Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * ipmi_si.c |
| 3 | * |
| 4 | * The interface to the IPMI driver for the system interfaces (KCS, SMIC, |
| 5 | * BT). |
| 6 | * |
| 7 | * Author: MontaVista Software, Inc. |
| 8 | * Corey Minyard <minyard@mvista.com> |
| 9 | * source@mvista.com |
| 10 | * |
| 11 | * Copyright 2002 MontaVista Software Inc. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify it |
| 14 | * under the terms of the GNU General Public License as published by the |
| 15 | * Free Software Foundation; either version 2 of the License, or (at your |
| 16 | * option) any later version. |
| 17 | * |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| 20 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| 21 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 22 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 23 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 24 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| 25 | * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 26 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR |
| 27 | * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| 28 | * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | * |
| 30 | * You should have received a copy of the GNU General Public License along |
| 31 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 32 | * 675 Mass Ave, Cambridge, MA 02139, USA. |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | * This file holds the "policy" for the interface to the SMI state |
| 37 | * machine. It does the configuration, handles timers and interrupts, |
| 38 | * and drives the real SMI state machine. |
| 39 | */ |
| 40 | |
| 41 | #include <linux/config.h> |
| 42 | #include <linux/module.h> |
| 43 | #include <linux/moduleparam.h> |
| 44 | #include <asm/system.h> |
| 45 | #include <linux/sched.h> |
| 46 | #include <linux/timer.h> |
| 47 | #include <linux/errno.h> |
| 48 | #include <linux/spinlock.h> |
| 49 | #include <linux/slab.h> |
| 50 | #include <linux/delay.h> |
| 51 | #include <linux/list.h> |
| 52 | #include <linux/pci.h> |
| 53 | #include <linux/ioport.h> |
| 54 | #include <asm/irq.h> |
| 55 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 56 | #include <linux/hrtime.h> |
| 57 | # if defined(schedule_next_int) |
| 58 | /* Old high-res timer code, do translations. */ |
| 59 | # define get_arch_cycles(a) quick_update_jiffies_sub(a) |
| 60 | # define arch_cycles_per_jiffy cycles_per_jiffies |
| 61 | # endif |
| 62 | static inline void add_usec_to_timer(struct timer_list *t, long v) |
| 63 | { |
| 64 | t->sub_expires += nsec_to_arch_cycle(v * 1000); |
| 65 | while (t->sub_expires >= arch_cycles_per_jiffy) |
| 66 | { |
| 67 | t->expires++; |
| 68 | t->sub_expires -= arch_cycles_per_jiffy; |
| 69 | } |
| 70 | } |
| 71 | #endif |
| 72 | #include <linux/interrupt.h> |
| 73 | #include <linux/rcupdate.h> |
| 74 | #include <linux/ipmi_smi.h> |
| 75 | #include <asm/io.h> |
| 76 | #include "ipmi_si_sm.h" |
| 77 | #include <linux/init.h> |
| 78 | |
| 79 | #define IPMI_SI_VERSION "v33" |
| 80 | |
| 81 | /* Measure times between events in the driver. */ |
| 82 | #undef DEBUG_TIMING |
| 83 | |
| 84 | /* Call every 10 ms. */ |
| 85 | #define SI_TIMEOUT_TIME_USEC 10000 |
| 86 | #define SI_USEC_PER_JIFFY (1000000/HZ) |
| 87 | #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) |
| 88 | #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a |
| 89 | short timeout */ |
| 90 | |
| 91 | enum si_intf_state { |
| 92 | SI_NORMAL, |
| 93 | SI_GETTING_FLAGS, |
| 94 | SI_GETTING_EVENTS, |
| 95 | SI_CLEARING_FLAGS, |
| 96 | SI_CLEARING_FLAGS_THEN_SET_IRQ, |
| 97 | SI_GETTING_MESSAGES, |
| 98 | SI_ENABLE_INTERRUPTS1, |
| 99 | SI_ENABLE_INTERRUPTS2 |
| 100 | /* FIXME - add watchdog stuff. */ |
| 101 | }; |
| 102 | |
| 103 | enum si_type { |
| 104 | SI_KCS, SI_SMIC, SI_BT |
| 105 | }; |
| 106 | |
| 107 | struct smi_info |
| 108 | { |
| 109 | ipmi_smi_t intf; |
| 110 | struct si_sm_data *si_sm; |
| 111 | struct si_sm_handlers *handlers; |
| 112 | enum si_type si_type; |
| 113 | spinlock_t si_lock; |
| 114 | spinlock_t msg_lock; |
| 115 | struct list_head xmit_msgs; |
| 116 | struct list_head hp_xmit_msgs; |
| 117 | struct ipmi_smi_msg *curr_msg; |
| 118 | enum si_intf_state si_state; |
| 119 | |
| 120 | /* Used to handle the various types of I/O that can occur with |
| 121 | IPMI */ |
| 122 | struct si_sm_io io; |
| 123 | int (*io_setup)(struct smi_info *info); |
| 124 | void (*io_cleanup)(struct smi_info *info); |
| 125 | int (*irq_setup)(struct smi_info *info); |
| 126 | void (*irq_cleanup)(struct smi_info *info); |
| 127 | unsigned int io_size; |
| 128 | |
| 129 | /* Flags from the last GET_MSG_FLAGS command, used when an ATTN |
| 130 | is set to hold the flags until we are done handling everything |
| 131 | from the flags. */ |
| 132 | #define RECEIVE_MSG_AVAIL 0x01 |
| 133 | #define EVENT_MSG_BUFFER_FULL 0x02 |
| 134 | #define WDT_PRE_TIMEOUT_INT 0x08 |
| 135 | unsigned char msg_flags; |
| 136 | |
| 137 | /* If set to true, this will request events the next time the |
| 138 | state machine is idle. */ |
| 139 | atomic_t req_events; |
| 140 | |
| 141 | /* If true, run the state machine to completion on every send |
| 142 | call. Generally used after a panic to make sure stuff goes |
| 143 | out. */ |
| 144 | int run_to_completion; |
| 145 | |
| 146 | /* The I/O port of an SI interface. */ |
| 147 | int port; |
| 148 | |
| 149 | /* The space between start addresses of the two ports. For |
| 150 | instance, if the first port is 0xca2 and the spacing is 4, then |
| 151 | the second port is 0xca6. */ |
| 152 | unsigned int spacing; |
| 153 | |
| 154 | /* zero if no irq; */ |
| 155 | int irq; |
| 156 | |
| 157 | /* The timer for this si. */ |
| 158 | struct timer_list si_timer; |
| 159 | |
| 160 | /* The time (in jiffies) the last timeout occurred at. */ |
| 161 | unsigned long last_timeout_jiffies; |
| 162 | |
| 163 | /* Used to gracefully stop the timer without race conditions. */ |
| 164 | volatile int stop_operation; |
| 165 | volatile int timer_stopped; |
| 166 | |
| 167 | /* The driver will disable interrupts when it gets into a |
| 168 | situation where it cannot handle messages due to lack of |
| 169 | memory. Once that situation clears up, it will re-enable |
| 170 | interrupts. */ |
| 171 | int interrupt_disabled; |
| 172 | |
| 173 | unsigned char ipmi_si_dev_rev; |
| 174 | unsigned char ipmi_si_fw_rev_major; |
| 175 | unsigned char ipmi_si_fw_rev_minor; |
| 176 | unsigned char ipmi_version_major; |
| 177 | unsigned char ipmi_version_minor; |
| 178 | |
| 179 | /* Slave address, could be reported from DMI. */ |
| 180 | unsigned char slave_addr; |
| 181 | |
| 182 | /* Counters and things for the proc filesystem. */ |
| 183 | spinlock_t count_lock; |
| 184 | unsigned long short_timeouts; |
| 185 | unsigned long long_timeouts; |
| 186 | unsigned long timeout_restarts; |
| 187 | unsigned long idles; |
| 188 | unsigned long interrupts; |
| 189 | unsigned long attentions; |
| 190 | unsigned long flag_fetches; |
| 191 | unsigned long hosed_count; |
| 192 | unsigned long complete_transactions; |
| 193 | unsigned long events; |
| 194 | unsigned long watchdog_pretimeouts; |
| 195 | unsigned long incoming_messages; |
| 196 | }; |
| 197 | |
| 198 | static void si_restart_short_timer(struct smi_info *smi_info); |
| 199 | |
| 200 | static void deliver_recv_msg(struct smi_info *smi_info, |
| 201 | struct ipmi_smi_msg *msg) |
| 202 | { |
| 203 | /* Deliver the message to the upper layer with the lock |
| 204 | released. */ |
| 205 | spin_unlock(&(smi_info->si_lock)); |
| 206 | ipmi_smi_msg_received(smi_info->intf, msg); |
| 207 | spin_lock(&(smi_info->si_lock)); |
| 208 | } |
| 209 | |
| 210 | static void return_hosed_msg(struct smi_info *smi_info) |
| 211 | { |
| 212 | struct ipmi_smi_msg *msg = smi_info->curr_msg; |
| 213 | |
| 214 | /* Make it a reponse */ |
| 215 | msg->rsp[0] = msg->data[0] | 4; |
| 216 | msg->rsp[1] = msg->data[1]; |
| 217 | msg->rsp[2] = 0xFF; /* Unknown error. */ |
| 218 | msg->rsp_size = 3; |
| 219 | |
| 220 | smi_info->curr_msg = NULL; |
| 221 | deliver_recv_msg(smi_info, msg); |
| 222 | } |
| 223 | |
| 224 | static enum si_sm_result start_next_msg(struct smi_info *smi_info) |
| 225 | { |
| 226 | int rv; |
| 227 | struct list_head *entry = NULL; |
| 228 | #ifdef DEBUG_TIMING |
| 229 | struct timeval t; |
| 230 | #endif |
| 231 | |
| 232 | /* No need to save flags, we aleady have interrupts off and we |
| 233 | already hold the SMI lock. */ |
| 234 | spin_lock(&(smi_info->msg_lock)); |
| 235 | |
| 236 | /* Pick the high priority queue first. */ |
| 237 | if (! list_empty(&(smi_info->hp_xmit_msgs))) { |
| 238 | entry = smi_info->hp_xmit_msgs.next; |
| 239 | } else if (! list_empty(&(smi_info->xmit_msgs))) { |
| 240 | entry = smi_info->xmit_msgs.next; |
| 241 | } |
| 242 | |
| 243 | if (!entry) { |
| 244 | smi_info->curr_msg = NULL; |
| 245 | rv = SI_SM_IDLE; |
| 246 | } else { |
| 247 | int err; |
| 248 | |
| 249 | list_del(entry); |
| 250 | smi_info->curr_msg = list_entry(entry, |
| 251 | struct ipmi_smi_msg, |
| 252 | link); |
| 253 | #ifdef DEBUG_TIMING |
| 254 | do_gettimeofday(&t); |
| 255 | printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| 256 | #endif |
| 257 | err = smi_info->handlers->start_transaction( |
| 258 | smi_info->si_sm, |
| 259 | smi_info->curr_msg->data, |
| 260 | smi_info->curr_msg->data_size); |
| 261 | if (err) { |
| 262 | return_hosed_msg(smi_info); |
| 263 | } |
| 264 | |
| 265 | rv = SI_SM_CALL_WITHOUT_DELAY; |
| 266 | } |
| 267 | spin_unlock(&(smi_info->msg_lock)); |
| 268 | |
| 269 | return rv; |
| 270 | } |
| 271 | |
| 272 | static void start_enable_irq(struct smi_info *smi_info) |
| 273 | { |
| 274 | unsigned char msg[2]; |
| 275 | |
| 276 | /* If we are enabling interrupts, we have to tell the |
| 277 | BMC to use them. */ |
| 278 | msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| 279 | msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; |
| 280 | |
| 281 | smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| 282 | smi_info->si_state = SI_ENABLE_INTERRUPTS1; |
| 283 | } |
| 284 | |
| 285 | static void start_clear_flags(struct smi_info *smi_info) |
| 286 | { |
| 287 | unsigned char msg[3]; |
| 288 | |
| 289 | /* Make sure the watchdog pre-timeout flag is not set at startup. */ |
| 290 | msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| 291 | msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; |
| 292 | msg[2] = WDT_PRE_TIMEOUT_INT; |
| 293 | |
| 294 | smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); |
| 295 | smi_info->si_state = SI_CLEARING_FLAGS; |
| 296 | } |
| 297 | |
| 298 | /* When we have a situtaion where we run out of memory and cannot |
| 299 | allocate messages, we just leave them in the BMC and run the system |
| 300 | polled until we can allocate some memory. Once we have some |
| 301 | memory, we will re-enable the interrupt. */ |
| 302 | static inline void disable_si_irq(struct smi_info *smi_info) |
| 303 | { |
| 304 | if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { |
| 305 | disable_irq_nosync(smi_info->irq); |
| 306 | smi_info->interrupt_disabled = 1; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | static inline void enable_si_irq(struct smi_info *smi_info) |
| 311 | { |
| 312 | if ((smi_info->irq) && (smi_info->interrupt_disabled)) { |
| 313 | enable_irq(smi_info->irq); |
| 314 | smi_info->interrupt_disabled = 0; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | static void handle_flags(struct smi_info *smi_info) |
| 319 | { |
| 320 | if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { |
| 321 | /* Watchdog pre-timeout */ |
| 322 | spin_lock(&smi_info->count_lock); |
| 323 | smi_info->watchdog_pretimeouts++; |
| 324 | spin_unlock(&smi_info->count_lock); |
| 325 | |
| 326 | start_clear_flags(smi_info); |
| 327 | smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; |
| 328 | spin_unlock(&(smi_info->si_lock)); |
| 329 | ipmi_smi_watchdog_pretimeout(smi_info->intf); |
| 330 | spin_lock(&(smi_info->si_lock)); |
| 331 | } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { |
| 332 | /* Messages available. */ |
| 333 | smi_info->curr_msg = ipmi_alloc_smi_msg(); |
| 334 | if (!smi_info->curr_msg) { |
| 335 | disable_si_irq(smi_info); |
| 336 | smi_info->si_state = SI_NORMAL; |
| 337 | return; |
| 338 | } |
| 339 | enable_si_irq(smi_info); |
| 340 | |
| 341 | smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| 342 | smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; |
| 343 | smi_info->curr_msg->data_size = 2; |
| 344 | |
| 345 | smi_info->handlers->start_transaction( |
| 346 | smi_info->si_sm, |
| 347 | smi_info->curr_msg->data, |
| 348 | smi_info->curr_msg->data_size); |
| 349 | smi_info->si_state = SI_GETTING_MESSAGES; |
| 350 | } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { |
| 351 | /* Events available. */ |
| 352 | smi_info->curr_msg = ipmi_alloc_smi_msg(); |
| 353 | if (!smi_info->curr_msg) { |
| 354 | disable_si_irq(smi_info); |
| 355 | smi_info->si_state = SI_NORMAL; |
| 356 | return; |
| 357 | } |
| 358 | enable_si_irq(smi_info); |
| 359 | |
| 360 | smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| 361 | smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; |
| 362 | smi_info->curr_msg->data_size = 2; |
| 363 | |
| 364 | smi_info->handlers->start_transaction( |
| 365 | smi_info->si_sm, |
| 366 | smi_info->curr_msg->data, |
| 367 | smi_info->curr_msg->data_size); |
| 368 | smi_info->si_state = SI_GETTING_EVENTS; |
| 369 | } else { |
| 370 | smi_info->si_state = SI_NORMAL; |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | static void handle_transaction_done(struct smi_info *smi_info) |
| 375 | { |
| 376 | struct ipmi_smi_msg *msg; |
| 377 | #ifdef DEBUG_TIMING |
| 378 | struct timeval t; |
| 379 | |
| 380 | do_gettimeofday(&t); |
| 381 | printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| 382 | #endif |
| 383 | switch (smi_info->si_state) { |
| 384 | case SI_NORMAL: |
| 385 | if (!smi_info->curr_msg) |
| 386 | break; |
| 387 | |
| 388 | smi_info->curr_msg->rsp_size |
| 389 | = smi_info->handlers->get_result( |
| 390 | smi_info->si_sm, |
| 391 | smi_info->curr_msg->rsp, |
| 392 | IPMI_MAX_MSG_LENGTH); |
| 393 | |
| 394 | /* Do this here becase deliver_recv_msg() releases the |
| 395 | lock, and a new message can be put in during the |
| 396 | time the lock is released. */ |
| 397 | msg = smi_info->curr_msg; |
| 398 | smi_info->curr_msg = NULL; |
| 399 | deliver_recv_msg(smi_info, msg); |
| 400 | break; |
| 401 | |
| 402 | case SI_GETTING_FLAGS: |
| 403 | { |
| 404 | unsigned char msg[4]; |
| 405 | unsigned int len; |
| 406 | |
| 407 | /* We got the flags from the SMI, now handle them. */ |
| 408 | len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| 409 | if (msg[2] != 0) { |
| 410 | /* Error fetching flags, just give up for |
| 411 | now. */ |
| 412 | smi_info->si_state = SI_NORMAL; |
| 413 | } else if (len < 4) { |
| 414 | /* Hmm, no flags. That's technically illegal, but |
| 415 | don't use uninitialized data. */ |
| 416 | smi_info->si_state = SI_NORMAL; |
| 417 | } else { |
| 418 | smi_info->msg_flags = msg[3]; |
| 419 | handle_flags(smi_info); |
| 420 | } |
| 421 | break; |
| 422 | } |
| 423 | |
| 424 | case SI_CLEARING_FLAGS: |
| 425 | case SI_CLEARING_FLAGS_THEN_SET_IRQ: |
| 426 | { |
| 427 | unsigned char msg[3]; |
| 428 | |
| 429 | /* We cleared the flags. */ |
| 430 | smi_info->handlers->get_result(smi_info->si_sm, msg, 3); |
| 431 | if (msg[2] != 0) { |
| 432 | /* Error clearing flags */ |
| 433 | printk(KERN_WARNING |
| 434 | "ipmi_si: Error clearing flags: %2.2x\n", |
| 435 | msg[2]); |
| 436 | } |
| 437 | if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) |
| 438 | start_enable_irq(smi_info); |
| 439 | else |
| 440 | smi_info->si_state = SI_NORMAL; |
| 441 | break; |
| 442 | } |
| 443 | |
| 444 | case SI_GETTING_EVENTS: |
| 445 | { |
| 446 | smi_info->curr_msg->rsp_size |
| 447 | = smi_info->handlers->get_result( |
| 448 | smi_info->si_sm, |
| 449 | smi_info->curr_msg->rsp, |
| 450 | IPMI_MAX_MSG_LENGTH); |
| 451 | |
| 452 | /* Do this here becase deliver_recv_msg() releases the |
| 453 | lock, and a new message can be put in during the |
| 454 | time the lock is released. */ |
| 455 | msg = smi_info->curr_msg; |
| 456 | smi_info->curr_msg = NULL; |
| 457 | if (msg->rsp[2] != 0) { |
| 458 | /* Error getting event, probably done. */ |
| 459 | msg->done(msg); |
| 460 | |
| 461 | /* Take off the event flag. */ |
| 462 | smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; |
| 463 | handle_flags(smi_info); |
| 464 | } else { |
| 465 | spin_lock(&smi_info->count_lock); |
| 466 | smi_info->events++; |
| 467 | spin_unlock(&smi_info->count_lock); |
| 468 | |
| 469 | /* Do this before we deliver the message |
| 470 | because delivering the message releases the |
| 471 | lock and something else can mess with the |
| 472 | state. */ |
| 473 | handle_flags(smi_info); |
| 474 | |
| 475 | deliver_recv_msg(smi_info, msg); |
| 476 | } |
| 477 | break; |
| 478 | } |
| 479 | |
| 480 | case SI_GETTING_MESSAGES: |
| 481 | { |
| 482 | smi_info->curr_msg->rsp_size |
| 483 | = smi_info->handlers->get_result( |
| 484 | smi_info->si_sm, |
| 485 | smi_info->curr_msg->rsp, |
| 486 | IPMI_MAX_MSG_LENGTH); |
| 487 | |
| 488 | /* Do this here becase deliver_recv_msg() releases the |
| 489 | lock, and a new message can be put in during the |
| 490 | time the lock is released. */ |
| 491 | msg = smi_info->curr_msg; |
| 492 | smi_info->curr_msg = NULL; |
| 493 | if (msg->rsp[2] != 0) { |
| 494 | /* Error getting event, probably done. */ |
| 495 | msg->done(msg); |
| 496 | |
| 497 | /* Take off the msg flag. */ |
| 498 | smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; |
| 499 | handle_flags(smi_info); |
| 500 | } else { |
| 501 | spin_lock(&smi_info->count_lock); |
| 502 | smi_info->incoming_messages++; |
| 503 | spin_unlock(&smi_info->count_lock); |
| 504 | |
| 505 | /* Do this before we deliver the message |
| 506 | because delivering the message releases the |
| 507 | lock and something else can mess with the |
| 508 | state. */ |
| 509 | handle_flags(smi_info); |
| 510 | |
| 511 | deliver_recv_msg(smi_info, msg); |
| 512 | } |
| 513 | break; |
| 514 | } |
| 515 | |
| 516 | case SI_ENABLE_INTERRUPTS1: |
| 517 | { |
| 518 | unsigned char msg[4]; |
| 519 | |
| 520 | /* We got the flags from the SMI, now handle them. */ |
| 521 | smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| 522 | if (msg[2] != 0) { |
| 523 | printk(KERN_WARNING |
| 524 | "ipmi_si: Could not enable interrupts" |
| 525 | ", failed get, using polled mode.\n"); |
| 526 | smi_info->si_state = SI_NORMAL; |
| 527 | } else { |
| 528 | msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| 529 | msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; |
| 530 | msg[2] = msg[3] | 1; /* enable msg queue int */ |
| 531 | smi_info->handlers->start_transaction( |
| 532 | smi_info->si_sm, msg, 3); |
| 533 | smi_info->si_state = SI_ENABLE_INTERRUPTS2; |
| 534 | } |
| 535 | break; |
| 536 | } |
| 537 | |
| 538 | case SI_ENABLE_INTERRUPTS2: |
| 539 | { |
| 540 | unsigned char msg[4]; |
| 541 | |
| 542 | /* We got the flags from the SMI, now handle them. */ |
| 543 | smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| 544 | if (msg[2] != 0) { |
| 545 | printk(KERN_WARNING |
| 546 | "ipmi_si: Could not enable interrupts" |
| 547 | ", failed set, using polled mode.\n"); |
| 548 | } |
| 549 | smi_info->si_state = SI_NORMAL; |
| 550 | break; |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /* Called on timeouts and events. Timeouts should pass the elapsed |
| 556 | time, interrupts should pass in zero. */ |
| 557 | static enum si_sm_result smi_event_handler(struct smi_info *smi_info, |
| 558 | int time) |
| 559 | { |
| 560 | enum si_sm_result si_sm_result; |
| 561 | |
| 562 | restart: |
| 563 | /* There used to be a loop here that waited a little while |
| 564 | (around 25us) before giving up. That turned out to be |
| 565 | pointless, the minimum delays I was seeing were in the 300us |
| 566 | range, which is far too long to wait in an interrupt. So |
| 567 | we just run until the state machine tells us something |
| 568 | happened or it needs a delay. */ |
| 569 | si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); |
| 570 | time = 0; |
| 571 | while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) |
| 572 | { |
| 573 | si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| 574 | } |
| 575 | |
| 576 | if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) |
| 577 | { |
| 578 | spin_lock(&smi_info->count_lock); |
| 579 | smi_info->complete_transactions++; |
| 580 | spin_unlock(&smi_info->count_lock); |
| 581 | |
| 582 | handle_transaction_done(smi_info); |
| 583 | si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| 584 | } |
| 585 | else if (si_sm_result == SI_SM_HOSED) |
| 586 | { |
| 587 | spin_lock(&smi_info->count_lock); |
| 588 | smi_info->hosed_count++; |
| 589 | spin_unlock(&smi_info->count_lock); |
| 590 | |
| 591 | /* Do the before return_hosed_msg, because that |
| 592 | releases the lock. */ |
| 593 | smi_info->si_state = SI_NORMAL; |
| 594 | if (smi_info->curr_msg != NULL) { |
| 595 | /* If we were handling a user message, format |
| 596 | a response to send to the upper layer to |
| 597 | tell it about the error. */ |
| 598 | return_hosed_msg(smi_info); |
| 599 | } |
| 600 | si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| 601 | } |
| 602 | |
| 603 | /* We prefer handling attn over new messages. */ |
| 604 | if (si_sm_result == SI_SM_ATTN) |
| 605 | { |
| 606 | unsigned char msg[2]; |
| 607 | |
| 608 | spin_lock(&smi_info->count_lock); |
| 609 | smi_info->attentions++; |
| 610 | spin_unlock(&smi_info->count_lock); |
| 611 | |
| 612 | /* Got a attn, send down a get message flags to see |
| 613 | what's causing it. It would be better to handle |
| 614 | this in the upper layer, but due to the way |
| 615 | interrupts work with the SMI, that's not really |
| 616 | possible. */ |
| 617 | msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| 618 | msg[1] = IPMI_GET_MSG_FLAGS_CMD; |
| 619 | |
| 620 | smi_info->handlers->start_transaction( |
| 621 | smi_info->si_sm, msg, 2); |
| 622 | smi_info->si_state = SI_GETTING_FLAGS; |
| 623 | goto restart; |
| 624 | } |
| 625 | |
| 626 | /* If we are currently idle, try to start the next message. */ |
| 627 | if (si_sm_result == SI_SM_IDLE) { |
| 628 | spin_lock(&smi_info->count_lock); |
| 629 | smi_info->idles++; |
| 630 | spin_unlock(&smi_info->count_lock); |
| 631 | |
| 632 | si_sm_result = start_next_msg(smi_info); |
| 633 | if (si_sm_result != SI_SM_IDLE) |
| 634 | goto restart; |
| 635 | } |
| 636 | |
| 637 | if ((si_sm_result == SI_SM_IDLE) |
| 638 | && (atomic_read(&smi_info->req_events))) |
| 639 | { |
| 640 | /* We are idle and the upper layer requested that I fetch |
| 641 | events, so do so. */ |
| 642 | unsigned char msg[2]; |
| 643 | |
| 644 | spin_lock(&smi_info->count_lock); |
| 645 | smi_info->flag_fetches++; |
| 646 | spin_unlock(&smi_info->count_lock); |
| 647 | |
| 648 | atomic_set(&smi_info->req_events, 0); |
| 649 | msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| 650 | msg[1] = IPMI_GET_MSG_FLAGS_CMD; |
| 651 | |
| 652 | smi_info->handlers->start_transaction( |
| 653 | smi_info->si_sm, msg, 2); |
| 654 | smi_info->si_state = SI_GETTING_FLAGS; |
| 655 | goto restart; |
| 656 | } |
| 657 | |
| 658 | return si_sm_result; |
| 659 | } |
| 660 | |
| 661 | static void sender(void *send_info, |
| 662 | struct ipmi_smi_msg *msg, |
| 663 | int priority) |
| 664 | { |
| 665 | struct smi_info *smi_info = send_info; |
| 666 | enum si_sm_result result; |
| 667 | unsigned long flags; |
| 668 | #ifdef DEBUG_TIMING |
| 669 | struct timeval t; |
| 670 | #endif |
| 671 | |
| 672 | spin_lock_irqsave(&(smi_info->msg_lock), flags); |
| 673 | #ifdef DEBUG_TIMING |
| 674 | do_gettimeofday(&t); |
| 675 | printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| 676 | #endif |
| 677 | |
| 678 | if (smi_info->run_to_completion) { |
| 679 | /* If we are running to completion, then throw it in |
| 680 | the list and run transactions until everything is |
| 681 | clear. Priority doesn't matter here. */ |
| 682 | list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); |
| 683 | |
| 684 | /* We have to release the msg lock and claim the smi |
| 685 | lock in this case, because of race conditions. */ |
| 686 | spin_unlock_irqrestore(&(smi_info->msg_lock), flags); |
| 687 | |
| 688 | spin_lock_irqsave(&(smi_info->si_lock), flags); |
| 689 | result = smi_event_handler(smi_info, 0); |
| 690 | while (result != SI_SM_IDLE) { |
| 691 | udelay(SI_SHORT_TIMEOUT_USEC); |
| 692 | result = smi_event_handler(smi_info, |
| 693 | SI_SHORT_TIMEOUT_USEC); |
| 694 | } |
| 695 | spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| 696 | return; |
| 697 | } else { |
| 698 | if (priority > 0) { |
| 699 | list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs)); |
| 700 | } else { |
| 701 | list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); |
| 702 | } |
| 703 | } |
| 704 | spin_unlock_irqrestore(&(smi_info->msg_lock), flags); |
| 705 | |
| 706 | spin_lock_irqsave(&(smi_info->si_lock), flags); |
| 707 | if ((smi_info->si_state == SI_NORMAL) |
| 708 | && (smi_info->curr_msg == NULL)) |
| 709 | { |
| 710 | start_next_msg(smi_info); |
| 711 | si_restart_short_timer(smi_info); |
| 712 | } |
| 713 | spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| 714 | } |
| 715 | |
| 716 | static void set_run_to_completion(void *send_info, int i_run_to_completion) |
| 717 | { |
| 718 | struct smi_info *smi_info = send_info; |
| 719 | enum si_sm_result result; |
| 720 | unsigned long flags; |
| 721 | |
| 722 | spin_lock_irqsave(&(smi_info->si_lock), flags); |
| 723 | |
| 724 | smi_info->run_to_completion = i_run_to_completion; |
| 725 | if (i_run_to_completion) { |
| 726 | result = smi_event_handler(smi_info, 0); |
| 727 | while (result != SI_SM_IDLE) { |
| 728 | udelay(SI_SHORT_TIMEOUT_USEC); |
| 729 | result = smi_event_handler(smi_info, |
| 730 | SI_SHORT_TIMEOUT_USEC); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| 735 | } |
| 736 | |
| 737 | static void poll(void *send_info) |
| 738 | { |
| 739 | struct smi_info *smi_info = send_info; |
| 740 | |
| 741 | smi_event_handler(smi_info, 0); |
| 742 | } |
| 743 | |
| 744 | static void request_events(void *send_info) |
| 745 | { |
| 746 | struct smi_info *smi_info = send_info; |
| 747 | |
| 748 | atomic_set(&smi_info->req_events, 1); |
| 749 | } |
| 750 | |
| 751 | static int initialized = 0; |
| 752 | |
| 753 | /* Must be called with interrupts off and with the si_lock held. */ |
| 754 | static void si_restart_short_timer(struct smi_info *smi_info) |
| 755 | { |
| 756 | #if defined(CONFIG_HIGH_RES_TIMERS) |
| 757 | unsigned long flags; |
| 758 | unsigned long jiffies_now; |
| 759 | |
| 760 | if (del_timer(&(smi_info->si_timer))) { |
| 761 | /* If we don't delete the timer, then it will go off |
| 762 | immediately, anyway. So we only process if we |
| 763 | actually delete the timer. */ |
| 764 | |
| 765 | /* We already have irqsave on, so no need for it |
| 766 | here. */ |
| 767 | read_lock(&xtime_lock); |
| 768 | jiffies_now = jiffies; |
| 769 | smi_info->si_timer.expires = jiffies_now; |
| 770 | smi_info->si_timer.sub_expires = get_arch_cycles(jiffies_now); |
| 771 | |
| 772 | add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC); |
| 773 | |
| 774 | add_timer(&(smi_info->si_timer)); |
| 775 | spin_lock_irqsave(&smi_info->count_lock, flags); |
| 776 | smi_info->timeout_restarts++; |
| 777 | spin_unlock_irqrestore(&smi_info->count_lock, flags); |
| 778 | } |
| 779 | #endif |
| 780 | } |
| 781 | |
| 782 | static void smi_timeout(unsigned long data) |
| 783 | { |
| 784 | struct smi_info *smi_info = (struct smi_info *) data; |
| 785 | enum si_sm_result smi_result; |
| 786 | unsigned long flags; |
| 787 | unsigned long jiffies_now; |
| 788 | unsigned long time_diff; |
| 789 | #ifdef DEBUG_TIMING |
| 790 | struct timeval t; |
| 791 | #endif |
| 792 | |
| 793 | if (smi_info->stop_operation) { |
| 794 | smi_info->timer_stopped = 1; |
| 795 | return; |
| 796 | } |
| 797 | |
| 798 | spin_lock_irqsave(&(smi_info->si_lock), flags); |
| 799 | #ifdef DEBUG_TIMING |
| 800 | do_gettimeofday(&t); |
| 801 | printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| 802 | #endif |
| 803 | jiffies_now = jiffies; |
| 804 | time_diff = ((jiffies_now - smi_info->last_timeout_jiffies) |
| 805 | * SI_USEC_PER_JIFFY); |
| 806 | smi_result = smi_event_handler(smi_info, time_diff); |
| 807 | |
| 808 | spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| 809 | |
| 810 | smi_info->last_timeout_jiffies = jiffies_now; |
| 811 | |
| 812 | if ((smi_info->irq) && (! smi_info->interrupt_disabled)) { |
| 813 | /* Running with interrupts, only do long timeouts. */ |
| 814 | smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; |
| 815 | spin_lock_irqsave(&smi_info->count_lock, flags); |
| 816 | smi_info->long_timeouts++; |
| 817 | spin_unlock_irqrestore(&smi_info->count_lock, flags); |
| 818 | goto do_add_timer; |
| 819 | } |
| 820 | |
| 821 | /* If the state machine asks for a short delay, then shorten |
| 822 | the timer timeout. */ |
| 823 | if (smi_result == SI_SM_CALL_WITH_DELAY) { |
| 824 | spin_lock_irqsave(&smi_info->count_lock, flags); |
| 825 | smi_info->short_timeouts++; |
| 826 | spin_unlock_irqrestore(&smi_info->count_lock, flags); |
| 827 | #if defined(CONFIG_HIGH_RES_TIMERS) |
| 828 | read_lock(&xtime_lock); |
| 829 | smi_info->si_timer.expires = jiffies; |
| 830 | smi_info->si_timer.sub_expires |
| 831 | = get_arch_cycles(smi_info->si_timer.expires); |
| 832 | read_unlock(&xtime_lock); |
| 833 | add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC); |
| 834 | #else |
| 835 | smi_info->si_timer.expires = jiffies + 1; |
| 836 | #endif |
| 837 | } else { |
| 838 | spin_lock_irqsave(&smi_info->count_lock, flags); |
| 839 | smi_info->long_timeouts++; |
| 840 | spin_unlock_irqrestore(&smi_info->count_lock, flags); |
| 841 | smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; |
| 842 | #if defined(CONFIG_HIGH_RES_TIMERS) |
| 843 | smi_info->si_timer.sub_expires = 0; |
| 844 | #endif |
| 845 | } |
| 846 | |
| 847 | do_add_timer: |
| 848 | add_timer(&(smi_info->si_timer)); |
| 849 | } |
| 850 | |
| 851 | static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs) |
| 852 | { |
| 853 | struct smi_info *smi_info = data; |
| 854 | unsigned long flags; |
| 855 | #ifdef DEBUG_TIMING |
| 856 | struct timeval t; |
| 857 | #endif |
| 858 | |
| 859 | spin_lock_irqsave(&(smi_info->si_lock), flags); |
| 860 | |
| 861 | spin_lock(&smi_info->count_lock); |
| 862 | smi_info->interrupts++; |
| 863 | spin_unlock(&smi_info->count_lock); |
| 864 | |
| 865 | if (smi_info->stop_operation) |
| 866 | goto out; |
| 867 | |
| 868 | #ifdef DEBUG_TIMING |
| 869 | do_gettimeofday(&t); |
| 870 | printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| 871 | #endif |
| 872 | smi_event_handler(smi_info, 0); |
| 873 | out: |
| 874 | spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| 875 | return IRQ_HANDLED; |
| 876 | } |
| 877 | |
| 878 | static struct ipmi_smi_handlers handlers = |
| 879 | { |
| 880 | .owner = THIS_MODULE, |
| 881 | .sender = sender, |
| 882 | .request_events = request_events, |
| 883 | .set_run_to_completion = set_run_to_completion, |
| 884 | .poll = poll, |
| 885 | }; |
| 886 | |
| 887 | /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses, |
| 888 | a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */ |
| 889 | |
| 890 | #define SI_MAX_PARMS 4 |
| 891 | #define SI_MAX_DRIVERS ((SI_MAX_PARMS * 2) + 2) |
| 892 | static struct smi_info *smi_infos[SI_MAX_DRIVERS] = |
| 893 | { NULL, NULL, NULL, NULL }; |
| 894 | |
| 895 | #define DEVICE_NAME "ipmi_si" |
| 896 | |
| 897 | #define DEFAULT_KCS_IO_PORT 0xca2 |
| 898 | #define DEFAULT_SMIC_IO_PORT 0xca9 |
| 899 | #define DEFAULT_BT_IO_PORT 0xe4 |
| 900 | #define DEFAULT_REGSPACING 1 |
| 901 | |
| 902 | static int si_trydefaults = 1; |
| 903 | static char *si_type[SI_MAX_PARMS]; |
| 904 | #define MAX_SI_TYPE_STR 30 |
| 905 | static char si_type_str[MAX_SI_TYPE_STR]; |
| 906 | static unsigned long addrs[SI_MAX_PARMS]; |
| 907 | static int num_addrs; |
| 908 | static unsigned int ports[SI_MAX_PARMS]; |
| 909 | static int num_ports; |
| 910 | static int irqs[SI_MAX_PARMS]; |
| 911 | static int num_irqs; |
| 912 | static int regspacings[SI_MAX_PARMS]; |
| 913 | static int num_regspacings = 0; |
| 914 | static int regsizes[SI_MAX_PARMS]; |
| 915 | static int num_regsizes = 0; |
| 916 | static int regshifts[SI_MAX_PARMS]; |
| 917 | static int num_regshifts = 0; |
| 918 | static int slave_addrs[SI_MAX_PARMS]; |
| 919 | static int num_slave_addrs = 0; |
| 920 | |
| 921 | |
| 922 | module_param_named(trydefaults, si_trydefaults, bool, 0); |
| 923 | MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" |
| 924 | " default scan of the KCS and SMIC interface at the standard" |
| 925 | " address"); |
| 926 | module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); |
| 927 | MODULE_PARM_DESC(type, "Defines the type of each interface, each" |
| 928 | " interface separated by commas. The types are 'kcs'," |
| 929 | " 'smic', and 'bt'. For example si_type=kcs,bt will set" |
| 930 | " the first interface to kcs and the second to bt"); |
| 931 | module_param_array(addrs, long, &num_addrs, 0); |
| 932 | MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" |
| 933 | " addresses separated by commas. Only use if an interface" |
| 934 | " is in memory. Otherwise, set it to zero or leave" |
| 935 | " it blank."); |
| 936 | module_param_array(ports, int, &num_ports, 0); |
| 937 | MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" |
| 938 | " addresses separated by commas. Only use if an interface" |
| 939 | " is a port. Otherwise, set it to zero or leave" |
| 940 | " it blank."); |
| 941 | module_param_array(irqs, int, &num_irqs, 0); |
| 942 | MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" |
| 943 | " addresses separated by commas. Only use if an interface" |
| 944 | " has an interrupt. Otherwise, set it to zero or leave" |
| 945 | " it blank."); |
| 946 | module_param_array(regspacings, int, &num_regspacings, 0); |
| 947 | MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" |
| 948 | " and each successive register used by the interface. For" |
| 949 | " instance, if the start address is 0xca2 and the spacing" |
| 950 | " is 2, then the second address is at 0xca4. Defaults" |
| 951 | " to 1."); |
| 952 | module_param_array(regsizes, int, &num_regsizes, 0); |
| 953 | MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." |
| 954 | " This should generally be 1, 2, 4, or 8 for an 8-bit," |
| 955 | " 16-bit, 32-bit, or 64-bit register. Use this if you" |
| 956 | " the 8-bit IPMI register has to be read from a larger" |
| 957 | " register."); |
| 958 | module_param_array(regshifts, int, &num_regshifts, 0); |
| 959 | MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." |
| 960 | " IPMI register, in bits. For instance, if the data" |
| 961 | " is read from a 32-bit word and the IPMI data is in" |
| 962 | " bit 8-15, then the shift would be 8"); |
| 963 | module_param_array(slave_addrs, int, &num_slave_addrs, 0); |
| 964 | MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" |
| 965 | " the controller. Normally this is 0x20, but can be" |
| 966 | " overridden by this parm. This is an array indexed" |
| 967 | " by interface number."); |
| 968 | |
| 969 | |
| 970 | #define IPMI_MEM_ADDR_SPACE 1 |
| 971 | #define IPMI_IO_ADDR_SPACE 2 |
| 972 | |
| 973 | #if defined(CONFIG_ACPI_INTERPRETER) || defined(CONFIG_X86) || defined(CONFIG_PCI) |
| 974 | static int is_new_interface(int intf, u8 addr_space, unsigned long base_addr) |
| 975 | { |
| 976 | int i; |
| 977 | |
| 978 | for (i = 0; i < SI_MAX_PARMS; ++i) { |
| 979 | /* Don't check our address. */ |
| 980 | if (i == intf) |
| 981 | continue; |
| 982 | if (si_type[i] != NULL) { |
| 983 | if ((addr_space == IPMI_MEM_ADDR_SPACE && |
| 984 | base_addr == addrs[i]) || |
| 985 | (addr_space == IPMI_IO_ADDR_SPACE && |
| 986 | base_addr == ports[i])) |
| 987 | return 0; |
| 988 | } |
| 989 | else |
| 990 | break; |
| 991 | } |
| 992 | |
| 993 | return 1; |
| 994 | } |
| 995 | #endif |
| 996 | |
| 997 | static int std_irq_setup(struct smi_info *info) |
| 998 | { |
| 999 | int rv; |
| 1000 | |
| 1001 | if (!info->irq) |
| 1002 | return 0; |
| 1003 | |
| 1004 | rv = request_irq(info->irq, |
| 1005 | si_irq_handler, |
| 1006 | SA_INTERRUPT, |
| 1007 | DEVICE_NAME, |
| 1008 | info); |
| 1009 | if (rv) { |
| 1010 | printk(KERN_WARNING |
| 1011 | "ipmi_si: %s unable to claim interrupt %d," |
| 1012 | " running polled\n", |
| 1013 | DEVICE_NAME, info->irq); |
| 1014 | info->irq = 0; |
| 1015 | } else { |
| 1016 | printk(" Using irq %d\n", info->irq); |
| 1017 | } |
| 1018 | |
| 1019 | return rv; |
| 1020 | } |
| 1021 | |
| 1022 | static void std_irq_cleanup(struct smi_info *info) |
| 1023 | { |
| 1024 | if (!info->irq) |
| 1025 | return; |
| 1026 | |
| 1027 | free_irq(info->irq, info); |
| 1028 | } |
| 1029 | |
| 1030 | static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) |
| 1031 | { |
| 1032 | unsigned int *addr = io->info; |
| 1033 | |
| 1034 | return inb((*addr)+(offset*io->regspacing)); |
| 1035 | } |
| 1036 | |
| 1037 | static void port_outb(struct si_sm_io *io, unsigned int offset, |
| 1038 | unsigned char b) |
| 1039 | { |
| 1040 | unsigned int *addr = io->info; |
| 1041 | |
| 1042 | outb(b, (*addr)+(offset * io->regspacing)); |
| 1043 | } |
| 1044 | |
| 1045 | static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) |
| 1046 | { |
| 1047 | unsigned int *addr = io->info; |
| 1048 | |
| 1049 | return (inw((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff; |
| 1050 | } |
| 1051 | |
| 1052 | static void port_outw(struct si_sm_io *io, unsigned int offset, |
| 1053 | unsigned char b) |
| 1054 | { |
| 1055 | unsigned int *addr = io->info; |
| 1056 | |
| 1057 | outw(b << io->regshift, (*addr)+(offset * io->regspacing)); |
| 1058 | } |
| 1059 | |
| 1060 | static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) |
| 1061 | { |
| 1062 | unsigned int *addr = io->info; |
| 1063 | |
| 1064 | return (inl((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff; |
| 1065 | } |
| 1066 | |
| 1067 | static void port_outl(struct si_sm_io *io, unsigned int offset, |
| 1068 | unsigned char b) |
| 1069 | { |
| 1070 | unsigned int *addr = io->info; |
| 1071 | |
| 1072 | outl(b << io->regshift, (*addr)+(offset * io->regspacing)); |
| 1073 | } |
| 1074 | |
| 1075 | static void port_cleanup(struct smi_info *info) |
| 1076 | { |
| 1077 | unsigned int *addr = info->io.info; |
| 1078 | int mapsize; |
| 1079 | |
| 1080 | if (addr && (*addr)) { |
| 1081 | mapsize = ((info->io_size * info->io.regspacing) |
| 1082 | - (info->io.regspacing - info->io.regsize)); |
| 1083 | |
| 1084 | release_region (*addr, mapsize); |
| 1085 | } |
| 1086 | kfree(info); |
| 1087 | } |
| 1088 | |
| 1089 | static int port_setup(struct smi_info *info) |
| 1090 | { |
| 1091 | unsigned int *addr = info->io.info; |
| 1092 | int mapsize; |
| 1093 | |
| 1094 | if (!addr || (!*addr)) |
| 1095 | return -ENODEV; |
| 1096 | |
| 1097 | info->io_cleanup = port_cleanup; |
| 1098 | |
| 1099 | /* Figure out the actual inb/inw/inl/etc routine to use based |
| 1100 | upon the register size. */ |
| 1101 | switch (info->io.regsize) { |
| 1102 | case 1: |
| 1103 | info->io.inputb = port_inb; |
| 1104 | info->io.outputb = port_outb; |
| 1105 | break; |
| 1106 | case 2: |
| 1107 | info->io.inputb = port_inw; |
| 1108 | info->io.outputb = port_outw; |
| 1109 | break; |
| 1110 | case 4: |
| 1111 | info->io.inputb = port_inl; |
| 1112 | info->io.outputb = port_outl; |
| 1113 | break; |
| 1114 | default: |
| 1115 | printk("ipmi_si: Invalid register size: %d\n", |
| 1116 | info->io.regsize); |
| 1117 | return -EINVAL; |
| 1118 | } |
| 1119 | |
| 1120 | /* Calculate the total amount of memory to claim. This is an |
| 1121 | * unusual looking calculation, but it avoids claiming any |
| 1122 | * more memory than it has to. It will claim everything |
| 1123 | * between the first address to the end of the last full |
| 1124 | * register. */ |
| 1125 | mapsize = ((info->io_size * info->io.regspacing) |
| 1126 | - (info->io.regspacing - info->io.regsize)); |
| 1127 | |
| 1128 | if (request_region(*addr, mapsize, DEVICE_NAME) == NULL) |
| 1129 | return -EIO; |
| 1130 | return 0; |
| 1131 | } |
| 1132 | |
| 1133 | static int try_init_port(int intf_num, struct smi_info **new_info) |
| 1134 | { |
| 1135 | struct smi_info *info; |
| 1136 | |
| 1137 | if (!ports[intf_num]) |
| 1138 | return -ENODEV; |
| 1139 | |
| 1140 | if (!is_new_interface(intf_num, IPMI_IO_ADDR_SPACE, |
| 1141 | ports[intf_num])) |
| 1142 | return -ENODEV; |
| 1143 | |
| 1144 | info = kmalloc(sizeof(*info), GFP_KERNEL); |
| 1145 | if (!info) { |
| 1146 | printk(KERN_ERR "ipmi_si: Could not allocate SI data (1)\n"); |
| 1147 | return -ENOMEM; |
| 1148 | } |
| 1149 | memset(info, 0, sizeof(*info)); |
| 1150 | |
| 1151 | info->io_setup = port_setup; |
| 1152 | info->io.info = &(ports[intf_num]); |
| 1153 | info->io.addr = NULL; |
| 1154 | info->io.regspacing = regspacings[intf_num]; |
| 1155 | if (!info->io.regspacing) |
| 1156 | info->io.regspacing = DEFAULT_REGSPACING; |
| 1157 | info->io.regsize = regsizes[intf_num]; |
| 1158 | if (!info->io.regsize) |
| 1159 | info->io.regsize = DEFAULT_REGSPACING; |
| 1160 | info->io.regshift = regshifts[intf_num]; |
| 1161 | info->irq = 0; |
| 1162 | info->irq_setup = NULL; |
| 1163 | *new_info = info; |
| 1164 | |
| 1165 | if (si_type[intf_num] == NULL) |
| 1166 | si_type[intf_num] = "kcs"; |
| 1167 | |
| 1168 | printk("ipmi_si: Trying \"%s\" at I/O port 0x%x\n", |
| 1169 | si_type[intf_num], ports[intf_num]); |
| 1170 | return 0; |
| 1171 | } |
| 1172 | |
| 1173 | static unsigned char mem_inb(struct si_sm_io *io, unsigned int offset) |
| 1174 | { |
| 1175 | return readb((io->addr)+(offset * io->regspacing)); |
| 1176 | } |
| 1177 | |
| 1178 | static void mem_outb(struct si_sm_io *io, unsigned int offset, |
| 1179 | unsigned char b) |
| 1180 | { |
| 1181 | writeb(b, (io->addr)+(offset * io->regspacing)); |
| 1182 | } |
| 1183 | |
| 1184 | static unsigned char mem_inw(struct si_sm_io *io, unsigned int offset) |
| 1185 | { |
| 1186 | return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| 1187 | && 0xff; |
| 1188 | } |
| 1189 | |
| 1190 | static void mem_outw(struct si_sm_io *io, unsigned int offset, |
| 1191 | unsigned char b) |
| 1192 | { |
| 1193 | writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| 1194 | } |
| 1195 | |
| 1196 | static unsigned char mem_inl(struct si_sm_io *io, unsigned int offset) |
| 1197 | { |
| 1198 | return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| 1199 | && 0xff; |
| 1200 | } |
| 1201 | |
| 1202 | static void mem_outl(struct si_sm_io *io, unsigned int offset, |
| 1203 | unsigned char b) |
| 1204 | { |
| 1205 | writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| 1206 | } |
| 1207 | |
| 1208 | #ifdef readq |
| 1209 | static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) |
| 1210 | { |
| 1211 | return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| 1212 | && 0xff; |
| 1213 | } |
| 1214 | |
| 1215 | static void mem_outq(struct si_sm_io *io, unsigned int offset, |
| 1216 | unsigned char b) |
| 1217 | { |
| 1218 | writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| 1219 | } |
| 1220 | #endif |
| 1221 | |
| 1222 | static void mem_cleanup(struct smi_info *info) |
| 1223 | { |
| 1224 | unsigned long *addr = info->io.info; |
| 1225 | int mapsize; |
| 1226 | |
| 1227 | if (info->io.addr) { |
| 1228 | iounmap(info->io.addr); |
| 1229 | |
| 1230 | mapsize = ((info->io_size * info->io.regspacing) |
| 1231 | - (info->io.regspacing - info->io.regsize)); |
| 1232 | |
| 1233 | release_mem_region(*addr, mapsize); |
| 1234 | } |
| 1235 | kfree(info); |
| 1236 | } |
| 1237 | |
| 1238 | static int mem_setup(struct smi_info *info) |
| 1239 | { |
| 1240 | unsigned long *addr = info->io.info; |
| 1241 | int mapsize; |
| 1242 | |
| 1243 | if (!addr || (!*addr)) |
| 1244 | return -ENODEV; |
| 1245 | |
| 1246 | info->io_cleanup = mem_cleanup; |
| 1247 | |
| 1248 | /* Figure out the actual readb/readw/readl/etc routine to use based |
| 1249 | upon the register size. */ |
| 1250 | switch (info->io.regsize) { |
| 1251 | case 1: |
| 1252 | info->io.inputb = mem_inb; |
| 1253 | info->io.outputb = mem_outb; |
| 1254 | break; |
| 1255 | case 2: |
| 1256 | info->io.inputb = mem_inw; |
| 1257 | info->io.outputb = mem_outw; |
| 1258 | break; |
| 1259 | case 4: |
| 1260 | info->io.inputb = mem_inl; |
| 1261 | info->io.outputb = mem_outl; |
| 1262 | break; |
| 1263 | #ifdef readq |
| 1264 | case 8: |
| 1265 | info->io.inputb = mem_inq; |
| 1266 | info->io.outputb = mem_outq; |
| 1267 | break; |
| 1268 | #endif |
| 1269 | default: |
| 1270 | printk("ipmi_si: Invalid register size: %d\n", |
| 1271 | info->io.regsize); |
| 1272 | return -EINVAL; |
| 1273 | } |
| 1274 | |
| 1275 | /* Calculate the total amount of memory to claim. This is an |
| 1276 | * unusual looking calculation, but it avoids claiming any |
| 1277 | * more memory than it has to. It will claim everything |
| 1278 | * between the first address to the end of the last full |
| 1279 | * register. */ |
| 1280 | mapsize = ((info->io_size * info->io.regspacing) |
| 1281 | - (info->io.regspacing - info->io.regsize)); |
| 1282 | |
| 1283 | if (request_mem_region(*addr, mapsize, DEVICE_NAME) == NULL) |
| 1284 | return -EIO; |
| 1285 | |
| 1286 | info->io.addr = ioremap(*addr, mapsize); |
| 1287 | if (info->io.addr == NULL) { |
| 1288 | release_mem_region(*addr, mapsize); |
| 1289 | return -EIO; |
| 1290 | } |
| 1291 | return 0; |
| 1292 | } |
| 1293 | |
| 1294 | static int try_init_mem(int intf_num, struct smi_info **new_info) |
| 1295 | { |
| 1296 | struct smi_info *info; |
| 1297 | |
| 1298 | if (!addrs[intf_num]) |
| 1299 | return -ENODEV; |
| 1300 | |
| 1301 | if (!is_new_interface(intf_num, IPMI_MEM_ADDR_SPACE, |
| 1302 | addrs[intf_num])) |
| 1303 | return -ENODEV; |
| 1304 | |
| 1305 | info = kmalloc(sizeof(*info), GFP_KERNEL); |
| 1306 | if (!info) { |
| 1307 | printk(KERN_ERR "ipmi_si: Could not allocate SI data (2)\n"); |
| 1308 | return -ENOMEM; |
| 1309 | } |
| 1310 | memset(info, 0, sizeof(*info)); |
| 1311 | |
| 1312 | info->io_setup = mem_setup; |
| 1313 | info->io.info = &addrs[intf_num]; |
| 1314 | info->io.addr = NULL; |
| 1315 | info->io.regspacing = regspacings[intf_num]; |
| 1316 | if (!info->io.regspacing) |
| 1317 | info->io.regspacing = DEFAULT_REGSPACING; |
| 1318 | info->io.regsize = regsizes[intf_num]; |
| 1319 | if (!info->io.regsize) |
| 1320 | info->io.regsize = DEFAULT_REGSPACING; |
| 1321 | info->io.regshift = regshifts[intf_num]; |
| 1322 | info->irq = 0; |
| 1323 | info->irq_setup = NULL; |
| 1324 | *new_info = info; |
| 1325 | |
| 1326 | if (si_type[intf_num] == NULL) |
| 1327 | si_type[intf_num] = "kcs"; |
| 1328 | |
| 1329 | printk("ipmi_si: Trying \"%s\" at memory address 0x%lx\n", |
| 1330 | si_type[intf_num], addrs[intf_num]); |
| 1331 | return 0; |
| 1332 | } |
| 1333 | |
| 1334 | |
| 1335 | #ifdef CONFIG_ACPI_INTERPRETER |
| 1336 | |
| 1337 | #include <linux/acpi.h> |
| 1338 | |
| 1339 | /* Once we get an ACPI failure, we don't try any more, because we go |
| 1340 | through the tables sequentially. Once we don't find a table, there |
| 1341 | are no more. */ |
| 1342 | static int acpi_failure = 0; |
| 1343 | |
| 1344 | /* For GPE-type interrupts. */ |
| 1345 | static u32 ipmi_acpi_gpe(void *context) |
| 1346 | { |
| 1347 | struct smi_info *smi_info = context; |
| 1348 | unsigned long flags; |
| 1349 | #ifdef DEBUG_TIMING |
| 1350 | struct timeval t; |
| 1351 | #endif |
| 1352 | |
| 1353 | spin_lock_irqsave(&(smi_info->si_lock), flags); |
| 1354 | |
| 1355 | spin_lock(&smi_info->count_lock); |
| 1356 | smi_info->interrupts++; |
| 1357 | spin_unlock(&smi_info->count_lock); |
| 1358 | |
| 1359 | if (smi_info->stop_operation) |
| 1360 | goto out; |
| 1361 | |
| 1362 | #ifdef DEBUG_TIMING |
| 1363 | do_gettimeofday(&t); |
| 1364 | printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| 1365 | #endif |
| 1366 | smi_event_handler(smi_info, 0); |
| 1367 | out: |
| 1368 | spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| 1369 | |
| 1370 | return ACPI_INTERRUPT_HANDLED; |
| 1371 | } |
| 1372 | |
| 1373 | static int acpi_gpe_irq_setup(struct smi_info *info) |
| 1374 | { |
| 1375 | acpi_status status; |
| 1376 | |
| 1377 | if (!info->irq) |
| 1378 | return 0; |
| 1379 | |
| 1380 | /* FIXME - is level triggered right? */ |
| 1381 | status = acpi_install_gpe_handler(NULL, |
| 1382 | info->irq, |
| 1383 | ACPI_GPE_LEVEL_TRIGGERED, |
| 1384 | &ipmi_acpi_gpe, |
| 1385 | info); |
| 1386 | if (status != AE_OK) { |
| 1387 | printk(KERN_WARNING |
| 1388 | "ipmi_si: %s unable to claim ACPI GPE %d," |
| 1389 | " running polled\n", |
| 1390 | DEVICE_NAME, info->irq); |
| 1391 | info->irq = 0; |
| 1392 | return -EINVAL; |
| 1393 | } else { |
| 1394 | printk(" Using ACPI GPE %d\n", info->irq); |
| 1395 | return 0; |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | static void acpi_gpe_irq_cleanup(struct smi_info *info) |
| 1400 | { |
| 1401 | if (!info->irq) |
| 1402 | return; |
| 1403 | |
| 1404 | acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); |
| 1405 | } |
| 1406 | |
| 1407 | /* |
| 1408 | * Defined at |
| 1409 | * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf |
| 1410 | */ |
| 1411 | struct SPMITable { |
| 1412 | s8 Signature[4]; |
| 1413 | u32 Length; |
| 1414 | u8 Revision; |
| 1415 | u8 Checksum; |
| 1416 | s8 OEMID[6]; |
| 1417 | s8 OEMTableID[8]; |
| 1418 | s8 OEMRevision[4]; |
| 1419 | s8 CreatorID[4]; |
| 1420 | s8 CreatorRevision[4]; |
| 1421 | u8 InterfaceType; |
| 1422 | u8 IPMIlegacy; |
| 1423 | s16 SpecificationRevision; |
| 1424 | |
| 1425 | /* |
| 1426 | * Bit 0 - SCI interrupt supported |
| 1427 | * Bit 1 - I/O APIC/SAPIC |
| 1428 | */ |
| 1429 | u8 InterruptType; |
| 1430 | |
| 1431 | /* If bit 0 of InterruptType is set, then this is the SCI |
| 1432 | interrupt in the GPEx_STS register. */ |
| 1433 | u8 GPE; |
| 1434 | |
| 1435 | s16 Reserved; |
| 1436 | |
| 1437 | /* If bit 1 of InterruptType is set, then this is the I/O |
| 1438 | APIC/SAPIC interrupt. */ |
| 1439 | u32 GlobalSystemInterrupt; |
| 1440 | |
| 1441 | /* The actual register address. */ |
| 1442 | struct acpi_generic_address addr; |
| 1443 | |
| 1444 | u8 UID[4]; |
| 1445 | |
| 1446 | s8 spmi_id[1]; /* A '\0' terminated array starts here. */ |
| 1447 | }; |
| 1448 | |
| 1449 | static int try_init_acpi(int intf_num, struct smi_info **new_info) |
| 1450 | { |
| 1451 | struct smi_info *info; |
| 1452 | acpi_status status; |
| 1453 | struct SPMITable *spmi; |
| 1454 | char *io_type; |
| 1455 | u8 addr_space; |
| 1456 | |
| 1457 | if (acpi_failure) |
| 1458 | return -ENODEV; |
| 1459 | |
| 1460 | status = acpi_get_firmware_table("SPMI", intf_num+1, |
| 1461 | ACPI_LOGICAL_ADDRESSING, |
| 1462 | (struct acpi_table_header **) &spmi); |
| 1463 | if (status != AE_OK) { |
| 1464 | acpi_failure = 1; |
| 1465 | return -ENODEV; |
| 1466 | } |
| 1467 | |
| 1468 | if (spmi->IPMIlegacy != 1) { |
| 1469 | printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy); |
| 1470 | return -ENODEV; |
| 1471 | } |
| 1472 | |
| 1473 | if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) |
| 1474 | addr_space = IPMI_MEM_ADDR_SPACE; |
| 1475 | else |
| 1476 | addr_space = IPMI_IO_ADDR_SPACE; |
| 1477 | if (!is_new_interface(-1, addr_space, spmi->addr.address)) |
| 1478 | return -ENODEV; |
| 1479 | |
| 1480 | if (!spmi->addr.register_bit_width) { |
| 1481 | acpi_failure = 1; |
| 1482 | return -ENODEV; |
| 1483 | } |
| 1484 | |
| 1485 | /* Figure out the interface type. */ |
| 1486 | switch (spmi->InterfaceType) |
| 1487 | { |
| 1488 | case 1: /* KCS */ |
| 1489 | si_type[intf_num] = "kcs"; |
| 1490 | break; |
| 1491 | |
| 1492 | case 2: /* SMIC */ |
| 1493 | si_type[intf_num] = "smic"; |
| 1494 | break; |
| 1495 | |
| 1496 | case 3: /* BT */ |
| 1497 | si_type[intf_num] = "bt"; |
| 1498 | break; |
| 1499 | |
| 1500 | default: |
| 1501 | printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n", |
| 1502 | spmi->InterfaceType); |
| 1503 | return -EIO; |
| 1504 | } |
| 1505 | |
| 1506 | info = kmalloc(sizeof(*info), GFP_KERNEL); |
| 1507 | if (!info) { |
| 1508 | printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n"); |
| 1509 | return -ENOMEM; |
| 1510 | } |
| 1511 | memset(info, 0, sizeof(*info)); |
| 1512 | |
| 1513 | if (spmi->InterruptType & 1) { |
| 1514 | /* We've got a GPE interrupt. */ |
| 1515 | info->irq = spmi->GPE; |
| 1516 | info->irq_setup = acpi_gpe_irq_setup; |
| 1517 | info->irq_cleanup = acpi_gpe_irq_cleanup; |
| 1518 | } else if (spmi->InterruptType & 2) { |
| 1519 | /* We've got an APIC/SAPIC interrupt. */ |
| 1520 | info->irq = spmi->GlobalSystemInterrupt; |
| 1521 | info->irq_setup = std_irq_setup; |
| 1522 | info->irq_cleanup = std_irq_cleanup; |
| 1523 | } else { |
| 1524 | /* Use the default interrupt setting. */ |
| 1525 | info->irq = 0; |
| 1526 | info->irq_setup = NULL; |
| 1527 | } |
| 1528 | |
| 1529 | regspacings[intf_num] = spmi->addr.register_bit_width / 8; |
| 1530 | info->io.regspacing = spmi->addr.register_bit_width / 8; |
| 1531 | regsizes[intf_num] = regspacings[intf_num]; |
| 1532 | info->io.regsize = regsizes[intf_num]; |
| 1533 | regshifts[intf_num] = spmi->addr.register_bit_offset; |
| 1534 | info->io.regshift = regshifts[intf_num]; |
| 1535 | |
| 1536 | if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { |
| 1537 | io_type = "memory"; |
| 1538 | info->io_setup = mem_setup; |
| 1539 | addrs[intf_num] = spmi->addr.address; |
| 1540 | info->io.info = &(addrs[intf_num]); |
| 1541 | } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) { |
| 1542 | io_type = "I/O"; |
| 1543 | info->io_setup = port_setup; |
| 1544 | ports[intf_num] = spmi->addr.address; |
| 1545 | info->io.info = &(ports[intf_num]); |
| 1546 | } else { |
| 1547 | kfree(info); |
| 1548 | printk("ipmi_si: Unknown ACPI I/O Address type\n"); |
| 1549 | return -EIO; |
| 1550 | } |
| 1551 | |
| 1552 | *new_info = info; |
| 1553 | |
| 1554 | printk("ipmi_si: ACPI/SPMI specifies \"%s\" %s SI @ 0x%lx\n", |
| 1555 | si_type[intf_num], io_type, (unsigned long) spmi->addr.address); |
| 1556 | return 0; |
| 1557 | } |
| 1558 | #endif |
| 1559 | |
| 1560 | #ifdef CONFIG_X86 |
| 1561 | typedef struct dmi_ipmi_data |
| 1562 | { |
| 1563 | u8 type; |
| 1564 | u8 addr_space; |
| 1565 | unsigned long base_addr; |
| 1566 | u8 irq; |
| 1567 | u8 offset; |
| 1568 | u8 slave_addr; |
| 1569 | } dmi_ipmi_data_t; |
| 1570 | |
| 1571 | static dmi_ipmi_data_t dmi_data[SI_MAX_DRIVERS]; |
| 1572 | static int dmi_data_entries; |
| 1573 | |
| 1574 | typedef struct dmi_header |
| 1575 | { |
| 1576 | u8 type; |
| 1577 | u8 length; |
| 1578 | u16 handle; |
| 1579 | } dmi_header_t; |
| 1580 | |
| 1581 | static int decode_dmi(dmi_header_t *dm, int intf_num) |
| 1582 | { |
| 1583 | u8 *data = (u8 *)dm; |
| 1584 | unsigned long base_addr; |
| 1585 | u8 reg_spacing; |
| 1586 | u8 len = dm->length; |
| 1587 | dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num; |
| 1588 | |
| 1589 | ipmi_data->type = data[4]; |
| 1590 | |
| 1591 | memcpy(&base_addr, data+8, sizeof(unsigned long)); |
| 1592 | if (len >= 0x11) { |
| 1593 | if (base_addr & 1) { |
| 1594 | /* I/O */ |
| 1595 | base_addr &= 0xFFFE; |
| 1596 | ipmi_data->addr_space = IPMI_IO_ADDR_SPACE; |
| 1597 | } |
| 1598 | else { |
| 1599 | /* Memory */ |
| 1600 | ipmi_data->addr_space = IPMI_MEM_ADDR_SPACE; |
| 1601 | } |
| 1602 | /* If bit 4 of byte 0x10 is set, then the lsb for the address |
| 1603 | is odd. */ |
| 1604 | ipmi_data->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); |
| 1605 | |
| 1606 | ipmi_data->irq = data[0x11]; |
| 1607 | |
| 1608 | /* The top two bits of byte 0x10 hold the register spacing. */ |
| 1609 | reg_spacing = (data[0x10] & 0xC0) >> 6; |
| 1610 | switch(reg_spacing){ |
| 1611 | case 0x00: /* Byte boundaries */ |
| 1612 | ipmi_data->offset = 1; |
| 1613 | break; |
| 1614 | case 0x01: /* 32-bit boundaries */ |
| 1615 | ipmi_data->offset = 4; |
| 1616 | break; |
| 1617 | case 0x02: /* 16-byte boundaries */ |
| 1618 | ipmi_data->offset = 16; |
| 1619 | break; |
| 1620 | default: |
| 1621 | /* Some other interface, just ignore it. */ |
| 1622 | return -EIO; |
| 1623 | } |
| 1624 | } else { |
| 1625 | /* Old DMI spec. */ |
| 1626 | ipmi_data->base_addr = base_addr; |
| 1627 | ipmi_data->addr_space = IPMI_IO_ADDR_SPACE; |
| 1628 | ipmi_data->offset = 1; |
| 1629 | } |
| 1630 | |
| 1631 | ipmi_data->slave_addr = data[6]; |
| 1632 | |
| 1633 | if (is_new_interface(-1, ipmi_data->addr_space,ipmi_data->base_addr)) { |
| 1634 | dmi_data_entries++; |
| 1635 | return 0; |
| 1636 | } |
| 1637 | |
| 1638 | memset(ipmi_data, 0, sizeof(dmi_ipmi_data_t)); |
| 1639 | |
| 1640 | return -1; |
| 1641 | } |
| 1642 | |
| 1643 | static int dmi_table(u32 base, int len, int num) |
| 1644 | { |
| 1645 | u8 *buf; |
| 1646 | struct dmi_header *dm; |
| 1647 | u8 *data; |
| 1648 | int i=1; |
| 1649 | int status=-1; |
| 1650 | int intf_num = 0; |
| 1651 | |
| 1652 | buf = ioremap(base, len); |
| 1653 | if(buf==NULL) |
| 1654 | return -1; |
| 1655 | |
| 1656 | data = buf; |
| 1657 | |
| 1658 | while(i<num && (data - buf) < len) |
| 1659 | { |
| 1660 | dm=(dmi_header_t *)data; |
| 1661 | |
| 1662 | if((data-buf+dm->length) >= len) |
| 1663 | break; |
| 1664 | |
| 1665 | if (dm->type == 38) { |
| 1666 | if (decode_dmi(dm, intf_num) == 0) { |
| 1667 | intf_num++; |
| 1668 | if (intf_num >= SI_MAX_DRIVERS) |
| 1669 | break; |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | data+=dm->length; |
| 1674 | while((data-buf) < len && (*data || data[1])) |
| 1675 | data++; |
| 1676 | data+=2; |
| 1677 | i++; |
| 1678 | } |
| 1679 | iounmap(buf); |
| 1680 | |
| 1681 | return status; |
| 1682 | } |
| 1683 | |
| 1684 | inline static int dmi_checksum(u8 *buf) |
| 1685 | { |
| 1686 | u8 sum=0; |
| 1687 | int a; |
| 1688 | |
| 1689 | for(a=0; a<15; a++) |
| 1690 | sum+=buf[a]; |
| 1691 | return (sum==0); |
| 1692 | } |
| 1693 | |
| 1694 | static int dmi_decode(void) |
| 1695 | { |
| 1696 | u8 buf[15]; |
| 1697 | u32 fp=0xF0000; |
| 1698 | |
| 1699 | #ifdef CONFIG_SIMNOW |
| 1700 | return -1; |
| 1701 | #endif |
| 1702 | |
| 1703 | while(fp < 0xFFFFF) |
| 1704 | { |
| 1705 | isa_memcpy_fromio(buf, fp, 15); |
| 1706 | if(memcmp(buf, "_DMI_", 5)==0 && dmi_checksum(buf)) |
| 1707 | { |
| 1708 | u16 num=buf[13]<<8|buf[12]; |
| 1709 | u16 len=buf[7]<<8|buf[6]; |
| 1710 | u32 base=buf[11]<<24|buf[10]<<16|buf[9]<<8|buf[8]; |
| 1711 | |
| 1712 | if(dmi_table(base, len, num) == 0) |
| 1713 | return 0; |
| 1714 | } |
| 1715 | fp+=16; |
| 1716 | } |
| 1717 | |
| 1718 | return -1; |
| 1719 | } |
| 1720 | |
| 1721 | static int try_init_smbios(int intf_num, struct smi_info **new_info) |
| 1722 | { |
| 1723 | struct smi_info *info; |
| 1724 | dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num; |
| 1725 | char *io_type; |
| 1726 | |
| 1727 | if (intf_num >= dmi_data_entries) |
| 1728 | return -ENODEV; |
| 1729 | |
| 1730 | switch(ipmi_data->type) { |
| 1731 | case 0x01: /* KCS */ |
| 1732 | si_type[intf_num] = "kcs"; |
| 1733 | break; |
| 1734 | case 0x02: /* SMIC */ |
| 1735 | si_type[intf_num] = "smic"; |
| 1736 | break; |
| 1737 | case 0x03: /* BT */ |
| 1738 | si_type[intf_num] = "bt"; |
| 1739 | break; |
| 1740 | default: |
| 1741 | return -EIO; |
| 1742 | } |
| 1743 | |
| 1744 | info = kmalloc(sizeof(*info), GFP_KERNEL); |
| 1745 | if (!info) { |
| 1746 | printk(KERN_ERR "ipmi_si: Could not allocate SI data (4)\n"); |
| 1747 | return -ENOMEM; |
| 1748 | } |
| 1749 | memset(info, 0, sizeof(*info)); |
| 1750 | |
| 1751 | if (ipmi_data->addr_space == 1) { |
| 1752 | io_type = "memory"; |
| 1753 | info->io_setup = mem_setup; |
| 1754 | addrs[intf_num] = ipmi_data->base_addr; |
| 1755 | info->io.info = &(addrs[intf_num]); |
| 1756 | } else if (ipmi_data->addr_space == 2) { |
| 1757 | io_type = "I/O"; |
| 1758 | info->io_setup = port_setup; |
| 1759 | ports[intf_num] = ipmi_data->base_addr; |
| 1760 | info->io.info = &(ports[intf_num]); |
| 1761 | } else { |
| 1762 | kfree(info); |
| 1763 | printk("ipmi_si: Unknown SMBIOS I/O Address type.\n"); |
| 1764 | return -EIO; |
| 1765 | } |
| 1766 | |
| 1767 | regspacings[intf_num] = ipmi_data->offset; |
| 1768 | info->io.regspacing = regspacings[intf_num]; |
| 1769 | if (!info->io.regspacing) |
| 1770 | info->io.regspacing = DEFAULT_REGSPACING; |
| 1771 | info->io.regsize = DEFAULT_REGSPACING; |
| 1772 | info->io.regshift = regshifts[intf_num]; |
| 1773 | |
| 1774 | info->slave_addr = ipmi_data->slave_addr; |
| 1775 | |
| 1776 | irqs[intf_num] = ipmi_data->irq; |
| 1777 | |
| 1778 | *new_info = info; |
| 1779 | |
| 1780 | printk("ipmi_si: Found SMBIOS-specified state machine at %s" |
| 1781 | " address 0x%lx, slave address 0x%x\n", |
| 1782 | io_type, (unsigned long)ipmi_data->base_addr, |
| 1783 | ipmi_data->slave_addr); |
| 1784 | return 0; |
| 1785 | } |
| 1786 | #endif /* CONFIG_X86 */ |
| 1787 | |
| 1788 | #ifdef CONFIG_PCI |
| 1789 | |
| 1790 | #define PCI_ERMC_CLASSCODE 0x0C0700 |
| 1791 | #define PCI_HP_VENDOR_ID 0x103C |
| 1792 | #define PCI_MMC_DEVICE_ID 0x121A |
| 1793 | #define PCI_MMC_ADDR_CW 0x10 |
| 1794 | |
| 1795 | /* Avoid more than one attempt to probe pci smic. */ |
| 1796 | static int pci_smic_checked = 0; |
| 1797 | |
| 1798 | static int find_pci_smic(int intf_num, struct smi_info **new_info) |
| 1799 | { |
| 1800 | struct smi_info *info; |
| 1801 | int error; |
| 1802 | struct pci_dev *pci_dev = NULL; |
| 1803 | u16 base_addr; |
| 1804 | int fe_rmc = 0; |
| 1805 | |
| 1806 | if (pci_smic_checked) |
| 1807 | return -ENODEV; |
| 1808 | |
| 1809 | pci_smic_checked = 1; |
| 1810 | |
| 1811 | if ((pci_dev = pci_get_device(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID, |
| 1812 | NULL))) |
| 1813 | ; |
| 1814 | else if ((pci_dev = pci_get_class(PCI_ERMC_CLASSCODE, NULL)) && |
| 1815 | pci_dev->subsystem_vendor == PCI_HP_VENDOR_ID) |
| 1816 | fe_rmc = 1; |
| 1817 | else |
| 1818 | return -ENODEV; |
| 1819 | |
| 1820 | error = pci_read_config_word(pci_dev, PCI_MMC_ADDR_CW, &base_addr); |
| 1821 | if (error) |
| 1822 | { |
| 1823 | pci_dev_put(pci_dev); |
| 1824 | printk(KERN_ERR |
| 1825 | "ipmi_si: pci_read_config_word() failed (%d).\n", |
| 1826 | error); |
| 1827 | return -ENODEV; |
| 1828 | } |
| 1829 | |
| 1830 | /* Bit 0: 1 specifies programmed I/O, 0 specifies memory mapped I/O */ |
| 1831 | if (!(base_addr & 0x0001)) |
| 1832 | { |
| 1833 | pci_dev_put(pci_dev); |
| 1834 | printk(KERN_ERR |
| 1835 | "ipmi_si: memory mapped I/O not supported for PCI" |
| 1836 | " smic.\n"); |
| 1837 | return -ENODEV; |
| 1838 | } |
| 1839 | |
| 1840 | base_addr &= 0xFFFE; |
| 1841 | if (!fe_rmc) |
| 1842 | /* Data register starts at base address + 1 in eRMC */ |
| 1843 | ++base_addr; |
| 1844 | |
| 1845 | if (!is_new_interface(-1, IPMI_IO_ADDR_SPACE, base_addr)) { |
| 1846 | pci_dev_put(pci_dev); |
| 1847 | return -ENODEV; |
| 1848 | } |
| 1849 | |
| 1850 | info = kmalloc(sizeof(*info), GFP_KERNEL); |
| 1851 | if (!info) { |
| 1852 | pci_dev_put(pci_dev); |
| 1853 | printk(KERN_ERR "ipmi_si: Could not allocate SI data (5)\n"); |
| 1854 | return -ENOMEM; |
| 1855 | } |
| 1856 | memset(info, 0, sizeof(*info)); |
| 1857 | |
| 1858 | info->io_setup = port_setup; |
| 1859 | ports[intf_num] = base_addr; |
| 1860 | info->io.info = &(ports[intf_num]); |
| 1861 | info->io.regspacing = regspacings[intf_num]; |
| 1862 | if (!info->io.regspacing) |
| 1863 | info->io.regspacing = DEFAULT_REGSPACING; |
| 1864 | info->io.regsize = DEFAULT_REGSPACING; |
| 1865 | info->io.regshift = regshifts[intf_num]; |
| 1866 | |
| 1867 | *new_info = info; |
| 1868 | |
| 1869 | irqs[intf_num] = pci_dev->irq; |
| 1870 | si_type[intf_num] = "smic"; |
| 1871 | |
| 1872 | printk("ipmi_si: Found PCI SMIC at I/O address 0x%lx\n", |
| 1873 | (long unsigned int) base_addr); |
| 1874 | |
| 1875 | pci_dev_put(pci_dev); |
| 1876 | return 0; |
| 1877 | } |
| 1878 | #endif /* CONFIG_PCI */ |
| 1879 | |
| 1880 | static int try_init_plug_and_play(int intf_num, struct smi_info **new_info) |
| 1881 | { |
| 1882 | #ifdef CONFIG_PCI |
| 1883 | if (find_pci_smic(intf_num, new_info)==0) |
| 1884 | return 0; |
| 1885 | #endif |
| 1886 | /* Include other methods here. */ |
| 1887 | |
| 1888 | return -ENODEV; |
| 1889 | } |
| 1890 | |
| 1891 | |
| 1892 | static int try_get_dev_id(struct smi_info *smi_info) |
| 1893 | { |
| 1894 | unsigned char msg[2]; |
| 1895 | unsigned char *resp; |
| 1896 | unsigned long resp_len; |
| 1897 | enum si_sm_result smi_result; |
| 1898 | int rv = 0; |
| 1899 | |
| 1900 | resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| 1901 | if (!resp) |
| 1902 | return -ENOMEM; |
| 1903 | |
| 1904 | /* Do a Get Device ID command, since it comes back with some |
| 1905 | useful info. */ |
| 1906 | msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| 1907 | msg[1] = IPMI_GET_DEVICE_ID_CMD; |
| 1908 | smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| 1909 | |
| 1910 | smi_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| 1911 | for (;;) |
| 1912 | { |
| 1913 | if (smi_result == SI_SM_CALL_WITH_DELAY) { |
| 1914 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1915 | schedule_timeout(1); |
| 1916 | smi_result = smi_info->handlers->event( |
| 1917 | smi_info->si_sm, 100); |
| 1918 | } |
| 1919 | else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) |
| 1920 | { |
| 1921 | smi_result = smi_info->handlers->event( |
| 1922 | smi_info->si_sm, 0); |
| 1923 | } |
| 1924 | else |
| 1925 | break; |
| 1926 | } |
| 1927 | if (smi_result == SI_SM_HOSED) { |
| 1928 | /* We couldn't get the state machine to run, so whatever's at |
| 1929 | the port is probably not an IPMI SMI interface. */ |
| 1930 | rv = -ENODEV; |
| 1931 | goto out; |
| 1932 | } |
| 1933 | |
| 1934 | /* Otherwise, we got some data. */ |
| 1935 | resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| 1936 | resp, IPMI_MAX_MSG_LENGTH); |
| 1937 | if (resp_len < 6) { |
| 1938 | /* That's odd, it should be longer. */ |
| 1939 | rv = -EINVAL; |
| 1940 | goto out; |
| 1941 | } |
| 1942 | |
| 1943 | if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) { |
| 1944 | /* That's odd, it shouldn't be able to fail. */ |
| 1945 | rv = -EINVAL; |
| 1946 | goto out; |
| 1947 | } |
| 1948 | |
| 1949 | /* Record info from the get device id, in case we need it. */ |
| 1950 | smi_info->ipmi_si_dev_rev = resp[4] & 0xf; |
| 1951 | smi_info->ipmi_si_fw_rev_major = resp[5] & 0x7f; |
| 1952 | smi_info->ipmi_si_fw_rev_minor = resp[6]; |
| 1953 | smi_info->ipmi_version_major = resp[7] & 0xf; |
| 1954 | smi_info->ipmi_version_minor = resp[7] >> 4; |
| 1955 | |
| 1956 | out: |
| 1957 | kfree(resp); |
| 1958 | return rv; |
| 1959 | } |
| 1960 | |
| 1961 | static int type_file_read_proc(char *page, char **start, off_t off, |
| 1962 | int count, int *eof, void *data) |
| 1963 | { |
| 1964 | char *out = (char *) page; |
| 1965 | struct smi_info *smi = data; |
| 1966 | |
| 1967 | switch (smi->si_type) { |
| 1968 | case SI_KCS: |
| 1969 | return sprintf(out, "kcs\n"); |
| 1970 | case SI_SMIC: |
| 1971 | return sprintf(out, "smic\n"); |
| 1972 | case SI_BT: |
| 1973 | return sprintf(out, "bt\n"); |
| 1974 | default: |
| 1975 | return 0; |
| 1976 | } |
| 1977 | } |
| 1978 | |
| 1979 | static int stat_file_read_proc(char *page, char **start, off_t off, |
| 1980 | int count, int *eof, void *data) |
| 1981 | { |
| 1982 | char *out = (char *) page; |
| 1983 | struct smi_info *smi = data; |
| 1984 | |
| 1985 | out += sprintf(out, "interrupts_enabled: %d\n", |
| 1986 | smi->irq && !smi->interrupt_disabled); |
| 1987 | out += sprintf(out, "short_timeouts: %ld\n", |
| 1988 | smi->short_timeouts); |
| 1989 | out += sprintf(out, "long_timeouts: %ld\n", |
| 1990 | smi->long_timeouts); |
| 1991 | out += sprintf(out, "timeout_restarts: %ld\n", |
| 1992 | smi->timeout_restarts); |
| 1993 | out += sprintf(out, "idles: %ld\n", |
| 1994 | smi->idles); |
| 1995 | out += sprintf(out, "interrupts: %ld\n", |
| 1996 | smi->interrupts); |
| 1997 | out += sprintf(out, "attentions: %ld\n", |
| 1998 | smi->attentions); |
| 1999 | out += sprintf(out, "flag_fetches: %ld\n", |
| 2000 | smi->flag_fetches); |
| 2001 | out += sprintf(out, "hosed_count: %ld\n", |
| 2002 | smi->hosed_count); |
| 2003 | out += sprintf(out, "complete_transactions: %ld\n", |
| 2004 | smi->complete_transactions); |
| 2005 | out += sprintf(out, "events: %ld\n", |
| 2006 | smi->events); |
| 2007 | out += sprintf(out, "watchdog_pretimeouts: %ld\n", |
| 2008 | smi->watchdog_pretimeouts); |
| 2009 | out += sprintf(out, "incoming_messages: %ld\n", |
| 2010 | smi->incoming_messages); |
| 2011 | |
| 2012 | return (out - ((char *) page)); |
| 2013 | } |
| 2014 | |
| 2015 | /* Returns 0 if initialized, or negative on an error. */ |
| 2016 | static int init_one_smi(int intf_num, struct smi_info **smi) |
| 2017 | { |
| 2018 | int rv; |
| 2019 | struct smi_info *new_smi; |
| 2020 | |
| 2021 | |
| 2022 | rv = try_init_mem(intf_num, &new_smi); |
| 2023 | if (rv) |
| 2024 | rv = try_init_port(intf_num, &new_smi); |
| 2025 | #ifdef CONFIG_ACPI_INTERPRETER |
| 2026 | if ((rv) && (si_trydefaults)) { |
| 2027 | rv = try_init_acpi(intf_num, &new_smi); |
| 2028 | } |
| 2029 | #endif |
| 2030 | #ifdef CONFIG_X86 |
| 2031 | if ((rv) && (si_trydefaults)) { |
| 2032 | rv = try_init_smbios(intf_num, &new_smi); |
| 2033 | } |
| 2034 | #endif |
| 2035 | if ((rv) && (si_trydefaults)) { |
| 2036 | rv = try_init_plug_and_play(intf_num, &new_smi); |
| 2037 | } |
| 2038 | |
| 2039 | |
| 2040 | if (rv) |
| 2041 | return rv; |
| 2042 | |
| 2043 | /* So we know not to free it unless we have allocated one. */ |
| 2044 | new_smi->intf = NULL; |
| 2045 | new_smi->si_sm = NULL; |
| 2046 | new_smi->handlers = NULL; |
| 2047 | |
| 2048 | if (!new_smi->irq_setup) { |
| 2049 | new_smi->irq = irqs[intf_num]; |
| 2050 | new_smi->irq_setup = std_irq_setup; |
| 2051 | new_smi->irq_cleanup = std_irq_cleanup; |
| 2052 | } |
| 2053 | |
| 2054 | /* Default to KCS if no type is specified. */ |
| 2055 | if (si_type[intf_num] == NULL) { |
| 2056 | if (si_trydefaults) |
| 2057 | si_type[intf_num] = "kcs"; |
| 2058 | else { |
| 2059 | rv = -EINVAL; |
| 2060 | goto out_err; |
| 2061 | } |
| 2062 | } |
| 2063 | |
| 2064 | /* Set up the state machine to use. */ |
| 2065 | if (strcmp(si_type[intf_num], "kcs") == 0) { |
| 2066 | new_smi->handlers = &kcs_smi_handlers; |
| 2067 | new_smi->si_type = SI_KCS; |
| 2068 | } else if (strcmp(si_type[intf_num], "smic") == 0) { |
| 2069 | new_smi->handlers = &smic_smi_handlers; |
| 2070 | new_smi->si_type = SI_SMIC; |
| 2071 | } else if (strcmp(si_type[intf_num], "bt") == 0) { |
| 2072 | new_smi->handlers = &bt_smi_handlers; |
| 2073 | new_smi->si_type = SI_BT; |
| 2074 | } else { |
| 2075 | /* No support for anything else yet. */ |
| 2076 | rv = -EIO; |
| 2077 | goto out_err; |
| 2078 | } |
| 2079 | |
| 2080 | /* Allocate the state machine's data and initialize it. */ |
| 2081 | new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); |
| 2082 | if (!new_smi->si_sm) { |
| 2083 | printk(" Could not allocate state machine memory\n"); |
| 2084 | rv = -ENOMEM; |
| 2085 | goto out_err; |
| 2086 | } |
| 2087 | new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, |
| 2088 | &new_smi->io); |
| 2089 | |
| 2090 | /* Now that we know the I/O size, we can set up the I/O. */ |
| 2091 | rv = new_smi->io_setup(new_smi); |
| 2092 | if (rv) { |
| 2093 | printk(" Could not set up I/O space\n"); |
| 2094 | goto out_err; |
| 2095 | } |
| 2096 | |
| 2097 | spin_lock_init(&(new_smi->si_lock)); |
| 2098 | spin_lock_init(&(new_smi->msg_lock)); |
| 2099 | spin_lock_init(&(new_smi->count_lock)); |
| 2100 | |
| 2101 | /* Do low-level detection first. */ |
| 2102 | if (new_smi->handlers->detect(new_smi->si_sm)) { |
| 2103 | rv = -ENODEV; |
| 2104 | goto out_err; |
| 2105 | } |
| 2106 | |
| 2107 | /* Attempt a get device id command. If it fails, we probably |
| 2108 | don't have a SMI here. */ |
| 2109 | rv = try_get_dev_id(new_smi); |
| 2110 | if (rv) |
| 2111 | goto out_err; |
| 2112 | |
| 2113 | /* Try to claim any interrupts. */ |
| 2114 | new_smi->irq_setup(new_smi); |
| 2115 | |
| 2116 | INIT_LIST_HEAD(&(new_smi->xmit_msgs)); |
| 2117 | INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); |
| 2118 | new_smi->curr_msg = NULL; |
| 2119 | atomic_set(&new_smi->req_events, 0); |
| 2120 | new_smi->run_to_completion = 0; |
| 2121 | |
| 2122 | new_smi->interrupt_disabled = 0; |
| 2123 | new_smi->timer_stopped = 0; |
| 2124 | new_smi->stop_operation = 0; |
| 2125 | |
| 2126 | /* Start clearing the flags before we enable interrupts or the |
| 2127 | timer to avoid racing with the timer. */ |
| 2128 | start_clear_flags(new_smi); |
| 2129 | /* IRQ is defined to be set when non-zero. */ |
| 2130 | if (new_smi->irq) |
| 2131 | new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; |
| 2132 | |
| 2133 | /* The ipmi_register_smi() code does some operations to |
| 2134 | determine the channel information, so we must be ready to |
| 2135 | handle operations before it is called. This means we have |
| 2136 | to stop the timer if we get an error after this point. */ |
| 2137 | init_timer(&(new_smi->si_timer)); |
| 2138 | new_smi->si_timer.data = (long) new_smi; |
| 2139 | new_smi->si_timer.function = smi_timeout; |
| 2140 | new_smi->last_timeout_jiffies = jiffies; |
| 2141 | new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; |
| 2142 | add_timer(&(new_smi->si_timer)); |
| 2143 | |
| 2144 | rv = ipmi_register_smi(&handlers, |
| 2145 | new_smi, |
| 2146 | new_smi->ipmi_version_major, |
| 2147 | new_smi->ipmi_version_minor, |
| 2148 | new_smi->slave_addr, |
| 2149 | &(new_smi->intf)); |
| 2150 | if (rv) { |
| 2151 | printk(KERN_ERR |
| 2152 | "ipmi_si: Unable to register device: error %d\n", |
| 2153 | rv); |
| 2154 | goto out_err_stop_timer; |
| 2155 | } |
| 2156 | |
| 2157 | rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", |
| 2158 | type_file_read_proc, NULL, |
| 2159 | new_smi, THIS_MODULE); |
| 2160 | if (rv) { |
| 2161 | printk(KERN_ERR |
| 2162 | "ipmi_si: Unable to create proc entry: %d\n", |
| 2163 | rv); |
| 2164 | goto out_err_stop_timer; |
| 2165 | } |
| 2166 | |
| 2167 | rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", |
| 2168 | stat_file_read_proc, NULL, |
| 2169 | new_smi, THIS_MODULE); |
| 2170 | if (rv) { |
| 2171 | printk(KERN_ERR |
| 2172 | "ipmi_si: Unable to create proc entry: %d\n", |
| 2173 | rv); |
| 2174 | goto out_err_stop_timer; |
| 2175 | } |
| 2176 | |
| 2177 | *smi = new_smi; |
| 2178 | |
| 2179 | printk(" IPMI %s interface initialized\n", si_type[intf_num]); |
| 2180 | |
| 2181 | return 0; |
| 2182 | |
| 2183 | out_err_stop_timer: |
| 2184 | new_smi->stop_operation = 1; |
| 2185 | |
| 2186 | /* Wait for the timer to stop. This avoids problems with race |
| 2187 | conditions removing the timer here. */ |
| 2188 | while (!new_smi->timer_stopped) { |
| 2189 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 2190 | schedule_timeout(1); |
| 2191 | } |
| 2192 | |
| 2193 | out_err: |
| 2194 | if (new_smi->intf) |
| 2195 | ipmi_unregister_smi(new_smi->intf); |
| 2196 | |
| 2197 | new_smi->irq_cleanup(new_smi); |
| 2198 | |
| 2199 | /* Wait until we know that we are out of any interrupt |
| 2200 | handlers might have been running before we freed the |
| 2201 | interrupt. */ |
| 2202 | synchronize_kernel(); |
| 2203 | |
| 2204 | if (new_smi->si_sm) { |
| 2205 | if (new_smi->handlers) |
| 2206 | new_smi->handlers->cleanup(new_smi->si_sm); |
| 2207 | kfree(new_smi->si_sm); |
| 2208 | } |
| 2209 | new_smi->io_cleanup(new_smi); |
| 2210 | |
| 2211 | return rv; |
| 2212 | } |
| 2213 | |
| 2214 | static __init int init_ipmi_si(void) |
| 2215 | { |
| 2216 | int rv = 0; |
| 2217 | int pos = 0; |
| 2218 | int i; |
| 2219 | char *str; |
| 2220 | |
| 2221 | if (initialized) |
| 2222 | return 0; |
| 2223 | initialized = 1; |
| 2224 | |
| 2225 | /* Parse out the si_type string into its components. */ |
| 2226 | str = si_type_str; |
| 2227 | if (*str != '\0') { |
| 2228 | for (i=0; (i<SI_MAX_PARMS) && (*str != '\0'); i++) { |
| 2229 | si_type[i] = str; |
| 2230 | str = strchr(str, ','); |
| 2231 | if (str) { |
| 2232 | *str = '\0'; |
| 2233 | str++; |
| 2234 | } else { |
| 2235 | break; |
| 2236 | } |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | printk(KERN_INFO "IPMI System Interface driver version " |
| 2241 | IPMI_SI_VERSION); |
| 2242 | if (kcs_smi_handlers.version) |
| 2243 | printk(", KCS version %s", kcs_smi_handlers.version); |
| 2244 | if (smic_smi_handlers.version) |
| 2245 | printk(", SMIC version %s", smic_smi_handlers.version); |
| 2246 | if (bt_smi_handlers.version) |
| 2247 | printk(", BT version %s", bt_smi_handlers.version); |
| 2248 | printk("\n"); |
| 2249 | |
| 2250 | #ifdef CONFIG_X86 |
| 2251 | dmi_decode(); |
| 2252 | #endif |
| 2253 | |
| 2254 | rv = init_one_smi(0, &(smi_infos[pos])); |
| 2255 | if (rv && !ports[0] && si_trydefaults) { |
| 2256 | /* If we are trying defaults and the initial port is |
| 2257 | not set, then set it. */ |
| 2258 | si_type[0] = "kcs"; |
| 2259 | ports[0] = DEFAULT_KCS_IO_PORT; |
| 2260 | rv = init_one_smi(0, &(smi_infos[pos])); |
| 2261 | if (rv) { |
| 2262 | /* No KCS - try SMIC */ |
| 2263 | si_type[0] = "smic"; |
| 2264 | ports[0] = DEFAULT_SMIC_IO_PORT; |
| 2265 | rv = init_one_smi(0, &(smi_infos[pos])); |
| 2266 | } |
| 2267 | if (rv) { |
| 2268 | /* No SMIC - try BT */ |
| 2269 | si_type[0] = "bt"; |
| 2270 | ports[0] = DEFAULT_BT_IO_PORT; |
| 2271 | rv = init_one_smi(0, &(smi_infos[pos])); |
| 2272 | } |
| 2273 | } |
| 2274 | if (rv == 0) |
| 2275 | pos++; |
| 2276 | |
| 2277 | for (i=1; i < SI_MAX_PARMS; i++) { |
| 2278 | rv = init_one_smi(i, &(smi_infos[pos])); |
| 2279 | if (rv == 0) |
| 2280 | pos++; |
| 2281 | } |
| 2282 | |
| 2283 | if (smi_infos[0] == NULL) { |
| 2284 | printk("ipmi_si: Unable to find any System Interface(s)\n"); |
| 2285 | return -ENODEV; |
| 2286 | } |
| 2287 | |
| 2288 | return 0; |
| 2289 | } |
| 2290 | module_init(init_ipmi_si); |
| 2291 | |
| 2292 | static void __exit cleanup_one_si(struct smi_info *to_clean) |
| 2293 | { |
| 2294 | int rv; |
| 2295 | unsigned long flags; |
| 2296 | |
| 2297 | if (! to_clean) |
| 2298 | return; |
| 2299 | |
| 2300 | /* Tell the timer and interrupt handlers that we are shutting |
| 2301 | down. */ |
| 2302 | spin_lock_irqsave(&(to_clean->si_lock), flags); |
| 2303 | spin_lock(&(to_clean->msg_lock)); |
| 2304 | |
| 2305 | to_clean->stop_operation = 1; |
| 2306 | |
| 2307 | to_clean->irq_cleanup(to_clean); |
| 2308 | |
| 2309 | spin_unlock(&(to_clean->msg_lock)); |
| 2310 | spin_unlock_irqrestore(&(to_clean->si_lock), flags); |
| 2311 | |
| 2312 | /* Wait until we know that we are out of any interrupt |
| 2313 | handlers might have been running before we freed the |
| 2314 | interrupt. */ |
| 2315 | synchronize_kernel(); |
| 2316 | |
| 2317 | /* Wait for the timer to stop. This avoids problems with race |
| 2318 | conditions removing the timer here. */ |
| 2319 | while (!to_clean->timer_stopped) { |
| 2320 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 2321 | schedule_timeout(1); |
| 2322 | } |
| 2323 | |
| 2324 | /* Interrupts and timeouts are stopped, now make sure the |
| 2325 | interface is in a clean state. */ |
| 2326 | while ((to_clean->curr_msg) || (to_clean->si_state != SI_NORMAL)) { |
| 2327 | poll(to_clean); |
| 2328 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 2329 | schedule_timeout(1); |
| 2330 | } |
| 2331 | |
| 2332 | rv = ipmi_unregister_smi(to_clean->intf); |
| 2333 | if (rv) { |
| 2334 | printk(KERN_ERR |
| 2335 | "ipmi_si: Unable to unregister device: errno=%d\n", |
| 2336 | rv); |
| 2337 | } |
| 2338 | |
| 2339 | to_clean->handlers->cleanup(to_clean->si_sm); |
| 2340 | |
| 2341 | kfree(to_clean->si_sm); |
| 2342 | |
| 2343 | to_clean->io_cleanup(to_clean); |
| 2344 | } |
| 2345 | |
| 2346 | static __exit void cleanup_ipmi_si(void) |
| 2347 | { |
| 2348 | int i; |
| 2349 | |
| 2350 | if (!initialized) |
| 2351 | return; |
| 2352 | |
| 2353 | for (i=0; i<SI_MAX_DRIVERS; i++) { |
| 2354 | cleanup_one_si(smi_infos[i]); |
| 2355 | } |
| 2356 | } |
| 2357 | module_exit(cleanup_ipmi_si); |
| 2358 | |
| 2359 | MODULE_LICENSE("GPL"); |