Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | #ifndef _IDE_TIMING_H |
| 2 | #define _IDE_TIMING_H |
| 3 | |
| 4 | /* |
| 5 | * $Id: ide-timing.h,v 1.6 2001/12/23 22:47:56 vojtech Exp $ |
| 6 | * |
| 7 | * Copyright (c) 1999-2001 Vojtech Pavlik |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License as published by |
| 13 | * the Free Software Foundation; either version 2 of the License, or |
| 14 | * (at your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program; if not, write to the Free Software |
| 23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 24 | * |
| 25 | * Should you need to contact me, the author, you can do so either by |
| 26 | * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail: |
| 27 | * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic |
| 28 | */ |
| 29 | |
| 30 | #include <linux/hdreg.h> |
| 31 | |
| 32 | #define XFER_PIO_5 0x0d |
| 33 | #define XFER_UDMA_SLOW 0x4f |
| 34 | |
| 35 | struct ide_timing { |
| 36 | short mode; |
| 37 | short setup; /* t1 */ |
| 38 | short act8b; /* t2 for 8-bit io */ |
| 39 | short rec8b; /* t2i for 8-bit io */ |
| 40 | short cyc8b; /* t0 for 8-bit io */ |
| 41 | short active; /* t2 or tD */ |
| 42 | short recover; /* t2i or tK */ |
| 43 | short cycle; /* t0 */ |
| 44 | short udma; /* t2CYCTYP/2 */ |
| 45 | }; |
| 46 | |
| 47 | /* |
| 48 | * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). |
| 49 | * These were taken from ATA/ATAPI-6 standard, rev 0a, except |
| 50 | * for PIO 5, which is a nonstandard extension and UDMA6, which |
| 51 | * is currently supported only by Maxtor drives. |
| 52 | */ |
| 53 | |
| 54 | static struct ide_timing ide_timing[] = { |
| 55 | |
| 56 | { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, |
| 57 | { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, |
| 58 | { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, |
| 59 | { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, |
| 60 | |
| 61 | { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, |
| 62 | { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, |
| 63 | { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, |
| 64 | |
| 65 | { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, |
| 66 | |
| 67 | { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, |
| 68 | { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, |
| 69 | { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, |
| 70 | |
| 71 | { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, |
| 72 | { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, |
| 73 | { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, |
| 74 | |
| 75 | { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, |
| 76 | { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, |
| 77 | { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, |
| 78 | |
| 79 | { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, |
| 80 | { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, |
| 81 | { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, |
| 82 | |
| 83 | { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, |
| 84 | |
| 85 | { -1 } |
| 86 | }; |
| 87 | |
| 88 | #define IDE_TIMING_SETUP 0x01 |
| 89 | #define IDE_TIMING_ACT8B 0x02 |
| 90 | #define IDE_TIMING_REC8B 0x04 |
| 91 | #define IDE_TIMING_CYC8B 0x08 |
| 92 | #define IDE_TIMING_8BIT 0x0e |
| 93 | #define IDE_TIMING_ACTIVE 0x10 |
| 94 | #define IDE_TIMING_RECOVER 0x20 |
| 95 | #define IDE_TIMING_CYCLE 0x40 |
| 96 | #define IDE_TIMING_UDMA 0x80 |
| 97 | #define IDE_TIMING_ALL 0xff |
| 98 | |
| 99 | #define MIN(a,b) ((a)<(b)?(a):(b)) |
| 100 | #define MAX(a,b) ((a)>(b)?(a):(b)) |
| 101 | #define FIT(v,min,max) MAX(MIN(v,max),min) |
| 102 | #define ENOUGH(v,unit) (((v)-1)/(unit)+1) |
| 103 | #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) |
| 104 | |
| 105 | #define XFER_MODE 0xf0 |
| 106 | #define XFER_UDMA_133 0x48 |
| 107 | #define XFER_UDMA_100 0x44 |
| 108 | #define XFER_UDMA_66 0x42 |
| 109 | #define XFER_UDMA 0x40 |
| 110 | #define XFER_MWDMA 0x20 |
| 111 | #define XFER_SWDMA 0x10 |
| 112 | #define XFER_EPIO 0x01 |
| 113 | #define XFER_PIO 0x00 |
| 114 | |
| 115 | static short ide_find_best_mode(ide_drive_t *drive, int map) |
| 116 | { |
| 117 | struct hd_driveid *id = drive->id; |
| 118 | short best = 0; |
| 119 | |
| 120 | if (!id) |
| 121 | return XFER_PIO_SLOW; |
| 122 | |
| 123 | if ((map & XFER_UDMA) && (id->field_valid & 4)) { /* Want UDMA and UDMA bitmap valid */ |
| 124 | |
| 125 | if ((map & XFER_UDMA_133) == XFER_UDMA_133) |
| 126 | if ((best = (id->dma_ultra & 0x0040) ? XFER_UDMA_6 : 0)) return best; |
| 127 | |
| 128 | if ((map & XFER_UDMA_100) == XFER_UDMA_100) |
| 129 | if ((best = (id->dma_ultra & 0x0020) ? XFER_UDMA_5 : 0)) return best; |
| 130 | |
| 131 | if ((map & XFER_UDMA_66) == XFER_UDMA_66) |
| 132 | if ((best = (id->dma_ultra & 0x0010) ? XFER_UDMA_4 : |
| 133 | (id->dma_ultra & 0x0008) ? XFER_UDMA_3 : 0)) return best; |
| 134 | |
| 135 | if ((best = (id->dma_ultra & 0x0004) ? XFER_UDMA_2 : |
| 136 | (id->dma_ultra & 0x0002) ? XFER_UDMA_1 : |
| 137 | (id->dma_ultra & 0x0001) ? XFER_UDMA_0 : 0)) return best; |
| 138 | } |
| 139 | |
| 140 | if ((map & XFER_MWDMA) && (id->field_valid & 2)) { /* Want MWDMA and drive has EIDE fields */ |
| 141 | |
| 142 | if ((best = (id->dma_mword & 0x0004) ? XFER_MW_DMA_2 : |
| 143 | (id->dma_mword & 0x0002) ? XFER_MW_DMA_1 : |
| 144 | (id->dma_mword & 0x0001) ? XFER_MW_DMA_0 : 0)) return best; |
| 145 | } |
| 146 | |
| 147 | if (map & XFER_SWDMA) { /* Want SWDMA */ |
| 148 | |
| 149 | if (id->field_valid & 2) { /* EIDE SWDMA */ |
| 150 | |
| 151 | if ((best = (id->dma_1word & 0x0004) ? XFER_SW_DMA_2 : |
| 152 | (id->dma_1word & 0x0002) ? XFER_SW_DMA_1 : |
| 153 | (id->dma_1word & 0x0001) ? XFER_SW_DMA_0 : 0)) return best; |
| 154 | } |
| 155 | |
| 156 | if (id->capability & 1) { /* Pre-EIDE style SWDMA */ |
| 157 | |
| 158 | if ((best = (id->tDMA == 2) ? XFER_SW_DMA_2 : |
| 159 | (id->tDMA == 1) ? XFER_SW_DMA_1 : |
| 160 | (id->tDMA == 0) ? XFER_SW_DMA_0 : 0)) return best; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | |
| 165 | if ((map & XFER_EPIO) && (id->field_valid & 2)) { /* EIDE PIO modes */ |
| 166 | |
| 167 | if ((best = (drive->id->eide_pio_modes & 4) ? XFER_PIO_5 : |
| 168 | (drive->id->eide_pio_modes & 2) ? XFER_PIO_4 : |
| 169 | (drive->id->eide_pio_modes & 1) ? XFER_PIO_3 : 0)) return best; |
| 170 | } |
| 171 | |
| 172 | return (drive->id->tPIO == 2) ? XFER_PIO_2 : |
| 173 | (drive->id->tPIO == 1) ? XFER_PIO_1 : |
| 174 | (drive->id->tPIO == 0) ? XFER_PIO_0 : XFER_PIO_SLOW; |
| 175 | } |
| 176 | |
| 177 | static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT) |
| 178 | { |
| 179 | q->setup = EZ(t->setup * 1000, T); |
| 180 | q->act8b = EZ(t->act8b * 1000, T); |
| 181 | q->rec8b = EZ(t->rec8b * 1000, T); |
| 182 | q->cyc8b = EZ(t->cyc8b * 1000, T); |
| 183 | q->active = EZ(t->active * 1000, T); |
| 184 | q->recover = EZ(t->recover * 1000, T); |
| 185 | q->cycle = EZ(t->cycle * 1000, T); |
| 186 | q->udma = EZ(t->udma * 1000, UT); |
| 187 | } |
| 188 | |
| 189 | static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what) |
| 190 | { |
| 191 | if (what & IDE_TIMING_SETUP ) m->setup = MAX(a->setup, b->setup); |
| 192 | if (what & IDE_TIMING_ACT8B ) m->act8b = MAX(a->act8b, b->act8b); |
| 193 | if (what & IDE_TIMING_REC8B ) m->rec8b = MAX(a->rec8b, b->rec8b); |
| 194 | if (what & IDE_TIMING_CYC8B ) m->cyc8b = MAX(a->cyc8b, b->cyc8b); |
| 195 | if (what & IDE_TIMING_ACTIVE ) m->active = MAX(a->active, b->active); |
| 196 | if (what & IDE_TIMING_RECOVER) m->recover = MAX(a->recover, b->recover); |
| 197 | if (what & IDE_TIMING_CYCLE ) m->cycle = MAX(a->cycle, b->cycle); |
| 198 | if (what & IDE_TIMING_UDMA ) m->udma = MAX(a->udma, b->udma); |
| 199 | } |
| 200 | |
| 201 | static struct ide_timing* ide_timing_find_mode(short speed) |
| 202 | { |
| 203 | struct ide_timing *t; |
| 204 | |
| 205 | for (t = ide_timing; t->mode != speed; t++) |
| 206 | if (t->mode < 0) |
| 207 | return NULL; |
| 208 | return t; |
| 209 | } |
| 210 | |
| 211 | static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT) |
| 212 | { |
| 213 | struct hd_driveid *id = drive->id; |
| 214 | struct ide_timing *s, p; |
| 215 | |
| 216 | /* |
| 217 | * Find the mode. |
| 218 | */ |
| 219 | |
| 220 | if (!(s = ide_timing_find_mode(speed))) |
| 221 | return -EINVAL; |
| 222 | |
| 223 | /* |
| 224 | * If the drive is an EIDE drive, it can tell us it needs extended |
| 225 | * PIO/MWDMA cycle timing. |
| 226 | */ |
| 227 | |
| 228 | if (id && id->field_valid & 2) { /* EIDE drive */ |
| 229 | |
| 230 | memset(&p, 0, sizeof(p)); |
| 231 | |
| 232 | switch (speed & XFER_MODE) { |
| 233 | |
| 234 | case XFER_PIO: |
| 235 | if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio; |
| 236 | else p.cycle = p.cyc8b = id->eide_pio_iordy; |
| 237 | break; |
| 238 | |
| 239 | case XFER_MWDMA: |
| 240 | p.cycle = id->eide_dma_min; |
| 241 | break; |
| 242 | } |
| 243 | |
| 244 | ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B); |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * Convert the timing to bus clock counts. |
| 249 | */ |
| 250 | |
| 251 | ide_timing_quantize(s, t, T, UT); |
| 252 | |
| 253 | /* |
| 254 | * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T |
| 255 | * and some other commands. We have to ensure that the DMA cycle timing is |
| 256 | * slower/equal than the fastest PIO timing. |
| 257 | */ |
| 258 | |
| 259 | if ((speed & XFER_MODE) != XFER_PIO) { |
| 260 | ide_timing_compute(drive, ide_find_best_mode(drive, XFER_PIO | XFER_EPIO), &p, T, UT); |
| 261 | ide_timing_merge(&p, t, t, IDE_TIMING_ALL); |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | * Lenghten active & recovery time so that cycle time is correct. |
| 266 | */ |
| 267 | |
| 268 | if (t->act8b + t->rec8b < t->cyc8b) { |
| 269 | t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; |
| 270 | t->rec8b = t->cyc8b - t->act8b; |
| 271 | } |
| 272 | |
| 273 | if (t->active + t->recover < t->cycle) { |
| 274 | t->active += (t->cycle - (t->active + t->recover)) / 2; |
| 275 | t->recover = t->cycle - t->active; |
| 276 | } |
| 277 | |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | #endif |