blob: 8b8a5a45b621cffed8fb384e5e272c0fdd1a8ecb [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11#include <linux/config.h>
12
13#include <linux/cpu.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/profile.h>
18#include <linux/sched.h>
19#include <linux/time.h>
20#include <linux/interrupt.h>
21#include <linux/efi.h>
22#include <linux/profile.h>
23#include <linux/timex.h>
24
25#include <asm/machvec.h>
26#include <asm/delay.h>
27#include <asm/hw_irq.h>
28#include <asm/ptrace.h>
29#include <asm/sal.h>
30#include <asm/sections.h>
31#include <asm/system.h>
32
33extern unsigned long wall_jiffies;
34
35u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
36
37EXPORT_SYMBOL(jiffies_64);
38
39#define TIME_KEEPER_ID 0 /* smp_processor_id() of time-keeper */
40
41#ifdef CONFIG_IA64_DEBUG_IRQ
42
43unsigned long last_cli_ip;
44EXPORT_SYMBOL(last_cli_ip);
45
46#endif
47
48static struct time_interpolator itc_interpolator = {
49 .shift = 16,
50 .mask = 0xffffffffffffffffLL,
51 .source = TIME_SOURCE_CPU
52};
53
54static irqreturn_t
55timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
56{
57 unsigned long new_itm;
58
59 if (unlikely(cpu_is_offline(smp_processor_id()))) {
60 return IRQ_HANDLED;
61 }
62
63 platform_timer_interrupt(irq, dev_id, regs);
64
65 new_itm = local_cpu_data->itm_next;
66
67 if (!time_after(ia64_get_itc(), new_itm))
68 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
69 ia64_get_itc(), new_itm);
70
71 profile_tick(CPU_PROFILING, regs);
72
73 while (1) {
74 update_process_times(user_mode(regs));
75
76 new_itm += local_cpu_data->itm_delta;
77
78 if (smp_processor_id() == TIME_KEEPER_ID) {
79 /*
80 * Here we are in the timer irq handler. We have irqs locally
81 * disabled, but we don't know if the timer_bh is running on
82 * another CPU. We need to avoid to SMP race by acquiring the
83 * xtime_lock.
84 */
85 write_seqlock(&xtime_lock);
86 do_timer(regs);
87 local_cpu_data->itm_next = new_itm;
88 write_sequnlock(&xtime_lock);
89 } else
90 local_cpu_data->itm_next = new_itm;
91
92 if (time_after(new_itm, ia64_get_itc()))
93 break;
94 }
95
96 do {
97 /*
98 * If we're too close to the next clock tick for
99 * comfort, we increase the safety margin by
100 * intentionally dropping the next tick(s). We do NOT
101 * update itm.next because that would force us to call
102 * do_timer() which in turn would let our clock run
103 * too fast (with the potentially devastating effect
104 * of losing monotony of time).
105 */
106 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
107 new_itm += local_cpu_data->itm_delta;
108 ia64_set_itm(new_itm);
109 /* double check, in case we got hit by a (slow) PMI: */
110 } while (time_after_eq(ia64_get_itc(), new_itm));
111 return IRQ_HANDLED;
112}
113
114/*
115 * Encapsulate access to the itm structure for SMP.
116 */
117void
118ia64_cpu_local_tick (void)
119{
120 int cpu = smp_processor_id();
121 unsigned long shift = 0, delta;
122
123 /* arrange for the cycle counter to generate a timer interrupt: */
124 ia64_set_itv(IA64_TIMER_VECTOR);
125
126 delta = local_cpu_data->itm_delta;
127 /*
128 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
129 * same time:
130 */
131 if (cpu) {
132 unsigned long hi = 1UL << ia64_fls(cpu);
133 shift = (2*(cpu - hi) + 1) * delta/hi/2;
134 }
135 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
136 ia64_set_itm(local_cpu_data->itm_next);
137}
138
139static int nojitter;
140
141static int __init nojitter_setup(char *str)
142{
143 nojitter = 1;
144 printk("Jitter checking for ITC timers disabled\n");
145 return 1;
146}
147
148__setup("nojitter", nojitter_setup);
149
150
151void __devinit
152ia64_init_itm (void)
153{
154 unsigned long platform_base_freq, itc_freq;
155 struct pal_freq_ratio itc_ratio, proc_ratio;
156 long status, platform_base_drift, itc_drift;
157
158 /*
159 * According to SAL v2.6, we need to use a SAL call to determine the platform base
160 * frequency and then a PAL call to determine the frequency ratio between the ITC
161 * and the base frequency.
162 */
163 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
164 &platform_base_freq, &platform_base_drift);
165 if (status != 0) {
166 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
167 } else {
168 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
169 if (status != 0)
170 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
171 }
172 if (status != 0) {
173 /* invent "random" values */
174 printk(KERN_ERR
175 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
176 platform_base_freq = 100000000;
177 platform_base_drift = -1; /* no drift info */
178 itc_ratio.num = 3;
179 itc_ratio.den = 1;
180 }
181 if (platform_base_freq < 40000000) {
182 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
183 platform_base_freq);
184 platform_base_freq = 75000000;
185 platform_base_drift = -1;
186 }
187 if (!proc_ratio.den)
188 proc_ratio.den = 1; /* avoid division by zero */
189 if (!itc_ratio.den)
190 itc_ratio.den = 1; /* avoid division by zero */
191
192 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
193
194 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
195 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
196 "ITC freq=%lu.%03luMHz", smp_processor_id(),
197 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
198 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
199
200 if (platform_base_drift != -1) {
201 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
202 printk("+/-%ldppm\n", itc_drift);
203 } else {
204 itc_drift = -1;
205 printk("\n");
206 }
207
208 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
209 local_cpu_data->itc_freq = itc_freq;
210 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
211 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
212 + itc_freq/2)/itc_freq;
213
214 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
215 itc_interpolator.frequency = local_cpu_data->itc_freq;
216 itc_interpolator.drift = itc_drift;
217#ifdef CONFIG_SMP
218 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
219 * Jitter compensation requires a cmpxchg which may limit
220 * the scalability of the syscalls for retrieving time.
221 * The ITC synchronization is usually successful to within a few
222 * ITC ticks but this is not a sure thing. If you need to improve
223 * timer performance in SMP situations then boot the kernel with the
224 * "nojitter" option. However, doing so may result in time fluctuating (maybe
225 * even going backward) if the ITC offsets between the individual CPUs
226 * are too large.
227 */
228 if (!nojitter) itc_interpolator.jitter = 1;
229#endif
230 register_time_interpolator(&itc_interpolator);
231 }
232
233 /* Setup the CPU local timer tick */
234 ia64_cpu_local_tick();
235}
236
237static struct irqaction timer_irqaction = {
238 .handler = timer_interrupt,
239 .flags = SA_INTERRUPT,
240 .name = "timer"
241};
242
243void __init
244time_init (void)
245{
246 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
247 efi_gettimeofday(&xtime);
248 ia64_init_itm();
249
250 /*
251 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
252 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
253 */
254 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
255}