blob: bd8cf907fe227d60e488f4817f302da0335e508b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* Optimized version of the standard memset() function.
2
3 Copyright (c) 2002 Hewlett-Packard Co/CERN
4 Sverre Jarp <Sverre.Jarp@cern.ch>
5
6 Return: dest
7
8 Inputs:
9 in0: dest
10 in1: value
11 in2: count
12
13 The algorithm is fairly straightforward: set byte by byte until we
14 we get to a 16B-aligned address, then loop on 128 B chunks using an
15 early store as prefetching, then loop on 32B chucks, then clear remaining
16 words, finally clear remaining bytes.
17 Since a stf.spill f0 can store 16B in one go, we use this instruction
18 to get peak speed when value = 0. */
19
20#include <asm/asmmacro.h>
21#undef ret
22
23#define dest in0
24#define value in1
25#define cnt in2
26
27#define tmp r31
28#define save_lc r30
29#define ptr0 r29
30#define ptr1 r28
31#define ptr2 r27
32#define ptr3 r26
33#define ptr9 r24
34#define loopcnt r23
35#define linecnt r22
36#define bytecnt r21
37
38#define fvalue f6
39
40// This routine uses only scratch predicate registers (p6 - p15)
41#define p_scr p6 // default register for same-cycle branches
42#define p_nz p7
43#define p_zr p8
44#define p_unalgn p9
45#define p_y p11
46#define p_n p12
47#define p_yy p13
48#define p_nn p14
49
50#define MIN1 15
51#define MIN1P1HALF 8
52#define LINE_SIZE 128
53#define LSIZE_SH 7 // shift amount
54#define PREF_AHEAD 8
55
56GLOBAL_ENTRY(memset)
57{ .mmi
58 .prologue
59 alloc tmp = ar.pfs, 3, 0, 0, 0
60 .body
61 lfetch.nt1 [dest] //
62 .save ar.lc, save_lc
63 mov.i save_lc = ar.lc
64} { .mmi
65 mov ret0 = dest // return value
66 cmp.ne p_nz, p_zr = value, r0 // use stf.spill if value is zero
67 cmp.eq p_scr, p0 = cnt, r0
68;; }
69{ .mmi
70 and ptr2 = -(MIN1+1), dest // aligned address
71 and tmp = MIN1, dest // prepare to check for correct alignment
72 tbit.nz p_y, p_n = dest, 0 // Do we have an odd address? (M_B_U)
73} { .mib
74 mov ptr1 = dest
75 mux1 value = value, @brcst // create 8 identical bytes in word
76(p_scr) br.ret.dpnt.many rp // return immediately if count = 0
77;; }
78{ .mib
79 cmp.ne p_unalgn, p0 = tmp, r0 //
80} { .mib
81 sub bytecnt = (MIN1+1), tmp // NB: # of bytes to move is 1 higher than loopcnt
82 cmp.gt p_scr, p0 = 16, cnt // is it a minimalistic task?
83(p_scr) br.cond.dptk.many .move_bytes_unaligned // go move just a few (M_B_U)
84;; }
85{ .mmi
86(p_unalgn) add ptr1 = (MIN1+1), ptr2 // after alignment
87(p_unalgn) add ptr2 = MIN1P1HALF, ptr2 // after alignment
88(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3 // should we do a st8 ?
89;; }
90{ .mib
91(p_y) add cnt = -8, cnt //
92(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2 // should we do a st4 ?
93} { .mib
94(p_y) st8 [ptr2] = value,-4 //
95(p_n) add ptr2 = 4, ptr2 //
96;; }
97{ .mib
98(p_yy) add cnt = -4, cnt //
99(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1 // should we do a st2 ?
100} { .mib
101(p_yy) st4 [ptr2] = value,-2 //
102(p_nn) add ptr2 = 2, ptr2 //
103;; }
104{ .mmi
105 mov tmp = LINE_SIZE+1 // for compare
106(p_y) add cnt = -2, cnt //
107(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0 // should we do a st1 ?
108} { .mmi
109 setf.sig fvalue=value // transfer value to FLP side
110(p_y) st2 [ptr2] = value,-1 //
111(p_n) add ptr2 = 1, ptr2 //
112;; }
113
114{ .mmi
115(p_yy) st1 [ptr2] = value //
116 cmp.gt p_scr, p0 = tmp, cnt // is it a minimalistic task?
117} { .mbb
118(p_yy) add cnt = -1, cnt //
119(p_scr) br.cond.dpnt.many .fraction_of_line // go move just a few
120;; }
121
122{ .mib
123 nop.m 0
124 shr.u linecnt = cnt, LSIZE_SH
125(p_zr) br.cond.dptk.many .l1b // Jump to use stf.spill
126;; }
127
128 TEXT_ALIGN(32) // --------------------- // L1A: store ahead into cache lines; fill later
129{ .mmi
130 and tmp = -(LINE_SIZE), cnt // compute end of range
131 mov ptr9 = ptr1 // used for prefetching
132 and cnt = (LINE_SIZE-1), cnt // remainder
133} { .mmi
134 mov loopcnt = PREF_AHEAD-1 // default prefetch loop
135 cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
136;; }
137{ .mmi
138(p_scr) add loopcnt = -1, linecnt //
139 add ptr2 = 8, ptr1 // start of stores (beyond prefetch stores)
140 add ptr1 = tmp, ptr1 // first address beyond total range
141;; }
142{ .mmi
143 add tmp = -1, linecnt // next loop count
144 mov.i ar.lc = loopcnt //
145;; }
146.pref_l1a:
147{ .mib
148 stf8 [ptr9] = fvalue, 128 // Do stores one cache line apart
149 nop.i 0
150 br.cloop.dptk.few .pref_l1a
151;; }
152{ .mmi
153 add ptr0 = 16, ptr2 // Two stores in parallel
154 mov.i ar.lc = tmp //
155;; }
156.l1ax:
157 { .mmi
158 stf8 [ptr2] = fvalue, 8
159 stf8 [ptr0] = fvalue, 8
160 ;; }
161 { .mmi
162 stf8 [ptr2] = fvalue, 24
163 stf8 [ptr0] = fvalue, 24
164 ;; }
165 { .mmi
166 stf8 [ptr2] = fvalue, 8
167 stf8 [ptr0] = fvalue, 8
168 ;; }
169 { .mmi
170 stf8 [ptr2] = fvalue, 24
171 stf8 [ptr0] = fvalue, 24
172 ;; }
173 { .mmi
174 stf8 [ptr2] = fvalue, 8
175 stf8 [ptr0] = fvalue, 8
176 ;; }
177 { .mmi
178 stf8 [ptr2] = fvalue, 24
179 stf8 [ptr0] = fvalue, 24
180 ;; }
181 { .mmi
182 stf8 [ptr2] = fvalue, 8
183 stf8 [ptr0] = fvalue, 32
184 cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
185 ;; }
186{ .mmb
187 stf8 [ptr2] = fvalue, 24
188(p_scr) stf8 [ptr9] = fvalue, 128
189 br.cloop.dptk.few .l1ax
190;; }
191{ .mbb
192 cmp.le p_scr, p0 = 8, cnt // just a few bytes left ?
193(p_scr) br.cond.dpnt.many .fraction_of_line // Branch no. 2
194 br.cond.dpnt.many .move_bytes_from_alignment // Branch no. 3
195;; }
196
197 TEXT_ALIGN(32)
198.l1b: // ------------------------------------ // L1B: store ahead into cache lines; fill later
199{ .mmi
200 and tmp = -(LINE_SIZE), cnt // compute end of range
201 mov ptr9 = ptr1 // used for prefetching
202 and cnt = (LINE_SIZE-1), cnt // remainder
203} { .mmi
204 mov loopcnt = PREF_AHEAD-1 // default prefetch loop
205 cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
206;; }
207{ .mmi
208(p_scr) add loopcnt = -1, linecnt
209 add ptr2 = 16, ptr1 // start of stores (beyond prefetch stores)
210 add ptr1 = tmp, ptr1 // first address beyond total range
211;; }
212{ .mmi
213 add tmp = -1, linecnt // next loop count
214 mov.i ar.lc = loopcnt
215;; }
216.pref_l1b:
217{ .mib
218 stf.spill [ptr9] = f0, 128 // Do stores one cache line apart
219 nop.i 0
220 br.cloop.dptk.few .pref_l1b
221;; }
222{ .mmi
223 add ptr0 = 16, ptr2 // Two stores in parallel
224 mov.i ar.lc = tmp
225;; }
226.l1bx:
227 { .mmi
228 stf.spill [ptr2] = f0, 32
229 stf.spill [ptr0] = f0, 32
230 ;; }
231 { .mmi
232 stf.spill [ptr2] = f0, 32
233 stf.spill [ptr0] = f0, 32
234 ;; }
235 { .mmi
236 stf.spill [ptr2] = f0, 32
237 stf.spill [ptr0] = f0, 64
238 cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
239 ;; }
240{ .mmb
241 stf.spill [ptr2] = f0, 32
242(p_scr) stf.spill [ptr9] = f0, 128
243 br.cloop.dptk.few .l1bx
244;; }
245{ .mib
246 cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
247(p_scr) br.cond.dpnt.many .move_bytes_from_alignment //
248;; }
249
250.fraction_of_line:
251{ .mib
252 add ptr2 = 16, ptr1
253 shr.u loopcnt = cnt, 5 // loopcnt = cnt / 32
254;; }
255{ .mib
256 cmp.eq p_scr, p0 = loopcnt, r0
257 add loopcnt = -1, loopcnt
258(p_scr) br.cond.dpnt.many .store_words
259;; }
260{ .mib
261 and cnt = 0x1f, cnt // compute the remaining cnt
262 mov.i ar.lc = loopcnt
263;; }
264 TEXT_ALIGN(32)
265.l2: // ------------------------------------ // L2A: store 32B in 2 cycles
266{ .mmb
267 stf8 [ptr1] = fvalue, 8
268 stf8 [ptr2] = fvalue, 8
269;; } { .mmb
270 stf8 [ptr1] = fvalue, 24
271 stf8 [ptr2] = fvalue, 24
272 br.cloop.dptk.many .l2
273;; }
274.store_words:
275{ .mib
276 cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
277(p_scr) br.cond.dpnt.many .move_bytes_from_alignment // Branch
278;; }
279
280{ .mmi
281 stf8 [ptr1] = fvalue, 8 // store
282 cmp.le p_y, p_n = 16, cnt
283 add cnt = -8, cnt // subtract
284;; }
285{ .mmi
286(p_y) stf8 [ptr1] = fvalue, 8 // store
287(p_y) cmp.le.unc p_yy, p_nn = 16, cnt
288(p_y) add cnt = -8, cnt // subtract
289;; }
290{ .mmi // store
291(p_yy) stf8 [ptr1] = fvalue, 8
292(p_yy) add cnt = -8, cnt // subtract
293;; }
294
295.move_bytes_from_alignment:
296{ .mib
297 cmp.eq p_scr, p0 = cnt, r0
298 tbit.nz.unc p_y, p0 = cnt, 2 // should we terminate with a st4 ?
299(p_scr) br.cond.dpnt.few .restore_and_exit
300;; }
301{ .mib
302(p_y) st4 [ptr1] = value,4
303 tbit.nz.unc p_yy, p0 = cnt, 1 // should we terminate with a st2 ?
304;; }
305{ .mib
306(p_yy) st2 [ptr1] = value,2
307 tbit.nz.unc p_y, p0 = cnt, 0 // should we terminate with a st1 ?
308;; }
309
310{ .mib
311(p_y) st1 [ptr1] = value
312;; }
313.restore_and_exit:
314{ .mib
315 nop.m 0
316 mov.i ar.lc = save_lc
317 br.ret.sptk.many rp
318;; }
319
320.move_bytes_unaligned:
321{ .mmi
322 .pred.rel "mutex",p_y, p_n
323 .pred.rel "mutex",p_yy, p_nn
324(p_n) cmp.le p_yy, p_nn = 4, cnt
325(p_y) cmp.le p_yy, p_nn = 5, cnt
326(p_n) add ptr2 = 2, ptr1
327} { .mmi
328(p_y) add ptr2 = 3, ptr1
329(p_y) st1 [ptr1] = value, 1 // fill 1 (odd-aligned) byte [15, 14 (or less) left]
330(p_y) add cnt = -1, cnt
331;; }
332{ .mmi
333(p_yy) cmp.le.unc p_y, p0 = 8, cnt
334 add ptr3 = ptr1, cnt // prepare last store
335 mov.i ar.lc = save_lc
336} { .mmi
337(p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
338(p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [11, 10 (o less) left]
339(p_yy) add cnt = -4, cnt
340;; }
341{ .mmi
342(p_y) cmp.le.unc p_yy, p0 = 8, cnt
343 add ptr3 = -1, ptr3 // last store
344 tbit.nz p_scr, p0 = cnt, 1 // will there be a st2 at the end ?
345} { .mmi
346(p_y) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
347(p_y) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [7, 6 (or less) left]
348(p_y) add cnt = -4, cnt
349;; }
350{ .mmi
351(p_yy) st2 [ptr1] = value, 4 // fill 2 (aligned) bytes
352(p_yy) st2 [ptr2] = value, 4 // fill 2 (aligned) bytes [3, 2 (or less) left]
353 tbit.nz p_y, p0 = cnt, 0 // will there be a st1 at the end ?
354} { .mmi
355(p_yy) add cnt = -4, cnt
356;; }
357{ .mmb
358(p_scr) st2 [ptr1] = value // fill 2 (aligned) bytes
359(p_y) st1 [ptr3] = value // fill last byte (using ptr3)
360 br.ret.sptk.many rp
361}
362END(memset)