blob: 2086c6ad11475f167438a2b18166429c1e647488 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
3 * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is a combination of the 8xx fec and
6 * 8260 SCC Ethernet drivers. This version has some additional
7 * configuration options, which should probably be moved out of
8 * here. This driver currently works for the EST SBC8260,
9 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
10 *
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets. Since this is a cache coherent processor and CPM,
17 * I could also preallocate SKB's and use them directly on the interface.
18 *
19 * 2004-12 Leo Li (leoli@freescale.com)
20 * - Rework the FCC clock configuration part, make it easier to configure.
21 *
22 */
23
24#include <linux/config.h>
25#include <linux/kernel.h>
26#include <linux/sched.h>
27#include <linux/string.h>
28#include <linux/ptrace.h>
29#include <linux/errno.h>
30#include <linux/ioport.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/pci.h>
34#include <linux/init.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/skbuff.h>
39#include <linux/spinlock.h>
40#include <linux/mii.h>
41#include <linux/workqueue.h>
42#include <linux/bitops.h>
43
44#include <asm/immap_cpm2.h>
45#include <asm/pgtable.h>
46#include <asm/mpc8260.h>
47#include <asm/irq.h>
48#include <asm/uaccess.h>
49#include <asm/signal.h>
50
51/* We can't use the PHY interrupt if we aren't using MDIO. */
52#if !defined(CONFIG_USE_MDIO)
53#undef PHY_INTERRUPT
54#endif
55
56/* If we have a PHY interrupt, we will advertise both full-duplex and half-
57 * duplex capabilities. If we don't have a PHY interrupt, then we will only
58 * advertise half-duplex capabilities.
59 */
60#define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
61 ADVERTISE_CSMA)
62#define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
63 MII_ADVERTISE_HALF)
64#ifdef PHY_INTERRUPT
65#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
66#else
67#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
68#endif
69#include <asm/cpm2.h>
70
71/* The transmitter timeout
72 */
73#define TX_TIMEOUT (2*HZ)
74
75#ifdef CONFIG_USE_MDIO
76/* Forward declarations of some structures to support different PHYs */
77
78typedef struct {
79 uint mii_data;
80 void (*funct)(uint mii_reg, struct net_device *dev);
81} phy_cmd_t;
82
83typedef struct {
84 uint id;
85 char *name;
86
87 const phy_cmd_t *config;
88 const phy_cmd_t *startup;
89 const phy_cmd_t *ack_int;
90 const phy_cmd_t *shutdown;
91} phy_info_t;
92
93/* values for phy_status */
94
95#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
96#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
97#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
98#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
99#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
100#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
101#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
102
103#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
104#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
105#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
106#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
107#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
108#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
109#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
110#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
111#endif /* CONFIG_USE_MDIO */
112
113/* The number of Tx and Rx buffers. These are allocated from the page
114 * pool. The code may assume these are power of two, so it is best
115 * to keep them that size.
116 * We don't need to allocate pages for the transmitter. We just use
117 * the skbuffer directly.
118 */
119#define FCC_ENET_RX_PAGES 16
120#define FCC_ENET_RX_FRSIZE 2048
121#define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
122#define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
123#define TX_RING_SIZE 16 /* Must be power of two */
124#define TX_RING_MOD_MASK 15 /* for this to work */
125
126/* The FCC stores dest/src/type, data, and checksum for receive packets.
127 * size includes support for VLAN
128 */
129#define PKT_MAXBUF_SIZE 1522
130#define PKT_MINBUF_SIZE 64
131
132/* Maximum input DMA size. Must be a should(?) be a multiple of 4.
133 * size includes support for VLAN
134 */
135#define PKT_MAXDMA_SIZE 1524
136
137/* Maximum input buffer size. Must be a multiple of 32.
138*/
139#define PKT_MAXBLR_SIZE 1536
140
141static int fcc_enet_open(struct net_device *dev);
142static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
143static int fcc_enet_rx(struct net_device *dev);
144static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id, struct pt_regs *);
145static int fcc_enet_close(struct net_device *dev);
146static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
147/* static void set_multicast_list(struct net_device *dev); */
148static void fcc_restart(struct net_device *dev, int duplex);
149static void fcc_stop(struct net_device *dev);
150static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
151
152/* These will be configurable for the FCC choice.
153 * Multiple ports can be configured. There is little choice among the
154 * I/O pins to the PHY, except the clocks. We will need some board
155 * dependent clock selection.
156 * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
157 * help show what pins are used for each device.
158 */
159
160/* Since the CLK setting changes greatly from board to board, I changed
161 * it to a easy way. You just need to specify which CLK number to use.
162 * Note that only limited choices can be make on each port.
163 */
164
165/* FCC1 Clock Source Configuration. There are board specific.
166 Can only choose from CLK9-12 */
167#ifdef CONFIG_SBC82xx
168#define F1_RXCLK 9
169#define F1_TXCLK 10
170#elif defined(CONFIG_ADS8272)
171#define F1_RXCLK 11
172#define F1_TXCLK 10
173#else
174#define F1_RXCLK 12
175#define F1_TXCLK 11
176#endif
177
178/* FCC2 Clock Source Configuration. There are board specific.
179 Can only choose from CLK13-16 */
180#ifdef CONFIG_ADS8272
181#define F2_RXCLK 15
182#define F2_TXCLK 16
183#else
184#define F2_RXCLK 13
185#define F2_TXCLK 14
186#endif
187
188/* FCC3 Clock Source Configuration. There are board specific.
189 Can only choose from CLK13-16 */
190#define F3_RXCLK 15
191#define F3_TXCLK 16
192
193/* Automatically generates register configurations */
194#define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
195
196#define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
197#define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
198#define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
199#define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
200#define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
201#define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
202
203#define PC_F1RXCLK PC_CLK(F1_RXCLK)
204#define PC_F1TXCLK PC_CLK(F1_TXCLK)
205#define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
206#define CMX1_CLK_MASK ((uint)0xff000000)
207
208#define PC_F2RXCLK PC_CLK(F2_RXCLK)
209#define PC_F2TXCLK PC_CLK(F2_TXCLK)
210#define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
211#define CMX2_CLK_MASK ((uint)0x00ff0000)
212
213#define PC_F3RXCLK PC_CLK(F3_RXCLK)
214#define PC_F3TXCLK PC_CLK(F3_TXCLK)
215#define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
216#define CMX3_CLK_MASK ((uint)0x0000ff00)
217
218
219/* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
220 * but there is little variation among the choices.
221 */
222#define PA1_COL ((uint)0x00000001)
223#define PA1_CRS ((uint)0x00000002)
224#define PA1_TXER ((uint)0x00000004)
225#define PA1_TXEN ((uint)0x00000008)
226#define PA1_RXDV ((uint)0x00000010)
227#define PA1_RXER ((uint)0x00000020)
228#define PA1_TXDAT ((uint)0x00003c00)
229#define PA1_RXDAT ((uint)0x0003c000)
230#define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
231#define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
232 PA1_RXDV | PA1_RXER)
233#define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
234#define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
235
236
237/* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
238 * but there is little variation among the choices.
239 */
240#define PB2_TXER ((uint)0x00000001)
241#define PB2_RXDV ((uint)0x00000002)
242#define PB2_TXEN ((uint)0x00000004)
243#define PB2_RXER ((uint)0x00000008)
244#define PB2_COL ((uint)0x00000010)
245#define PB2_CRS ((uint)0x00000020)
246#define PB2_TXDAT ((uint)0x000003c0)
247#define PB2_RXDAT ((uint)0x00003c00)
248#define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
249 PB2_RXER | PB2_RXDV | PB2_TXER)
250#define PB2_PSORB_BIN (PB2_TXEN)
251#define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
252#define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
253
254
255/* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
256 * but there is little variation among the choices.
257 */
258#define PB3_RXDV ((uint)0x00004000)
259#define PB3_RXER ((uint)0x00008000)
260#define PB3_TXER ((uint)0x00010000)
261#define PB3_TXEN ((uint)0x00020000)
262#define PB3_COL ((uint)0x00040000)
263#define PB3_CRS ((uint)0x00080000)
264#ifndef CONFIG_RPX8260
265#define PB3_TXDAT ((uint)0x0f000000)
266#define PC3_TXDAT ((uint)0x00000000)
267#else
268#define PB3_TXDAT ((uint)0x0f000000)
269#define PC3_TXDAT 0
270#endif
271#define PB3_RXDAT ((uint)0x00f00000)
272#define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
273 PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
274#define PB3_PSORB_BIN (0)
275#define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
276#define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
277
278#define PC3_PSORC_BOUT (PC3_TXDAT)
279#define PC3_PSORC_BIN (0)
280#define PC3_DIRC_BOUT (0)
281#define PC3_DIRC_BIN (PC3_TXDAT)
282
283
284/* MII status/control serial interface.
285*/
286#if defined(CONFIG_RPX8260)
287/* The EP8260 doesn't use Port C for MDIO */
288#define PC_MDIO ((uint)0x00000000)
289#define PC_MDCK ((uint)0x00000000)
290#elif defined(CONFIG_TQM8260)
291/* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
292#define PC_MDIO ((uint)0x00000002)
293#define PC_MDCK ((uint)0x00000001)
294#elif defined(CONFIG_ADS8272)
295#define PC_MDIO ((uint)0x00002000)
296#define PC_MDCK ((uint)0x00001000)
297#elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS)
298#define PC_MDIO ((uint)0x00400000)
299#define PC_MDCK ((uint)0x00200000)
300#else
301#define PC_MDIO ((uint)0x00000004)
302#define PC_MDCK ((uint)0x00000020)
303#endif
304
305#if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
306#error "Must define PC_MDIO and PC_MDCK if using MDIO"
307#endif
308
309/* PHY addresses */
310/* default to dynamic config of phy addresses */
311#define FCC1_PHY_ADDR 0
312#ifdef CONFIG_PQ2FADS
313#define FCC2_PHY_ADDR 0
314#else
315#define FCC2_PHY_ADDR 2
316#endif
317#define FCC3_PHY_ADDR 3
318
319/* A table of information for supporting FCCs. This does two things.
320 * First, we know how many FCCs we have and they are always externally
321 * numbered from zero. Second, it holds control register and I/O
322 * information that could be different among board designs.
323 */
324typedef struct fcc_info {
325 uint fc_fccnum;
326 uint fc_phyaddr;
327 uint fc_cpmblock;
328 uint fc_cpmpage;
329 uint fc_proff;
330 uint fc_interrupt;
331 uint fc_trxclocks;
332 uint fc_clockroute;
333 uint fc_clockmask;
334 uint fc_mdio;
335 uint fc_mdck;
336} fcc_info_t;
337
338static fcc_info_t fcc_ports[] = {
339#ifdef CONFIG_FCC1_ENET
340 { 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
341 (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
342 PC_MDIO, PC_MDCK },
343#endif
344#ifdef CONFIG_FCC2_ENET
345 { 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
346 (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
347 PC_MDIO, PC_MDCK },
348#endif
349#ifdef CONFIG_FCC3_ENET
350 { 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
351 (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
352 PC_MDIO, PC_MDCK },
353#endif
354};
355
356/* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
357 * tx_bd_base always point to the base of the buffer descriptors. The
358 * cur_rx and cur_tx point to the currently available buffer.
359 * The dirty_tx tracks the current buffer that is being sent by the
360 * controller. The cur_tx and dirty_tx are equal under both completely
361 * empty and completely full conditions. The empty/ready indicator in
362 * the buffer descriptor determines the actual condition.
363 */
364struct fcc_enet_private {
365 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
366 struct sk_buff* tx_skbuff[TX_RING_SIZE];
367 ushort skb_cur;
368 ushort skb_dirty;
369
370 /* CPM dual port RAM relative addresses.
371 */
372 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
373 cbd_t *tx_bd_base;
374 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
375 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
376 volatile fcc_t *fccp;
377 volatile fcc_enet_t *ep;
378 struct net_device_stats stats;
379 uint tx_free;
380 spinlock_t lock;
381
382#ifdef CONFIG_USE_MDIO
383 uint phy_id;
384 uint phy_id_done;
385 uint phy_status;
386 phy_info_t *phy;
387 struct work_struct phy_relink;
388 struct work_struct phy_display_config;
389
390 uint sequence_done;
391
392 uint phy_addr;
393#endif /* CONFIG_USE_MDIO */
394
395 int link;
396 int old_link;
397 int full_duplex;
398
399 fcc_info_t *fip;
400};
401
402static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
403 volatile cpm2_map_t *immap);
404static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
405static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
406 volatile cpm2_map_t *immap);
407static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
408 volatile cpm2_map_t *immap);
409
410#ifdef CONFIG_USE_MDIO
411static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
412static uint mii_send_receive(fcc_info_t *fip, uint cmd);
413static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c);
414
415/* Make MII read/write commands for the FCC.
416*/
417#define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
418#define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
419 ((VAL) & 0xffff))
420#define mk_mii_end 0
421#endif /* CONFIG_USE_MDIO */
422
423
424static int
425fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
426{
427 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
428 volatile cbd_t *bdp;
429
430 /* Fill in a Tx ring entry */
431 bdp = cep->cur_tx;
432
433#ifndef final_version
434 if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) {
435 /* Ooops. All transmit buffers are full. Bail out.
436 * This should not happen, since the tx queue should be stopped.
437 */
438 printk("%s: tx queue full!.\n", dev->name);
439 return 1;
440 }
441#endif
442
443 /* Clear all of the status flags. */
444 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
445
446 /* If the frame is short, tell CPM to pad it. */
447 if (skb->len <= ETH_ZLEN)
448 bdp->cbd_sc |= BD_ENET_TX_PAD;
449 else
450 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
451
452 /* Set buffer length and buffer pointer. */
453 bdp->cbd_datlen = skb->len;
454 bdp->cbd_bufaddr = __pa(skb->data);
455
456 spin_lock_irq(&cep->lock);
457
458 /* Save skb pointer. */
459 cep->tx_skbuff[cep->skb_cur] = skb;
460
461 cep->stats.tx_bytes += skb->len;
462 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
463
464 /* Send it on its way. Tell CPM its ready, interrupt when done,
465 * its the last BD of the frame, and to put the CRC on the end.
466 */
467 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
468
469#if 0
470 /* Errata says don't do this. */
471 cep->fccp->fcc_ftodr = 0x8000;
472#endif
473 dev->trans_start = jiffies;
474
475 /* If this was the last BD in the ring, start at the beginning again. */
476 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
477 bdp = cep->tx_bd_base;
478 else
479 bdp++;
480
481 if (!--cep->tx_free)
482 netif_stop_queue(dev);
483
484 cep->cur_tx = (cbd_t *)bdp;
485
486 spin_unlock_irq(&cep->lock);
487
488 return 0;
489}
490
491
492static void
493fcc_enet_timeout(struct net_device *dev)
494{
495 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
496
497 printk("%s: transmit timed out.\n", dev->name);
498 cep->stats.tx_errors++;
499#ifndef final_version
500 {
501 int i;
502 cbd_t *bdp;
503 printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
504 cep->cur_tx, cep->tx_free,
505 cep->cur_rx);
506 bdp = cep->tx_bd_base;
507 printk(" Tx @base %p :\n", bdp);
508 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
509 printk("%04x %04x %08x\n",
510 bdp->cbd_sc,
511 bdp->cbd_datlen,
512 bdp->cbd_bufaddr);
513 bdp = cep->rx_bd_base;
514 printk(" Rx @base %p :\n", bdp);
515 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
516 printk("%04x %04x %08x\n",
517 bdp->cbd_sc,
518 bdp->cbd_datlen,
519 bdp->cbd_bufaddr);
520 }
521#endif
522 if (cep->tx_free)
523 netif_wake_queue(dev);
524}
525
526/* The interrupt handler. */
527static irqreturn_t
528fcc_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
529{
530 struct net_device *dev = dev_id;
531 volatile struct fcc_enet_private *cep;
532 volatile cbd_t *bdp;
533 ushort int_events;
534 int must_restart;
535
536 cep = (struct fcc_enet_private *)dev->priv;
537
538 /* Get the interrupt events that caused us to be here.
539 */
540 int_events = cep->fccp->fcc_fcce;
541 cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm);
542 must_restart = 0;
543
544#ifdef PHY_INTERRUPT
545 /* We have to be careful here to make sure that we aren't
546 * interrupted by a PHY interrupt.
547 */
548 disable_irq_nosync(PHY_INTERRUPT);
549#endif
550
551 /* Handle receive event in its own function.
552 */
553 if (int_events & FCC_ENET_RXF)
554 fcc_enet_rx(dev_id);
555
556 /* Check for a transmit error. The manual is a little unclear
557 * about this, so the debug code until I get it figured out. It
558 * appears that if TXE is set, then TXB is not set. However,
559 * if carrier sense is lost during frame transmission, the TXE
560 * bit is set, "and continues the buffer transmission normally."
561 * I don't know if "normally" implies TXB is set when the buffer
562 * descriptor is closed.....trial and error :-).
563 */
564
565 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
566 */
567 if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
568 spin_lock(&cep->lock);
569 bdp = cep->dirty_tx;
570 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
571 if (cep->tx_free == TX_RING_SIZE)
572 break;
573
574 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
575 cep->stats.tx_heartbeat_errors++;
576 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
577 cep->stats.tx_window_errors++;
578 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
579 cep->stats.tx_aborted_errors++;
580 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
581 cep->stats.tx_fifo_errors++;
582 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
583 cep->stats.tx_carrier_errors++;
584
585
586 /* No heartbeat or Lost carrier are not really bad errors.
587 * The others require a restart transmit command.
588 */
589 if (bdp->cbd_sc &
590 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
591 must_restart = 1;
592 cep->stats.tx_errors++;
593 }
594
595 cep->stats.tx_packets++;
596
597 /* Deferred means some collisions occurred during transmit,
598 * but we eventually sent the packet OK.
599 */
600 if (bdp->cbd_sc & BD_ENET_TX_DEF)
601 cep->stats.collisions++;
602
603 /* Free the sk buffer associated with this last transmit. */
604 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
605 cep->tx_skbuff[cep->skb_dirty] = NULL;
606 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
607
608 /* Update pointer to next buffer descriptor to be transmitted. */
609 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
610 bdp = cep->tx_bd_base;
611 else
612 bdp++;
613
614 /* I don't know if we can be held off from processing these
615 * interrupts for more than one frame time. I really hope
616 * not. In such a case, we would now want to check the
617 * currently available BD (cur_tx) and determine if any
618 * buffers between the dirty_tx and cur_tx have also been
619 * sent. We would want to process anything in between that
620 * does not have BD_ENET_TX_READY set.
621 */
622
623 /* Since we have freed up a buffer, the ring is no longer
624 * full.
625 */
626 if (!cep->tx_free++) {
627 if (netif_queue_stopped(dev)) {
628 netif_wake_queue(dev);
629 }
630 }
631
632 cep->dirty_tx = (cbd_t *)bdp;
633 }
634
635 if (must_restart) {
636 volatile cpm_cpm2_t *cp;
637
638 /* Some transmit errors cause the transmitter to shut
639 * down. We now issue a restart transmit. Since the
640 * errors close the BD and update the pointers, the restart
641 * _should_ pick up without having to reset any of our
642 * pointers either. Also, To workaround 8260 device erratum
643 * CPM37, we must disable and then re-enable the transmitter
644 * following a Late Collision, Underrun, or Retry Limit error.
645 */
646 cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
647 udelay(10); /* wait a few microseconds just on principle */
648 cep->fccp->fcc_gfmr |= FCC_GFMR_ENT;
649
650 cp = cpmp;
651 cp->cp_cpcr =
652 mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
653 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
654 while (cp->cp_cpcr & CPM_CR_FLG);
655 }
656 spin_unlock(&cep->lock);
657 }
658
659 /* Check for receive busy, i.e. packets coming but no place to
660 * put them.
661 */
662 if (int_events & FCC_ENET_BSY) {
663 cep->fccp->fcc_fcce = FCC_ENET_BSY;
664 cep->stats.rx_dropped++;
665 }
666
667#ifdef PHY_INTERRUPT
668 enable_irq(PHY_INTERRUPT);
669#endif
670 return IRQ_HANDLED;
671}
672
673/* During a receive, the cur_rx points to the current incoming buffer.
674 * When we update through the ring, if the next incoming buffer has
675 * not been given to the system, we just set the empty indicator,
676 * effectively tossing the packet.
677 */
678static int
679fcc_enet_rx(struct net_device *dev)
680{
681 struct fcc_enet_private *cep;
682 volatile cbd_t *bdp;
683 struct sk_buff *skb;
684 ushort pkt_len;
685
686 cep = (struct fcc_enet_private *)dev->priv;
687
688 /* First, grab all of the stats for the incoming packet.
689 * These get messed up if we get called due to a busy condition.
690 */
691 bdp = cep->cur_rx;
692
693for (;;) {
694 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
695 break;
696
697#ifndef final_version
698 /* Since we have allocated space to hold a complete frame, both
699 * the first and last indicators should be set.
700 */
701 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
702 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
703 printk("CPM ENET: rcv is not first+last\n");
704#endif
705
706 /* Frame too long or too short. */
707 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
708 cep->stats.rx_length_errors++;
709 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
710 cep->stats.rx_frame_errors++;
711 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
712 cep->stats.rx_crc_errors++;
713 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
714 cep->stats.rx_crc_errors++;
715 if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */
716 cep->stats.rx_frame_errors++;
717
718 if (!(bdp->cbd_sc &
719 (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
720 | BD_ENET_RX_OV | BD_ENET_RX_CL)))
721 {
722 /* Process the incoming frame. */
723 cep->stats.rx_packets++;
724
725 /* Remove the FCS from the packet length. */
726 pkt_len = bdp->cbd_datlen - 4;
727 cep->stats.rx_bytes += pkt_len;
728
729 /* This does 16 byte alignment, much more than we need. */
730 skb = dev_alloc_skb(pkt_len);
731
732 if (skb == NULL) {
733 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
734 cep->stats.rx_dropped++;
735 }
736 else {
737 skb->dev = dev;
738 skb_put(skb,pkt_len); /* Make room */
739 eth_copy_and_sum(skb,
740 (unsigned char *)__va(bdp->cbd_bufaddr),
741 pkt_len, 0);
742 skb->protocol=eth_type_trans(skb,dev);
743 netif_rx(skb);
744 }
745 }
746
747 /* Clear the status flags for this buffer. */
748 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
749
750 /* Mark the buffer empty. */
751 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
752
753 /* Update BD pointer to next entry. */
754 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
755 bdp = cep->rx_bd_base;
756 else
757 bdp++;
758
759 }
760 cep->cur_rx = (cbd_t *)bdp;
761
762 return 0;
763}
764
765static int
766fcc_enet_close(struct net_device *dev)
767{
768#ifdef CONFIG_USE_MDIO
769 struct fcc_enet_private *fep = dev->priv;
770#endif
771
772 netif_stop_queue(dev);
773 fcc_stop(dev);
774#ifdef CONFIG_USE_MDIO
775 if (fep->phy)
776 mii_do_cmd(dev, fep->phy->shutdown);
777#endif
778
779 return 0;
780}
781
782static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
783{
784 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
785
786 return &cep->stats;
787}
788
789#ifdef CONFIG_USE_MDIO
790
791/* NOTE: Most of the following comes from the FEC driver for 860. The
792 * overall structure of MII code has been retained (as it's proved stable
793 * and well-tested), but actual transfer requests are processed "at once"
794 * instead of being queued (there's no interrupt-driven MII transfer
795 * mechanism, one has to toggle the data/clock bits manually).
796 */
797static int
798mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
799{
800 struct fcc_enet_private *fep;
801 int retval, tmp;
802
803 /* Add PHY address to register command. */
804 fep = dev->priv;
805 regval |= fep->phy_addr << 23;
806
807 retval = 0;
808
809 tmp = mii_send_receive(fep->fip, regval);
810 if (func)
811 func(tmp, dev);
812
813 return retval;
814}
815
816static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
817{
818 int k;
819
820 if(!c)
821 return;
822
823 for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
824 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
825}
826
827static void mii_parse_sr(uint mii_reg, struct net_device *dev)
828{
829 volatile struct fcc_enet_private *fep = dev->priv;
830 uint s = fep->phy_status;
831
832 s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
833
834 if (mii_reg & BMSR_LSTATUS)
835 s |= PHY_STAT_LINK;
836 if (mii_reg & BMSR_RFAULT)
837 s |= PHY_STAT_FAULT;
838 if (mii_reg & BMSR_ANEGCOMPLETE)
839 s |= PHY_STAT_ANC;
840
841 fep->phy_status = s;
842}
843
844static void mii_parse_cr(uint mii_reg, struct net_device *dev)
845{
846 volatile struct fcc_enet_private *fep = dev->priv;
847 uint s = fep->phy_status;
848
849 s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
850
851 if (mii_reg & BMCR_ANENABLE)
852 s |= PHY_CONF_ANE;
853 if (mii_reg & BMCR_LOOPBACK)
854 s |= PHY_CONF_LOOP;
855
856 fep->phy_status = s;
857}
858
859static void mii_parse_anar(uint mii_reg, struct net_device *dev)
860{
861 volatile struct fcc_enet_private *fep = dev->priv;
862 uint s = fep->phy_status;
863
864 s &= ~(PHY_CONF_SPMASK);
865
866 if (mii_reg & ADVERTISE_10HALF)
867 s |= PHY_CONF_10HDX;
868 if (mii_reg & ADVERTISE_10FULL)
869 s |= PHY_CONF_10FDX;
870 if (mii_reg & ADVERTISE_100HALF)
871 s |= PHY_CONF_100HDX;
872 if (mii_reg & ADVERTISE_100FULL)
873 s |= PHY_CONF_100FDX;
874
875 fep->phy_status = s;
876}
877
878/* ------------------------------------------------------------------------- */
879/* Generic PHY support. Should work for all PHYs, but does not support link
880 * change interrupts.
881 */
882#ifdef CONFIG_FCC_GENERIC_PHY
883
884static phy_info_t phy_info_generic = {
885 0x00000000, /* 0-->match any PHY */
886 "GENERIC",
887
888 (const phy_cmd_t []) { /* config */
889 /* advertise only half-duplex capabilities */
890 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF),
891 mii_parse_anar },
892
893 /* enable auto-negotiation */
894 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
895 { mk_mii_end, }
896 },
897 (const phy_cmd_t []) { /* startup */
898 /* restart auto-negotiation */
899 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
900 NULL },
901 { mk_mii_end, }
902 },
903 (const phy_cmd_t []) { /* ack_int */
904 /* We don't actually use the ack_int table with a generic
905 * PHY, but putting a reference to mii_parse_sr here keeps
906 * us from getting a compiler warning about unused static
907 * functions in the case where we only compile in generic
908 * PHY support.
909 */
910 { mk_mii_read(MII_BMSR), mii_parse_sr },
911 { mk_mii_end, }
912 },
913 (const phy_cmd_t []) { /* shutdown */
914 { mk_mii_end, }
915 },
916};
917#endif /* ifdef CONFIG_FCC_GENERIC_PHY */
918
919/* ------------------------------------------------------------------------- */
920/* The Level one LXT970 is used by many boards */
921
922#ifdef CONFIG_FCC_LXT970
923
924#define MII_LXT970_MIRROR 16 /* Mirror register */
925#define MII_LXT970_IER 17 /* Interrupt Enable Register */
926#define MII_LXT970_ISR 18 /* Interrupt Status Register */
927#define MII_LXT970_CONFIG 19 /* Configuration Register */
928#define MII_LXT970_CSR 20 /* Chip Status Register */
929
930static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
931{
932 volatile struct fcc_enet_private *fep = dev->priv;
933 uint s = fep->phy_status;
934
935 s &= ~(PHY_STAT_SPMASK);
936
937 if (mii_reg & 0x0800) {
938 if (mii_reg & 0x1000)
939 s |= PHY_STAT_100FDX;
940 else
941 s |= PHY_STAT_100HDX;
942 } else {
943 if (mii_reg & 0x1000)
944 s |= PHY_STAT_10FDX;
945 else
946 s |= PHY_STAT_10HDX;
947 }
948
949 fep->phy_status = s;
950}
951
952static phy_info_t phy_info_lxt970 = {
953 0x07810000,
954 "LXT970",
955
956 (const phy_cmd_t []) { /* config */
957#if 0
958// { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
959
960 /* Set default operation of 100-TX....for some reason
961 * some of these bits are set on power up, which is wrong.
962 */
963 { mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
964#endif
965 { mk_mii_read(MII_BMCR), mii_parse_cr },
966 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
967 { mk_mii_end, }
968 },
969 (const phy_cmd_t []) { /* startup - enable interrupts */
970 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
971 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
972 { mk_mii_end, }
973 },
974 (const phy_cmd_t []) { /* ack_int */
975 /* read SR and ISR to acknowledge */
976
977 { mk_mii_read(MII_BMSR), mii_parse_sr },
978 { mk_mii_read(MII_LXT970_ISR), NULL },
979
980 /* find out the current status */
981
982 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
983 { mk_mii_end, }
984 },
985 (const phy_cmd_t []) { /* shutdown - disable interrupts */
986 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
987 { mk_mii_end, }
988 },
989};
990
991#endif /* CONFIG_FEC_LXT970 */
992
993/* ------------------------------------------------------------------------- */
994/* The Level one LXT971 is used on some of my custom boards */
995
996#ifdef CONFIG_FCC_LXT971
997
998/* register definitions for the 971 */
999
1000#define MII_LXT971_PCR 16 /* Port Control Register */
1001#define MII_LXT971_SR2 17 /* Status Register 2 */
1002#define MII_LXT971_IER 18 /* Interrupt Enable Register */
1003#define MII_LXT971_ISR 19 /* Interrupt Status Register */
1004#define MII_LXT971_LCR 20 /* LED Control Register */
1005#define MII_LXT971_TCR 30 /* Transmit Control Register */
1006
1007/*
1008 * I had some nice ideas of running the MDIO faster...
1009 * The 971 should support 8MHz and I tried it, but things acted really
1010 * weird, so 2.5 MHz ought to be enough for anyone...
1011 */
1012
1013static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
1014{
1015 volatile struct fcc_enet_private *fep = dev->priv;
1016 uint s = fep->phy_status;
1017
1018 s &= ~(PHY_STAT_SPMASK);
1019
1020 if (mii_reg & 0x4000) {
1021 if (mii_reg & 0x0200)
1022 s |= PHY_STAT_100FDX;
1023 else
1024 s |= PHY_STAT_100HDX;
1025 } else {
1026 if (mii_reg & 0x0200)
1027 s |= PHY_STAT_10FDX;
1028 else
1029 s |= PHY_STAT_10HDX;
1030 }
1031 if (mii_reg & 0x0008)
1032 s |= PHY_STAT_FAULT;
1033
1034 fep->phy_status = s;
1035}
1036
1037static phy_info_t phy_info_lxt971 = {
1038 0x0001378e,
1039 "LXT971",
1040
1041 (const phy_cmd_t []) { /* config */
1042 /* configure link capabilities to advertise */
1043 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT),
1044 mii_parse_anar },
1045
1046 /* enable auto-negotiation */
1047 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
1048 { mk_mii_end, }
1049 },
1050 (const phy_cmd_t []) { /* startup - enable interrupts */
1051 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
1052
1053 /* restart auto-negotiation */
1054 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
1055 NULL },
1056 { mk_mii_end, }
1057 },
1058 (const phy_cmd_t []) { /* ack_int */
1059 /* find out the current status */
1060 { mk_mii_read(MII_BMSR), NULL },
1061 { mk_mii_read(MII_BMSR), mii_parse_sr },
1062 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1063
1064 /* we only need to read ISR to acknowledge */
1065 { mk_mii_read(MII_LXT971_ISR), NULL },
1066 { mk_mii_end, }
1067 },
1068 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1069 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
1070 { mk_mii_end, }
1071 },
1072};
1073
1074#endif /* CONFIG_FCC_LXT971 */
1075
1076/* ------------------------------------------------------------------------- */
1077/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1078
1079#ifdef CONFIG_FCC_QS6612
1080
1081/* register definitions */
1082
1083#define MII_QS6612_MCR 17 /* Mode Control Register */
1084#define MII_QS6612_FTR 27 /* Factory Test Register */
1085#define MII_QS6612_MCO 28 /* Misc. Control Register */
1086#define MII_QS6612_ISR 29 /* Interrupt Source Register */
1087#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1088#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1089
1090static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1091{
1092 volatile struct fcc_enet_private *fep = dev->priv;
1093 uint s = fep->phy_status;
1094
1095 s &= ~(PHY_STAT_SPMASK);
1096
1097 switch((mii_reg >> 2) & 7) {
1098 case 1: s |= PHY_STAT_10HDX; break;
1099 case 2: s |= PHY_STAT_100HDX; break;
1100 case 5: s |= PHY_STAT_10FDX; break;
1101 case 6: s |= PHY_STAT_100FDX; break;
1102 }
1103
1104 fep->phy_status = s;
1105}
1106
1107static phy_info_t phy_info_qs6612 = {
1108 0x00181440,
1109 "QS6612",
1110
1111 (const phy_cmd_t []) { /* config */
1112// { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
1113
1114 /* The PHY powers up isolated on the RPX,
1115 * so send a command to allow operation.
1116 */
1117
1118 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1119
1120 /* parse cr and anar to get some info */
1121
1122 { mk_mii_read(MII_BMCR), mii_parse_cr },
1123 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1124 { mk_mii_end, }
1125 },
1126 (const phy_cmd_t []) { /* startup - enable interrupts */
1127 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1128 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1129 { mk_mii_end, }
1130 },
1131 (const phy_cmd_t []) { /* ack_int */
1132
1133 /* we need to read ISR, SR and ANER to acknowledge */
1134
1135 { mk_mii_read(MII_QS6612_ISR), NULL },
1136 { mk_mii_read(MII_BMSR), mii_parse_sr },
1137 { mk_mii_read(MII_EXPANSION), NULL },
1138
1139 /* read pcr to get info */
1140
1141 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1142 { mk_mii_end, }
1143 },
1144 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1145 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1146 { mk_mii_end, }
1147 },
1148};
1149
1150
1151#endif /* CONFIG_FEC_QS6612 */
1152
1153
1154/* ------------------------------------------------------------------------- */
1155/* The Davicom DM9131 is used on the HYMOD board */
1156
1157#ifdef CONFIG_FCC_DM9131
1158
1159/* register definitions */
1160
1161#define MII_DM9131_ACR 16 /* Aux. Config Register */
1162#define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
1163#define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
1164#define MII_DM9131_INTR 21 /* Interrupt Register */
1165#define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
1166#define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
1167
1168static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
1169{
1170 volatile struct fcc_enet_private *fep = dev->priv;
1171 uint s = fep->phy_status;
1172
1173 s &= ~(PHY_STAT_SPMASK);
1174
1175 switch ((mii_reg >> 12) & 0xf) {
1176 case 1: s |= PHY_STAT_10HDX; break;
1177 case 2: s |= PHY_STAT_10FDX; break;
1178 case 4: s |= PHY_STAT_100HDX; break;
1179 case 8: s |= PHY_STAT_100FDX; break;
1180 }
1181
1182 fep->phy_status = s;
1183}
1184
1185static phy_info_t phy_info_dm9131 = {
1186 0x00181b80,
1187 "DM9131",
1188
1189 (const phy_cmd_t []) { /* config */
1190 /* parse cr and anar to get some info */
1191 { mk_mii_read(MII_BMCR), mii_parse_cr },
1192 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1193 { mk_mii_end, }
1194 },
1195 (const phy_cmd_t []) { /* startup - enable interrupts */
1196 { mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
1197 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1198 { mk_mii_end, }
1199 },
1200 (const phy_cmd_t []) { /* ack_int */
1201
1202 /* we need to read INTR, SR and ANER to acknowledge */
1203
1204 { mk_mii_read(MII_DM9131_INTR), NULL },
1205 { mk_mii_read(MII_BMSR), mii_parse_sr },
1206 { mk_mii_read(MII_EXPANSION), NULL },
1207
1208 /* read acsr to get info */
1209
1210 { mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
1211 { mk_mii_end, }
1212 },
1213 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1214 { mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
1215 { mk_mii_end, }
1216 },
1217};
1218
1219
1220#endif /* CONFIG_FEC_DM9131 */
1221#ifdef CONFIG_FCC_DM9161
1222/* ------------------------------------------------------------------------- */
1223/* DM9161 Control register values */
1224#define MIIM_DM9161_CR_STOP 0x0400
1225#define MIIM_DM9161_CR_RSTAN 0x1200
1226
1227#define MIIM_DM9161_SCR 0x10
1228#define MIIM_DM9161_SCR_INIT 0x0610
1229
1230/* DM9161 Specified Configuration and Status Register */
1231#define MIIM_DM9161_SCSR 0x11
1232#define MIIM_DM9161_SCSR_100F 0x8000
1233#define MIIM_DM9161_SCSR_100H 0x4000
1234#define MIIM_DM9161_SCSR_10F 0x2000
1235#define MIIM_DM9161_SCSR_10H 0x1000
1236/* DM9161 10BT register */
1237#define MIIM_DM9161_10BTCSR 0x12
1238#define MIIM_DM9161_10BTCSR_INIT 0x7800
1239/* DM9161 Interrupt Register */
1240#define MIIM_DM9161_INTR 0x15
1241#define MIIM_DM9161_INTR_PEND 0x8000
1242#define MIIM_DM9161_INTR_DPLX_MASK 0x0800
1243#define MIIM_DM9161_INTR_SPD_MASK 0x0400
1244#define MIIM_DM9161_INTR_LINK_MASK 0x0200
1245#define MIIM_DM9161_INTR_MASK 0x0100
1246#define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
1247#define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
1248#define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
1249#define MIIM_DM9161_INTR_INIT 0x0000
1250#define MIIM_DM9161_INTR_STOP \
1251(MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
1252 | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
1253
1254static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev)
1255{
1256 volatile struct fcc_enet_private *fep = dev->priv;
1257 uint regstat, timeout=0xffff;
1258
1259 while(!(mii_reg & 0x0020) && timeout--)
1260 {
1261 regstat=mk_mii_read(MII_BMSR);
1262 regstat |= fep->phy_addr <<23;
1263 mii_reg = mii_send_receive(fep->fip,regstat);
1264 }
1265
1266 mii_parse_sr(mii_reg, dev);
1267}
1268
1269static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev)
1270{
1271 volatile struct fcc_enet_private *fep = dev->priv;
1272 uint s = fep->phy_status;
1273
1274 s &= ~(PHY_STAT_SPMASK);
1275 switch((mii_reg >>12) & 0xf) {
1276 case 1:
1277 {
1278 s |= PHY_STAT_10HDX;
1279 printk("10BaseT Half Duplex\n");
1280 break;
1281 }
1282 case 2:
1283 {
1284 s |= PHY_STAT_10FDX;
1285 printk("10BaseT Full Duplex\n");
1286 break;
1287 }
1288 case 4:
1289 {
1290 s |= PHY_STAT_100HDX;
1291 printk("100BaseT Half Duplex\n");
1292 break;
1293 }
1294 case 8:
1295 {
1296 s |= PHY_STAT_100FDX;
1297 printk("100BaseT Full Duplex\n");
1298 break;
1299 }
1300 }
1301
1302 fep->phy_status = s;
1303
1304}
1305
1306static void mii_dm9161_wait(uint mii_reg, struct net_device *dev)
1307{
1308 int timeout = HZ;
1309
1310 /* Davicom takes a bit to come up after a reset,
1311 * so wait here for a bit */
1312 set_current_state(TASK_UNINTERRUPTIBLE);
1313 schedule_timeout(timeout);
1314}
1315
1316static phy_info_t phy_info_dm9161 = {
1317 0x00181b88,
1318 "Davicom DM9161E",
1319 (const phy_cmd_t[]) { /* config */
1320 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL},
1321 /* Do not bypass the scrambler/descrambler */
1322 { mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL},
1323 /* Configure 10BTCSR register */
1324 { mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL},
1325 /* Configure some basic stuff */
1326 { mk_mii_write(MII_BMCR, 0x1000), NULL},
1327 { mk_mii_read(MII_BMCR), mii_parse_cr },
1328 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1329 { mk_mii_end,}
1330 },
1331 (const phy_cmd_t[]) { /* startup */
1332 /* Restart Auto Negotiation */
1333 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL},
1334 /* Status is read once to clear old link state */
1335 { mk_mii_read(MII_BMSR), mii_dm9161_wait},
1336 /* Auto-negotiate */
1337 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1338 /* Read the status */
1339 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1340 /* Clear any pending interrupts */
1341 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1342 /* Enable Interrupts */
1343 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL},
1344 { mk_mii_end,}
1345 },
1346 (const phy_cmd_t[]) { /* ack_int */
1347 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1348#if 0
1349 { mk_mii_read(MII_BMSR), NULL},
1350 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1351 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1352#endif
1353 { mk_mii_end,}
1354 },
1355 (const phy_cmd_t[]) { /* shutdown */
1356 { mk_mii_read(MIIM_DM9161_INTR),NULL},
1357 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL},
1358 { mk_mii_end,}
1359 },
1360};
1361#endif /* CONFIG_FCC_DM9161 */
1362
1363static phy_info_t *phy_info[] = {
1364
1365#ifdef CONFIG_FCC_LXT970
1366 &phy_info_lxt970,
1367#endif /* CONFIG_FEC_LXT970 */
1368
1369#ifdef CONFIG_FCC_LXT971
1370 &phy_info_lxt971,
1371#endif /* CONFIG_FEC_LXT971 */
1372
1373#ifdef CONFIG_FCC_QS6612
1374 &phy_info_qs6612,
1375#endif /* CONFIG_FEC_QS6612 */
1376
1377#ifdef CONFIG_FCC_DM9131
1378 &phy_info_dm9131,
1379#endif /* CONFIG_FEC_DM9131 */
1380
1381#ifdef CONFIG_FCC_DM9161
1382 &phy_info_dm9161,
1383#endif /* CONFIG_FCC_DM9161 */
1384
1385#ifdef CONFIG_FCC_GENERIC_PHY
1386 /* Generic PHY support. This must be the last PHY in the table.
1387 * It will be used to support any PHY that doesn't match a previous
1388 * entry in the table.
1389 */
1390 &phy_info_generic,
1391#endif /* CONFIG_FCC_GENERIC_PHY */
1392
1393 NULL
1394};
1395
1396static void mii_display_status(void *data)
1397{
1398 struct net_device *dev = data;
1399 volatile struct fcc_enet_private *fep = dev->priv;
1400 uint s = fep->phy_status;
1401
1402 if (!fep->link && !fep->old_link) {
1403 /* Link is still down - don't print anything */
1404 return;
1405 }
1406
1407 printk("%s: status: ", dev->name);
1408
1409 if (!fep->link) {
1410 printk("link down");
1411 } else {
1412 printk("link up");
1413
1414 switch(s & PHY_STAT_SPMASK) {
1415 case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
1416 case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
1417 case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
1418 case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
1419 default:
1420 printk(", Unknown speed/duplex");
1421 }
1422
1423 if (s & PHY_STAT_ANC)
1424 printk(", auto-negotiation complete");
1425 }
1426
1427 if (s & PHY_STAT_FAULT)
1428 printk(", remote fault");
1429
1430 printk(".\n");
1431}
1432
1433static void mii_display_config(void *data)
1434{
1435 struct net_device *dev = data;
1436 volatile struct fcc_enet_private *fep = dev->priv;
1437 uint s = fep->phy_status;
1438
1439 printk("%s: config: auto-negotiation ", dev->name);
1440
1441 if (s & PHY_CONF_ANE)
1442 printk("on");
1443 else
1444 printk("off");
1445
1446 if (s & PHY_CONF_100FDX)
1447 printk(", 100FDX");
1448 if (s & PHY_CONF_100HDX)
1449 printk(", 100HDX");
1450 if (s & PHY_CONF_10FDX)
1451 printk(", 10FDX");
1452 if (s & PHY_CONF_10HDX)
1453 printk(", 10HDX");
1454 if (!(s & PHY_CONF_SPMASK))
1455 printk(", No speed/duplex selected?");
1456
1457 if (s & PHY_CONF_LOOP)
1458 printk(", loopback enabled");
1459
1460 printk(".\n");
1461
1462 fep->sequence_done = 1;
1463}
1464
1465static void mii_relink(struct net_device *dev)
1466{
1467 struct fcc_enet_private *fep = dev->priv;
1468 int duplex = 0;
1469
1470 fep->old_link = fep->link;
1471 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1472
1473#ifdef MDIO_DEBUG
1474 printk(" mii_relink: link=%d\n", fep->link);
1475#endif
1476
1477 if (fep->link) {
1478 if (fep->phy_status
1479 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1480 duplex = 1;
1481 fcc_restart(dev, duplex);
1482#ifdef MDIO_DEBUG
1483 printk(" mii_relink: duplex=%d\n", duplex);
1484#endif
1485 }
1486}
1487
1488static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1489{
1490 struct fcc_enet_private *fep = dev->priv;
1491
1492 mii_relink(dev);
1493
1494 schedule_work(&fep->phy_relink);
1495}
1496
1497static void mii_queue_config(uint mii_reg, struct net_device *dev)
1498{
1499 struct fcc_enet_private *fep = dev->priv;
1500
1501 schedule_work(&fep->phy_display_config);
1502}
1503
1504phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink },
1505 { mk_mii_end, } };
1506phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config },
1507 { mk_mii_end, } };
1508
1509
1510/* Read remainder of PHY ID.
1511*/
1512static void
1513mii_discover_phy3(uint mii_reg, struct net_device *dev)
1514{
1515 struct fcc_enet_private *fep;
1516 int i;
1517
1518 fep = dev->priv;
1519 printk("mii_reg: %08x\n", mii_reg);
1520 fep->phy_id |= (mii_reg & 0xffff);
1521
1522 for(i = 0; phy_info[i]; i++)
1523 if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id)
1524 break;
1525
1526 if(!phy_info[i])
1527 panic("%s: PHY id 0x%08x is not supported!\n",
1528 dev->name, fep->phy_id);
1529
1530 fep->phy = phy_info[i];
1531 fep->phy_id_done = 1;
1532
1533 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1534 dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
1535}
1536
1537/* Scan all of the MII PHY addresses looking for someone to respond
1538 * with a valid ID. This usually happens quickly.
1539 */
1540static void
1541mii_discover_phy(uint mii_reg, struct net_device *dev)
1542{
1543 struct fcc_enet_private *fep;
1544 uint phytype;
1545
1546 fep = dev->priv;
1547
1548 if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
1549
1550 /* Got first part of ID, now get remainder. */
1551 fep->phy_id = phytype << 16;
1552 mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3);
1553 } else {
1554 fep->phy_addr++;
1555 if (fep->phy_addr < 32) {
1556 mii_queue(dev, mk_mii_read(MII_PHYSID1),
1557 mii_discover_phy);
1558 } else {
1559 printk("fec: No PHY device found.\n");
1560 }
1561 }
1562}
1563#endif /* CONFIG_USE_MDIO */
1564
1565#ifdef PHY_INTERRUPT
1566/* This interrupt occurs when the PHY detects a link change. */
1567static irqreturn_t
1568mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
1569{
1570 struct net_device *dev = dev_id;
1571 struct fcc_enet_private *fep = dev->priv;
1572 fcc_info_t *fip = fep->fip;
1573
1574 if (fep->phy) {
1575 /* We don't want to be interrupted by an FCC
1576 * interrupt here.
1577 */
1578 disable_irq_nosync(fip->fc_interrupt);
1579
1580 mii_do_cmd(dev, fep->phy->ack_int);
1581 /* restart and display status */
1582 mii_do_cmd(dev, phy_cmd_relink);
1583
1584 enable_irq(fip->fc_interrupt);
1585 }
1586 return IRQ_HANDLED;
1587}
1588#endif /* ifdef PHY_INTERRUPT */
1589
1590#if 0 /* This should be fixed someday */
1591/* Set or clear the multicast filter for this adaptor.
1592 * Skeleton taken from sunlance driver.
1593 * The CPM Ethernet implementation allows Multicast as well as individual
1594 * MAC address filtering. Some of the drivers check to make sure it is
1595 * a group multicast address, and discard those that are not. I guess I
1596 * will do the same for now, but just remove the test if you want
1597 * individual filtering as well (do the upper net layers want or support
1598 * this kind of feature?).
1599 */
1600static void
1601set_multicast_list(struct net_device *dev)
1602{
1603 struct fcc_enet_private *cep;
1604 struct dev_mc_list *dmi;
1605 u_char *mcptr, *tdptr;
1606 volatile fcc_enet_t *ep;
1607 int i, j;
1608
1609 cep = (struct fcc_enet_private *)dev->priv;
1610
1611return;
1612 /* Get pointer to FCC area in parameter RAM.
1613 */
1614 ep = (fcc_enet_t *)dev->base_addr;
1615
1616 if (dev->flags&IFF_PROMISC) {
1617
1618 /* Log any net taps. */
1619 printk("%s: Promiscuous mode enabled.\n", dev->name);
1620 cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
1621 } else {
1622
1623 cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
1624
1625 if (dev->flags & IFF_ALLMULTI) {
1626 /* Catch all multicast addresses, so set the
1627 * filter to all 1's.
1628 */
1629 ep->fen_gaddrh = 0xffffffff;
1630 ep->fen_gaddrl = 0xffffffff;
1631 }
1632 else {
1633 /* Clear filter and add the addresses in the list.
1634 */
1635 ep->fen_gaddrh = 0;
1636 ep->fen_gaddrl = 0;
1637
1638 dmi = dev->mc_list;
1639
1640 for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
1641
1642 /* Only support group multicast for now.
1643 */
1644 if (!(dmi->dmi_addr[0] & 1))
1645 continue;
1646
1647 /* The address in dmi_addr is LSB first,
1648 * and taddr is MSB first. We have to
1649 * copy bytes MSB first from dmi_addr.
1650 */
1651 mcptr = (u_char *)dmi->dmi_addr + 5;
1652 tdptr = (u_char *)&ep->fen_taddrh;
1653 for (j=0; j<6; j++)
1654 *tdptr++ = *mcptr--;
1655
1656 /* Ask CPM to run CRC and set bit in
1657 * filter mask.
1658 */
1659 cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
1660 cep->fip->fc_cpmblock, 0x0c,
1661 CPM_CR_SET_GADDR) | CPM_CR_FLG;
1662 udelay(10);
1663 while (cpmp->cp_cpcr & CPM_CR_FLG);
1664 }
1665 }
1666 }
1667}
1668#endif /* if 0 */
1669
1670
1671/* Set the individual MAC address.
1672 */
1673int fcc_enet_set_mac_address(struct net_device *dev, void *p)
1674{
1675 struct sockaddr *addr= (struct sockaddr *) p;
1676 struct fcc_enet_private *cep;
1677 volatile fcc_enet_t *ep;
1678 unsigned char *eap;
1679 int i;
1680
1681 cep = (struct fcc_enet_private *)(dev->priv);
1682 ep = cep->ep;
1683
1684 if (netif_running(dev))
1685 return -EBUSY;
1686
1687 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1688
1689 eap = (unsigned char *) &(ep->fen_paddrh);
1690 for (i=5; i>=0; i--)
1691 *eap++ = addr->sa_data[i];
1692
1693 return 0;
1694}
1695
1696
1697/* Initialize the CPM Ethernet on FCC.
1698 */
1699static int __init fec_enet_init(void)
1700{
1701 struct net_device *dev;
1702 struct fcc_enet_private *cep;
1703 fcc_info_t *fip;
1704 int i, np, err;
1705 volatile cpm2_map_t *immap;
1706 volatile iop_cpm2_t *io;
1707
1708 immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
1709 io = &immap->im_ioport;
1710
1711 np = sizeof(fcc_ports) / sizeof(fcc_info_t);
1712 fip = fcc_ports;
1713
1714 while (np-- > 0) {
1715 /* Create an Ethernet device instance.
1716 */
1717 dev = alloc_etherdev(sizeof(*cep));
1718 if (!dev)
1719 return -ENOMEM;
1720
1721 cep = dev->priv;
1722 spin_lock_init(&cep->lock);
1723 cep->fip = fip;
1724
1725 init_fcc_shutdown(fip, cep, immap);
1726 init_fcc_ioports(fip, io, immap);
1727 init_fcc_param(fip, dev, immap);
1728
1729 dev->base_addr = (unsigned long)(cep->ep);
1730
1731 /* The CPM Ethernet specific entries in the device
1732 * structure.
1733 */
1734 dev->open = fcc_enet_open;
1735 dev->hard_start_xmit = fcc_enet_start_xmit;
1736 dev->tx_timeout = fcc_enet_timeout;
1737 dev->watchdog_timeo = TX_TIMEOUT;
1738 dev->stop = fcc_enet_close;
1739 dev->get_stats = fcc_enet_get_stats;
1740 /* dev->set_multicast_list = set_multicast_list; */
1741 dev->set_mac_address = fcc_enet_set_mac_address;
1742
1743 init_fcc_startup(fip, dev);
1744
1745 err = register_netdev(dev);
1746 if (err) {
1747 free_netdev(dev);
1748 return err;
1749 }
1750
1751 printk("%s: FCC ENET Version 0.3, ", dev->name);
1752 for (i=0; i<5; i++)
1753 printk("%02x:", dev->dev_addr[i]);
1754 printk("%02x\n", dev->dev_addr[5]);
1755
1756#ifdef CONFIG_USE_MDIO
1757 /* Queue up command to detect the PHY and initialize the
1758 * remainder of the interface.
1759 */
1760 cep->phy_id_done = 0;
1761 cep->phy_addr = fip->fc_phyaddr;
1762 mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy);
1763 INIT_WORK(&cep->phy_relink, mii_display_status, dev);
1764 INIT_WORK(&cep->phy_display_config, mii_display_config, dev);
1765#endif /* CONFIG_USE_MDIO */
1766
1767 fip++;
1768 }
1769
1770 return 0;
1771}
1772module_init(fec_enet_init);
1773
1774/* Make sure the device is shut down during initialization.
1775*/
1776static void __init
1777init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
1778 volatile cpm2_map_t *immap)
1779{
1780 volatile fcc_enet_t *ep;
1781 volatile fcc_t *fccp;
1782
1783 /* Get pointer to FCC area in parameter RAM.
1784 */
1785 ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
1786
1787 /* And another to the FCC register area.
1788 */
1789 fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
1790 cep->fccp = fccp; /* Keep the pointers handy */
1791 cep->ep = ep;
1792
1793 /* Disable receive and transmit in case someone left it running.
1794 */
1795 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
1796}
1797
1798/* Initialize the I/O pins for the FCC Ethernet.
1799*/
1800static void __init
1801init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
1802 volatile cpm2_map_t *immap)
1803{
1804
1805 /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
1806 */
1807 if (fip->fc_proff == PROFF_FCC1) {
1808 /* Configure port A and C pins for FCC1 Ethernet.
1809 */
1810 io->iop_pdira &= ~PA1_DIRA_BOUT;
1811 io->iop_pdira |= PA1_DIRA_BIN;
1812 io->iop_psora &= ~PA1_PSORA_BOUT;
1813 io->iop_psora |= PA1_PSORA_BIN;
1814 io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN);
1815 }
1816 if (fip->fc_proff == PROFF_FCC2) {
1817 /* Configure port B and C pins for FCC Ethernet.
1818 */
1819 io->iop_pdirb &= ~PB2_DIRB_BOUT;
1820 io->iop_pdirb |= PB2_DIRB_BIN;
1821 io->iop_psorb &= ~PB2_PSORB_BOUT;
1822 io->iop_psorb |= PB2_PSORB_BIN;
1823 io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN);
1824 }
1825 if (fip->fc_proff == PROFF_FCC3) {
1826 /* Configure port B and C pins for FCC Ethernet.
1827 */
1828 io->iop_pdirb &= ~PB3_DIRB_BOUT;
1829 io->iop_pdirb |= PB3_DIRB_BIN;
1830 io->iop_psorb &= ~PB3_PSORB_BOUT;
1831 io->iop_psorb |= PB3_PSORB_BIN;
1832 io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN);
1833
1834 io->iop_pdirc &= ~PC3_DIRC_BOUT;
1835 io->iop_pdirc |= PC3_DIRC_BIN;
1836 io->iop_psorc &= ~PC3_PSORC_BOUT;
1837 io->iop_psorc |= PC3_PSORC_BIN;
1838 io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN);
1839
1840 }
1841
1842 /* Port C has clocks......
1843 */
1844 io->iop_psorc &= ~(fip->fc_trxclocks);
1845 io->iop_pdirc &= ~(fip->fc_trxclocks);
1846 io->iop_pparc |= fip->fc_trxclocks;
1847
1848#ifdef CONFIG_USE_MDIO
1849 /* ....and the MII serial clock/data.
1850 */
1851 io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
1852 io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
1853 io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
1854 io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
1855#endif /* CONFIG_USE_MDIO */
1856
1857 /* Configure Serial Interface clock routing.
1858 * First, clear all FCC bits to zero,
1859 * then set the ones we want.
1860 */
1861 immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
1862 immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
1863}
1864
1865static void __init
1866init_fcc_param(fcc_info_t *fip, struct net_device *dev,
1867 volatile cpm2_map_t *immap)
1868{
1869 unsigned char *eap;
1870 unsigned long mem_addr;
1871 bd_t *bd;
1872 int i, j;
1873 struct fcc_enet_private *cep;
1874 volatile fcc_enet_t *ep;
1875 volatile cbd_t *bdp;
1876 volatile cpm_cpm2_t *cp;
1877
1878 cep = (struct fcc_enet_private *)(dev->priv);
1879 ep = cep->ep;
1880 cp = cpmp;
1881
1882 bd = (bd_t *)__res;
1883
1884 /* Zero the whole thing.....I must have missed some individually.
1885 * It works when I do this.
1886 */
1887 memset((char *)ep, 0, sizeof(fcc_enet_t));
1888
1889 /* Allocate space for the buffer descriptors from regular memory.
1890 * Initialize base addresses for the buffer descriptors.
1891 */
1892 cep->rx_bd_base = (cbd_t *)kmalloc(sizeof(cbd_t) * RX_RING_SIZE,
1893 GFP_KERNEL | GFP_DMA);
1894 ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
1895 cep->tx_bd_base = (cbd_t *)kmalloc(sizeof(cbd_t) * TX_RING_SIZE,
1896 GFP_KERNEL | GFP_DMA);
1897 ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
1898
1899 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
1900 cep->cur_rx = cep->rx_bd_base;
1901
1902 ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1903 ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1904
1905 /* Set maximum bytes per receive buffer.
1906 * It must be a multiple of 32.
1907 */
1908 ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
1909
1910 /* Allocate space in the reserved FCC area of DPRAM for the
1911 * internal buffers. No one uses this space (yet), so we
1912 * can do this. Later, we will add resource management for
1913 * this area.
1914 */
1915 mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
1916 ep->fen_genfcc.fcc_riptr = mem_addr;
1917 ep->fen_genfcc.fcc_tiptr = mem_addr+32;
1918 ep->fen_padptr = mem_addr+64;
1919 memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
1920
1921 ep->fen_genfcc.fcc_rbptr = 0;
1922 ep->fen_genfcc.fcc_tbptr = 0;
1923 ep->fen_genfcc.fcc_rcrc = 0;
1924 ep->fen_genfcc.fcc_tcrc = 0;
1925 ep->fen_genfcc.fcc_res1 = 0;
1926 ep->fen_genfcc.fcc_res2 = 0;
1927
1928 ep->fen_camptr = 0; /* CAM isn't used in this driver */
1929
1930 /* Set CRC preset and mask.
1931 */
1932 ep->fen_cmask = 0xdebb20e3;
1933 ep->fen_cpres = 0xffffffff;
1934
1935 ep->fen_crcec = 0; /* CRC Error counter */
1936 ep->fen_alec = 0; /* alignment error counter */
1937 ep->fen_disfc = 0; /* discard frame counter */
1938 ep->fen_retlim = 15; /* Retry limit threshold */
1939 ep->fen_pper = 0; /* Normal persistence */
1940
1941 /* Clear hash filter tables.
1942 */
1943 ep->fen_gaddrh = 0;
1944 ep->fen_gaddrl = 0;
1945 ep->fen_iaddrh = 0;
1946 ep->fen_iaddrl = 0;
1947
1948 /* Clear the Out-of-sequence TxBD.
1949 */
1950 ep->fen_tfcstat = 0;
1951 ep->fen_tfclen = 0;
1952 ep->fen_tfcptr = 0;
1953
1954 ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
1955 ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
1956
1957 /* Set Ethernet station address.
1958 *
1959 * This is supplied in the board information structure, so we
1960 * copy that into the controller.
1961 * So, far we have only been given one Ethernet address. We make
1962 * it unique by setting a few bits in the upper byte of the
1963 * non-static part of the address.
1964 */
1965 eap = (unsigned char *)&(ep->fen_paddrh);
1966 for (i=5; i>=0; i--) {
1967
1968/*
1969 * The EP8260 only uses FCC3, so we can safely give it the real
1970 * MAC address.
1971 */
1972#ifdef CONFIG_SBC82xx
1973 if (i == 5) {
1974 /* bd->bi_enetaddr holds the SCC0 address; the FCC
1975 devices count up from there */
1976 dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3;
1977 dev->dev_addr[i] += 1 + fip->fc_fccnum;
1978 *eap++ = dev->dev_addr[i];
1979 }
1980#else
1981#ifndef CONFIG_RPX8260
1982 if (i == 3) {
1983 dev->dev_addr[i] = bd->bi_enetaddr[i];
1984 dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
1985 *eap++ = dev->dev_addr[i];
1986 } else
1987#endif
1988 {
1989 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
1990 }
1991#endif
1992 }
1993
1994 ep->fen_taddrh = 0;
1995 ep->fen_taddrm = 0;
1996 ep->fen_taddrl = 0;
1997
1998 ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
1999 ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
2000
2001 /* Clear stat counters, in case we ever enable RMON.
2002 */
2003 ep->fen_octc = 0;
2004 ep->fen_colc = 0;
2005 ep->fen_broc = 0;
2006 ep->fen_mulc = 0;
2007 ep->fen_uspc = 0;
2008 ep->fen_frgc = 0;
2009 ep->fen_ospc = 0;
2010 ep->fen_jbrc = 0;
2011 ep->fen_p64c = 0;
2012 ep->fen_p65c = 0;
2013 ep->fen_p128c = 0;
2014 ep->fen_p256c = 0;
2015 ep->fen_p512c = 0;
2016 ep->fen_p1024c = 0;
2017
2018 ep->fen_rfthr = 0; /* Suggested by manual */
2019 ep->fen_rfcnt = 0;
2020 ep->fen_cftype = 0;
2021
2022 /* Now allocate the host memory pages and initialize the
2023 * buffer descriptors.
2024 */
2025 bdp = cep->tx_bd_base;
2026 for (i=0; i<TX_RING_SIZE; i++) {
2027
2028 /* Initialize the BD for every fragment in the page.
2029 */
2030 bdp->cbd_sc = 0;
2031 bdp->cbd_datlen = 0;
2032 bdp->cbd_bufaddr = 0;
2033 bdp++;
2034 }
2035
2036 /* Set the last buffer to wrap.
2037 */
2038 bdp--;
2039 bdp->cbd_sc |= BD_SC_WRAP;
2040
2041 bdp = cep->rx_bd_base;
2042 for (i=0; i<FCC_ENET_RX_PAGES; i++) {
2043
2044 /* Allocate a page.
2045 */
2046 mem_addr = __get_free_page(GFP_KERNEL);
2047
2048 /* Initialize the BD for every fragment in the page.
2049 */
2050 for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
2051 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
2052 bdp->cbd_datlen = 0;
2053 bdp->cbd_bufaddr = __pa(mem_addr);
2054 mem_addr += FCC_ENET_RX_FRSIZE;
2055 bdp++;
2056 }
2057 }
2058
2059 /* Set the last buffer to wrap.
2060 */
2061 bdp--;
2062 bdp->cbd_sc |= BD_SC_WRAP;
2063
2064 /* Let's re-initialize the channel now. We have to do it later
2065 * than the manual describes because we have just now finished
2066 * the BD initialization.
2067 */
2068 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
2069 CPM_CR_INIT_TRX) | CPM_CR_FLG;
2070 while (cp->cp_cpcr & CPM_CR_FLG);
2071
2072 cep->skb_cur = cep->skb_dirty = 0;
2073}
2074
2075/* Let 'er rip.
2076*/
2077static void __init
2078init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
2079{
2080 volatile fcc_t *fccp;
2081 struct fcc_enet_private *cep;
2082
2083 cep = (struct fcc_enet_private *)(dev->priv);
2084 fccp = cep->fccp;
2085
2086#ifdef CONFIG_RPX8260
2087#ifdef PHY_INTERRUPT
2088 /* Route PHY interrupt to IRQ. The following code only works for
2089 * IRQ1 - IRQ7. It does not work for Port C interrupts.
2090 */
2091 *((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK;
2092 *((volatile u_char *) (RPX_CSR_ADDR + 13)) |=
2093 ((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4);
2094#endif
2095 /* Initialize MDIO pins. */
2096 *((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC;
2097 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |=
2098 BCSR4_MII_READ | BCSR4_MII_MDIO;
2099 /* Enable external LXT971 PHY. */
2100 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY;
2101 udelay(1000);
2102 *((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII;
2103 udelay(1000);
2104#endif /* ifdef CONFIG_RPX8260 */
2105
2106 fccp->fcc_fcce = 0xffff; /* Clear any pending events */
2107
2108 /* Leave FCC interrupts masked for now. Will be unmasked by
2109 * fcc_restart().
2110 */
2111 fccp->fcc_fccm = 0;
2112
2113 /* Install our interrupt handler.
2114 */
2115 if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
2116 dev) < 0)
2117 printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
2118
2119#ifdef PHY_INTERRUPT
2120#ifdef CONFIG_ADS8272
2121 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, SA_SHIRQ,
2122 "mii", dev) < 0)
2123 printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
2124#else
2125 /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
2126 * on Port C.
2127 */
2128 ((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |=
2129 (1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1)));
2130
2131 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0,
2132 "mii", dev) < 0)
2133 printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
2134#endif
2135#endif /* PHY_INTERRUPT */
2136
2137 /* Set GFMR to enable Ethernet operating mode.
2138 */
2139 fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
2140
2141 /* Set sync/delimiters.
2142 */
2143 fccp->fcc_fdsr = 0xd555;
2144
2145 /* Set protocol specific processing mode for Ethernet.
2146 * This has to be adjusted for Full Duplex operation after we can
2147 * determine how to detect that.
2148 */
2149 fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
2150
2151#ifdef CONFIG_PQ2ADS
2152 /* Enable the PHY. */
2153 *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
2154 *(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST;
2155#endif
2156#if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
2157 /* Enable the 2nd PHY. */
2158 *(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2;
2159 *(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST;
2160#endif
2161
2162#if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
2163 /* start in full duplex mode, and negotiate speed
2164 */
2165 fcc_restart (dev, 1);
2166#else
2167 /* start in half duplex mode
2168 */
2169 fcc_restart (dev, 0);
2170#endif
2171}
2172
2173#ifdef CONFIG_USE_MDIO
2174/* MII command/status interface.
2175 * I'm not going to describe all of the details. You can find the
2176 * protocol definition in many other places, including the data sheet
2177 * of most PHY parts.
2178 * I wonder what "they" were thinking (maybe weren't) when they leave
2179 * the I2C in the CPM but I have to toggle these bits......
2180 */
2181#ifdef CONFIG_RPX8260
2182 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C
2183 * like most other boards.
2184 */
2185#define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
2186#define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
2187#define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
2188#define OUT_MDIO(bit) \
2189 if (bit) \
2190 *MDIO_ADDR |= BCSR4_MII_MDIO; \
2191 else \
2192 *MDIO_ADDR &= ~BCSR4_MII_MDIO;
2193#define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
2194#define OUT_MDC(bit) \
2195 if (bit) \
2196 *MDIO_ADDR |= BCSR4_MII_MDC; \
2197 else \
2198 *MDIO_ADDR &= ~BCSR4_MII_MDC;
2199#else /* ifdef CONFIG_RPX8260 */
2200 /* This is for the usual case where the MDIO pins are on Port C.
2201 */
2202#define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
2203#define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
2204#define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
2205#define OUT_MDIO(bit) \
2206 if (bit) \
2207 MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
2208 else \
2209 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
2210#define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
2211#define OUT_MDC(bit) \
2212 if (bit) \
2213 MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
2214 else \
2215 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
2216#endif /* ifdef CONFIG_RPX8260 */
2217
2218static uint
2219mii_send_receive(fcc_info_t *fip, uint cmd)
2220{
2221 uint retval;
2222 int read_op, i, off;
2223 const int us = 1;
2224
2225 read_op = ((cmd & 0xf0000000) == 0x60000000);
2226
2227 /* Write preamble
2228 */
2229 OUT_MDIO(1);
2230 MAKE_MDIO_OUTPUT;
2231 OUT_MDIO(1);
2232 for (i = 0; i < 32; i++)
2233 {
2234 udelay(us);
2235 OUT_MDC(1);
2236 udelay(us);
2237 OUT_MDC(0);
2238 }
2239
2240 /* Write data
2241 */
2242 for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
2243 {
2244 OUT_MDIO((cmd >> off) & 0x00000001);
2245 udelay(us);
2246 OUT_MDC(1);
2247 udelay(us);
2248 OUT_MDC(0);
2249 }
2250
2251 retval = cmd;
2252
2253 if (read_op)
2254 {
2255 retval >>= 16;
2256
2257 MAKE_MDIO_INPUT;
2258 udelay(us);
2259 OUT_MDC(1);
2260 udelay(us);
2261 OUT_MDC(0);
2262
2263 for (i = 0; i < 16; i++)
2264 {
2265 udelay(us);
2266 OUT_MDC(1);
2267 udelay(us);
2268 retval <<= 1;
2269 if (IN_MDIO)
2270 retval++;
2271 OUT_MDC(0);
2272 }
2273 }
2274
2275 MAKE_MDIO_INPUT;
2276 udelay(us);
2277 OUT_MDC(1);
2278 udelay(us);
2279 OUT_MDC(0);
2280
2281 return retval;
2282}
2283#endif /* CONFIG_USE_MDIO */
2284
2285static void
2286fcc_stop(struct net_device *dev)
2287{
2288 struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv);
2289 volatile fcc_t *fccp = fep->fccp;
2290 fcc_info_t *fip = fep->fip;
2291 volatile fcc_enet_t *ep = fep->ep;
2292 volatile cpm_cpm2_t *cp = cpmp;
2293 volatile cbd_t *bdp;
2294 int i;
2295
2296 if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0)
2297 return; /* already down */
2298
2299 fccp->fcc_fccm = 0;
2300
2301 /* issue the graceful stop tx command */
2302 while (cp->cp_cpcr & CPM_CR_FLG);
2303 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2304 0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG;
2305 while (cp->cp_cpcr & CPM_CR_FLG);
2306
2307 /* Disable transmit/receive */
2308 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
2309
2310 /* issue the restart tx command */
2311 fccp->fcc_fcce = FCC_ENET_GRA;
2312 while (cp->cp_cpcr & CPM_CR_FLG);
2313 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2314 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
2315 while (cp->cp_cpcr & CPM_CR_FLG);
2316
2317 /* free tx buffers */
2318 fep->skb_cur = fep->skb_dirty = 0;
2319 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2320 if (fep->tx_skbuff[i] != NULL) {
2321 dev_kfree_skb(fep->tx_skbuff[i]);
2322 fep->tx_skbuff[i] = NULL;
2323 }
2324 }
2325 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2326 fep->tx_free = TX_RING_SIZE;
2327 ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase;
2328
2329 /* Initialize the tx buffer descriptors. */
2330 bdp = fep->tx_bd_base;
2331 for (i=0; i<TX_RING_SIZE; i++) {
2332 bdp->cbd_sc = 0;
2333 bdp->cbd_datlen = 0;
2334 bdp->cbd_bufaddr = 0;
2335 bdp++;
2336 }
2337 /* Set the last buffer to wrap. */
2338 bdp--;
2339 bdp->cbd_sc |= BD_SC_WRAP;
2340}
2341
2342static void
2343fcc_restart(struct net_device *dev, int duplex)
2344{
2345 struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv);
2346 volatile fcc_t *fccp = fep->fccp;
2347
2348 /* stop any transmissions in progress */
2349 fcc_stop(dev);
2350
2351 if (duplex)
2352 fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB;
2353 else
2354 fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB);
2355
2356 /* Enable interrupts for transmit error, complete frame
2357 * received, and any transmit buffer we have also set the
2358 * interrupt flag.
2359 */
2360 fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
2361
2362 /* Enable transmit/receive */
2363 fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
2364}
2365
2366static int
2367fcc_enet_open(struct net_device *dev)
2368{
2369 struct fcc_enet_private *fep = dev->priv;
2370
2371#ifdef CONFIG_USE_MDIO
2372 fep->sequence_done = 0;
2373 fep->link = 0;
2374
2375 if (fep->phy) {
2376 fcc_restart(dev, 0); /* always start in half-duplex */
2377 mii_do_cmd(dev, fep->phy->ack_int);
2378 mii_do_cmd(dev, fep->phy->config);
2379 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2380 while(!fep->sequence_done)
2381 schedule();
2382
2383 mii_do_cmd(dev, fep->phy->startup);
2384 netif_start_queue(dev);
2385 return 0; /* Success */
2386 }
2387 return -ENODEV; /* No PHY we understand */
2388#else
2389 fep->link = 1;
2390 fcc_restart(dev, 0); /* always start in half-duplex */
2391 netif_start_queue(dev);
2392 return 0; /* Always succeed */
2393#endif /* CONFIG_USE_MDIO */
2394}
2395