blob: 00f98068783f32bdcaa373d04c212b54683fab2a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001|
2| round.sa 3.4 7/29/91
3|
4| handle rounding and normalization tasks
5|
6|
7|
8| Copyright (C) Motorola, Inc. 1990
9| All Rights Reserved
10|
11| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
12| The copyright notice above does not evidence any
13| actual or intended publication of such source code.
14
15|ROUND idnt 2,1 | Motorola 040 Floating Point Software Package
16
17 |section 8
18
19#include "fpsp.h"
20
21|
22| round --- round result according to precision/mode
23|
24| a0 points to the input operand in the internal extended format
25| d1(high word) contains rounding precision:
26| ext = $0000xxxx
27| sgl = $0001xxxx
28| dbl = $0002xxxx
29| d1(low word) contains rounding mode:
30| RN = $xxxx0000
31| RZ = $xxxx0001
32| RM = $xxxx0010
33| RP = $xxxx0011
34| d0{31:29} contains the g,r,s bits (extended)
35|
36| On return the value pointed to by a0 is correctly rounded,
37| a0 is preserved and the g-r-s bits in d0 are cleared.
38| The result is not typed - the tag field is invalid. The
39| result is still in the internal extended format.
40|
41| The INEX bit of USER_FPSR will be set if the rounded result was
42| inexact (i.e. if any of the g-r-s bits were set).
43|
44
45 .global round
46round:
47| If g=r=s=0 then result is exact and round is done, else set
48| the inex flag in status reg and continue.
49|
50 bsrs ext_grs |this subroutine looks at the
51| :rounding precision and sets
52| ;the appropriate g-r-s bits.
53 tstl %d0 |if grs are zero, go force
54 bne rnd_cont |lower bits to zero for size
55
56 swap %d1 |set up d1.w for round prec.
57 bra truncate
58
59rnd_cont:
60|
61| Use rounding mode as an index into a jump table for these modes.
62|
63 orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
64 lea mode_tab,%a1
65 movel (%a1,%d1.w*4),%a1
66 jmp (%a1)
67|
68| Jump table indexed by rounding mode in d1.w. All following assumes
69| grs != 0.
70|
71mode_tab:
72 .long rnd_near
73 .long rnd_zero
74 .long rnd_mnus
75 .long rnd_plus
76|
77| ROUND PLUS INFINITY
78|
79| If sign of fp number = 0 (positive), then add 1 to l.
80|
81rnd_plus:
82 swap %d1 |set up d1 for round prec.
83 tstb LOCAL_SGN(%a0) |check for sign
84 bmi truncate |if positive then truncate
85 movel #0xffffffff,%d0 |force g,r,s to be all f's
86 lea add_to_l,%a1
87 movel (%a1,%d1.w*4),%a1
88 jmp (%a1)
89|
90| ROUND MINUS INFINITY
91|
92| If sign of fp number = 1 (negative), then add 1 to l.
93|
94rnd_mnus:
95 swap %d1 |set up d1 for round prec.
96 tstb LOCAL_SGN(%a0) |check for sign
97 bpl truncate |if negative then truncate
98 movel #0xffffffff,%d0 |force g,r,s to be all f's
99 lea add_to_l,%a1
100 movel (%a1,%d1.w*4),%a1
101 jmp (%a1)
102|
103| ROUND ZERO
104|
105| Always truncate.
106rnd_zero:
107 swap %d1 |set up d1 for round prec.
108 bra truncate
109|
110|
111| ROUND NEAREST
112|
113| If (g=1), then add 1 to l and if (r=s=0), then clear l
114| Note that this will round to even in case of a tie.
115|
116rnd_near:
117 swap %d1 |set up d1 for round prec.
118 asll #1,%d0 |shift g-bit to c-bit
119 bcc truncate |if (g=1) then
120 lea add_to_l,%a1
121 movel (%a1,%d1.w*4),%a1
122 jmp (%a1)
123
124|
125| ext_grs --- extract guard, round and sticky bits
126|
127| Input: d1 = PREC:ROUND
128| Output: d0{31:29}= guard, round, sticky
129|
130| The ext_grs extract the guard/round/sticky bits according to the
131| selected rounding precision. It is called by the round subroutine
132| only. All registers except d0 are kept intact. d0 becomes an
133| updated guard,round,sticky in d0{31:29}
134|
135| Notes: the ext_grs uses the round PREC, and therefore has to swap d1
136| prior to usage, and needs to restore d1 to original.
137|
138ext_grs:
139 swap %d1 |have d1.w point to round precision
140 cmpiw #0,%d1
141 bnes sgl_or_dbl
142 bras end_ext_grs
143
144sgl_or_dbl:
145 moveml %d2/%d3,-(%a7) |make some temp registers
146 cmpiw #1,%d1
147 bnes grs_dbl
148grs_sgl:
149 bfextu LOCAL_HI(%a0){#24:#2},%d3 |sgl prec. g-r are 2 bits right
150 movel #30,%d2 |of the sgl prec. limits
151 lsll %d2,%d3 |shift g-r bits to MSB of d3
152 movel LOCAL_HI(%a0),%d2 |get word 2 for s-bit test
153 andil #0x0000003f,%d2 |s bit is the or of all other
154 bnes st_stky |bits to the right of g-r
155 tstl LOCAL_LO(%a0) |test lower mantissa
156 bnes st_stky |if any are set, set sticky
157 tstl %d0 |test original g,r,s
158 bnes st_stky |if any are set, set sticky
159 bras end_sd |if words 3 and 4 are clr, exit
160grs_dbl:
161 bfextu LOCAL_LO(%a0){#21:#2},%d3 |dbl-prec. g-r are 2 bits right
162 movel #30,%d2 |of the dbl prec. limits
163 lsll %d2,%d3 |shift g-r bits to the MSB of d3
164 movel LOCAL_LO(%a0),%d2 |get lower mantissa for s-bit test
165 andil #0x000001ff,%d2 |s bit is the or-ing of all
166 bnes st_stky |other bits to the right of g-r
167 tstl %d0 |test word original g,r,s
168 bnes st_stky |if any are set, set sticky
169 bras end_sd |if clear, exit
170st_stky:
171 bset #rnd_stky_bit,%d3
172end_sd:
173 movel %d3,%d0 |return grs to d0
174 moveml (%a7)+,%d2/%d3 |restore scratch registers
175end_ext_grs:
176 swap %d1 |restore d1 to original
177 rts
178
179|******************* Local Equates
180 .set ad_1_sgl,0x00000100 | constant to add 1 to l-bit in sgl prec
181 .set ad_1_dbl,0x00000800 | constant to add 1 to l-bit in dbl prec
182
183
184|Jump table for adding 1 to the l-bit indexed by rnd prec
185
186add_to_l:
187 .long add_ext
188 .long add_sgl
189 .long add_dbl
190 .long add_dbl
191|
192| ADD SINGLE
193|
194add_sgl:
195 addl #ad_1_sgl,LOCAL_HI(%a0)
196 bccs scc_clr |no mantissa overflow
197 roxrw LOCAL_HI(%a0) |shift v-bit back in
198 roxrw LOCAL_HI+2(%a0) |shift v-bit back in
199 addw #0x1,LOCAL_EX(%a0) |and incr exponent
200scc_clr:
201 tstl %d0 |test for rs = 0
202 bnes sgl_done
203 andiw #0xfe00,LOCAL_HI+2(%a0) |clear the l-bit
204sgl_done:
205 andil #0xffffff00,LOCAL_HI(%a0) |truncate bits beyond sgl limit
206 clrl LOCAL_LO(%a0) |clear d2
207 rts
208
209|
210| ADD EXTENDED
211|
212add_ext:
213 addql #1,LOCAL_LO(%a0) |add 1 to l-bit
214 bccs xcc_clr |test for carry out
215 addql #1,LOCAL_HI(%a0) |propagate carry
216 bccs xcc_clr
217 roxrw LOCAL_HI(%a0) |mant is 0 so restore v-bit
218 roxrw LOCAL_HI+2(%a0) |mant is 0 so restore v-bit
219 roxrw LOCAL_LO(%a0)
220 roxrw LOCAL_LO+2(%a0)
221 addw #0x1,LOCAL_EX(%a0) |and inc exp
222xcc_clr:
223 tstl %d0 |test rs = 0
224 bnes add_ext_done
225 andib #0xfe,LOCAL_LO+3(%a0) |clear the l bit
226add_ext_done:
227 rts
228|
229| ADD DOUBLE
230|
231add_dbl:
232 addl #ad_1_dbl,LOCAL_LO(%a0)
233 bccs dcc_clr
234 addql #1,LOCAL_HI(%a0) |propagate carry
235 bccs dcc_clr
236 roxrw LOCAL_HI(%a0) |mant is 0 so restore v-bit
237 roxrw LOCAL_HI+2(%a0) |mant is 0 so restore v-bit
238 roxrw LOCAL_LO(%a0)
239 roxrw LOCAL_LO+2(%a0)
240 addw #0x1,LOCAL_EX(%a0) |incr exponent
241dcc_clr:
242 tstl %d0 |test for rs = 0
243 bnes dbl_done
244 andiw #0xf000,LOCAL_LO+2(%a0) |clear the l-bit
245
246dbl_done:
247 andil #0xfffff800,LOCAL_LO(%a0) |truncate bits beyond dbl limit
248 rts
249
250error:
251 rts
252|
253| Truncate all other bits
254|
255trunct:
256 .long end_rnd
257 .long sgl_done
258 .long dbl_done
259 .long dbl_done
260
261truncate:
262 lea trunct,%a1
263 movel (%a1,%d1.w*4),%a1
264 jmp (%a1)
265
266end_rnd:
267 rts
268
269|
270| NORMALIZE
271|
272| These routines (nrm_zero & nrm_set) normalize the unnorm. This
273| is done by shifting the mantissa left while decrementing the
274| exponent.
275|
276| NRM_SET shifts and decrements until there is a 1 set in the integer
277| bit of the mantissa (msb in d1).
278|
279| NRM_ZERO shifts and decrements until there is a 1 set in the integer
280| bit of the mantissa (msb in d1) unless this would mean the exponent
281| would go less than 0. In that case the number becomes a denorm - the
282| exponent (d0) is set to 0 and the mantissa (d1 & d2) is not
283| normalized.
284|
285| Note that both routines have been optimized (for the worst case) and
286| therefore do not have the easy to follow decrement/shift loop.
287|
288| NRM_ZERO
289|
290| Distance to first 1 bit in mantissa = X
291| Distance to 0 from exponent = Y
292| If X < Y
293| Then
294| nrm_set
295| Else
296| shift mantissa by Y
297| set exponent = 0
298|
299|input:
300| FP_SCR1 = exponent, ms mantissa part, ls mantissa part
301|output:
302| L_SCR1{4} = fpte15 or ete15 bit
303|
304 .global nrm_zero
305nrm_zero:
306 movew LOCAL_EX(%a0),%d0
307 cmpw #64,%d0 |see if exp > 64
308 bmis d0_less
309 bsr nrm_set |exp > 64 so exp won't exceed 0
310 rts
311d0_less:
312 moveml %d2/%d3/%d5/%d6,-(%a7)
313 movel LOCAL_HI(%a0),%d1
314 movel LOCAL_LO(%a0),%d2
315
316 bfffo %d1{#0:#32},%d3 |get the distance to the first 1
317| ;in ms mant
318 beqs ms_clr |branch if no bits were set
319 cmpw %d3,%d0 |of X>Y
320 bmis greater |then exp will go past 0 (neg) if
321| ;it is just shifted
322 bsr nrm_set |else exp won't go past 0
323 moveml (%a7)+,%d2/%d3/%d5/%d6
324 rts
325greater:
326 movel %d2,%d6 |save ls mant in d6
327 lsll %d0,%d2 |shift ls mant by count
328 lsll %d0,%d1 |shift ms mant by count
329 movel #32,%d5
330 subl %d0,%d5 |make op a denorm by shifting bits
331 lsrl %d5,%d6 |by the number in the exp, then
332| ;set exp = 0.
333 orl %d6,%d1 |shift the ls mant bits into the ms mant
334 movel #0,%d0 |same as if decremented exp to 0
335| ;while shifting
336 movew %d0,LOCAL_EX(%a0)
337 movel %d1,LOCAL_HI(%a0)
338 movel %d2,LOCAL_LO(%a0)
339 moveml (%a7)+,%d2/%d3/%d5/%d6
340 rts
341ms_clr:
342 bfffo %d2{#0:#32},%d3 |check if any bits set in ls mant
343 beqs all_clr |branch if none set
344 addw #32,%d3
345 cmpw %d3,%d0 |if X>Y
346 bmis greater |then branch
347 bsr nrm_set |else exp won't go past 0
348 moveml (%a7)+,%d2/%d3/%d5/%d6
349 rts
350all_clr:
351 movew #0,LOCAL_EX(%a0) |no mantissa bits set. Set exp = 0.
352 moveml (%a7)+,%d2/%d3/%d5/%d6
353 rts
354|
355| NRM_SET
356|
357 .global nrm_set
358nrm_set:
359 movel %d7,-(%a7)
360 bfffo LOCAL_HI(%a0){#0:#32},%d7 |find first 1 in ms mant to d7)
361 beqs lower |branch if ms mant is all 0's
362
363 movel %d6,-(%a7)
364
365 subw %d7,LOCAL_EX(%a0) |sub exponent by count
366 movel LOCAL_HI(%a0),%d0 |d0 has ms mant
367 movel LOCAL_LO(%a0),%d1 |d1 has ls mant
368
369 lsll %d7,%d0 |shift first 1 to j bit position
370 movel %d1,%d6 |copy ls mant into d6
371 lsll %d7,%d6 |shift ls mant by count
372 movel %d6,LOCAL_LO(%a0) |store ls mant into memory
373 moveql #32,%d6
374 subl %d7,%d6 |continue shift
375 lsrl %d6,%d1 |shift off all bits but those that will
376| ;be shifted into ms mant
377 orl %d1,%d0 |shift the ls mant bits into the ms mant
378 movel %d0,LOCAL_HI(%a0) |store ms mant into memory
379 moveml (%a7)+,%d7/%d6 |restore registers
380 rts
381
382|
383| We get here if ms mant was = 0, and we assume ls mant has bits
384| set (otherwise this would have been tagged a zero not a denorm).
385|
386lower:
387 movew LOCAL_EX(%a0),%d0 |d0 has exponent
388 movel LOCAL_LO(%a0),%d1 |d1 has ls mant
389 subw #32,%d0 |account for ms mant being all zeros
390 bfffo %d1{#0:#32},%d7 |find first 1 in ls mant to d7)
391 subw %d7,%d0 |subtract shift count from exp
392 lsll %d7,%d1 |shift first 1 to integer bit in ms mant
393 movew %d0,LOCAL_EX(%a0) |store ms mant
394 movel %d1,LOCAL_HI(%a0) |store exp
395 clrl LOCAL_LO(%a0) |clear ls mant
396 movel (%a7)+,%d7
397 rts
398|
399| denorm --- denormalize an intermediate result
400|
401| Used by underflow.
402|
403| Input:
404| a0 points to the operand to be denormalized
405| (in the internal extended format)
406|
407| d0: rounding precision
408| Output:
409| a0 points to the denormalized result
410| (in the internal extended format)
411|
412| d0 is guard,round,sticky
413|
414| d0 comes into this routine with the rounding precision. It
415| is then loaded with the denormalized exponent threshold for the
416| rounding precision.
417|
418
419 .global denorm
420denorm:
421 btstb #6,LOCAL_EX(%a0) |check for exponents between $7fff-$4000
422 beqs no_sgn_ext
423 bsetb #7,LOCAL_EX(%a0) |sign extend if it is so
424no_sgn_ext:
425
426 cmpib #0,%d0 |if 0 then extended precision
427 bnes not_ext |else branch
428
429 clrl %d1 |load d1 with ext threshold
430 clrl %d0 |clear the sticky flag
431 bsr dnrm_lp |denormalize the number
432 tstb %d1 |check for inex
433 beq no_inex |if clr, no inex
434 bras dnrm_inex |if set, set inex
435
436not_ext:
437 cmpil #1,%d0 |if 1 then single precision
438 beqs load_sgl |else must be 2, double prec
439
440load_dbl:
441 movew #dbl_thresh,%d1 |put copy of threshold in d1
442 movel %d1,%d0 |copy d1 into d0
443 subw LOCAL_EX(%a0),%d0 |diff = threshold - exp
444 cmpw #67,%d0 |if diff > 67 (mant + grs bits)
445 bpls chk_stky |then branch (all bits would be
446| ; shifted off in denorm routine)
447 clrl %d0 |else clear the sticky flag
448 bsr dnrm_lp |denormalize the number
449 tstb %d1 |check flag
450 beqs no_inex |if clr, no inex
451 bras dnrm_inex |if set, set inex
452
453load_sgl:
454 movew #sgl_thresh,%d1 |put copy of threshold in d1
455 movel %d1,%d0 |copy d1 into d0
456 subw LOCAL_EX(%a0),%d0 |diff = threshold - exp
457 cmpw #67,%d0 |if diff > 67 (mant + grs bits)
458 bpls chk_stky |then branch (all bits would be
459| ; shifted off in denorm routine)
460 clrl %d0 |else clear the sticky flag
461 bsr dnrm_lp |denormalize the number
462 tstb %d1 |check flag
463 beqs no_inex |if clr, no inex
464 bras dnrm_inex |if set, set inex
465
466chk_stky:
467 tstl LOCAL_HI(%a0) |check for any bits set
468 bnes set_stky
469 tstl LOCAL_LO(%a0) |check for any bits set
470 bnes set_stky
471 bras clr_mant
472set_stky:
473 orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
474 movel #0x20000000,%d0 |set sticky bit in return value
475clr_mant:
476 movew %d1,LOCAL_EX(%a0) |load exp with threshold
477 movel #0,LOCAL_HI(%a0) |set d1 = 0 (ms mantissa)
478 movel #0,LOCAL_LO(%a0) |set d2 = 0 (ms mantissa)
479 rts
480dnrm_inex:
481 orl #inx2a_mask,USER_FPSR(%a6) |set inex2/ainex
482no_inex:
483 rts
484
485|
486| dnrm_lp --- normalize exponent/mantissa to specified threshold
487|
488| Input:
489| a0 points to the operand to be denormalized
490| d0{31:29} initial guard,round,sticky
491| d1{15:0} denormalization threshold
492| Output:
493| a0 points to the denormalized operand
494| d0{31:29} final guard,round,sticky
495| d1.b inexact flag: all ones means inexact result
496|
497| The LOCAL_LO and LOCAL_GRS parts of the value are copied to FP_SCR2
498| so that bfext can be used to extract the new low part of the mantissa.
499| Dnrm_lp can be called with a0 pointing to ETEMP or WBTEMP and there
500| is no LOCAL_GRS scratch word following it on the fsave frame.
501|
502 .global dnrm_lp
503dnrm_lp:
504 movel %d2,-(%sp) |save d2 for temp use
505 btstb #E3,E_BYTE(%a6) |test for type E3 exception
506 beqs not_E3 |not type E3 exception
507 bfextu WBTEMP_GRS(%a6){#6:#3},%d2 |extract guard,round, sticky bit
508 movel #29,%d0
509 lsll %d0,%d2 |shift g,r,s to their positions
510 movel %d2,%d0
511not_E3:
512 movel (%sp)+,%d2 |restore d2
513 movel LOCAL_LO(%a0),FP_SCR2+LOCAL_LO(%a6)
514 movel %d0,FP_SCR2+LOCAL_GRS(%a6)
515 movel %d1,%d0 |copy the denorm threshold
516 subw LOCAL_EX(%a0),%d1 |d1 = threshold - uns exponent
517 bles no_lp |d1 <= 0
518 cmpw #32,%d1
519 blts case_1 |0 = d1 < 32
520 cmpw #64,%d1
521 blts case_2 |32 <= d1 < 64
522 bra case_3 |d1 >= 64
523|
524| No normalization necessary
525|
526no_lp:
527 clrb %d1 |set no inex2 reported
528 movel FP_SCR2+LOCAL_GRS(%a6),%d0 |restore original g,r,s
529 rts
530|
531| case (0<d1<32)
532|
533case_1:
534 movel %d2,-(%sp)
535 movew %d0,LOCAL_EX(%a0) |exponent = denorm threshold
536 movel #32,%d0
537 subw %d1,%d0 |d0 = 32 - d1
538 bfextu LOCAL_EX(%a0){%d0:#32},%d2
539 bfextu %d2{%d1:%d0},%d2 |d2 = new LOCAL_HI
540 bfextu LOCAL_HI(%a0){%d0:#32},%d1 |d1 = new LOCAL_LO
541 bfextu FP_SCR2+LOCAL_LO(%a6){%d0:#32},%d0 |d0 = new G,R,S
542 movel %d2,LOCAL_HI(%a0) |store new LOCAL_HI
543 movel %d1,LOCAL_LO(%a0) |store new LOCAL_LO
544 clrb %d1
545 bftst %d0{#2:#30}
546 beqs c1nstky
547 bsetl #rnd_stky_bit,%d0
548 st %d1
549c1nstky:
550 movel FP_SCR2+LOCAL_GRS(%a6),%d2 |restore original g,r,s
551 andil #0xe0000000,%d2 |clear all but G,R,S
552 tstl %d2 |test if original G,R,S are clear
553 beqs grs_clear
554 orl #0x20000000,%d0 |set sticky bit in d0
555grs_clear:
556 andil #0xe0000000,%d0 |clear all but G,R,S
557 movel (%sp)+,%d2
558 rts
559|
560| case (32<=d1<64)
561|
562case_2:
563 movel %d2,-(%sp)
564 movew %d0,LOCAL_EX(%a0) |unsigned exponent = threshold
565 subw #32,%d1 |d1 now between 0 and 32
566 movel #32,%d0
567 subw %d1,%d0 |d0 = 32 - d1
568 bfextu LOCAL_EX(%a0){%d0:#32},%d2
569 bfextu %d2{%d1:%d0},%d2 |d2 = new LOCAL_LO
570 bfextu LOCAL_HI(%a0){%d0:#32},%d1 |d1 = new G,R,S
571 bftst %d1{#2:#30}
572 bnes c2_sstky |bra if sticky bit to be set
573 bftst FP_SCR2+LOCAL_LO(%a6){%d0:#32}
574 bnes c2_sstky |bra if sticky bit to be set
575 movel %d1,%d0
576 clrb %d1
577 bras end_c2
578c2_sstky:
579 movel %d1,%d0
580 bsetl #rnd_stky_bit,%d0
581 st %d1
582end_c2:
583 clrl LOCAL_HI(%a0) |store LOCAL_HI = 0
584 movel %d2,LOCAL_LO(%a0) |store LOCAL_LO
585 movel FP_SCR2+LOCAL_GRS(%a6),%d2 |restore original g,r,s
586 andil #0xe0000000,%d2 |clear all but G,R,S
587 tstl %d2 |test if original G,R,S are clear
588 beqs clear_grs
589 orl #0x20000000,%d0 |set sticky bit in d0
590clear_grs:
591 andil #0xe0000000,%d0 |get rid of all but G,R,S
592 movel (%sp)+,%d2
593 rts
594|
595| d1 >= 64 Force the exponent to be the denorm threshold with the
596| correct sign.
597|
598case_3:
599 movew %d0,LOCAL_EX(%a0)
600 tstw LOCAL_SGN(%a0)
601 bges c3con
602c3neg:
603 orl #0x80000000,LOCAL_EX(%a0)
604c3con:
605 cmpw #64,%d1
606 beqs sixty_four
607 cmpw #65,%d1
608 beqs sixty_five
609|
610| Shift value is out of range. Set d1 for inex2 flag and
611| return a zero with the given threshold.
612|
613 clrl LOCAL_HI(%a0)
614 clrl LOCAL_LO(%a0)
615 movel #0x20000000,%d0
616 st %d1
617 rts
618
619sixty_four:
620 movel LOCAL_HI(%a0),%d0
621 bfextu %d0{#2:#30},%d1
622 andil #0xc0000000,%d0
623 bras c3com
624
625sixty_five:
626 movel LOCAL_HI(%a0),%d0
627 bfextu %d0{#1:#31},%d1
628 andil #0x80000000,%d0
629 lsrl #1,%d0 |shift high bit into R bit
630
631c3com:
632 tstl %d1
633 bnes c3ssticky
634 tstl LOCAL_LO(%a0)
635 bnes c3ssticky
636 tstb FP_SCR2+LOCAL_GRS(%a6)
637 bnes c3ssticky
638 clrb %d1
639 bras c3end
640
641c3ssticky:
642 bsetl #rnd_stky_bit,%d0
643 st %d1
644c3end:
645 clrl LOCAL_HI(%a0)
646 clrl LOCAL_LO(%a0)
647 rts
648
649 |end