blob: a95cbe4b8e39f988f21503654c85ab3ff74b4021 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
29 *
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU General Public License for more details.
34 *
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
38 */
39
40#ifndef SYM_HIPD_H
41#define SYM_HIPD_H
42
43/*
44 * Generic driver options.
45 *
46 * They may be defined in platform specific headers, if they
47 * are useful.
48 *
49 * SYM_OPT_HANDLE_DIR_UNKNOWN
50 * When this option is set, the SCRIPTS used by the driver
51 * are able to handle SCSI transfers with direction not
52 * supplied by user.
53 * (set for Linux-2.0.X)
54 *
55 * SYM_OPT_HANDLE_DEVICE_QUEUEING
56 * When this option is set, the driver will use a queue per
57 * device and handle QUEUE FULL status requeuing internally.
58 *
59 * SYM_OPT_LIMIT_COMMAND_REORDERING
60 * When this option is set, the driver tries to limit tagged
61 * command reordering to some reasonnable value.
62 * (set for Linux)
63 */
64#if 0
65#define SYM_OPT_HANDLE_DIR_UNKNOWN
66#define SYM_OPT_HANDLE_DEVICE_QUEUEING
67#define SYM_OPT_LIMIT_COMMAND_REORDERING
68#endif
69
70/*
71 * Active debugging tags and verbosity.
72 * Both DEBUG_FLAGS and sym_verbose can be redefined
73 * by the platform specific code to something else.
74 */
75#define DEBUG_ALLOC (0x0001)
76#define DEBUG_PHASE (0x0002)
77#define DEBUG_POLL (0x0004)
78#define DEBUG_QUEUE (0x0008)
79#define DEBUG_RESULT (0x0010)
80#define DEBUG_SCATTER (0x0020)
81#define DEBUG_SCRIPT (0x0040)
82#define DEBUG_TINY (0x0080)
83#define DEBUG_TIMING (0x0100)
84#define DEBUG_NEGO (0x0200)
85#define DEBUG_TAGS (0x0400)
86#define DEBUG_POINTER (0x0800)
87
88#ifndef DEBUG_FLAGS
89#define DEBUG_FLAGS (0x0000)
90#endif
91
92#ifndef sym_verbose
93#define sym_verbose (np->verbose)
94#endif
95
96/*
97 * These ones should have been already defined.
98 */
99#ifndef assert
100#define assert(expression) { \
101 if (!(expression)) { \
102 (void)panic( \
103 "assertion \"%s\" failed: file \"%s\", line %d\n", \
104 #expression, \
105 __FILE__, __LINE__); \
106 } \
107}
108#endif
109
110/*
111 * Number of tasks per device we want to handle.
112 */
113#if SYM_CONF_MAX_TAG_ORDER > 8
114#error "more than 256 tags per logical unit not allowed."
115#endif
116#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
117
118/*
119 * Donnot use more tasks that we can handle.
120 */
121#ifndef SYM_CONF_MAX_TAG
122#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
123#endif
124#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
125#undef SYM_CONF_MAX_TAG
126#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
127#endif
128
129/*
130 * This one means 'NO TAG for this job'
131 */
132#define NO_TAG (256)
133
134/*
135 * Number of SCSI targets.
136 */
137#if SYM_CONF_MAX_TARGET > 16
138#error "more than 16 targets not allowed."
139#endif
140
141/*
142 * Number of logical units per target.
143 */
144#if SYM_CONF_MAX_LUN > 64
145#error "more than 64 logical units per target not allowed."
146#endif
147
148/*
149 * Asynchronous pre-scaler (ns). Shall be 40 for
150 * the SCSI timings to be compliant.
151 */
152#define SYM_CONF_MIN_ASYNC (40)
153
154/*
155 * Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
156 * Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
157 * (1 PAGE at a time is just fine).
158 */
159#define SYM_MEM_SHIFT 4
160#define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT)
161#define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1)
162
163/*
164 * Number of entries in the START and DONE queues.
165 *
166 * We limit to 1 PAGE in order to succeed allocation of
167 * these queues. Each entry is 8 bytes long (2 DWORDS).
168 */
169#ifdef SYM_CONF_MAX_START
170#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
171#else
172#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
173#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
174#endif
175
176#if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
177#undef SYM_CONF_MAX_QUEUE
178#define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
179#undef SYM_CONF_MAX_START
180#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
181#endif
182
183/*
184 * For this one, we want a short name :-)
185 */
186#define MAX_QUEUE SYM_CONF_MAX_QUEUE
187
188/*
189 * Common definitions for both bus space based and legacy IO methods.
190 */
191
192#define INB_OFF(np, o) ioread8(np->s.ioaddr + (o))
193#define INW_OFF(np, o) ioread16(np->s.ioaddr + (o))
194#define INL_OFF(np, o) ioread32(np->s.ioaddr + (o))
195
196#define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o))
197#define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o))
198#define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o))
199
200#define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r))
201#define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r))
202#define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r))
203
204#define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
205#define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
206#define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
207
208#define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m))
209#define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m))
210#define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m))
211#define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m))
212#define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m))
213#define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m))
214
215/*
216 * We normally want the chip to have a consistent view
217 * of driver internal data structures when we restart it.
218 * Thus these macros.
219 */
220#define OUTL_DSP(np, v) \
221 do { \
222 MEMORY_WRITE_BARRIER(); \
223 OUTL(np, nc_dsp, (v)); \
224 } while (0)
225
226#define OUTONB_STD() \
227 do { \
228 MEMORY_WRITE_BARRIER(); \
229 OUTONB(np, nc_dcntl, (STD|NOCOM)); \
230 } while (0)
231
232/*
233 * Command control block states.
234 */
235#define HS_IDLE (0)
236#define HS_BUSY (1)
237#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
238#define HS_DISCONNECT (3) /* Disconnected by target */
239#define HS_WAIT (4) /* waiting for resource */
240
241#define HS_DONEMASK (0x80)
242#define HS_COMPLETE (4|HS_DONEMASK)
243#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
244#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
245#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
246
247/*
248 * Software Interrupt Codes
249 */
250#define SIR_BAD_SCSI_STATUS (1)
251#define SIR_SEL_ATN_NO_MSG_OUT (2)
252#define SIR_MSG_RECEIVED (3)
253#define SIR_MSG_WEIRD (4)
254#define SIR_NEGO_FAILED (5)
255#define SIR_NEGO_PROTO (6)
256#define SIR_SCRIPT_STOPPED (7)
257#define SIR_REJECT_TO_SEND (8)
258#define SIR_SWIDE_OVERRUN (9)
259#define SIR_SODL_UNDERRUN (10)
260#define SIR_RESEL_NO_MSG_IN (11)
261#define SIR_RESEL_NO_IDENTIFY (12)
262#define SIR_RESEL_BAD_LUN (13)
263#define SIR_TARGET_SELECTED (14)
264#define SIR_RESEL_BAD_I_T_L (15)
265#define SIR_RESEL_BAD_I_T_L_Q (16)
266#define SIR_ABORT_SENT (17)
267#define SIR_RESEL_ABORTED (18)
268#define SIR_MSG_OUT_DONE (19)
269#define SIR_COMPLETE_ERROR (20)
270#define SIR_DATA_OVERRUN (21)
271#define SIR_BAD_PHASE (22)
272#if SYM_CONF_DMA_ADDRESSING_MODE == 2
273#define SIR_DMAP_DIRTY (23)
274#define SIR_MAX (23)
275#else
276#define SIR_MAX (22)
277#endif
278
279/*
280 * Extended error bit codes.
281 * xerr_status field of struct sym_ccb.
282 */
283#define XE_EXTRA_DATA (1) /* unexpected data phase */
284#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
285#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
286#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
287#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
288
289/*
290 * Negotiation status.
291 * nego_status field of struct sym_ccb.
292 */
293#define NS_SYNC (1)
294#define NS_WIDE (2)
295#define NS_PPR (3)
296
297/*
298 * A CCB hashed table is used to retrieve CCB address
299 * from DSA value.
300 */
301#define CCB_HASH_SHIFT 8
302#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
303#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
304#if 1
305#define CCB_HASH_CODE(dsa) \
306 (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
307#else
308#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
309#endif
310
311#if SYM_CONF_DMA_ADDRESSING_MODE == 2
312/*
313 * We may want to use segment registers for 64 bit DMA.
314 * 16 segments registers -> up to 64 GB addressable.
315 */
316#define SYM_DMAP_SHIFT (4)
317#define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT)
318#define SYM_DMAP_MASK (SYM_DMAP_SIZE-1)
319#endif
320
321/*
322 * Device flags.
323 */
324#define SYM_DISC_ENABLED (1)
325#define SYM_TAGS_ENABLED (1<<1)
326#define SYM_SCAN_BOOT_DISABLED (1<<2)
327#define SYM_SCAN_LUNS_DISABLED (1<<3)
328
329/*
330 * Host adapter miscellaneous flags.
331 */
332#define SYM_AVOID_BUS_RESET (1)
333
334/*
335 * Misc.
336 */
337#define SYM_SNOOP_TIMEOUT (10000000)
338#define BUS_8_BIT 0
339#define BUS_16_BIT 1
340
341/*
342 * Gather negotiable parameters value
343 */
344struct sym_trans {
345 u8 period;
346 u8 offset;
347 unsigned int width:1;
348 unsigned int iu:1;
349 unsigned int dt:1;
350 unsigned int qas:1;
351 unsigned int check_nego:1;
352};
353
354/*
355 * Global TCB HEADER.
356 *
357 * Due to lack of indirect addressing on earlier NCR chips,
358 * this substructure is copied from the TCB to a global
359 * address after selection.
360 * For SYMBIOS chips that support LOAD/STORE this copy is
361 * not needed and thus not performed.
362 */
363struct sym_tcbh {
364 /*
365 * Scripts bus addresses of LUN table accessed from scripts.
366 * LUN #0 is a special case, since multi-lun devices are rare,
367 * and we we want to speed-up the general case and not waste
368 * resources.
369 */
370 u32 luntbl_sa; /* bus address of this table */
371 u32 lun0_sa; /* bus address of LCB #0 */
372 /*
373 * Actual SYNC/WIDE IO registers value for this target.
374 * 'sval', 'wval' and 'uval' are read from SCRIPTS and
375 * so have alignment constraints.
376 */
377/*0*/ u_char uval; /* -> SCNTL4 register */
378/*1*/ u_char sval; /* -> SXFER io register */
379/*2*/ u_char filler1;
380/*3*/ u_char wval; /* -> SCNTL3 io register */
381};
382
383/*
384 * Target Control Block
385 */
386struct sym_tcb {
387 /*
388 * TCB header.
389 * Assumed at offset 0.
390 */
391/*0*/ struct sym_tcbh head;
392
393 /*
394 * LUN table used by the SCRIPTS processor.
395 * An array of bus addresses is used on reselection.
396 */
397 u32 *luntbl; /* LCBs bus address table */
398
399 /*
400 * LUN table used by the C code.
401 */
402 struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */
403#if SYM_CONF_MAX_LUN > 1
404 struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */
405#endif
406
407 /*
408 * Bitmap that tells about LUNs that succeeded at least
409 * 1 IO and therefore assumed to be a real device.
410 * Avoid useless allocation of the LCB structure.
411 */
412 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32];
413
414 /*
415 * Bitmap that tells about LUNs that haven't yet an LCB
416 * allocated (not discovered or LCB allocation failed).
417 */
418 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32];
419
420#ifdef SYM_HAVE_STCB
421 /*
422 * O/S specific data structure.
423 */
424 struct sym_stcb s;
425#endif
426
427 /* Transfer goal */
428 struct sym_trans tgoal;
429
430 /*
431 * Keep track of the CCB used for the negotiation in order
432 * to ensure that only 1 negotiation is queued at a time.
433 */
434 struct sym_ccb * nego_cp; /* CCB used for the nego */
435
436 /*
437 * Set when we want to reset the device.
438 */
439 u_char to_reset;
440
441 /*
442 * Other user settable limits and options.
443 * These limits are read from the NVRAM if present.
444 */
445 u_char usrflags;
446 u_short usrtags;
447 struct scsi_device *sdev;
448};
449
450/*
451 * Global LCB HEADER.
452 *
453 * Due to lack of indirect addressing on earlier NCR chips,
454 * this substructure is copied from the LCB to a global
455 * address after selection.
456 * For SYMBIOS chips that support LOAD/STORE this copy is
457 * not needed and thus not performed.
458 */
459struct sym_lcbh {
460 /*
461 * SCRIPTS address jumped by SCRIPTS on reselection.
462 * For not probed logical units, this address points to
463 * SCRIPTS that deal with bad LU handling (must be at
464 * offset zero of the LCB for that reason).
465 */
466/*0*/ u32 resel_sa;
467
468 /*
469 * Task (bus address of a CCB) read from SCRIPTS that points
470 * to the unique ITL nexus allowed to be disconnected.
471 */
472 u32 itl_task_sa;
473
474 /*
475 * Task table bus address (read from SCRIPTS).
476 */
477 u32 itlq_tbl_sa;
478};
479
480/*
481 * Logical Unit Control Block
482 */
483struct sym_lcb {
484 /*
485 * TCB header.
486 * Assumed at offset 0.
487 */
488/*0*/ struct sym_lcbh head;
489
490 /*
491 * Task table read from SCRIPTS that contains pointers to
492 * ITLQ nexuses. The bus address read from SCRIPTS is
493 * inside the header.
494 */
495 u32 *itlq_tbl; /* Kernel virtual address */
496
497 /*
498 * Busy CCBs management.
499 */
500 u_short busy_itlq; /* Number of busy tagged CCBs */
501 u_short busy_itl; /* Number of busy untagged CCBs */
502
503 /*
504 * Circular tag allocation buffer.
505 */
506 u_short ia_tag; /* Tag allocation index */
507 u_short if_tag; /* Tag release index */
508 u_char *cb_tags; /* Circular tags buffer */
509
510 /*
511 * O/S specific data structure.
512 */
513#ifdef SYM_HAVE_SLCB
514 struct sym_slcb s;
515#endif
516
517#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
518 /*
519 * Optionnaly the driver can handle device queueing,
520 * and requeues internally command to redo.
521 */
522 SYM_QUEHEAD waiting_ccbq;
523 SYM_QUEHEAD started_ccbq;
524 int num_sgood;
525 u_short started_tags;
526 u_short started_no_tag;
527 u_short started_max;
528 u_short started_limit;
529#endif
530
531#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
532 /*
533 * Optionally the driver can try to prevent SCSI
534 * IOs from being reordered too much.
535 */
536 u_char tags_si; /* Current index to tags sum */
537 u_short tags_sum[2]; /* Tags sum counters */
538 u_short tags_since; /* # of tags since last switch */
539#endif
540
541 /*
542 * Set when we want to clear all tasks.
543 */
544 u_char to_clear;
545
546 /*
547 * Capabilities.
548 */
549 u_char user_flags;
550 u_char curr_flags;
551};
552
553/*
554 * Action from SCRIPTS on a task.
555 * Is part of the CCB, but is also used separately to plug
556 * error handling action to perform from SCRIPTS.
557 */
558struct sym_actscr {
559 u32 start; /* Jumped by SCRIPTS after selection */
560 u32 restart; /* Jumped by SCRIPTS on relection */
561};
562
563/*
564 * Phase mismatch context.
565 *
566 * It is part of the CCB and is used as parameters for the
567 * DATA pointer. We need two contexts to handle correctly the
568 * SAVED DATA POINTER.
569 */
570struct sym_pmc {
571 struct sym_tblmove sg; /* Updated interrupted SG block */
572 u32 ret; /* SCRIPT return address */
573};
574
575/*
576 * LUN control block lookup.
577 * We use a direct pointer for LUN #0, and a table of
578 * pointers which is only allocated for devices that support
579 * LUN(s) > 0.
580 */
581#if SYM_CONF_MAX_LUN <= 1
582#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
583#else
584#define sym_lp(tp, lun) \
585 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
586#endif
587
588/*
589 * Status are used by the host and the script processor.
590 *
591 * The last four bytes (status[4]) are copied to the
592 * scratchb register (declared as scr0..scr3) just after the
593 * select/reselect, and copied back just after disconnecting.
594 * Inside the script the XX_REG are used.
595 */
596
597/*
598 * Last four bytes (script)
599 */
600#define HX_REG scr0
601#define HX_PRT nc_scr0
602#define HS_REG scr1
603#define HS_PRT nc_scr1
604#define SS_REG scr2
605#define SS_PRT nc_scr2
606#define HF_REG scr3
607#define HF_PRT nc_scr3
608
609/*
610 * Last four bytes (host)
611 */
612#define host_xflags phys.head.status[0]
613#define host_status phys.head.status[1]
614#define ssss_status phys.head.status[2]
615#define host_flags phys.head.status[3]
616
617/*
618 * Host flags
619 */
620#define HF_IN_PM0 1u
621#define HF_IN_PM1 (1u<<1)
622#define HF_ACT_PM (1u<<2)
623#define HF_DP_SAVED (1u<<3)
624#define HF_SENSE (1u<<4)
625#define HF_EXT_ERR (1u<<5)
626#define HF_DATA_IN (1u<<6)
627#ifdef SYM_CONF_IARB_SUPPORT
628#define HF_HINT_IARB (1u<<7)
629#endif
630
631/*
632 * More host flags
633 */
634#if SYM_CONF_DMA_ADDRESSING_MODE == 2
635#define HX_DMAP_DIRTY (1u<<7)
636#endif
637
638/*
639 * Global CCB HEADER.
640 *
641 * Due to lack of indirect addressing on earlier NCR chips,
642 * this substructure is copied from the ccb to a global
643 * address after selection (or reselection) and copied back
644 * before disconnect.
645 * For SYMBIOS chips that support LOAD/STORE this copy is
646 * not needed and thus not performed.
647 */
648
649struct sym_ccbh {
650 /*
651 * Start and restart SCRIPTS addresses (must be at 0).
652 */
653/*0*/ struct sym_actscr go;
654
655 /*
656 * SCRIPTS jump address that deal with data pointers.
657 * 'savep' points to the position in the script responsible
658 * for the actual transfer of data.
659 * It's written on reception of a SAVE_DATA_POINTER message.
660 */
661 u32 savep; /* Jump address to saved data pointer */
662 u32 lastp; /* SCRIPTS address at end of data */
663#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
664 u32 wlastp;
665#endif
666
667 /*
668 * Status fields.
669 */
670 u8 status[4];
671};
672
673/*
674 * GET/SET the value of the data pointer used by SCRIPTS.
675 *
676 * We must distinguish between the LOAD/STORE-based SCRIPTS
677 * that use directly the header in the CCB, and the NCR-GENERIC
678 * SCRIPTS that use the copy of the header in the HCB.
679 */
680#if SYM_CONF_GENERIC_SUPPORT
681#define sym_set_script_dp(np, cp, dp) \
682 do { \
683 if (np->features & FE_LDSTR) \
684 cp->phys.head.lastp = cpu_to_scr(dp); \
685 else \
686 np->ccb_head.lastp = cpu_to_scr(dp); \
687 } while (0)
688#define sym_get_script_dp(np, cp) \
689 scr_to_cpu((np->features & FE_LDSTR) ? \
690 cp->phys.head.lastp : np->ccb_head.lastp)
691#else
692#define sym_set_script_dp(np, cp, dp) \
693 do { \
694 cp->phys.head.lastp = cpu_to_scr(dp); \
695 } while (0)
696
697#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
698#endif
699
700/*
701 * Data Structure Block
702 *
703 * During execution of a ccb by the script processor, the
704 * DSA (data structure address) register points to this
705 * substructure of the ccb.
706 */
707struct sym_dsb {
708 /*
709 * CCB header.
710 * Also assumed at offset 0 of the sym_ccb structure.
711 */
712/*0*/ struct sym_ccbh head;
713
714 /*
715 * Phase mismatch contexts.
716 * We need two to handle correctly the SAVED DATA POINTER.
717 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
718 * for address calculation from SCRIPTS.
719 */
720 struct sym_pmc pm0;
721 struct sym_pmc pm1;
722
723 /*
724 * Table data for Script
725 */
726 struct sym_tblsel select;
727 struct sym_tblmove smsg;
728 struct sym_tblmove smsg_ext;
729 struct sym_tblmove cmd;
730 struct sym_tblmove sense;
731 struct sym_tblmove wresid;
732 struct sym_tblmove data [SYM_CONF_MAX_SG];
733};
734
735/*
736 * Our Command Control Block
737 */
738struct sym_ccb {
739 /*
740 * This is the data structure which is pointed by the DSA
741 * register when it is executed by the script processor.
742 * It must be the first entry.
743 */
744 struct sym_dsb phys;
745
746 /*
747 * Pointer to CAM ccb and related stuff.
748 */
749 struct scsi_cmnd *cmd; /* CAM scsiio ccb */
750 u8 cdb_buf[16]; /* Copy of CDB */
751#define SYM_SNS_BBUF_LEN 32
752 u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
753 int data_len; /* Total data length */
754 int segments; /* Number of SG segments */
755
756 u8 order; /* Tag type (if tagged command) */
757
758 /*
759 * Miscellaneous status'.
760 */
761 u_char nego_status; /* Negotiation status */
762 u_char xerr_status; /* Extended error flags */
763 u32 extra_bytes; /* Extraneous bytes transferred */
764
765 /*
766 * Message areas.
767 * We prepare a message to be sent after selection.
768 * We may use a second one if the command is rescheduled
769 * due to CHECK_CONDITION or COMMAND TERMINATED.
770 * Contents are IDENTIFY and SIMPLE_TAG.
771 * While negotiating sync or wide transfer,
772 * a SDTR or WDTR message is appended.
773 */
774 u_char scsi_smsg [12];
775 u_char scsi_smsg2[12];
776
777 /*
778 * Auto request sense related fields.
779 */
780 u_char sensecmd[6]; /* Request Sense command */
781 u_char sv_scsi_status; /* Saved SCSI status */
782 u_char sv_xerr_status; /* Saved extended status */
783 int sv_resid; /* Saved residual */
784
785 /*
786 * Other fields.
787 */
788 u32 ccb_ba; /* BUS address of this CCB */
789 u_short tag; /* Tag for this transfer */
790 /* NO_TAG means no tag */
791 u_char target;
792 u_char lun;
793 struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */
794 SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */
795 u32 startp; /* Initial data pointer */
796 u32 goalp; /* Expected last data pointer */
797#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
798 u32 wgoalp;
799#endif
800 int ext_sg; /* Extreme data pointer, used */
801 int ext_ofs; /* to calculate the residual. */
802#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
803 SYM_QUEHEAD link2_ccbq; /* Link for device queueing */
804 u_char started; /* CCB queued to the squeue */
805#endif
806 u_char to_abort; /* Want this IO to be aborted */
807#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
808 u_char tags_si; /* Lun tags sum index (0,1) */
809#endif
810};
811
812#define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl))
813
814#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
815#define sym_goalp(cp) ((cp->host_flags & HF_DATA_IN) ? cp->goalp : cp->wgoalp)
816#else
817#define sym_goalp(cp) (cp->goalp)
818#endif
819
820typedef struct device *m_pool_ident_t;
821
822/*
823 * Host Control Block
824 */
825struct sym_hcb {
826 /*
827 * Global headers.
828 * Due to poorness of addressing capabilities, earlier
829 * chips (810, 815, 825) copy part of the data structures
830 * (CCB, TCB and LCB) in fixed areas.
831 */
832#if SYM_CONF_GENERIC_SUPPORT
833 struct sym_ccbh ccb_head;
834 struct sym_tcbh tcb_head;
835 struct sym_lcbh lcb_head;
836#endif
837 /*
838 * Idle task and invalid task actions and
839 * their bus addresses.
840 */
841 struct sym_actscr idletask, notask, bad_itl, bad_itlq;
842 u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
843
844 /*
845 * Dummy lun table to protect us against target
846 * returning bad lun number on reselection.
847 */
848 u32 *badluntbl; /* Table physical address */
849 u32 badlun_sa; /* SCRIPT handler BUS address */
850
851 /*
852 * Bus address of this host control block.
853 */
854 u32 hcb_ba;
855
856 /*
857 * Bit 32-63 of the on-chip RAM bus address in LE format.
858 * The START_RAM64 script loads the MMRS and MMWS from this
859 * field.
860 */
861 u32 scr_ram_seg;
862
863 /*
864 * Initial value of some IO register bits.
865 * These values are assumed to have been set by BIOS, and may
866 * be used to probe adapter implementation differences.
867 */
868 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
869 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
870 sv_stest1;
871
872 /*
873 * Actual initial value of IO register bits used by the
874 * driver. They are loaded at initialisation according to
875 * features that are to be enabled/disabled.
876 */
877 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
878 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
879
880 /*
881 * Target data.
882 */
883 struct sym_tcb target[SYM_CONF_MAX_TARGET];
884
885 /*
886 * Target control block bus address array used by the SCRIPT
887 * on reselection.
888 */
889 u32 *targtbl;
890 u32 targtbl_ba;
891
892 /*
893 * DMA pool handle for this HBA.
894 */
895 m_pool_ident_t bus_dmat;
896
897 /*
898 * O/S specific data structure
899 */
900 struct sym_shcb s;
901
902 /*
903 * Physical bus addresses of the chip.
904 */
905 u32 mmio_ba; /* MMIO 32 bit BUS address */
906 int mmio_ws; /* MMIO Window size */
907
908 u32 ram_ba; /* RAM 32 bit BUS address */
909 int ram_ws; /* RAM window size */
910
911 /*
912 * SCRIPTS virtual and physical bus addresses.
913 * 'script' is loaded in the on-chip RAM if present.
914 * 'scripth' stays in main memory for all chips except the
915 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
916 */
917 u_char *scripta0; /* Copy of scripts A, B, Z */
918 u_char *scriptb0;
919 u_char *scriptz0;
920 u32 scripta_ba; /* Actual scripts A, B, Z */
921 u32 scriptb_ba; /* 32 bit bus addresses. */
922 u32 scriptz_ba;
923 u_short scripta_sz; /* Actual size of script A, B, Z*/
924 u_short scriptb_sz;
925 u_short scriptz_sz;
926
927 /*
928 * Bus addresses, setup and patch methods for
929 * the selected firmware.
930 */
931 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
932 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
933 struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */
934 void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
935 void (*fw_patch)(struct sym_hcb *np);
936 char *fw_name;
937
938 /*
939 * General controller parameters and configuration.
940 */
941 u_short device_id; /* PCI device id */
942 u_char revision_id; /* PCI device revision id */
943 u_int features; /* Chip features map */
944 u_char myaddr; /* SCSI id of the adapter */
945 u_char maxburst; /* log base 2 of dwords burst */
946 u_char maxwide; /* Maximum transfer width */
947 u_char minsync; /* Min sync period factor (ST) */
948 u_char maxsync; /* Max sync period factor (ST) */
949 u_char maxoffs; /* Max scsi offset (ST) */
950 u_char minsync_dt; /* Min sync period factor (DT) */
951 u_char maxsync_dt; /* Max sync period factor (DT) */
952 u_char maxoffs_dt; /* Max scsi offset (DT) */
953 u_char multiplier; /* Clock multiplier (1,2,4) */
954 u_char clock_divn; /* Number of clock divisors */
955 u32 clock_khz; /* SCSI clock frequency in KHz */
956 u32 pciclk_khz; /* Estimated PCI clock in KHz */
957 /*
958 * Start queue management.
959 * It is filled up by the host processor and accessed by the
960 * SCRIPTS processor in order to start SCSI commands.
961 */
962 volatile /* Prevent code optimizations */
963 u32 *squeue; /* Start queue virtual address */
964 u32 squeue_ba; /* Start queue BUS address */
965 u_short squeueput; /* Next free slot of the queue */
966 u_short actccbs; /* Number of allocated CCBs */
967
968 /*
969 * Command completion queue.
970 * It is the same size as the start queue to avoid overflow.
971 */
972 u_short dqueueget; /* Next position to scan */
973 volatile /* Prevent code optimizations */
974 u32 *dqueue; /* Completion (done) queue */
975 u32 dqueue_ba; /* Done queue BUS address */
976
977 /*
978 * Miscellaneous buffers accessed by the scripts-processor.
979 * They shall be DWORD aligned, because they may be read or
980 * written with a script command.
981 */
982 u_char msgout[8]; /* Buffer for MESSAGE OUT */
983 u_char msgin [8]; /* Buffer for MESSAGE IN */
984 u32 lastmsg; /* Last SCSI message sent */
985 u32 scratch; /* Scratch for SCSI receive */
986 /* Also used for cache test */
987 /*
988 * Miscellaneous configuration and status parameters.
989 */
990 u_char usrflags; /* Miscellaneous user flags */
991 u_char scsi_mode; /* Current SCSI BUS mode */
992 u_char verbose; /* Verbosity for this controller*/
993
994 /*
995 * CCB lists and queue.
996 */
997 struct sym_ccb **ccbh; /* CCBs hashed by DSA value */
998 /* CCB_HASH_SIZE lists of CCBs */
999 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
1000 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
1001
1002 /*
1003 * During error handling and/or recovery,
1004 * active CCBs that are to be completed with
1005 * error or requeued are moved from the busy_ccbq
1006 * to the comp_ccbq prior to completion.
1007 */
1008 SYM_QUEHEAD comp_ccbq;
1009
1010#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1011 SYM_QUEHEAD dummy_ccbq;
1012#endif
1013
1014 /*
1015 * IMMEDIATE ARBITRATION (IARB) control.
1016 *
1017 * We keep track in 'last_cp' of the last CCB that has been
1018 * queued to the SCRIPTS processor and clear 'last_cp' when
1019 * this CCB completes. If last_cp is not zero at the moment
1020 * we queue a new CCB, we set a flag in 'last_cp' that is
1021 * used by the SCRIPTS as a hint for setting IARB.
1022 * We donnot set more than 'iarb_max' consecutive hints for
1023 * IARB in order to leave devices a chance to reselect.
1024 * By the way, any non zero value of 'iarb_max' is unfair. :)
1025 */
1026#ifdef SYM_CONF_IARB_SUPPORT
1027 u_short iarb_max; /* Max. # consecutive IARB hints*/
1028 u_short iarb_count; /* Actual # of these hints */
1029 struct sym_ccb * last_cp;
1030#endif
1031
1032 /*
1033 * Command abort handling.
1034 * We need to synchronize tightly with the SCRIPTS
1035 * processor in order to handle things correctly.
1036 */
1037 u_char abrt_msg[4]; /* Message to send buffer */
1038 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
1039 struct sym_tblsel abrt_sel; /* Sync params for selection */
1040 u_char istat_sem; /* Tells the chip to stop (SEM) */
1041
1042 /*
1043 * 64 bit DMA handling.
1044 */
1045#if SYM_CONF_DMA_ADDRESSING_MODE != 0
1046 u_char use_dac; /* Use PCI DAC cycles */
1047#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1048 u_char dmap_dirty; /* Dma segments registers dirty */
1049 u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */
1050#endif
1051#endif
1052};
1053
1054#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
1055
1056
1057/*
1058 * FIRMWARES (sym_fw.c)
1059 */
1060struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1061void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1062
1063/*
1064 * Driver methods called from O/S specific code.
1065 */
1066char *sym_driver_name(void);
1067void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1068int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1069struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1070void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1071#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1072void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1073#endif
1074void sym_start_up(struct sym_hcb *np, int reason);
1075void sym_interrupt(struct sym_hcb *np);
1076int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1077struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1078void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1079struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1080int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1081int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1082int sym_reset_scsi_target(struct sym_hcb *np, int target);
1083void sym_hcb_free(struct sym_hcb *np);
1084int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1085
1086/*
1087 * Build a scatter/gather entry.
1088 *
1089 * For 64 bit systems, we use the 8 upper bits of the size field
1090 * to provide bus address bits 32-39 to the SCRIPTS processor.
1091 * This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1092 */
1093
1094#if SYM_CONF_DMA_ADDRESSING_MODE == 0
1095#define sym_build_sge(np, data, badd, len) \
1096do { \
1097 (data)->addr = cpu_to_scr(badd); \
1098 (data)->size = cpu_to_scr(len); \
1099} while (0)
1100#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1101#define sym_build_sge(np, data, badd, len) \
1102do { \
1103 (data)->addr = cpu_to_scr(badd); \
1104 (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \
1105} while (0)
1106#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1107int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1108static __inline void
1109sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1110{
1111 u32 h = (badd>>32);
1112 int s = (h&SYM_DMAP_MASK);
1113
1114 if (h != np->dmap_bah[s])
1115 goto bad;
1116good:
1117 (data)->addr = cpu_to_scr(badd);
1118 (data)->size = cpu_to_scr((s<<24) + len);
1119 return;
1120bad:
1121 s = sym_lookup_dmap(np, h, s);
1122 goto good;
1123}
1124#else
1125#error "Unsupported DMA addressing mode"
1126#endif
1127
1128/*
1129 * Set up data pointers used by SCRIPTS.
1130 * Called from O/S specific code.
1131 */
1132static inline void sym_setup_data_pointers(struct sym_hcb *np,
1133 struct sym_ccb *cp, int dir)
1134{
1135 u32 lastp, goalp;
1136
1137 /*
1138 * No segments means no data.
1139 */
1140 if (!cp->segments)
1141 dir = CAM_DIR_NONE;
1142
1143 /*
1144 * Set the data pointer.
1145 */
1146 switch(dir) {
1147#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1148 case CAM_DIR_UNKNOWN:
1149#endif
1150 case CAM_DIR_OUT:
1151 goalp = SCRIPTA_BA(np, data_out2) + 8;
1152 lastp = goalp - 8 - (cp->segments * (2*4));
1153#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1154 cp->wgoalp = cpu_to_scr(goalp);
1155 if (dir != CAM_DIR_UNKNOWN)
1156 break;
1157 cp->phys.head.wlastp = cpu_to_scr(lastp);
1158 /* fall through */
1159#else
1160 break;
1161#endif
1162 case CAM_DIR_IN:
1163 cp->host_flags |= HF_DATA_IN;
1164 goalp = SCRIPTA_BA(np, data_in2) + 8;
1165 lastp = goalp - 8 - (cp->segments * (2*4));
1166 break;
1167 case CAM_DIR_NONE:
1168 default:
1169#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1170 cp->host_flags |= HF_DATA_IN;
1171#endif
1172 lastp = goalp = SCRIPTB_BA(np, no_data);
1173 break;
1174 }
1175
1176 /*
1177 * Set all pointers values needed by SCRIPTS.
1178 */
1179 cp->phys.head.lastp = cpu_to_scr(lastp);
1180 cp->phys.head.savep = cpu_to_scr(lastp);
1181 cp->startp = cp->phys.head.savep;
1182 cp->goalp = cpu_to_scr(goalp);
1183
1184#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1185 /*
1186 * If direction is unknown, start at data_io.
1187 */
1188 if (dir == CAM_DIR_UNKNOWN)
1189 cp->phys.head.savep = cpu_to_scr(SCRIPTB_BA(np, data_io));
1190#endif
1191}
1192
1193/*
1194 * MEMORY ALLOCATOR.
1195 */
1196
1197#define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
1198#define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
1199#define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
1200
1201#define SYM_MEM_WARN 1 /* Warn on failed operations */
1202
1203#define sym_get_mem_cluster() \
1204 (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1205#define sym_free_mem_cluster(p) \
1206 free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1207
1208/*
1209 * Link between free memory chunks of a given size.
1210 */
1211typedef struct sym_m_link {
1212 struct sym_m_link *next;
1213} *m_link_p;
1214
1215/*
1216 * Virtual to bus physical translation for a given cluster.
1217 * Such a structure is only useful with DMA abstraction.
1218 */
1219typedef struct sym_m_vtob { /* Virtual to Bus address translation */
1220 struct sym_m_vtob *next;
1221 void *vaddr; /* Virtual address */
1222 dma_addr_t baddr; /* Bus physical address */
1223} *m_vtob_p;
1224
1225/* Hash this stuff a bit to speed up translations */
1226#define VTOB_HASH_SHIFT 5
1227#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
1228#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
1229#define VTOB_HASH_CODE(m) \
1230 ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1231
1232/*
1233 * Memory pool of a given kind.
1234 * Ideally, we want to use:
1235 * 1) 1 pool for memory we donnot need to involve in DMA.
1236 * 2) The same pool for controllers that require same DMA
1237 * constraints and features.
1238 * The OS specific m_pool_id_t thing and the sym_m_pool_match()
1239 * method are expected to tell the driver about.
1240 */
1241typedef struct sym_m_pool {
1242 m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */
1243 void * (*get_mem_cluster)(struct sym_m_pool *);
1244#ifdef SYM_MEM_FREE_UNUSED
1245 void (*free_mem_cluster)(struct sym_m_pool *, void *);
1246#endif
1247#define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp)
1248#define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p)
1249 int nump;
1250 m_vtob_p vtob[VTOB_HASH_SIZE];
1251 struct sym_m_pool *next;
1252 struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1253} *m_pool_p;
1254
1255/*
1256 * Alloc, free and translate addresses to bus physical
1257 * for DMAable memory.
1258 */
1259void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1260void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1261dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1262
1263/*
1264 * Verbs used by the driver code for DMAable memory handling.
1265 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1266 * being discarded.
1267 */
1268#define _uvptv_(p) ((void *)((u_long)(p)))
1269
1270#define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n)
1271#define _sym_mfree_dma(np, p, l, n) \
1272 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1273#define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n)
1274#define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n)
1275#define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p))
1276
1277/*
1278 * We have to provide the driver memory allocator with methods for
1279 * it to maintain virtual to bus physical address translations.
1280 */
1281
1282#define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
1283
1284static __inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1285{
1286 void *vaddr = NULL;
1287 dma_addr_t baddr = 0;
1288
1289 vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1290 GFP_ATOMIC);
1291 if (vaddr) {
1292 vbp->vaddr = vaddr;
1293 vbp->baddr = baddr;
1294 }
1295 return vaddr;
1296}
1297
1298static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1299{
1300 dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1301 vbp->baddr);
1302}
1303
1304#endif /* SYM_HIPD_H */