cmd, "M_DISCONNECT received, but datapointer "
7160 "not saved: data=%x save=%x goal=%x.\n",
7161 (unsigned) INL (nc_temp),
7162 (unsigned) scr_to_cpu(np->header.savep),
7163 (unsigned) scr_to_cpu(np->header.goalp));
7164 break;
7165#endif
7166 }
7167
7168out:
7169 OUTONB_STD ();
7170}
7171
7172/*==========================================================
7173**
7174**
7175** Acquire a control block
7176**
7177**
7178**==========================================================
7179*/
7180
7181static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7182{
7183 u_char tn = cmd->device->id;
7184 u_char ln = cmd->device->lun;
7185 struct tcb *tp = &np->target[tn];
7186 struct lcb *lp = tp->lp[ln];
7187 u_char tag = NO_TAG;
7188 struct ccb *cp = NULL;
7189
7190 /*
7191 ** Lun structure available ?
7192 */
7193 if (lp) {
7194 struct list_head *qp;
7195 /*
7196 ** Keep from using more tags than we can handle.
7197 */
7198 if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7199 return NULL;
7200
7201 /*
7202 ** Allocate a new CCB if needed.
7203 */
7204 if (list_empty(&lp->free_ccbq))
7205 ncr_alloc_ccb(np, tn, ln);
7206
7207 /*
7208 ** Look for free CCB
7209 */
7210 qp = ncr_list_pop(&lp->free_ccbq);
7211 if (qp) {
7212 cp = list_entry(qp, struct ccb, link_ccbq);
7213 if (cp->magic) {
7214 PRINT_ADDR(cmd, "ccb free list corrupted "
7215 "(@%p)\n", cp);
7216 cp = NULL;
7217 } else {
7218 list_add_tail(qp, &lp->wait_ccbq);
7219 ++lp->busyccbs;
7220 }
7221 }
7222
7223 /*
7224 ** If a CCB is available,
7225 ** Get a tag for this nexus if required.
7226 */
7227 if (cp) {
7228 if (lp->usetags)
7229 tag = lp->cb_tags[lp->ia_tag];
7230 }
7231 else if (lp->actccbs > 0)
7232 return NULL;
7233 }
7234
7235 /*
7236 ** if nothing available, take the default.
7237 */
7238 if (!cp)
7239 cp = np->ccb;
7240
7241 /*
7242 ** Wait until available.
7243 */
7244#if 0
7245 while (cp->magic) {
7246 if (flags & SCSI_NOSLEEP) break;
7247 if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7248 break;
7249 }
7250#endif
7251
7252 if (cp->magic)
7253 return NULL;
7254
7255 cp->magic = 1;
7256
7257 /*
7258 ** Move to next available tag if tag used.
7259 */
7260 if (lp) {
7261 if (tag != NO_TAG) {
7262 ++lp->ia_tag;
7263 if (lp->ia_tag == MAX_TAGS)
7264 lp->ia_tag = 0;
7265 lp->tags_umap |= (((tagmap_t) 1) << tag);
7266 }
7267 }
7268
7269 /*
7270 ** Remember all informations needed to free this CCB.
7271 */
7272 cp->tag = tag;
7273 cp->target = tn;
7274 cp->lun = ln;
7275
7276 if (DEBUG_FLAGS & DEBUG_TAGS) {
7277 PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7278 }
7279
7280 return cp;
7281}
7282
7283/*==========================================================
7284**
7285**
7286** Release one control block
7287**
7288**
7289**==========================================================
7290*/
7291
7292static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7293{
7294 struct tcb *tp = &np->target[cp->target];
7295 struct lcb *lp = tp->lp[cp->lun];
7296
7297 if (DEBUG_FLAGS & DEBUG_TAGS) {
7298 PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7299 }
7300
7301 /*
7302 ** If lun control block available,
7303 ** decrement active commands and increment credit,
7304 ** free the tag if any and remove the JUMP for reselect.
7305 */
7306 if (lp) {
7307 if (cp->tag != NO_TAG) {
7308 lp->cb_tags[lp->if_tag++] = cp->tag;
7309 if (lp->if_tag == MAX_TAGS)
7310 lp->if_tag = 0;
7311 lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7312 lp->tags_smap &= lp->tags_umap;
7313 lp->jump_ccb[cp->tag] =
7314 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7315 } else {
7316 lp->jump_ccb[0] =
7317 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7318 }
7319 }
7320
7321 /*
7322 ** Make this CCB available.
7323 */
7324
7325 if (lp) {
7326 if (cp != np->ccb)
7327 list_move(&cp->link_ccbq, &lp->free_ccbq);
7328 --lp->busyccbs;
7329 if (cp->queued) {
7330 --lp->queuedccbs;
7331 }
7332 }
7333 cp -> host_status = HS_IDLE;
7334 cp -> magic = 0;
7335 if (cp->queued) {
7336 --np->queuedccbs;
7337 cp->queued = 0;
7338 }
7339
7340#if 0
7341 if (cp == np->ccb)
7342 wakeup ((caddr_t) cp);
7343#endif
7344}
7345
7346
7347#define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7348
7349/*------------------------------------------------------------------------
7350** Initialize the fixed part of a CCB structure.
7351**------------------------------------------------------------------------
7352**------------------------------------------------------------------------
7353*/
7354static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7355{
7356 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7357
7358 /*
7359 ** Remember virtual and bus address of this ccb.
7360 */
7361 cp->p_ccb = vtobus(cp);
7362 cp->phys.header.cp = cp;
7363
7364 /*
7365 ** This allows list_del to work for the default ccb.
7366 */
7367 INIT_LIST_HEAD(&cp->link_ccbq);
7368
7369 /*
7370 ** Initialyze the start and restart launch script.
7371 **
7372 ** COPY(4) @(...p_phys), @(dsa)
7373 ** JUMP @(sched_point)
7374 */
7375 cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
7376 cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7377 cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7378 cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7379 cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
7380
7381 memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7382
7383 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7384 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7385}
7386
7387
7388/*------------------------------------------------------------------------
7389** Allocate a CCB and initialize its fixed part.
7390**------------------------------------------------------------------------
7391**------------------------------------------------------------------------
7392*/
7393static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7394{
7395 struct tcb *tp = &np->target[tn];
7396 struct lcb *lp = tp->lp[ln];
7397 struct ccb *cp = NULL;
7398
7399 /*
7400 ** Allocate memory for this CCB.
7401 */
7402 cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7403 if (!cp)
7404 return;
7405
7406 /*
7407 ** Count it and initialyze it.
7408 */
7409 lp->actccbs++;
7410 np->actccbs++;
7411 memset(cp, 0, sizeof (*cp));
7412 ncr_init_ccb(np, cp);
7413
7414 /*
7415 ** Chain into wakeup list and free ccb queue and take it
7416 ** into account for tagged commands.
7417 */
7418 cp->link_ccb = np->ccb->link_ccb;
7419 np->ccb->link_ccb = cp;
7420
7421 list_add(&cp->link_ccbq, &lp->free_ccbq);
7422}
7423
7424/*==========================================================
7425**
7426**
7427** Allocation of resources for Targets/Luns/Tags.
7428**
7429**
7430**==========================================================
7431*/
7432
7433
7434/*------------------------------------------------------------------------
7435** Target control block initialisation.
7436**------------------------------------------------------------------------
7437** This data structure is fully initialized after a SCSI command
7438** has been successfully completed for this target.
7439** It contains a SCRIPT that is called on target reselection.
7440**------------------------------------------------------------------------
7441*/
7442static void ncr_init_tcb (struct ncb *np, u_char tn)
7443{
7444 struct tcb *tp = &np->target[tn];
7445 ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7446 int th = tn & 3;
7447 int i;
7448
7449 /*
7450 ** Jump to next tcb if SFBR does not match this target.
7451 ** JUMP IF (SFBR != #target#), @(next tcb)
7452 */
7453 tp->jump_tcb.l_cmd =
7454 cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7455 tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7456
7457 /*
7458 ** Load the synchronous transfer register.
7459 ** COPY @(tp->sval), @(sxfer)
7460 */
7461 tp->getscr[0] = cpu_to_scr(copy_1);
7462 tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7463#ifdef SCSI_NCR_BIG_ENDIAN
7464 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7465#else
7466 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7467#endif
7468
7469 /*
7470 ** Load the timing register.
7471 ** COPY @(tp->wval), @(scntl3)
7472 */
7473 tp->getscr[3] = cpu_to_scr(copy_1);
7474 tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7475#ifdef SCSI_NCR_BIG_ENDIAN
7476 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7477#else
7478 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7479#endif
7480
7481 /*
7482 ** Get the IDENTIFY message and the lun.
7483 ** CALL @script(resel_lun)
7484 */
7485 tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
7486 tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7487
7488 /*
7489 ** Look for the lun control block of this nexus.
7490 ** For i = 0 to 3
7491 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7492 */
7493 for (i = 0 ; i < 4 ; i++) {
7494 tp->jump_lcb[i].l_cmd =
7495 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7496 tp->jump_lcb[i].l_paddr =
7497 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7498 }
7499
7500 /*
7501 ** Link this target control block to the JUMP chain.
7502 */
7503 np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7504
7505 /*
7506 ** These assert's should be moved at driver initialisations.
7507 */
7508#ifdef SCSI_NCR_BIG_ENDIAN
7509 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7510 offsetof(struct tcb , sval )) &3) != 3);
7511 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7512 offsetof(struct tcb , wval )) &3) != 3);
7513#else
7514 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7515 offsetof(struct tcb , sval )) &3) != 0);
7516 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7517 offsetof(struct tcb , wval )) &3) != 0);
7518#endif
7519}
7520
7521
7522/*------------------------------------------------------------------------
7523** Lun control block allocation and initialization.
7524**------------------------------------------------------------------------
7525** This data structure is allocated and initialized after a SCSI
7526** command has been successfully completed for this target/lun.
7527**------------------------------------------------------------------------
7528*/
7529static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7530{
7531 struct tcb *tp = &np->target[tn];
7532 struct lcb *lp = tp->lp[ln];
7533 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7534 int lh = ln & 3;
7535
7536 /*
7537 ** Already done, return.
7538 */
7539 if (lp)
7540 return lp;
7541
7542 /*
7543 ** Allocate the lcb.
7544 */
7545 lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7546 if (!lp)
7547 goto fail;
7548 memset(lp, 0, sizeof(*lp));
7549 tp->lp[ln] = lp;
7550
7551 /*
7552 ** Initialize the target control block if not yet.
7553 */
7554 if (!tp->jump_tcb.l_cmd)
7555 ncr_init_tcb(np, tn);
7556
7557 /*
7558 ** Initialize the CCB queue headers.
7559 */
7560 INIT_LIST_HEAD(&lp->free_ccbq);
7561 INIT_LIST_HEAD(&lp->busy_ccbq);
7562 INIT_LIST_HEAD(&lp->wait_ccbq);
7563 INIT_LIST_HEAD(&lp->skip_ccbq);
7564
7565 /*
7566 ** Set max CCBs to 1 and use the default 1 entry
7567 ** jump table by default.
7568 */
7569 lp->maxnxs = 1;
7570 lp->jump_ccb = &lp->jump_ccb_0;
7571 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7572
7573 /*
7574 ** Initilialyze the reselect script:
7575 **
7576 ** Jump to next lcb if SFBR does not match this lun.
7577 ** Load TEMP with the CCB direct jump table bus address.
7578 ** Get the SIMPLE TAG message and the tag.
7579 **
7580 ** JUMP IF (SFBR != #lun#), @(next lcb)
7581 ** COPY @(lp->p_jump_ccb), @(temp)
7582 ** JUMP @script(resel_notag)
7583 */
7584 lp->jump_lcb.l_cmd =
7585 cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7586 lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7587
7588 lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7589 lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7590 lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7591
7592 lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
7593 lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7594
7595 /*
7596 ** Link this lun control block to the JUMP chain.
7597 */
7598 tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7599
7600 /*
7601 ** Initialize command queuing control.
7602 */
7603 lp->busyccbs = 1;
7604 lp->queuedccbs = 1;
7605 lp->queuedepth = 1;
7606fail:
7607 return lp;
7608}
7609
7610
7611/*------------------------------------------------------------------------
7612** Lun control block setup on INQUIRY data received.
7613**------------------------------------------------------------------------
7614** We only support WIDE, SYNC for targets and CMDQ for logical units.
7615** This setup is done on each INQUIRY since we are expecting user
7616** will play with CHANGE DEFINITION commands. :-)
7617**------------------------------------------------------------------------
7618*/
7619static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7620{
7621 unsigned char tn = sdev->id, ln = sdev->lun;
7622 struct tcb *tp = &np->target[tn];
7623 struct lcb *lp = tp->lp[ln];
7624
7625 /* If no lcb, try to allocate it. */
7626 if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7627 goto fail;
7628
7629 /*
7630 ** If unit supports tagged commands, allocate the
7631 ** CCB JUMP table if not yet.
7632 */
7633 if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7634 int i;
7635 lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7636 if (!lp->jump_ccb) {
7637 lp->jump_ccb = &lp->jump_ccb_0;
7638 goto fail;
7639 }
7640 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7641 for (i = 0 ; i < 64 ; i++)
7642 lp->jump_ccb[i] =
7643 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7644 for (i = 0 ; i < MAX_TAGS ; i++)
7645 lp->cb_tags[i] = i;
7646 lp->maxnxs = MAX_TAGS;
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06007647 lp->tags_stime = jiffies + 3*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007648 ncr_setup_tags (np, sdev);
7649 }
7650
7651
7652fail:
7653 return lp;
7654}
7655
7656/*==========================================================
7657**
7658**
7659** Build Scatter Gather Block
7660**
7661**
7662**==========================================================
7663**
7664** The transfer area may be scattered among
7665** several non adjacent physical pages.
7666**
7667** We may use MAX_SCATTER blocks.
7668**
7669**----------------------------------------------------------
7670*/
7671
7672/*
7673** We try to reduce the number of interrupts caused
7674** by unexpected phase changes due to disconnects.
7675** A typical harddisk may disconnect before ANY block.
7676** If we wanted to avoid unexpected phase changes at all
7677** we had to use a break point every 512 bytes.
7678** Of course the number of scatter/gather blocks is
7679** limited.
7680** Under Linux, the scatter/gatter blocks are provided by
7681** the generic driver. We just have to copy addresses and
7682** sizes to the data segment array.
7683*/
7684
7685static int ncr_scatter_no_sglist(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7686{
7687 struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER - 1];
7688 int segment;
7689
7690 cp->data_len = cmd->request_bufflen;
7691
7692 if (cmd->request_bufflen) {
7693 dma_addr_t baddr = map_scsi_single_data(np, cmd);
7694 if (baddr) {
7695 ncr_build_sge(np, data, baddr, cmd->request_bufflen);
7696 segment = 1;
7697 } else {
7698 segment = -2;
7699 }
7700 } else {
7701 segment = 0;
7702 }
7703
7704 return segment;
7705}
7706
7707static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7708{
7709 int segment = 0;
7710 int use_sg = (int) cmd->use_sg;
7711
7712 cp->data_len = 0;
7713
7714 if (!use_sg)
7715 segment = ncr_scatter_no_sglist(np, cp, cmd);
7716 else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
7717 struct scatterlist *scatter = (struct scatterlist *)cmd->buffer;
7718 struct scr_tblmove *data;
7719
7720 if (use_sg > MAX_SCATTER) {
7721 unmap_scsi_data(np, cmd);
7722 return -1;
7723 }
7724
7725 data = &cp->phys.data[MAX_SCATTER - use_sg];
7726
7727 for (segment = 0; segment < use_sg; segment++) {
7728 dma_addr_t baddr = sg_dma_address(&scatter[segment]);
7729 unsigned int len = sg_dma_len(&scatter[segment]);
7730
7731 ncr_build_sge(np, &data[segment], baddr, len);
7732 cp->data_len += len;
7733 }
7734 } else {
7735 segment = -2;
7736 }
7737
7738 return segment;
7739}
7740
7741/*==========================================================
7742**
7743**
7744** Test the bus snoop logic :-(
7745**
7746** Has to be called with interrupts disabled.
7747**
7748**
7749**==========================================================
7750*/
7751
7752static int __init ncr_regtest (struct ncb* np)
7753{
7754 register volatile u32 data;
7755 /*
7756 ** ncr registers may NOT be cached.
7757 ** write 0xffffffff to a read only register area,
7758 ** and try to read it back.
7759 */
7760 data = 0xffffffff;
7761 OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7762 data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7763#if 1
7764 if (data == 0xffffffff) {
7765#else
7766 if ((data & 0xe2f0fffd) != 0x02000080) {
7767#endif
7768 printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7769 (unsigned) data);
7770 return (0x10);
7771 }
7772 return (0);
7773}
7774
7775static int __init ncr_snooptest (struct ncb* np)
7776{
7777 u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7778 int i, err=0;
7779 if (np->reg) {
7780 err |= ncr_regtest (np);
7781 if (err)
7782 return (err);
7783 }
7784
7785 /* init */
7786 pc = NCB_SCRIPTH_PHYS (np, snooptest);
7787 host_wr = 1;
7788 ncr_wr = 2;
7789 /*
7790 ** Set memory and register.
7791 */
7792 np->ncr_cache = cpu_to_scr(host_wr);
7793 OUTL (nc_temp, ncr_wr);
7794 /*
7795 ** Start script (exchange values)
7796 */
7797 OUTL_DSP (pc);
7798 /*
7799 ** Wait 'til done (with timeout)
7800 */
7801 for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7802 if (INB(nc_istat) & (INTF|SIP|DIP))
7803 break;
7804 /*
7805 ** Save termination position.
7806 */
7807 pc = INL (nc_dsp);
7808 /*
7809 ** Read memory and register.
7810 */
7811 host_rd = scr_to_cpu(np->ncr_cache);
7812 ncr_rd = INL (nc_scratcha);
7813 ncr_bk = INL (nc_temp);
7814 /*
7815 ** Reset ncr chip
7816 */
7817 ncr_chip_reset(np, 100);
7818 /*
7819 ** check for timeout
7820 */
7821 if (i>=NCR_SNOOP_TIMEOUT) {
7822 printk ("CACHE TEST FAILED: timeout.\n");
7823 return (0x20);
7824 }
7825 /*
7826 ** Check termination position.
7827 */
7828 if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7829 printk ("CACHE TEST FAILED: script execution failed.\n");
7830 printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7831 (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7832 (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7833 return (0x40);
7834 }
7835 /*
7836 ** Show results.
7837 */
7838 if (host_wr != ncr_rd) {
7839 printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7840 (int) host_wr, (int) ncr_rd);
7841 err |= 1;
7842 }
7843 if (host_rd != ncr_wr) {
7844 printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7845 (int) ncr_wr, (int) host_rd);
7846 err |= 2;
7847 }
7848 if (ncr_bk != ncr_wr) {
7849 printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7850 (int) ncr_wr, (int) ncr_bk);
7851 err |= 4;
7852 }
7853 return (err);
7854}
7855
7856/*==========================================================
7857**
7858** Determine the ncr's clock frequency.
7859** This is essential for the negotiation
7860** of the synchronous transfer rate.
7861**
7862**==========================================================
7863**
7864** Note: we have to return the correct value.
7865** THERE IS NO SAVE DEFAULT VALUE.
7866**
7867** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7868** 53C860 and 53C875 rev. 1 support fast20 transfers but
7869** do not have a clock doubler and so are provided with a
7870** 80 MHz clock. All other fast20 boards incorporate a doubler
7871** and so should be delivered with a 40 MHz clock.
7872** The future fast40 chips (895/895) use a 40 Mhz base clock
7873** and provide a clock quadrupler (160 Mhz). The code below
7874** tries to deal as cleverly as possible with all this stuff.
7875**
7876**----------------------------------------------------------
7877*/
7878
7879/*
7880 * Select NCR SCSI clock frequency
7881 */
7882static void ncr_selectclock(struct ncb *np, u_char scntl3)
7883{
7884 if (np->multiplier < 2) {
7885 OUTB(nc_scntl3, scntl3);
7886 return;
7887 }
7888
7889 if (bootverbose >= 2)
7890 printk ("%s: enabling clock multiplier\n", ncr_name(np));
7891
7892 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
7893 if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
7894 int i = 20;
7895 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7896 udelay(20);
7897 if (!i)
7898 printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7899 } else /* Wait 20 micro-seconds for doubler */
7900 udelay(20);
7901 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
7902 OUTB(nc_scntl3, scntl3);
7903 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
7904 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
7905}
7906
7907
7908/*
7909 * calculate NCR SCSI clock frequency (in KHz)
7910 */
7911static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7912{
7913 unsigned ms = 0;
7914 char count = 0;
7915
7916 /*
7917 * Measure GEN timer delay in order
7918 * to calculate SCSI clock frequency
7919 *
7920 * This code will never execute too
7921 * many loop iterations (if DELAY is
7922 * reasonably correct). It could get
7923 * too low a delay (too high a freq.)
7924 * if the CPU is slow executing the
7925 * loop for some reason (an NMI, for
7926 * example). For this reason we will
7927 * if multiple measurements are to be
7928 * performed trust the higher delay
7929 * (lower frequency returned).
7930 */
7931 OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
7932 OUTW (nc_sien , 0); /* mask all scsi interrupts */
7933 (void) INW (nc_sist); /* clear pending scsi interrupt */
7934 OUTB (nc_dien , 0); /* mask all dma interrupts */
7935 (void) INW (nc_sist); /* another one, just to be sure :) */
7936 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
7937 OUTB (nc_stime1, 0); /* disable general purpose timer */
7938 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
7939 while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7940 for (count = 0; count < 10; count ++)
7941 udelay(100); /* count ms */
7942 }
7943 OUTB (nc_stime1, 0); /* disable general purpose timer */
7944 /*
7945 * set prescaler to divide by whatever 0 means
7946 * 0 ought to choose divide by 2, but appears
7947 * to set divide by 3.5 mode in my 53c810 ...
7948 */
7949 OUTB (nc_scntl3, 0);
7950
7951 if (bootverbose >= 2)
7952 printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7953 /*
7954 * adjust for prescaler, and convert into KHz
7955 */
7956 return ms ? ((1 << gen) * 4340) / ms : 0;
7957}
7958
7959/*
7960 * Get/probe NCR SCSI clock frequency
7961 */
7962static void __init ncr_getclock (struct ncb *np, int mult)
7963{
7964 unsigned char scntl3 = INB(nc_scntl3);
7965 unsigned char stest1 = INB(nc_stest1);
7966 unsigned f1;
7967
7968 np->multiplier = 1;
7969 f1 = 40000;
7970
7971 /*
7972 ** True with 875 or 895 with clock multiplier selected
7973 */
7974 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7975 if (bootverbose >= 2)
7976 printk ("%s: clock multiplier found\n", ncr_name(np));
7977 np->multiplier = mult;
7978 }
7979
7980 /*
7981 ** If multiplier not found or scntl3 not 7,5,3,
7982 ** reset chip and get frequency from general purpose timer.
7983 ** Otherwise trust scntl3 BIOS setting.
7984 */
7985 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7986 unsigned f2;
7987
7988 ncr_chip_reset(np, 5);
7989
7990 (void) ncrgetfreq (np, 11); /* throw away first result */
7991 f1 = ncrgetfreq (np, 11);
7992 f2 = ncrgetfreq (np, 11);
7993
7994 if(bootverbose)
7995 printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7996
7997 if (f1 > f2) f1 = f2; /* trust lower result */
7998
7999 if (f1 < 45000) f1 = 40000;
8000 else if (f1 < 55000) f1 = 50000;
8001 else f1 = 80000;
8002
8003 if (f1 < 80000 && mult > 1) {
8004 if (bootverbose >= 2)
8005 printk ("%s: clock multiplier assumed\n", ncr_name(np));
8006 np->multiplier = mult;
8007 }
8008 } else {
8009 if ((scntl3 & 7) == 3) f1 = 40000;
8010 else if ((scntl3 & 7) == 5) f1 = 80000;
8011 else f1 = 160000;
8012
8013 f1 /= np->multiplier;
8014 }
8015
8016 /*
8017 ** Compute controller synchronous parameters.
8018 */
8019 f1 *= np->multiplier;
8020 np->clock_khz = f1;
8021}
8022
8023/*===================== LINUX ENTRY POINTS SECTION ==========================*/
8024
8025static int ncr53c8xx_slave_alloc(struct scsi_device *device)
8026{
8027 struct Scsi_Host *host = device->host;
8028 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
8029 struct tcb *tp = &np->target[device->id];
8030 tp->starget = device->sdev_target;
8031
8032 return 0;
8033}
8034
8035static int ncr53c8xx_slave_configure(struct scsi_device *device)
8036{
8037 struct Scsi_Host *host = device->host;
8038 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
8039 struct tcb *tp = &np->target[device->id];
8040 struct lcb *lp = tp->lp[device->lun];
8041 int numtags, depth_to_use;
8042
8043 ncr_setup_lcb(np, device);
8044
8045 /*
8046 ** Select queue depth from driver setup.
8047 ** Donnot use more than configured by user.
8048 ** Use at least 2.
8049 ** Donnot use more than our maximum.
8050 */
8051 numtags = device_queue_depth(np->unit, device->id, device->lun);
8052 if (numtags > tp->usrtags)
8053 numtags = tp->usrtags;
8054 if (!device->tagged_supported)
8055 numtags = 1;
8056 depth_to_use = numtags;
8057 if (depth_to_use < 2)
8058 depth_to_use = 2;
8059 if (depth_to_use > MAX_TAGS)
8060 depth_to_use = MAX_TAGS;
8061
8062 scsi_adjust_queue_depth(device,
8063 (device->tagged_supported ?
8064 MSG_SIMPLE_TAG : 0),
8065 depth_to_use);
8066
8067 /*
8068 ** Since the queue depth is not tunable under Linux,
8069 ** we need to know this value in order not to
8070 ** announce stupid things to user.
8071 **
8072 ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8073 ** In fact we just tuned it, or did I miss
8074 ** something important? :)
8075 */
8076 if (lp) {
8077 lp->numtags = lp->maxtags = numtags;
8078 lp->scdev_depth = depth_to_use;
8079 }
8080 ncr_setup_tags (np, device);
8081
8082#ifdef DEBUG_NCR53C8XX
8083 printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8084 np->unit, device->id, device->lun, depth_to_use);
8085#endif
8086
8087 if (spi_support_sync(device->sdev_target) &&
8088 !spi_initial_dv(device->sdev_target))
8089 spi_dv_device(device);
8090 return 0;
8091}
8092
8093static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *))
8094{
8095 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8096 unsigned long flags;
8097 int sts;
8098
8099#ifdef DEBUG_NCR53C8XX
8100printk("ncr53c8xx_queue_command\n");
8101#endif
8102
8103 cmd->scsi_done = done;
8104 cmd->host_scribble = NULL;
8105 cmd->__data_mapped = 0;
8106 cmd->__data_mapping = 0;
8107
8108 spin_lock_irqsave(&np->smp_lock, flags);
8109
8110 if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8111 cmd->result = ScsiResult(sts, 0);
8112#ifdef DEBUG_NCR53C8XX
8113printk("ncr53c8xx : command not queued - result=%d\n", sts);
8114#endif
8115 }
8116#ifdef DEBUG_NCR53C8XX
8117 else
8118printk("ncr53c8xx : command successfully queued\n");
8119#endif
8120
8121 spin_unlock_irqrestore(&np->smp_lock, flags);
8122
8123 if (sts != DID_OK) {
8124 unmap_scsi_data(np, cmd);
8125 done(cmd);
8126 sts = 0;
8127 }
8128
8129 return sts;
8130}
8131
8132irqreturn_t ncr53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
8133{
8134 unsigned long flags;
8135 struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8136 struct host_data *host_data = (struct host_data *)shost->hostdata;
8137 struct ncb *np = host_data->ncb;
8138 struct scsi_cmnd *done_list;
8139
8140#ifdef DEBUG_NCR53C8XX
8141 printk("ncr53c8xx : interrupt received\n");
8142#endif
8143
8144 if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8145
8146 spin_lock_irqsave(&np->smp_lock, flags);
8147 ncr_exception(np);
8148 done_list = np->done_list;
8149 np->done_list = NULL;
8150 spin_unlock_irqrestore(&np->smp_lock, flags);
8151
8152 if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8153
8154 if (done_list)
8155 ncr_flush_done_cmds(done_list);
8156 return IRQ_HANDLED;
8157}
8158
8159static void ncr53c8xx_timeout(unsigned long npref)
8160{
8161 struct ncb *np = (struct ncb *) npref;
8162 unsigned long flags;
8163 struct scsi_cmnd *done_list;
8164
8165 spin_lock_irqsave(&np->smp_lock, flags);
8166 ncr_timeout(np);
8167 done_list = np->done_list;
8168 np->done_list = NULL;
8169 spin_unlock_irqrestore(&np->smp_lock, flags);
8170
8171 if (done_list)
8172 ncr_flush_done_cmds(done_list);
8173}
8174
8175static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8176{
8177 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8178 int sts;
8179 unsigned long flags;
8180 struct scsi_cmnd *done_list;
8181
8182 /*
8183 * If the mid-level driver told us reset is synchronous, it seems
8184 * that we must call the done() callback for the involved command,
8185 * even if this command was not queued to the low-level driver,
8186 * before returning SUCCESS.
8187 */
8188
8189 spin_lock_irqsave(&np->smp_lock, flags);
8190 sts = ncr_reset_bus(np, cmd, 1);
8191
8192 done_list = np->done_list;
8193 np->done_list = NULL;
8194 spin_unlock_irqrestore(&np->smp_lock, flags);
8195
8196 ncr_flush_done_cmds(done_list);
8197
8198 return sts;
8199}
8200
8201#if 0 /* unused and broken */
8202static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8203{
8204 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8205 int sts;
8206 unsigned long flags;
8207 struct scsi_cmnd *done_list;
8208
8209#if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS
c6295cd2005-04-03 14:59:11 -05008210 printk("ncr53c8xx_abort: pid=%lu serial_number=%ld\n",
8211 cmd->pid, cmd->serial_number);
Linus Torvalds1da177e2005-04-16 15:20:36 -07008212#else
8213 printk("ncr53c8xx_abort: command pid %lu\n", cmd->pid);
8214#endif
8215
8216 NCR_LOCK_NCB(np, flags);
8217
Linus Torvalds1da177e2005-04-16 15:20:36 -07008218 sts = ncr_abort_command(np, cmd);
8219out:
8220 done_list = np->done_list;
8221 np->done_list = NULL;
8222 NCR_UNLOCK_NCB(np, flags);
8223
8224 ncr_flush_done_cmds(done_list);
8225
8226 return sts;
8227}
8228#endif
8229
8230
8231/*
8232** Scsi command waiting list management.
8233**
8234** It may happen that we cannot insert a scsi command into the start queue,
8235** in the following circumstances.
8236** Too few preallocated ccb(s),
8237** maxtags < cmd_per_lun of the Linux host control block,
8238** etc...
8239** Such scsi commands are inserted into a waiting list.
8240** When a scsi command complete, we try to requeue the commands of the
8241** waiting list.
8242*/
8243
8244#define next_wcmd host_scribble
8245
8246static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8247{
8248 struct scsi_cmnd *wcmd;
8249
8250#ifdef DEBUG_WAITING_LIST
8251 printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8252#endif
8253 cmd->next_wcmd = NULL;
8254 if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8255 else {
8256 while ((wcmd->next_wcmd) != 0)
8257 wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8258 wcmd->next_wcmd = (char *) cmd;
8259 }
8260}
8261
8262static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8263{
8264 struct scsi_cmnd **pcmd = &np->waiting_list;
8265
8266 while (*pcmd) {
8267 if (cmd == *pcmd) {
8268 if (to_remove) {
8269 *pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8270 cmd->next_wcmd = NULL;
8271 }
8272#ifdef DEBUG_WAITING_LIST
8273 printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8274#endif
8275 return cmd;
8276 }
8277 pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8278 }
8279 return NULL;
8280}
8281
8282static void process_waiting_list(struct ncb *np, int sts)
8283{
8284 struct scsi_cmnd *waiting_list, *wcmd;
8285
8286 waiting_list = np->waiting_list;
8287 np->waiting_list = NULL;
8288
8289#ifdef DEBUG_WAITING_LIST
8290 if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8291#endif
8292 while ((wcmd = waiting_list) != 0) {
8293 waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8294 wcmd->next_wcmd = NULL;
8295 if (sts == DID_OK) {
8296#ifdef DEBUG_WAITING_LIST
8297 printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8298#endif
8299 sts = ncr_queue_command(np, wcmd);
8300 }
8301 if (sts != DID_OK) {
8302#ifdef DEBUG_WAITING_LIST
8303 printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8304#endif
8305 wcmd->result = ScsiResult(sts, 0);
8306 ncr_queue_done_cmd(np, wcmd);
8307 }
8308 }
8309}
8310
8311#undef next_wcmd
8312
8313static ssize_t show_ncr53c8xx_revision(struct class_device *dev, char *buf)
8314{
8315 struct Scsi_Host *host = class_to_shost(dev);
8316 struct host_data *host_data = (struct host_data *)host->hostdata;
8317
8318 return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8319}
8320
8321static struct class_device_attribute ncr53c8xx_revision_attr = {
8322 .attr = { .name = "revision", .mode = S_IRUGO, },
8323 .show = show_ncr53c8xx_revision,
8324};
8325
8326static struct class_device_attribute *ncr53c8xx_host_attrs[] = {
8327 &ncr53c8xx_revision_attr,
8328 NULL
8329};
8330
8331/*==========================================================
8332**
8333** Boot command line.
8334**
8335**==========================================================
8336*/
8337#ifdef MODULE
8338char *ncr53c8xx; /* command line passed by insmod */
8339module_param(ncr53c8xx, charp, 0);
8340#endif
8341
8342static int __init ncr53c8xx_setup(char *str)
8343{
8344 return sym53c8xx__setup(str);
8345}
8346
8347#ifndef MODULE
8348__setup("ncr53c8xx=", ncr53c8xx_setup);
8349#endif
8350
8351
8352/*
8353 * Host attach and initialisations.
8354 *
8355 * Allocate host data and ncb structure.
8356 * Request IO region and remap MMIO region.
8357 * Do chip initialization.
8358 * If all is OK, install interrupt handling and
8359 * start the timer daemon.
8360 */
8361struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8362 int unit, struct ncr_device *device)
8363{
8364 struct host_data *host_data;
8365 struct ncb *np = NULL;
8366 struct Scsi_Host *instance = NULL;
8367 u_long flags = 0;
8368 int i;
8369
8370 if (!tpnt->name)
8371 tpnt->name = SCSI_NCR_DRIVER_NAME;
8372 if (!tpnt->shost_attrs)
8373 tpnt->shost_attrs = ncr53c8xx_host_attrs;
8374
8375 tpnt->queuecommand = ncr53c8xx_queue_command;
8376 tpnt->slave_configure = ncr53c8xx_slave_configure;
8377 tpnt->slave_alloc = ncr53c8xx_slave_alloc;
8378 tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8379 tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
8380 tpnt->this_id = 7;
8381 tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE;
8382 tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
8383 tpnt->use_clustering = ENABLE_CLUSTERING;
8384
8385 if (device->differential)
8386 driver_setup.diff_support = device->differential;
8387
8388 printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8389 unit, device->chip.revision_id, device->slot.irq);
8390
8391 instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8392 if (!instance)
8393 goto attach_error;
8394 host_data = (struct host_data *) instance->hostdata;
8395
8396 np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8397 if (!np)
8398 goto attach_error;
8399 spin_lock_init(&np->smp_lock);
8400 np->dev = device->dev;
8401 np->p_ncb = vtobus(np);
8402 host_data->ncb = np;
8403
8404 np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8405 if (!np->ccb)
8406 goto attach_error;
8407
8408 /* Store input information in the host data structure. */
8409 np->unit = unit;
8410 np->verbose = driver_setup.verbose;
8411 sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8412 np->revision_id = device->chip.revision_id;
8413 np->features = device->chip.features;
8414 np->clock_divn = device->chip.nr_divisor;
8415 np->maxoffs = device->chip.offset_max;
8416 np->maxburst = device->chip.burst_max;
8417 np->myaddr = device->host_id;
8418
8419 /* Allocate SCRIPTS areas. */
8420 np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8421 if (!np->script0)
8422 goto attach_error;
8423 np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8424 if (!np->scripth0)
8425 goto attach_error;
8426
8427 init_timer(&np->timer);
8428 np->timer.data = (unsigned long) np;
8429 np->timer.function = ncr53c8xx_timeout;
8430
8431 /* Try to map the controller chip to virtual and physical memory. */
8432
8433 np->paddr = device->slot.base;
8434 np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
8435
8436 if (device->slot.base_v)
8437 np->vaddr = device->slot.base_v;
8438 else
8439 np->vaddr = ioremap(device->slot.base_c, 128);
8440
8441 if (!np->vaddr) {
8442 printk(KERN_ERR
8443 "%s: can't map memory mapped IO region\n",ncr_name(np));
8444 goto attach_error;
8445 } else {
8446 if (bootverbose > 1)
8447 printk(KERN_INFO
8448 "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8449 }
8450
8451 /* Make the controller's registers available. Now the INB INW INL
8452 * OUTB OUTW OUTL macros can be used safely.
8453 */
8454
8455 np->reg = (struct ncr_reg __iomem *)np->vaddr;
8456
8457 /* Do chip dependent initialization. */
8458 ncr_prepare_setting(np);
8459
8460 if (np->paddr2 && sizeof(struct script) > 4096) {
8461 np->paddr2 = 0;
8462 printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8463 ncr_name(np));
8464 }
8465
8466 instance->max_channel = 0;
8467 instance->this_id = np->myaddr;
8468 instance->max_id = np->maxwide ? 16 : 8;
8469 instance->max_lun = SCSI_NCR_MAX_LUN;
8470 instance->base = (unsigned long) np->reg;
8471 instance->irq = device->slot.irq;
8472 instance->unique_id = device->slot.base;
8473 instance->dma_channel = 0;
8474 instance->cmd_per_lun = MAX_TAGS;
8475 instance->can_queue = (MAX_START-4);
8476 /* This can happen if you forget to call ncr53c8xx_init from
8477 * your module_init */
8478 BUG_ON(!ncr53c8xx_transport_template);
8479 instance->transportt = ncr53c8xx_transport_template;
Linus Torvalds1da177e2005-04-16 15:20:36 -07008480
8481 /* Patch script to physical addresses */
8482 ncr_script_fill(&script0, &scripth0);
8483
8484 np->scripth = np->scripth0;
8485 np->p_scripth = vtobus(np->scripth);
8486 np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
8487
8488 ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8489 (ncrcmd *) np->script0, sizeof(struct script));
8490 ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8491 (ncrcmd *) np->scripth0, sizeof(struct scripth));
8492 np->ccb->p_ccb = vtobus (np->ccb);
8493
8494 /* Patch the script for LED support. */
8495
8496 if (np->features & FE_LED0) {
8497 np->script0->idle[0] =
8498 cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
8499 np->script0->reselected[0] =
8500 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8501 np->script0->start[0] =
8502 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8503 }
8504
8505 /*
8506 * Look for the target control block of this nexus.
8507 * For i = 0 to 3
8508 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8509 */
8510 for (i = 0 ; i < 4 ; i++) {
8511 np->jump_tcb[i].l_cmd =
8512 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8513 np->jump_tcb[i].l_paddr =
8514 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8515 }
8516
8517 ncr_chip_reset(np, 100);
8518
8519 /* Now check the cache handling of the chipset. */
8520
8521 if (ncr_snooptest(np)) {
8522 printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8523 goto attach_error;
8524 }
8525
8526 /* Install the interrupt handler. */
8527 np->irq = device->slot.irq;
8528
8529 /* Initialize the fixed part of the default ccb. */
8530 ncr_init_ccb(np, np->ccb);
8531
8532 /*
8533 * After SCSI devices have been opened, we cannot reset the bus
8534 * safely, so we do it here. Interrupt handler does the real work.
8535 * Process the reset exception if interrupts are not enabled yet.
8536 * Then enable disconnects.
8537 */
8538 spin_lock_irqsave(&np->smp_lock, flags);
8539 if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8540 printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8541
8542 spin_unlock_irqrestore(&np->smp_lock, flags);
8543 goto attach_error;
8544 }
8545 ncr_exception(np);
8546
8547 np->disc = 1;
8548
8549 /*
8550 * The middle-level SCSI driver does not wait for devices to settle.
8551 * Wait synchronously if more than 2 seconds.
8552 */
8553 if (driver_setup.settle_delay > 2) {
8554 printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8555 ncr_name(np), driver_setup.settle_delay);
8556 mdelay(1000 * driver_setup.settle_delay);
8557 }
8558
8559 /* start the timeout daemon */
8560 np->lasttime=0;
8561 ncr_timeout (np);
8562
8563 /* use SIMPLE TAG messages by default */
8564#ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8565 np->order = M_SIMPLE_TAG;
8566#endif
8567
8568 spin_unlock_irqrestore(&np->smp_lock, flags);
8569
8570 return instance;
8571
8572 attach_error:
8573 if (!instance)
8574 return NULL;
8575 printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8576 if (!np)
8577 goto unregister;
8578 if (np->scripth0)
8579 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8580 if (np->script0)
8581 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8582 if (np->ccb)
8583 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8584 m_free_dma(np, sizeof(struct ncb), "NCB");
8585 host_data->ncb = NULL;
8586
8587 unregister:
8588 scsi_host_put(instance);
8589
8590 return NULL;
8591}
8592
8593
8594int ncr53c8xx_release(struct Scsi_Host *host)
8595{
8596 struct host_data *host_data;
8597#ifdef DEBUG_NCR53C8XX
8598 printk("ncr53c8xx: release\n");
8599#endif
8600 if (!host)
8601 return 1;
8602 host_data = (struct host_data *)host->hostdata;
8603 if (host_data && host_data->ncb)
8604 ncr_detach(host_data->ncb);
8605 return 1;
8606}
8607
8608static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8609{
8610 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8611 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8612 struct tcb *tp = &np->target[starget->id];
8613
8614 if (period > np->maxsync)
8615 period = np->maxsync;
8616 else if (period < np->minsync)
8617 period = np->minsync;
8618
8619 tp->usrsync = period;
8620
8621 ncr_negotiate(np, tp);
8622}
8623
8624static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8625{
8626 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8627 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8628 struct tcb *tp = &np->target[starget->id];
8629
8630 if (offset > np->maxoffs)
8631 offset = np->maxoffs;
8632 else if (offset < 0)
8633 offset = 0;
8634
8635 tp->maxoffs = offset;
8636
8637 ncr_negotiate(np, tp);
8638}
8639
8640static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8641{
8642 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8643 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8644 struct tcb *tp = &np->target[starget->id];
8645
8646 if (width > np->maxwide)
8647 width = np->maxwide;
8648 else if (width < 0)
8649 width = 0;
8650
8651 tp->usrwide = width;
8652
8653 ncr_negotiate(np, tp);
8654}
8655
8656static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8657{
8658 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8659 enum spi_signal_type type;
8660
8661 switch (np->scsi_mode) {
8662 case SMODE_SE:
8663 type = SPI_SIGNAL_SE;
8664 break;
8665 case SMODE_HVD:
8666 type = SPI_SIGNAL_HVD;
8667 break;
8668 default:
8669 type = SPI_SIGNAL_UNKNOWN;
8670 break;
8671 }
8672 spi_signalling(shost) = type;
8673}
8674
8675static struct spi_function_template ncr53c8xx_transport_functions = {
8676 .set_period = ncr53c8xx_set_period,
8677 .show_period = 1,
8678 .set_offset = ncr53c8xx_set_offset,
8679 .show_offset = 1,
8680 .set_width = ncr53c8xx_set_width,
8681 .show_width = 1,
8682 .get_signalling = ncr53c8xx_get_signalling,
8683};
8684
8685int __init ncr53c8xx_init(void)
8686{
8687 ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8688 if (!ncr53c8xx_transport_template)
8689 return -ENODEV;
8690 return 0;
8691}
8692
8693void ncr53c8xx_exit(void)
8694{
8695 spi_release_transport(ncr53c8xx_transport_template);
8696}