blob: a6976119b4a49a24bcaa1450638b46f2c963d725 [file] [log] [blame]
Johannes Weinera5289102014-04-03 14:47:51 -07001/*
2 * Workingset detection
3 *
4 * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
5 */
6
7#include <linux/memcontrol.h>
8#include <linux/writeback.h>
9#include <linux/pagemap.h>
10#include <linux/atomic.h>
11#include <linux/module.h>
12#include <linux/swap.h>
13#include <linux/fs.h>
14#include <linux/mm.h>
15
16/*
17 * Double CLOCK lists
18 *
Mel Gorman1e6b10852016-07-28 15:46:08 -070019 * Per node, two clock lists are maintained for file pages: the
Johannes Weinera5289102014-04-03 14:47:51 -070020 * inactive and the active list. Freshly faulted pages start out at
21 * the head of the inactive list and page reclaim scans pages from the
22 * tail. Pages that are accessed multiple times on the inactive list
23 * are promoted to the active list, to protect them from reclaim,
24 * whereas active pages are demoted to the inactive list when the
25 * active list grows too big.
26 *
27 * fault ------------------------+
28 * |
29 * +--------------+ | +-------------+
30 * reclaim <- | inactive | <-+-- demotion | active | <--+
31 * +--------------+ +-------------+ |
32 * | |
33 * +-------------- promotion ------------------+
34 *
35 *
36 * Access frequency and refault distance
37 *
38 * A workload is thrashing when its pages are frequently used but they
39 * are evicted from the inactive list every time before another access
40 * would have promoted them to the active list.
41 *
42 * In cases where the average access distance between thrashing pages
43 * is bigger than the size of memory there is nothing that can be
44 * done - the thrashing set could never fit into memory under any
45 * circumstance.
46 *
47 * However, the average access distance could be bigger than the
48 * inactive list, yet smaller than the size of memory. In this case,
49 * the set could fit into memory if it weren't for the currently
50 * active pages - which may be used more, hopefully less frequently:
51 *
52 * +-memory available to cache-+
53 * | |
54 * +-inactive------+-active----+
55 * a b | c d e f g h i | J K L M N |
56 * +---------------+-----------+
57 *
58 * It is prohibitively expensive to accurately track access frequency
59 * of pages. But a reasonable approximation can be made to measure
60 * thrashing on the inactive list, after which refaulting pages can be
61 * activated optimistically to compete with the existing active pages.
62 *
63 * Approximating inactive page access frequency - Observations:
64 *
65 * 1. When a page is accessed for the first time, it is added to the
66 * head of the inactive list, slides every existing inactive page
67 * towards the tail by one slot, and pushes the current tail page
68 * out of memory.
69 *
70 * 2. When a page is accessed for the second time, it is promoted to
71 * the active list, shrinking the inactive list by one slot. This
72 * also slides all inactive pages that were faulted into the cache
73 * more recently than the activated page towards the tail of the
74 * inactive list.
75 *
76 * Thus:
77 *
78 * 1. The sum of evictions and activations between any two points in
79 * time indicate the minimum number of inactive pages accessed in
80 * between.
81 *
82 * 2. Moving one inactive page N page slots towards the tail of the
83 * list requires at least N inactive page accesses.
84 *
85 * Combining these:
86 *
87 * 1. When a page is finally evicted from memory, the number of
88 * inactive pages accessed while the page was in cache is at least
89 * the number of page slots on the inactive list.
90 *
91 * 2. In addition, measuring the sum of evictions and activations (E)
92 * at the time of a page's eviction, and comparing it to another
93 * reading (R) at the time the page faults back into memory tells
94 * the minimum number of accesses while the page was not cached.
95 * This is called the refault distance.
96 *
97 * Because the first access of the page was the fault and the second
98 * access the refault, we combine the in-cache distance with the
99 * out-of-cache distance to get the complete minimum access distance
100 * of this page:
101 *
102 * NR_inactive + (R - E)
103 *
104 * And knowing the minimum access distance of a page, we can easily
105 * tell if the page would be able to stay in cache assuming all page
106 * slots in the cache were available:
107 *
108 * NR_inactive + (R - E) <= NR_inactive + NR_active
109 *
110 * which can be further simplified to
111 *
112 * (R - E) <= NR_active
113 *
114 * Put into words, the refault distance (out-of-cache) can be seen as
115 * a deficit in inactive list space (in-cache). If the inactive list
116 * had (R - E) more page slots, the page would not have been evicted
117 * in between accesses, but activated instead. And on a full system,
118 * the only thing eating into inactive list space is active pages.
119 *
120 *
Johannes Weinera2383322018-10-26 15:06:04 -0700121 * Refaulting inactive pages
Johannes Weinera5289102014-04-03 14:47:51 -0700122 *
123 * All that is known about the active list is that the pages have been
124 * accessed more than once in the past. This means that at any given
125 * time there is actually a good chance that pages on the active list
126 * are no longer in active use.
127 *
128 * So when a refault distance of (R - E) is observed and there are at
129 * least (R - E) active pages, the refaulting page is activated
130 * optimistically in the hope that (R - E) active pages are actually
131 * used less frequently than the refaulting page - or even not used at
132 * all anymore.
133 *
Johannes Weinera2383322018-10-26 15:06:04 -0700134 * That means if inactive cache is refaulting with a suitable refault
135 * distance, we assume the cache workingset is transitioning and put
136 * pressure on the current active list.
137 *
Johannes Weinera5289102014-04-03 14:47:51 -0700138 * If this is wrong and demotion kicks in, the pages which are truly
139 * used more frequently will be reactivated while the less frequently
140 * used once will be evicted from memory.
141 *
142 * But if this is right, the stale pages will be pushed out of memory
143 * and the used pages get to stay in cache.
144 *
Johannes Weinera2383322018-10-26 15:06:04 -0700145 * Refaulting active pages
146 *
147 * If on the other hand the refaulting pages have recently been
148 * deactivated, it means that the active list is no longer protecting
149 * actively used cache from reclaim. The cache is NOT transitioning to
150 * a different workingset; the existing workingset is thrashing in the
151 * space allocated to the page cache.
152 *
Johannes Weinera5289102014-04-03 14:47:51 -0700153 *
154 * Implementation
155 *
Mel Gorman1e6b10852016-07-28 15:46:08 -0700156 * For each node's file LRU lists, a counter for inactive evictions
157 * and activations is maintained (node->inactive_age).
Johannes Weinera5289102014-04-03 14:47:51 -0700158 *
159 * On eviction, a snapshot of this counter (along with some bits to
Mel Gorman1e6b10852016-07-28 15:46:08 -0700160 * identify the node) is stored in the now empty page cache radix tree
Johannes Weinera5289102014-04-03 14:47:51 -0700161 * slot of the evicted page. This is called a shadow entry.
162 *
163 * On cache misses for which there are shadow entries, an eligible
164 * refault distance will immediately activate the refaulting page.
165 */
166
Johannes Weiner689c94f2016-03-15 14:57:07 -0700167#define EVICTION_SHIFT (RADIX_TREE_EXCEPTIONAL_ENTRY + \
Johannes Weinera2383322018-10-26 15:06:04 -0700168 1 + NODES_SHIFT + MEM_CGROUP_ID_SHIFT)
Johannes Weiner689c94f2016-03-15 14:57:07 -0700169#define EVICTION_MASK (~0UL >> EVICTION_SHIFT)
170
Johannes Weiner612e4492016-03-15 14:57:13 -0700171/*
172 * Eviction timestamps need to be able to cover the full range of
173 * actionable refaults. However, bits are tight in the radix tree
174 * entry, and after storing the identifier for the lruvec there might
175 * not be enough left to represent every single actionable refault. In
176 * that case, we have to sacrifice granularity for distance, and group
177 * evictions into coarser buckets by shaving off lower timestamp bits.
178 */
179static unsigned int bucket_order __read_mostly;
180
Johannes Weinera2383322018-10-26 15:06:04 -0700181static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
182 bool workingset)
Johannes Weinera5289102014-04-03 14:47:51 -0700183{
Johannes Weiner612e4492016-03-15 14:57:13 -0700184 eviction >>= bucket_order;
Johannes Weiner23047a92016-03-15 14:57:16 -0700185 eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700186 eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
Johannes Weinera2383322018-10-26 15:06:04 -0700187 eviction = (eviction << 1) | workingset;
Johannes Weinera5289102014-04-03 14:47:51 -0700188 eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT);
189
190 return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY);
191}
192
Mel Gorman1e6b10852016-07-28 15:46:08 -0700193static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
Johannes Weinera2383322018-10-26 15:06:04 -0700194 unsigned long *evictionp, bool *workingsetp)
Johannes Weinera5289102014-04-03 14:47:51 -0700195{
196 unsigned long entry = (unsigned long)shadow;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700197 int memcgid, nid;
Johannes Weinera2383322018-10-26 15:06:04 -0700198 bool workingset;
Johannes Weinera5289102014-04-03 14:47:51 -0700199
200 entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT;
Johannes Weinera2383322018-10-26 15:06:04 -0700201 workingset = entry & 1;
202 entry >>= 1;
Johannes Weinera5289102014-04-03 14:47:51 -0700203 nid = entry & ((1UL << NODES_SHIFT) - 1);
204 entry >>= NODES_SHIFT;
Johannes Weiner23047a92016-03-15 14:57:16 -0700205 memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
206 entry >>= MEM_CGROUP_ID_SHIFT;
Johannes Weinera5289102014-04-03 14:47:51 -0700207
Johannes Weiner23047a92016-03-15 14:57:16 -0700208 *memcgidp = memcgid;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700209 *pgdat = NODE_DATA(nid);
Johannes Weiner612e4492016-03-15 14:57:13 -0700210 *evictionp = entry << bucket_order;
Johannes Weinera2383322018-10-26 15:06:04 -0700211 *workingsetp = workingset;
Johannes Weinera5289102014-04-03 14:47:51 -0700212}
213
214/**
215 * workingset_eviction - note the eviction of a page from memory
216 * @mapping: address space the page was backing
217 * @page: the page being evicted
218 *
219 * Returns a shadow entry to be stored in @mapping->page_tree in place
220 * of the evicted @page so that a later refault can be detected.
221 */
222void *workingset_eviction(struct address_space *mapping, struct page *page)
223{
Mel Gorman1e6b10852016-07-28 15:46:08 -0700224 struct pglist_data *pgdat = page_pgdat(page);
Johannes Weinera2383322018-10-26 15:06:04 -0700225 struct mem_cgroup *memcg = page_memcg(page);
Johannes Weiner23047a92016-03-15 14:57:16 -0700226 int memcgid = mem_cgroup_id(memcg);
Johannes Weinera5289102014-04-03 14:47:51 -0700227 unsigned long eviction;
Johannes Weiner23047a92016-03-15 14:57:16 -0700228 struct lruvec *lruvec;
Johannes Weinera5289102014-04-03 14:47:51 -0700229
Johannes Weiner23047a92016-03-15 14:57:16 -0700230 /* Page is fully exclusive and pins page->mem_cgroup */
231 VM_BUG_ON_PAGE(PageLRU(page), page);
232 VM_BUG_ON_PAGE(page_count(page), page);
233 VM_BUG_ON_PAGE(!PageLocked(page), page);
234
Mel Gorman1e6b10852016-07-28 15:46:08 -0700235 lruvec = mem_cgroup_lruvec(pgdat, memcg);
Johannes Weiner23047a92016-03-15 14:57:16 -0700236 eviction = atomic_long_inc_return(&lruvec->inactive_age);
Johannes Weinera2383322018-10-26 15:06:04 -0700237 return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
Johannes Weinera5289102014-04-03 14:47:51 -0700238}
239
240/**
241 * workingset_refault - evaluate the refault of a previously evicted page
Johannes Weinera2383322018-10-26 15:06:04 -0700242 * @page: the freshly allocated replacement page
Johannes Weinera5289102014-04-03 14:47:51 -0700243 * @shadow: shadow entry of the evicted page
244 *
245 * Calculates and evaluates the refault distance of the previously
Mel Gorman1e6b10852016-07-28 15:46:08 -0700246 * evicted page in the context of the node it was allocated in.
Johannes Weinera5289102014-04-03 14:47:51 -0700247 */
Johannes Weinera2383322018-10-26 15:06:04 -0700248void workingset_refault(struct page *page, void *shadow)
Johannes Weinera5289102014-04-03 14:47:51 -0700249{
250 unsigned long refault_distance;
Johannes Weinera2383322018-10-26 15:06:04 -0700251 struct pglist_data *pgdat;
Johannes Weiner23047a92016-03-15 14:57:16 -0700252 unsigned long active_file;
253 struct mem_cgroup *memcg;
Johannes Weiner162453b2016-03-15 14:57:10 -0700254 unsigned long eviction;
Johannes Weiner23047a92016-03-15 14:57:16 -0700255 struct lruvec *lruvec;
Johannes Weiner162453b2016-03-15 14:57:10 -0700256 unsigned long refault;
Johannes Weinera2383322018-10-26 15:06:04 -0700257 bool workingset;
Johannes Weiner23047a92016-03-15 14:57:16 -0700258 int memcgid;
Johannes Weinera5289102014-04-03 14:47:51 -0700259
Johannes Weinera2383322018-10-26 15:06:04 -0700260 unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
Johannes Weiner162453b2016-03-15 14:57:10 -0700261
Johannes Weiner23047a92016-03-15 14:57:16 -0700262 rcu_read_lock();
263 /*
264 * Look up the memcg associated with the stored ID. It might
265 * have been deleted since the page's eviction.
266 *
267 * Note that in rare events the ID could have been recycled
268 * for a new cgroup that refaults a shared page. This is
269 * impossible to tell from the available data. However, this
270 * should be a rare and limited disturbance, and activations
271 * are always speculative anyway. Ultimately, it's the aging
272 * algorithm's job to shake out the minimum access frequency
273 * for the active cache.
274 *
275 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
276 * would be better if the root_mem_cgroup existed in all
277 * configurations instead.
278 */
279 memcg = mem_cgroup_from_id(memcgid);
Johannes Weinera2383322018-10-26 15:06:04 -0700280 if (!mem_cgroup_disabled() && !memcg)
281 goto out;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700282 lruvec = mem_cgroup_lruvec(pgdat, memcg);
Johannes Weiner23047a92016-03-15 14:57:16 -0700283 refault = atomic_long_read(&lruvec->inactive_age);
Michal Hocko71053132017-02-22 15:45:58 -0800284 active_file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES);
Johannes Weiner162453b2016-03-15 14:57:10 -0700285
286 /*
Johannes Weinera2383322018-10-26 15:06:04 -0700287 * Calculate the refault distance
Johannes Weiner162453b2016-03-15 14:57:10 -0700288 *
Johannes Weinera2383322018-10-26 15:06:04 -0700289 * The unsigned subtraction here gives an accurate distance
290 * across inactive_age overflows in most cases. There is a
291 * special case: usually, shadow entries have a short lifetime
292 * and are either refaulted or reclaimed along with the inode
293 * before they get too old. But it is not impossible for the
294 * inactive_age to lap a shadow entry in the field, which can
295 * then result in a false small refault distance, leading to a
296 * false activation should this old entry actually refault
297 * again. However, earlier kernels used to deactivate
298 * unconditionally with *every* reclaim invocation for the
299 * longest time, so the occasional inappropriate activation
300 * leading to pressure on the active list is not a problem.
Johannes Weiner162453b2016-03-15 14:57:10 -0700301 */
302 refault_distance = (refault - eviction) & EVICTION_MASK;
303
Mel Gorman1e6b10852016-07-28 15:46:08 -0700304 inc_node_state(pgdat, WORKINGSET_REFAULT);
Johannes Weinera5289102014-04-03 14:47:51 -0700305
Johannes Weinera2383322018-10-26 15:06:04 -0700306 /*
307 * Compare the distance to the existing workingset size. We
308 * don't act on pages that couldn't stay resident even if all
309 * the memory was available to the page cache.
310 */
311 if (refault_distance > active_file)
312 goto out;
313
314 SetPageActive(page);
315 atomic_long_inc(&lruvec->inactive_age);
316 inc_node_state(pgdat, WORKINGSET_ACTIVATE);
317
318 /* Page was active prior to eviction */
319 if (workingset) {
320 SetPageWorkingset(page);
321 inc_node_state(pgdat, WORKINGSET_RESTORE);
Johannes Weinera5289102014-04-03 14:47:51 -0700322 }
Johannes Weinera2383322018-10-26 15:06:04 -0700323out:
324 rcu_read_unlock();
Johannes Weinera5289102014-04-03 14:47:51 -0700325}
326
327/**
328 * workingset_activation - note a page activation
329 * @page: page that is being activated
330 */
331void workingset_activation(struct page *page)
332{
Johannes Weiner55779ec2016-07-28 15:45:10 -0700333 struct mem_cgroup *memcg;
Johannes Weiner23047a92016-03-15 14:57:16 -0700334 struct lruvec *lruvec;
335
Johannes Weiner55779ec2016-07-28 15:45:10 -0700336 rcu_read_lock();
Johannes Weiner23047a92016-03-15 14:57:16 -0700337 /*
338 * Filter non-memcg pages here, e.g. unmap can call
339 * mark_page_accessed() on VDSO pages.
340 *
341 * XXX: See workingset_refault() - this should return
342 * root_mem_cgroup even for !CONFIG_MEMCG.
343 */
Johannes Weiner55779ec2016-07-28 15:45:10 -0700344 memcg = page_memcg_rcu(page);
345 if (!mem_cgroup_disabled() && !memcg)
Johannes Weiner23047a92016-03-15 14:57:16 -0700346 goto out;
Mel Gormanef8f2322016-07-28 15:46:05 -0700347 lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
Johannes Weiner23047a92016-03-15 14:57:16 -0700348 atomic_long_inc(&lruvec->inactive_age);
349out:
Johannes Weiner55779ec2016-07-28 15:45:10 -0700350 rcu_read_unlock();
Johannes Weinera5289102014-04-03 14:47:51 -0700351}
Johannes Weiner449dd692014-04-03 14:47:56 -0700352
353/*
354 * Shadow entries reflect the share of the working set that does not
355 * fit into memory, so their number depends on the access pattern of
356 * the workload. In most cases, they will refault or get reclaimed
357 * along with the inode, but a (malicious) workload that streams
358 * through files with a total size several times that of available
359 * memory, while preventing the inodes from being reclaimed, can
360 * create excessive amounts of shadow nodes. To keep a lid on this,
361 * track shadow nodes and reclaim them when they grow way past the
362 * point where they would still be useful.
363 */
364
365struct list_lru workingset_shadow_nodes;
366
367static unsigned long count_shadow_nodes(struct shrinker *shrinker,
368 struct shrink_control *sc)
369{
370 unsigned long shadow_nodes;
371 unsigned long max_nodes;
372 unsigned long pages;
373
374 /* list_lru lock nests inside IRQ-safe mapping->tree_lock */
375 local_irq_disable();
Vladimir Davydov503c3582015-02-12 14:58:47 -0800376 shadow_nodes = list_lru_shrink_count(&workingset_shadow_nodes, sc);
Johannes Weiner449dd692014-04-03 14:47:56 -0700377 local_irq_enable();
378
Michal Hocko20ab67a2016-12-02 17:26:45 -0800379 if (sc->memcg) {
Vladimir Davydov0a6b76d2016-03-17 14:18:42 -0700380 pages = mem_cgroup_node_nr_lru_pages(sc->memcg, sc->nid,
381 LRU_ALL_FILE);
Mel Gorman75ef7182016-07-28 15:45:24 -0700382 } else {
Mel Gorman599d0c92016-07-28 15:45:31 -0700383 pages = node_page_state(NODE_DATA(sc->nid), NR_ACTIVE_FILE) +
384 node_page_state(NODE_DATA(sc->nid), NR_INACTIVE_FILE);
Mel Gorman75ef7182016-07-28 15:45:24 -0700385 }
Vladimir Davydovcdcbb722016-03-17 14:18:39 -0700386
Johannes Weiner449dd692014-04-03 14:47:56 -0700387 /*
388 * Active cache pages are limited to 50% of memory, and shadow
389 * entries that represent a refault distance bigger than that
390 * do not have any effect. Limit the number of shadow nodes
391 * such that shadow entries do not exceed the number of active
392 * cache pages, assuming a worst-case node population density
393 * of 1/8th on average.
394 *
395 * On 64-bit with 7 radix_tree_nodes per page and 64 slots
396 * each, this will reclaim shadow entries when they consume
397 * ~2% of available memory:
398 *
399 * PAGE_SIZE / radix_tree_nodes / node_entries / PAGE_SIZE
400 */
401 max_nodes = pages >> (1 + RADIX_TREE_MAP_SHIFT - 3);
402
403 if (shadow_nodes <= max_nodes)
404 return 0;
405
406 return shadow_nodes - max_nodes;
407}
408
409static enum lru_status shadow_lru_isolate(struct list_head *item,
Vladimir Davydov3f97b162015-02-12 14:59:35 -0800410 struct list_lru_one *lru,
Johannes Weiner449dd692014-04-03 14:47:56 -0700411 spinlock_t *lru_lock,
412 void *arg)
413{
414 struct address_space *mapping;
415 struct radix_tree_node *node;
416 unsigned int i;
417 int ret;
418
419 /*
420 * Page cache insertions and deletions synchroneously maintain
421 * the shadow node LRU under the mapping->tree_lock and the
422 * lru_lock. Because the page cache tree is emptied before
423 * the inode can be destroyed, holding the lru_lock pins any
424 * address_space that has radix tree nodes on the LRU.
425 *
426 * We can then safely transition to the mapping->tree_lock to
427 * pin only the address_space of the particular node we want
428 * to reclaim, take the node off-LRU, and drop the lru_lock.
429 */
430
431 node = container_of(item, struct radix_tree_node, private_list);
432 mapping = node->private_data;
433
434 /* Coming from the list, invert the lock order */
435 if (!spin_trylock(&mapping->tree_lock)) {
436 spin_unlock(lru_lock);
437 ret = LRU_RETRY;
438 goto out;
439 }
440
Vladimir Davydov3f97b162015-02-12 14:59:35 -0800441 list_lru_isolate(lru, item);
Johannes Weiner449dd692014-04-03 14:47:56 -0700442 spin_unlock(lru_lock);
443
444 /*
445 * The nodes should only contain one or more shadow entries,
446 * no pages, so we expect to be able to remove them all and
447 * delete and free the empty node afterwards.
448 */
Johannes Weiner22f2ac52016-09-30 15:11:29 -0700449 BUG_ON(!workingset_node_shadows(node));
450 BUG_ON(workingset_node_pages(node));
Johannes Weiner449dd692014-04-03 14:47:56 -0700451
452 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
453 if (node->slots[i]) {
454 BUG_ON(!radix_tree_exceptional_entry(node->slots[i]));
455 node->slots[i] = NULL;
Johannes Weiner22f2ac52016-09-30 15:11:29 -0700456 workingset_node_shadows_dec(node);
Ross Zwislerf9fe48b2016-01-22 15:10:40 -0800457 BUG_ON(!mapping->nrexceptional);
458 mapping->nrexceptional--;
Johannes Weiner449dd692014-04-03 14:47:56 -0700459 }
460 }
Johannes Weiner22f2ac52016-09-30 15:11:29 -0700461 BUG_ON(workingset_node_shadows(node));
Mel Gorman1e6b10852016-07-28 15:46:08 -0700462 inc_node_state(page_pgdat(virt_to_page(node)), WORKINGSET_NODERECLAIM);
Johannes Weiner449dd692014-04-03 14:47:56 -0700463 if (!__radix_tree_delete_node(&mapping->page_tree, node))
464 BUG();
465
466 spin_unlock(&mapping->tree_lock);
467 ret = LRU_REMOVED_RETRY;
468out:
469 local_irq_enable();
470 cond_resched();
471 local_irq_disable();
472 spin_lock(lru_lock);
473 return ret;
474}
475
476static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
477 struct shrink_control *sc)
478{
479 unsigned long ret;
480
481 /* list_lru lock nests inside IRQ-safe mapping->tree_lock */
482 local_irq_disable();
Vladimir Davydov503c3582015-02-12 14:58:47 -0800483 ret = list_lru_shrink_walk(&workingset_shadow_nodes, sc,
484 shadow_lru_isolate, NULL);
Johannes Weiner449dd692014-04-03 14:47:56 -0700485 local_irq_enable();
486 return ret;
487}
488
489static struct shrinker workingset_shadow_shrinker = {
490 .count_objects = count_shadow_nodes,
491 .scan_objects = scan_shadow_nodes,
492 .seeks = DEFAULT_SEEKS,
Vladimir Davydov0a6b76d2016-03-17 14:18:42 -0700493 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
Johannes Weiner449dd692014-04-03 14:47:56 -0700494};
495
496/*
497 * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
498 * mapping->tree_lock.
499 */
500static struct lock_class_key shadow_nodes_key;
501
502static int __init workingset_init(void)
503{
Johannes Weiner612e4492016-03-15 14:57:13 -0700504 unsigned int timestamp_bits;
505 unsigned int max_order;
Johannes Weiner449dd692014-04-03 14:47:56 -0700506 int ret;
507
Johannes Weiner612e4492016-03-15 14:57:13 -0700508 BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
509 /*
510 * Calculate the eviction bucket size to cover the longest
511 * actionable refault distance, which is currently half of
512 * memory (totalram_pages/2). However, memory hotplug may add
513 * some more pages at runtime, so keep working with up to
514 * double the initial memory by using totalram_pages as-is.
515 */
516 timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
517 max_order = fls_long(totalram_pages - 1);
518 if (max_order > timestamp_bits)
519 bucket_order = max_order - timestamp_bits;
Anton Blanchardd3d36c42016-07-14 12:07:41 -0700520 pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
Johannes Weiner612e4492016-03-15 14:57:13 -0700521 timestamp_bits, max_order, bucket_order);
522
Johannes Weinere3a55292017-03-31 15:11:52 -0700523 ret = __list_lru_init(&workingset_shadow_nodes, true, &shadow_nodes_key);
Johannes Weiner449dd692014-04-03 14:47:56 -0700524 if (ret)
525 goto err;
526 ret = register_shrinker(&workingset_shadow_shrinker);
527 if (ret)
528 goto err_list_lru;
529 return 0;
530err_list_lru:
531 list_lru_destroy(&workingset_shadow_nodes);
532err:
533 return ret;
534}
535module_init(workingset_init);