Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Basic two-word fraction declaration and manipulation. |
| 3 | */ |
| 4 | |
| 5 | #define _FP_FRAC_DECL_2(X) _FP_W_TYPE X##_f0, X##_f1 |
| 6 | #define _FP_FRAC_COPY_2(D,S) (D##_f0 = S##_f0, D##_f1 = S##_f1) |
| 7 | #define _FP_FRAC_SET_2(X,I) __FP_FRAC_SET_2(X, I) |
| 8 | #define _FP_FRAC_HIGH_2(X) (X##_f1) |
| 9 | #define _FP_FRAC_LOW_2(X) (X##_f0) |
| 10 | #define _FP_FRAC_WORD_2(X,w) (X##_f##w) |
| 11 | |
| 12 | #define _FP_FRAC_SLL_2(X,N) \ |
| 13 | do { \ |
| 14 | if ((N) < _FP_W_TYPE_SIZE) \ |
| 15 | { \ |
| 16 | if (__builtin_constant_p(N) && (N) == 1) \ |
| 17 | { \ |
| 18 | X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0); \ |
| 19 | X##_f0 += X##_f0; \ |
| 20 | } \ |
| 21 | else \ |
| 22 | { \ |
| 23 | X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \ |
| 24 | X##_f0 <<= (N); \ |
| 25 | } \ |
| 26 | } \ |
| 27 | else \ |
| 28 | { \ |
| 29 | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \ |
| 30 | X##_f0 = 0; \ |
| 31 | } \ |
| 32 | } while (0) |
| 33 | |
| 34 | #define _FP_FRAC_SRL_2(X,N) \ |
| 35 | do { \ |
| 36 | if ((N) < _FP_W_TYPE_SIZE) \ |
| 37 | { \ |
| 38 | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \ |
| 39 | X##_f1 >>= (N); \ |
| 40 | } \ |
| 41 | else \ |
| 42 | { \ |
| 43 | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \ |
| 44 | X##_f1 = 0; \ |
| 45 | } \ |
| 46 | } while (0) |
| 47 | |
| 48 | /* Right shift with sticky-lsb. */ |
| 49 | #define _FP_FRAC_SRS_2(X,N,sz) \ |
| 50 | do { \ |
| 51 | if ((N) < _FP_W_TYPE_SIZE) \ |
| 52 | { \ |
| 53 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) | \ |
| 54 | (__builtin_constant_p(N) && (N) == 1 \ |
| 55 | ? X##_f0 & 1 \ |
| 56 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \ |
| 57 | X##_f1 >>= (N); \ |
| 58 | } \ |
| 59 | else \ |
| 60 | { \ |
| 61 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) | \ |
| 62 | (((X##_f1 << (sz - (N))) | X##_f0) != 0)); \ |
| 63 | X##_f1 = 0; \ |
| 64 | } \ |
| 65 | } while (0) |
| 66 | |
| 67 | #define _FP_FRAC_ADDI_2(X,I) \ |
| 68 | __FP_FRAC_ADDI_2(X##_f1, X##_f0, I) |
| 69 | |
| 70 | #define _FP_FRAC_ADD_2(R,X,Y) \ |
| 71 | __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
| 72 | |
| 73 | #define _FP_FRAC_SUB_2(R,X,Y) \ |
| 74 | __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) |
| 75 | |
| 76 | #define _FP_FRAC_CLZ_2(R,X) \ |
| 77 | do { \ |
| 78 | if (X##_f1) \ |
| 79 | __FP_CLZ(R,X##_f1); \ |
| 80 | else \ |
| 81 | { \ |
| 82 | __FP_CLZ(R,X##_f0); \ |
| 83 | R += _FP_W_TYPE_SIZE; \ |
| 84 | } \ |
| 85 | } while(0) |
| 86 | |
| 87 | /* Predicates */ |
| 88 | #define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE)X##_f1 < 0) |
| 89 | #define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0) |
| 90 | #define _FP_FRAC_OVERP_2(fs,X) (X##_f1 & _FP_OVERFLOW_##fs) |
| 91 | #define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0) |
| 92 | #define _FP_FRAC_GT_2(X, Y) \ |
| 93 | ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) |
| 94 | #define _FP_FRAC_GE_2(X, Y) \ |
| 95 | ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) |
| 96 | |
| 97 | #define _FP_ZEROFRAC_2 0, 0 |
| 98 | #define _FP_MINFRAC_2 0, 1 |
| 99 | |
| 100 | /* |
| 101 | * Internals |
| 102 | */ |
| 103 | |
| 104 | #define __FP_FRAC_SET_2(X,I1,I0) (X##_f0 = I0, X##_f1 = I1) |
| 105 | |
| 106 | #define __FP_CLZ_2(R, xh, xl) \ |
| 107 | do { \ |
| 108 | if (xh) \ |
| 109 | __FP_CLZ(R,xl); \ |
| 110 | else \ |
| 111 | { \ |
| 112 | __FP_CLZ(R,xl); \ |
| 113 | R += _FP_W_TYPE_SIZE; \ |
| 114 | } \ |
| 115 | } while(0) |
| 116 | |
| 117 | #if 0 |
| 118 | |
| 119 | #ifndef __FP_FRAC_ADDI_2 |
| 120 | #define __FP_FRAC_ADDI_2(xh, xl, i) \ |
| 121 | (xh += ((xl += i) < i)) |
| 122 | #endif |
| 123 | #ifndef __FP_FRAC_ADD_2 |
| 124 | #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ |
| 125 | (rh = xh + yh + ((rl = xl + yl) < xl)) |
| 126 | #endif |
| 127 | #ifndef __FP_FRAC_SUB_2 |
| 128 | #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ |
| 129 | (rh = xh - yh - ((rl = xl - yl) > xl)) |
| 130 | #endif |
| 131 | |
| 132 | #else |
| 133 | |
| 134 | #undef __FP_FRAC_ADDI_2 |
| 135 | #define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa(xh, xl, xh, xl, 0, i) |
| 136 | #undef __FP_FRAC_ADD_2 |
| 137 | #define __FP_FRAC_ADD_2 add_ssaaaa |
| 138 | #undef __FP_FRAC_SUB_2 |
| 139 | #define __FP_FRAC_SUB_2 sub_ddmmss |
| 140 | |
| 141 | #endif |
| 142 | |
| 143 | /* |
| 144 | * Unpack the raw bits of a native fp value. Do not classify or |
| 145 | * normalize the data. |
| 146 | */ |
| 147 | |
| 148 | #define _FP_UNPACK_RAW_2(fs, X, val) \ |
| 149 | do { \ |
| 150 | union _FP_UNION_##fs _flo; _flo.flt = (val); \ |
| 151 | \ |
| 152 | X##_f0 = _flo.bits.frac0; \ |
| 153 | X##_f1 = _flo.bits.frac1; \ |
| 154 | X##_e = _flo.bits.exp; \ |
| 155 | X##_s = _flo.bits.sign; \ |
| 156 | } while (0) |
| 157 | |
| 158 | |
| 159 | /* |
| 160 | * Repack the raw bits of a native fp value. |
| 161 | */ |
| 162 | |
| 163 | #define _FP_PACK_RAW_2(fs, val, X) \ |
| 164 | do { \ |
| 165 | union _FP_UNION_##fs _flo; \ |
| 166 | \ |
| 167 | _flo.bits.frac0 = X##_f0; \ |
| 168 | _flo.bits.frac1 = X##_f1; \ |
| 169 | _flo.bits.exp = X##_e; \ |
| 170 | _flo.bits.sign = X##_s; \ |
| 171 | \ |
| 172 | (val) = _flo.flt; \ |
| 173 | } while (0) |
| 174 | |
| 175 | |
| 176 | /* |
| 177 | * Multiplication algorithms: |
| 178 | */ |
| 179 | |
| 180 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ |
| 181 | |
| 182 | #define _FP_MUL_MEAT_2_wide(fs, R, X, Y, doit) \ |
| 183 | do { \ |
| 184 | _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ |
| 185 | \ |
| 186 | doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \ |
| 187 | doit(_b_f1, _b_f0, X##_f0, Y##_f1); \ |
| 188 | doit(_c_f1, _c_f0, X##_f1, Y##_f0); \ |
| 189 | doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \ |
| 190 | \ |
| 191 | __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 192 | _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0), \ |
| 193 | 0, _b_f1, _b_f0, 0, \ |
| 194 | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 195 | _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0)); \ |
| 196 | __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 197 | _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0), \ |
| 198 | 0, _c_f1, _c_f0, 0, \ |
| 199 | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ |
| 200 | _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0)); \ |
| 201 | \ |
| 202 | /* Normalize since we know where the msb of the multiplicands \ |
| 203 | were (bit B), we know that the msb of the of the product is \ |
| 204 | at either 2B or 2B-1. */ \ |
| 205 | _FP_FRAC_SRS_4(_z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \ |
| 206 | R##_f0 = _FP_FRAC_WORD_4(_z,0); \ |
| 207 | R##_f1 = _FP_FRAC_WORD_4(_z,1); \ |
| 208 | } while (0) |
| 209 | |
| 210 | /* This next macro appears to be totally broken. Fortunately nowhere |
| 211 | * seems to use it :-> The problem is that we define _z[4] but |
| 212 | * then use it in _FP_FRAC_SRS_4, which will attempt to access |
| 213 | * _z_f[n] which will cause an error. The fix probably involves |
| 214 | * declaring it with _FP_FRAC_DECL_4, see previous macro. -- PMM 02/1998 |
| 215 | */ |
| 216 | #define _FP_MUL_MEAT_2_gmp(fs, R, X, Y) \ |
| 217 | do { \ |
| 218 | _FP_W_TYPE _x[2], _y[2], _z[4]; \ |
| 219 | _x[0] = X##_f0; _x[1] = X##_f1; \ |
| 220 | _y[0] = Y##_f0; _y[1] = Y##_f1; \ |
| 221 | \ |
| 222 | mpn_mul_n(_z, _x, _y, 2); \ |
| 223 | \ |
| 224 | /* Normalize since we know where the msb of the multiplicands \ |
| 225 | were (bit B), we know that the msb of the of the product is \ |
| 226 | at either 2B or 2B-1. */ \ |
| 227 | _FP_FRAC_SRS_4(_z, _FP_WFRACBITS##_fs-1, 2*_FP_WFRACBITS_##fs); \ |
| 228 | R##_f0 = _z[0]; \ |
| 229 | R##_f1 = _z[1]; \ |
| 230 | } while (0) |
| 231 | |
| 232 | |
| 233 | /* |
| 234 | * Division algorithms: |
| 235 | * This seems to be giving me difficulties -- PMM |
| 236 | * Look, NetBSD seems to be able to comment algorithms. Can't you? |
| 237 | * I've thrown printks at the problem. |
| 238 | * This now appears to work, but I still don't really know why. |
| 239 | * Also, I don't think the result is properly normalised... |
| 240 | */ |
| 241 | |
| 242 | #define _FP_DIV_MEAT_2_udiv_64(fs, R, X, Y) \ |
| 243 | do { \ |
| 244 | extern void _fp_udivmodti4(_FP_W_TYPE q[2], _FP_W_TYPE r[2], \ |
| 245 | _FP_W_TYPE n1, _FP_W_TYPE n0, \ |
| 246 | _FP_W_TYPE d1, _FP_W_TYPE d0); \ |
| 247 | _FP_W_TYPE _n_f3, _n_f2, _n_f1, _n_f0, _r_f1, _r_f0; \ |
| 248 | _FP_W_TYPE _q_f1, _q_f0, _m_f1, _m_f0; \ |
| 249 | _FP_W_TYPE _rmem[2], _qmem[2]; \ |
| 250 | /* I think this check is to ensure that the result is normalised. \ |
| 251 | * Assuming X,Y normalised (ie in [1.0,2.0)) X/Y will be in \ |
| 252 | * [0.5,2.0). Furthermore, it will be less than 1.0 iff X < Y. \ |
| 253 | * In this case we tweak things. (this is based on comments in \ |
| 254 | * the NetBSD FPU emulation code. ) \ |
| 255 | * We know X,Y are normalised because we ensure this as part of \ |
| 256 | * the unpacking process. -- PMM \ |
| 257 | */ \ |
| 258 | if (_FP_FRAC_GT_2(X, Y)) \ |
| 259 | { \ |
| 260 | /* R##_e++; */ \ |
| 261 | _n_f3 = X##_f1 >> 1; \ |
| 262 | _n_f2 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \ |
| 263 | _n_f1 = X##_f0 << (_FP_W_TYPE_SIZE - 1); \ |
| 264 | _n_f0 = 0; \ |
| 265 | } \ |
| 266 | else \ |
| 267 | { \ |
| 268 | R##_e--; \ |
| 269 | _n_f3 = X##_f1; \ |
| 270 | _n_f2 = X##_f0; \ |
| 271 | _n_f1 = _n_f0 = 0; \ |
| 272 | } \ |
| 273 | \ |
| 274 | /* Normalize, i.e. make the most significant bit of the \ |
| 275 | denominator set. CHANGED: - 1 to nothing -- PMM */ \ |
| 276 | _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs /* -1 */); \ |
| 277 | \ |
| 278 | /* Do the 256/128 bit division given the 128-bit _fp_udivmodtf4 \ |
| 279 | primitive snagged from libgcc2.c. */ \ |
| 280 | \ |
| 281 | _fp_udivmodti4(_qmem, _rmem, _n_f3, _n_f2, 0, Y##_f1); \ |
| 282 | _q_f1 = _qmem[0]; \ |
| 283 | umul_ppmm(_m_f1, _m_f0, _q_f1, Y##_f0); \ |
| 284 | _r_f1 = _rmem[0]; \ |
| 285 | _r_f0 = _n_f1; \ |
| 286 | if (_FP_FRAC_GT_2(_m, _r)) \ |
| 287 | { \ |
| 288 | _q_f1--; \ |
| 289 | _FP_FRAC_ADD_2(_r, _r, Y); \ |
| 290 | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ |
| 291 | { \ |
| 292 | _q_f1--; \ |
| 293 | _FP_FRAC_ADD_2(_r, _r, Y); \ |
| 294 | } \ |
| 295 | } \ |
| 296 | _FP_FRAC_SUB_2(_r, _r, _m); \ |
| 297 | \ |
| 298 | _fp_udivmodti4(_qmem, _rmem, _r_f1, _r_f0, 0, Y##_f1); \ |
| 299 | _q_f0 = _qmem[0]; \ |
| 300 | umul_ppmm(_m_f1, _m_f0, _q_f0, Y##_f0); \ |
| 301 | _r_f1 = _rmem[0]; \ |
| 302 | _r_f0 = _n_f0; \ |
| 303 | if (_FP_FRAC_GT_2(_m, _r)) \ |
| 304 | { \ |
| 305 | _q_f0--; \ |
| 306 | _FP_FRAC_ADD_2(_r, _r, Y); \ |
| 307 | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ |
| 308 | { \ |
| 309 | _q_f0--; \ |
| 310 | _FP_FRAC_ADD_2(_r, _r, Y); \ |
| 311 | } \ |
| 312 | } \ |
| 313 | _FP_FRAC_SUB_2(_r, _r, _m); \ |
| 314 | \ |
| 315 | R##_f1 = _q_f1; \ |
| 316 | R##_f0 = _q_f0 | ((_r_f1 | _r_f0) != 0); \ |
| 317 | /* adjust so answer is normalized again. I'm not sure what the \ |
| 318 | * final sz param should be. In practice it's never used since \ |
| 319 | * N is 1 which is always going to be < _FP_W_TYPE_SIZE... \ |
| 320 | */ \ |
| 321 | /* _FP_FRAC_SRS_2(R,1,_FP_WFRACBITS_##fs); */ \ |
| 322 | } while (0) |
| 323 | |
| 324 | |
| 325 | #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y) \ |
| 326 | do { \ |
| 327 | _FP_W_TYPE _x[4], _y[2], _z[4]; \ |
| 328 | _y[0] = Y##_f0; _y[1] = Y##_f1; \ |
| 329 | _x[0] = _x[3] = 0; \ |
| 330 | if (_FP_FRAC_GT_2(X, Y)) \ |
| 331 | { \ |
| 332 | R##_e++; \ |
| 333 | _x[1] = (X##_f0 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE) | \ |
| 334 | X##_f1 >> (_FP_W_TYPE_SIZE - \ |
| 335 | (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE))); \ |
| 336 | _x[2] = X##_f1 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE); \ |
| 337 | } \ |
| 338 | else \ |
| 339 | { \ |
| 340 | _x[1] = (X##_f0 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE) | \ |
| 341 | X##_f1 >> (_FP_W_TYPE_SIZE - \ |
| 342 | (_FP_WFRACBITS - _FP_W_TYPE_SIZE))); \ |
| 343 | _x[2] = X##_f1 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE); \ |
| 344 | } \ |
| 345 | \ |
| 346 | (void) mpn_divrem (_z, 0, _x, 4, _y, 2); \ |
| 347 | R##_f1 = _z[1]; \ |
| 348 | R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0); \ |
| 349 | } while (0) |
| 350 | |
| 351 | |
| 352 | /* |
| 353 | * Square root algorithms: |
| 354 | * We have just one right now, maybe Newton approximation |
| 355 | * should be added for those machines where division is fast. |
| 356 | */ |
| 357 | |
| 358 | #define _FP_SQRT_MEAT_2(R, S, T, X, q) \ |
| 359 | do { \ |
| 360 | while (q) \ |
| 361 | { \ |
| 362 | T##_f1 = S##_f1 + q; \ |
| 363 | if (T##_f1 <= X##_f1) \ |
| 364 | { \ |
| 365 | S##_f1 = T##_f1 + q; \ |
| 366 | X##_f1 -= T##_f1; \ |
| 367 | R##_f1 += q; \ |
| 368 | } \ |
| 369 | _FP_FRAC_SLL_2(X, 1); \ |
| 370 | q >>= 1; \ |
| 371 | } \ |
| 372 | q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ |
| 373 | while (q) \ |
| 374 | { \ |
| 375 | T##_f0 = S##_f0 + q; \ |
| 376 | T##_f1 = S##_f1; \ |
| 377 | if (T##_f1 < X##_f1 || \ |
| 378 | (T##_f1 == X##_f1 && T##_f0 < X##_f0)) \ |
| 379 | { \ |
| 380 | S##_f0 = T##_f0 + q; \ |
| 381 | if (((_FP_WS_TYPE)T##_f0) < 0 && \ |
| 382 | ((_FP_WS_TYPE)S##_f0) >= 0) \ |
| 383 | S##_f1++; \ |
| 384 | _FP_FRAC_SUB_2(X, X, T); \ |
| 385 | R##_f0 += q; \ |
| 386 | } \ |
| 387 | _FP_FRAC_SLL_2(X, 1); \ |
| 388 | q >>= 1; \ |
| 389 | } \ |
| 390 | } while (0) |
| 391 | |
| 392 | |
| 393 | /* |
| 394 | * Assembly/disassembly for converting to/from integral types. |
| 395 | * No shifting or overflow handled here. |
| 396 | */ |
| 397 | |
| 398 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ |
| 399 | do { \ |
| 400 | if (rsize <= _FP_W_TYPE_SIZE) \ |
| 401 | r = X##_f0; \ |
| 402 | else \ |
| 403 | { \ |
| 404 | r = X##_f1; \ |
| 405 | r <<= _FP_W_TYPE_SIZE; \ |
| 406 | r += X##_f0; \ |
| 407 | } \ |
| 408 | } while (0) |
| 409 | |
| 410 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \ |
| 411 | do { \ |
| 412 | X##_f0 = r; \ |
| 413 | X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ |
| 414 | } while (0) |
| 415 | |
| 416 | /* |
| 417 | * Convert FP values between word sizes |
| 418 | */ |
| 419 | |
| 420 | #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S) \ |
| 421 | do { \ |
| 422 | _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ |
| 423 | _FP_WFRACBITS_##sfs); \ |
| 424 | D##_f = S##_f0; \ |
| 425 | } while (0) |
| 426 | |
| 427 | #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S) \ |
| 428 | do { \ |
| 429 | D##_f0 = S##_f; \ |
| 430 | D##_f1 = 0; \ |
| 431 | _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ |
| 432 | } while (0) |
| 433 | |