blob: e357890adfb2b4d22683628624e323af20d8a909 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19/*
20 * jfs_dtree.c: directory B+-tree manager
21 *
22 * B+-tree with variable length key directory:
23 *
24 * each directory page is structured as an array of 32-byte
25 * directory entry slots initialized as a freelist
26 * to avoid search/compaction of free space at insertion.
27 * when an entry is inserted, a number of slots are allocated
28 * from the freelist as required to store variable length data
29 * of the entry; when the entry is deleted, slots of the entry
30 * are returned to freelist.
31 *
32 * leaf entry stores full name as key and file serial number
33 * (aka inode number) as data.
34 * internal/router entry stores sufffix compressed name
35 * as key and simple extent descriptor as data.
36 *
37 * each directory page maintains a sorted entry index table
38 * which stores the start slot index of sorted entries
39 * to allow binary search on the table.
40 *
41 * directory starts as a root/leaf page in on-disk inode
42 * inline data area.
43 * when it becomes full, it starts a leaf of a external extent
44 * of length of 1 block. each time the first leaf becomes full,
45 * it is extended rather than split (its size is doubled),
46 * until its length becoms 4 KBytes, from then the extent is split
47 * with new 4 Kbyte extent when it becomes full
48 * to reduce external fragmentation of small directories.
49 *
50 * blah, blah, blah, for linear scan of directory in pieces by
51 * readdir().
52 *
53 *
54 * case-insensitive directory file system
55 *
56 * names are stored in case-sensitive way in leaf entry.
57 * but stored, searched and compared in case-insensitive (uppercase) order
58 * (i.e., both search key and entry key are folded for search/compare):
59 * (note that case-sensitive order is BROKEN in storage, e.g.,
60 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61 *
62 * entries which folds to the same key makes up a equivalent class
63 * whose members are stored as contiguous cluster (may cross page boundary)
64 * but whose order is arbitrary and acts as duplicate, e.g.,
65 * abc, Abc, aBc, abC)
66 *
67 * once match is found at leaf, requires scan forward/backward
68 * either for, in case-insensitive search, duplicate
69 * or for, in case-sensitive search, for exact match
70 *
71 * router entry must be created/stored in case-insensitive way
72 * in internal entry:
73 * (right most key of left page and left most key of right page
74 * are folded, and its suffix compression is propagated as router
75 * key in parent)
76 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77 * should be made the router key for the split)
78 *
79 * case-insensitive search:
80 *
81 * fold search key;
82 *
83 * case-insensitive search of B-tree:
84 * for internal entry, router key is already folded;
85 * for leaf entry, fold the entry key before comparison.
86 *
87 * if (leaf entry case-insensitive match found)
88 * if (next entry satisfies case-insensitive match)
89 * return EDUPLICATE;
90 * if (prev entry satisfies case-insensitive match)
91 * return EDUPLICATE;
92 * return match;
93 * else
94 * return no match;
95 *
96 * serialization:
97 * target directory inode lock is being held on entry/exit
98 * of all main directory service routines.
99 *
100 * log based recovery:
101 */
102
103#include <linux/fs.h>
104#include <linux/quotaops.h>
105#include "jfs_incore.h"
106#include "jfs_superblock.h"
107#include "jfs_filsys.h"
108#include "jfs_metapage.h"
109#include "jfs_dmap.h"
110#include "jfs_unicode.h"
111#include "jfs_debug.h"
112
113/* dtree split parameter */
114struct dtsplit {
115 struct metapage *mp;
116 s16 index;
117 s16 nslot;
118 struct component_name *key;
119 ddata_t *data;
120 struct pxdlist *pxdlist;
121};
122
123#define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
124
125/* get page buffer for specified block address */
126#define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
127{\
128 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
129 if (!(RC))\
130 {\
131 if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
133 {\
134 BT_PUTPAGE(MP);\
135 jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
136 MP = NULL;\
137 RC = -EIO;\
138 }\
139 }\
140}
141
142/* for consistency */
143#define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
144
145#define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
147
148/*
149 * forward references
150 */
151static int dtSplitUp(tid_t tid, struct inode *ip,
152 struct dtsplit * split, struct btstack * btstack);
153
154static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
155 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
156
157static int dtExtendPage(tid_t tid, struct inode *ip,
158 struct dtsplit * split, struct btstack * btstack);
159
160static int dtSplitRoot(tid_t tid, struct inode *ip,
161 struct dtsplit * split, struct metapage ** rmpp);
162
163static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
164 dtpage_t * fp, struct btstack * btstack);
165
166static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
167
168static int dtReadFirst(struct inode *ip, struct btstack * btstack);
169
170static int dtReadNext(struct inode *ip,
171 loff_t * offset, struct btstack * btstack);
172
173static int dtCompare(struct component_name * key, dtpage_t * p, int si);
174
175static int ciCompare(struct component_name * key, dtpage_t * p, int si,
176 int flag);
177
178static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
179 int flag);
180
181static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
182 int ri, struct component_name * key, int flag);
183
184static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
185 ddata_t * data, struct dt_lock **);
186
187static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
188 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
189 int do_index);
190
191static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
192
193static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
194
195static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
196
197#define ciToUpper(c) UniStrupr((c)->name)
198
199/*
200 * read_index_page()
201 *
202 * Reads a page of a directory's index table.
203 * Having metadata mapped into the directory inode's address space
204 * presents a multitude of problems. We avoid this by mapping to
205 * the absolute address space outside of the *_metapage routines
206 */
207static struct metapage *read_index_page(struct inode *inode, s64 blkno)
208{
209 int rc;
210 s64 xaddr;
211 int xflag;
212 s32 xlen;
213
214 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
215 if (rc || (xlen == 0))
216 return NULL;
217
218 return read_metapage(inode, xaddr, PSIZE, 1);
219}
220
221/*
222 * get_index_page()
223 *
224 * Same as get_index_page(), but get's a new page without reading
225 */
226static struct metapage *get_index_page(struct inode *inode, s64 blkno)
227{
228 int rc;
229 s64 xaddr;
230 int xflag;
231 s32 xlen;
232
233 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
234 if (rc || (xlen == 0))
235 return NULL;
236
237 return get_metapage(inode, xaddr, PSIZE, 1);
238}
239
240/*
241 * find_index()
242 *
243 * Returns dtree page containing directory table entry for specified
244 * index and pointer to its entry.
245 *
246 * mp must be released by caller.
247 */
248static struct dir_table_slot *find_index(struct inode *ip, u32 index,
249 struct metapage ** mp, s64 *lblock)
250{
251 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
252 s64 blkno;
253 s64 offset;
254 int page_offset;
255 struct dir_table_slot *slot;
256 static int maxWarnings = 10;
257
258 if (index < 2) {
259 if (maxWarnings) {
260 jfs_warn("find_entry called with index = %d", index);
261 maxWarnings--;
262 }
263 return NULL;
264 }
265
266 if (index >= jfs_ip->next_index) {
267 jfs_warn("find_entry called with index >= next_index");
268 return NULL;
269 }
270
271 if (jfs_dirtable_inline(ip)) {
272 /*
273 * Inline directory table
274 */
275 *mp = NULL;
276 slot = &jfs_ip->i_dirtable[index - 2];
277 } else {
278 offset = (index - 2) * sizeof(struct dir_table_slot);
279 page_offset = offset & (PSIZE - 1);
280 blkno = ((offset + 1) >> L2PSIZE) <<
281 JFS_SBI(ip->i_sb)->l2nbperpage;
282
283 if (*mp && (*lblock != blkno)) {
284 release_metapage(*mp);
285 *mp = NULL;
286 }
287 if (*mp == 0) {
288 *lblock = blkno;
289 *mp = read_index_page(ip, blkno);
290 }
291 if (*mp == 0) {
292 jfs_err("free_index: error reading directory table");
293 return NULL;
294 }
295
296 slot =
297 (struct dir_table_slot *) ((char *) (*mp)->data +
298 page_offset);
299 }
300 return slot;
301}
302
303static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
304 u32 index)
305{
306 struct tlock *tlck;
307 struct linelock *llck;
308 struct lv *lv;
309
310 tlck = txLock(tid, ip, mp, tlckDATA);
311 llck = (struct linelock *) tlck->lock;
312
313 if (llck->index >= llck->maxcnt)
314 llck = txLinelock(llck);
315 lv = &llck->lv[llck->index];
316
317 /*
318 * Linelock slot size is twice the size of directory table
319 * slot size. 512 entries per page.
320 */
321 lv->offset = ((index - 2) & 511) >> 1;
322 lv->length = 1;
323 llck->index++;
324}
325
326/*
327 * add_index()
328 *
329 * Adds an entry to the directory index table. This is used to provide
330 * each directory entry with a persistent index in which to resume
331 * directory traversals
332 */
333static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
334{
335 struct super_block *sb = ip->i_sb;
336 struct jfs_sb_info *sbi = JFS_SBI(sb);
337 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
338 u64 blkno;
339 struct dir_table_slot *dirtab_slot;
340 u32 index;
341 struct linelock *llck;
342 struct lv *lv;
343 struct metapage *mp;
344 s64 offset;
345 uint page_offset;
346 struct tlock *tlck;
347 s64 xaddr;
348
349 ASSERT(DO_INDEX(ip));
350
351 if (jfs_ip->next_index < 2) {
352 jfs_warn("add_index: next_index = %d. Resetting!",
353 jfs_ip->next_index);
354 jfs_ip->next_index = 2;
355 }
356
357 index = jfs_ip->next_index++;
358
359 if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
360 /*
361 * i_size reflects size of index table, or 8 bytes per entry.
362 */
363 ip->i_size = (loff_t) (index - 1) << 3;
364
365 /*
366 * dir table fits inline within inode
367 */
368 dirtab_slot = &jfs_ip->i_dirtable[index-2];
369 dirtab_slot->flag = DIR_INDEX_VALID;
370 dirtab_slot->slot = slot;
371 DTSaddress(dirtab_slot, bn);
372
373 set_cflag(COMMIT_Dirtable, ip);
374
375 return index;
376 }
377 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
378 struct dir_table_slot temp_table[12];
379
380 /*
381 * It's time to move the inline table to an external
382 * page and begin to build the xtree
383 */
384 if (DQUOT_ALLOC_BLOCK(ip, sbi->nbperpage) ||
385 dbAlloc(ip, 0, sbi->nbperpage, &xaddr))
386 goto clean_up; /* No space */
387
388 /*
389 * Save the table, we're going to overwrite it with the
390 * xtree root
391 */
392 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
393
394 /*
395 * Initialize empty x-tree
396 */
397 xtInitRoot(tid, ip);
398
399 /*
400 * Allocate the first block & add it to the xtree
401 */
402 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
403 /* This really shouldn't fail */
404 jfs_warn("add_index: xtInsert failed!");
405 memcpy(&jfs_ip->i_dirtable, temp_table,
406 sizeof (temp_table));
407 goto clean_up;
408 }
409 ip->i_size = PSIZE;
410
411 if ((mp = get_index_page(ip, 0)) == 0) {
412 jfs_err("add_index: get_metapage failed!");
413 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
414 memcpy(&jfs_ip->i_dirtable, temp_table,
415 sizeof (temp_table));
416 goto clean_up;
417 }
418 tlck = txLock(tid, ip, mp, tlckDATA);
419 llck = (struct linelock *) & tlck->lock;
420 ASSERT(llck->index == 0);
421 lv = &llck->lv[0];
422
423 lv->offset = 0;
424 lv->length = 6; /* tlckDATA slot size is 16 bytes */
425 llck->index++;
426
427 memcpy(mp->data, temp_table, sizeof(temp_table));
428
429 mark_metapage_dirty(mp);
430 release_metapage(mp);
431
432 /*
433 * Logging is now directed by xtree tlocks
434 */
435 clear_cflag(COMMIT_Dirtable, ip);
436 }
437
438 offset = (index - 2) * sizeof(struct dir_table_slot);
439 page_offset = offset & (PSIZE - 1);
440 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
441 if (page_offset == 0) {
442 /*
443 * This will be the beginning of a new page
444 */
445 xaddr = 0;
446 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
447 jfs_warn("add_index: xtInsert failed!");
448 goto clean_up;
449 }
450 ip->i_size += PSIZE;
451
452 if ((mp = get_index_page(ip, blkno)))
453 memset(mp->data, 0, PSIZE); /* Just looks better */
454 else
455 xtTruncate(tid, ip, offset, COMMIT_PWMAP);
456 } else
457 mp = read_index_page(ip, blkno);
458
459 if (mp == 0) {
460 jfs_err("add_index: get/read_metapage failed!");
461 goto clean_up;
462 }
463
464 lock_index(tid, ip, mp, index);
465
466 dirtab_slot =
467 (struct dir_table_slot *) ((char *) mp->data + page_offset);
468 dirtab_slot->flag = DIR_INDEX_VALID;
469 dirtab_slot->slot = slot;
470 DTSaddress(dirtab_slot, bn);
471
472 mark_metapage_dirty(mp);
473 release_metapage(mp);
474
475 return index;
476
477 clean_up:
478
479 jfs_ip->next_index--;
480
481 return 0;
482}
483
484/*
485 * free_index()
486 *
487 * Marks an entry to the directory index table as free.
488 */
489static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
490{
491 struct dir_table_slot *dirtab_slot;
492 s64 lblock;
493 struct metapage *mp = NULL;
494
495 dirtab_slot = find_index(ip, index, &mp, &lblock);
496
497 if (dirtab_slot == 0)
498 return;
499
500 dirtab_slot->flag = DIR_INDEX_FREE;
501 dirtab_slot->slot = dirtab_slot->addr1 = 0;
502 dirtab_slot->addr2 = cpu_to_le32(next);
503
504 if (mp) {
505 lock_index(tid, ip, mp, index);
506 mark_metapage_dirty(mp);
507 release_metapage(mp);
508 } else
509 set_cflag(COMMIT_Dirtable, ip);
510}
511
512/*
513 * modify_index()
514 *
515 * Changes an entry in the directory index table
516 */
517static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
518 int slot, struct metapage ** mp, u64 *lblock)
519{
520 struct dir_table_slot *dirtab_slot;
521
522 dirtab_slot = find_index(ip, index, mp, lblock);
523
524 if (dirtab_slot == 0)
525 return;
526
527 DTSaddress(dirtab_slot, bn);
528 dirtab_slot->slot = slot;
529
530 if (*mp) {
531 lock_index(tid, ip, *mp, index);
532 mark_metapage_dirty(*mp);
533 } else
534 set_cflag(COMMIT_Dirtable, ip);
535}
536
537/*
538 * read_index()
539 *
540 * reads a directory table slot
541 */
542static int read_index(struct inode *ip, u32 index,
543 struct dir_table_slot * dirtab_slot)
544{
545 s64 lblock;
546 struct metapage *mp = NULL;
547 struct dir_table_slot *slot;
548
549 slot = find_index(ip, index, &mp, &lblock);
550 if (slot == 0) {
551 return -EIO;
552 }
553
554 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
555
556 if (mp)
557 release_metapage(mp);
558
559 return 0;
560}
561
562/*
563 * dtSearch()
564 *
565 * function:
566 * Search for the entry with specified key
567 *
568 * parameter:
569 *
570 * return: 0 - search result on stack, leaf page pinned;
571 * errno - I/O error
572 */
573int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
574 struct btstack * btstack, int flag)
575{
576 int rc = 0;
577 int cmp = 1; /* init for empty page */
578 s64 bn;
579 struct metapage *mp;
580 dtpage_t *p;
581 s8 *stbl;
582 int base, index, lim;
583 struct btframe *btsp;
584 pxd_t *pxd;
585 int psize = 288; /* initial in-line directory */
586 ino_t inumber;
587 struct component_name ciKey;
588 struct super_block *sb = ip->i_sb;
589
590 ciKey.name =
591 (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
592 GFP_NOFS);
593 if (ciKey.name == 0) {
594 rc = -ENOMEM;
595 goto dtSearch_Exit2;
596 }
597
598
599 /* uppercase search key for c-i directory */
600 UniStrcpy(ciKey.name, key->name);
601 ciKey.namlen = key->namlen;
602
603 /* only uppercase if case-insensitive support is on */
604 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
605 ciToUpper(&ciKey);
606 }
607 BT_CLR(btstack); /* reset stack */
608
609 /* init level count for max pages to split */
610 btstack->nsplit = 1;
611
612 /*
613 * search down tree from root:
614 *
615 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
616 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
617 *
618 * if entry with search key K is not found
619 * internal page search find the entry with largest key Ki
620 * less than K which point to the child page to search;
621 * leaf page search find the entry with smallest key Kj
622 * greater than K so that the returned index is the position of
623 * the entry to be shifted right for insertion of new entry.
624 * for empty tree, search key is greater than any key of the tree.
625 *
626 * by convention, root bn = 0.
627 */
628 for (bn = 0;;) {
629 /* get/pin the page to search */
630 DT_GETPAGE(ip, bn, mp, psize, p, rc);
631 if (rc)
632 goto dtSearch_Exit1;
633
634 /* get sorted entry table of the page */
635 stbl = DT_GETSTBL(p);
636
637 /*
638 * binary search with search key K on the current page.
639 */
640 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
641 index = base + (lim >> 1);
642
643 if (p->header.flag & BT_LEAF) {
644 /* uppercase leaf name to compare */
645 cmp =
646 ciCompare(&ciKey, p, stbl[index],
647 JFS_SBI(sb)->mntflag);
648 } else {
649 /* router key is in uppercase */
650
651 cmp = dtCompare(&ciKey, p, stbl[index]);
652
653
654 }
655 if (cmp == 0) {
656 /*
657 * search hit
658 */
659 /* search hit - leaf page:
660 * return the entry found
661 */
662 if (p->header.flag & BT_LEAF) {
663 inumber = le32_to_cpu(
664 ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
665
666 /*
667 * search for JFS_LOOKUP
668 */
669 if (flag == JFS_LOOKUP) {
670 *data = inumber;
671 rc = 0;
672 goto out;
673 }
674
675 /*
676 * search for JFS_CREATE
677 */
678 if (flag == JFS_CREATE) {
679 *data = inumber;
680 rc = -EEXIST;
681 goto out;
682 }
683
684 /*
685 * search for JFS_REMOVE or JFS_RENAME
686 */
687 if ((flag == JFS_REMOVE ||
688 flag == JFS_RENAME) &&
689 *data != inumber) {
690 rc = -ESTALE;
691 goto out;
692 }
693
694 /*
695 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
696 */
697 /* save search result */
698 *data = inumber;
699 btsp = btstack->top;
700 btsp->bn = bn;
701 btsp->index = index;
702 btsp->mp = mp;
703
704 rc = 0;
705 goto dtSearch_Exit1;
706 }
707
708 /* search hit - internal page:
709 * descend/search its child page
710 */
711 goto getChild;
712 }
713
714 if (cmp > 0) {
715 base = index + 1;
716 --lim;
717 }
718 }
719
720 /*
721 * search miss
722 *
723 * base is the smallest index with key (Kj) greater than
724 * search key (K) and may be zero or (maxindex + 1) index.
725 */
726 /*
727 * search miss - leaf page
728 *
729 * return location of entry (base) where new entry with
730 * search key K is to be inserted.
731 */
732 if (p->header.flag & BT_LEAF) {
733 /*
734 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
735 */
736 if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
737 flag == JFS_RENAME) {
738 rc = -ENOENT;
739 goto out;
740 }
741
742 /*
743 * search for JFS_CREATE|JFS_FINDDIR:
744 *
745 * save search result
746 */
747 *data = 0;
748 btsp = btstack->top;
749 btsp->bn = bn;
750 btsp->index = base;
751 btsp->mp = mp;
752
753 rc = 0;
754 goto dtSearch_Exit1;
755 }
756
757 /*
758 * search miss - internal page
759 *
760 * if base is non-zero, decrement base by one to get the parent
761 * entry of the child page to search.
762 */
763 index = base ? base - 1 : base;
764
765 /*
766 * go down to child page
767 */
768 getChild:
769 /* update max. number of pages to split */
770 if (BT_STACK_FULL(btstack)) {
771 /* Something's corrupted, mark filesytem dirty so
772 * chkdsk will fix it.
773 */
774 jfs_error(sb, "stack overrun in dtSearch!");
775 BT_STACK_DUMP(btstack);
776 rc = -EIO;
777 goto out;
778 }
779 btstack->nsplit++;
780
781 /* push (bn, index) of the parent page/entry */
782 BT_PUSH(btstack, bn, index);
783
784 /* get the child page block number */
785 pxd = (pxd_t *) & p->slot[stbl[index]];
786 bn = addressPXD(pxd);
787 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
788
789 /* unpin the parent page */
790 DT_PUTPAGE(mp);
791 }
792
793 out:
794 DT_PUTPAGE(mp);
795
796 dtSearch_Exit1:
797
798 kfree(ciKey.name);
799
800 dtSearch_Exit2:
801
802 return rc;
803}
804
805
806/*
807 * dtInsert()
808 *
809 * function: insert an entry to directory tree
810 *
811 * parameter:
812 *
813 * return: 0 - success;
814 * errno - failure;
815 */
816int dtInsert(tid_t tid, struct inode *ip,
817 struct component_name * name, ino_t * fsn, struct btstack * btstack)
818{
819 int rc = 0;
820 struct metapage *mp; /* meta-page buffer */
821 dtpage_t *p; /* base B+-tree index page */
822 s64 bn;
823 int index;
824 struct dtsplit split; /* split information */
825 ddata_t data;
826 struct dt_lock *dtlck;
827 int n;
828 struct tlock *tlck;
829 struct lv *lv;
830
831 /*
832 * retrieve search result
833 *
834 * dtSearch() returns (leaf page pinned, index at which to insert).
835 * n.b. dtSearch() may return index of (maxindex + 1) of
836 * the full page.
837 */
838 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
839
840 /*
841 * insert entry for new key
842 */
843 if (DO_INDEX(ip)) {
844 if (JFS_IP(ip)->next_index == DIREND) {
845 DT_PUTPAGE(mp);
846 return -EMLINK;
847 }
848 n = NDTLEAF(name->namlen);
849 data.leaf.tid = tid;
850 data.leaf.ip = ip;
851 } else {
852 n = NDTLEAF_LEGACY(name->namlen);
853 data.leaf.ip = NULL; /* signifies legacy directory format */
854 }
855 data.leaf.ino = *fsn;
856
857 /*
858 * leaf page does not have enough room for new entry:
859 *
860 * extend/split the leaf page;
861 *
862 * dtSplitUp() will insert the entry and unpin the leaf page.
863 */
864 if (n > p->header.freecnt) {
865 split.mp = mp;
866 split.index = index;
867 split.nslot = n;
868 split.key = name;
869 split.data = &data;
870 rc = dtSplitUp(tid, ip, &split, btstack);
871 return rc;
872 }
873
874 /*
875 * leaf page does have enough room for new entry:
876 *
877 * insert the new data entry into the leaf page;
878 */
879 BT_MARK_DIRTY(mp, ip);
880 /*
881 * acquire a transaction lock on the leaf page
882 */
883 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
884 dtlck = (struct dt_lock *) & tlck->lock;
885 ASSERT(dtlck->index == 0);
886 lv = & dtlck->lv[0];
887
888 /* linelock header */
889 lv->offset = 0;
890 lv->length = 1;
891 dtlck->index++;
892
893 dtInsertEntry(p, index, name, &data, &dtlck);
894
895 /* linelock stbl of non-root leaf page */
896 if (!(p->header.flag & BT_ROOT)) {
897 if (dtlck->index >= dtlck->maxcnt)
898 dtlck = (struct dt_lock *) txLinelock(dtlck);
899 lv = & dtlck->lv[dtlck->index];
900 n = index >> L2DTSLOTSIZE;
901 lv->offset = p->header.stblindex + n;
902 lv->length =
903 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
904 dtlck->index++;
905 }
906
907 /* unpin the leaf page */
908 DT_PUTPAGE(mp);
909
910 return 0;
911}
912
913
914/*
915 * dtSplitUp()
916 *
917 * function: propagate insertion bottom up;
918 *
919 * parameter:
920 *
921 * return: 0 - success;
922 * errno - failure;
923 * leaf page unpinned;
924 */
925static int dtSplitUp(tid_t tid,
926 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
927{
928 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
929 int rc = 0;
930 struct metapage *smp;
931 dtpage_t *sp; /* split page */
932 struct metapage *rmp;
933 dtpage_t *rp; /* new right page split from sp */
934 pxd_t rpxd; /* new right page extent descriptor */
935 struct metapage *lmp;
936 dtpage_t *lp; /* left child page */
937 int skip; /* index of entry of insertion */
938 struct btframe *parent; /* parent page entry on traverse stack */
939 s64 xaddr, nxaddr;
940 int xlen, xsize;
941 struct pxdlist pxdlist;
942 pxd_t *pxd;
943 struct component_name key = { 0, NULL };
944 ddata_t *data = split->data;
945 int n;
946 struct dt_lock *dtlck;
947 struct tlock *tlck;
948 struct lv *lv;
949 int quota_allocation = 0;
950
951 /* get split page */
952 smp = split->mp;
953 sp = DT_PAGE(ip, smp);
954
955 key.name =
956 (wchar_t *) kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t),
957 GFP_NOFS);
958 if (key.name == 0) {
959 DT_PUTPAGE(smp);
960 rc = -ENOMEM;
961 goto dtSplitUp_Exit;
962 }
963
964 /*
965 * split leaf page
966 *
967 * The split routines insert the new entry, and
968 * acquire txLock as appropriate.
969 */
970 /*
971 * split root leaf page:
972 */
973 if (sp->header.flag & BT_ROOT) {
974 /*
975 * allocate a single extent child page
976 */
977 xlen = 1;
978 n = sbi->bsize >> L2DTSLOTSIZE;
979 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
980 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
981 if (n <= split->nslot)
982 xlen++;
983 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
984 DT_PUTPAGE(smp);
985 goto freeKeyName;
986 }
987
988 pxdlist.maxnpxd = 1;
989 pxdlist.npxd = 0;
990 pxd = &pxdlist.pxd[0];
991 PXDaddress(pxd, xaddr);
992 PXDlength(pxd, xlen);
993 split->pxdlist = &pxdlist;
994 rc = dtSplitRoot(tid, ip, split, &rmp);
995
996 if (rc)
997 dbFree(ip, xaddr, xlen);
998 else
999 DT_PUTPAGE(rmp);
1000
1001 DT_PUTPAGE(smp);
1002
1003 goto freeKeyName;
1004 }
1005
1006 /*
1007 * extend first leaf page
1008 *
1009 * extend the 1st extent if less than buffer page size
1010 * (dtExtendPage() reurns leaf page unpinned)
1011 */
1012 pxd = &sp->header.self;
1013 xlen = lengthPXD(pxd);
1014 xsize = xlen << sbi->l2bsize;
1015 if (xsize < PSIZE) {
1016 xaddr = addressPXD(pxd);
1017 n = xsize >> L2DTSLOTSIZE;
1018 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1019 if ((n + sp->header.freecnt) <= split->nslot)
1020 n = xlen + (xlen << 1);
1021 else
1022 n = xlen;
1023
1024 /* Allocate blocks to quota. */
1025 if (DQUOT_ALLOC_BLOCK(ip, n)) {
1026 rc = -EDQUOT;
1027 goto extendOut;
1028 }
1029 quota_allocation += n;
1030
1031 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1032 (s64) n, &nxaddr)))
1033 goto extendOut;
1034
1035 pxdlist.maxnpxd = 1;
1036 pxdlist.npxd = 0;
1037 pxd = &pxdlist.pxd[0];
1038 PXDaddress(pxd, nxaddr)
1039 PXDlength(pxd, xlen + n);
1040 split->pxdlist = &pxdlist;
1041 if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1042 nxaddr = addressPXD(pxd);
1043 if (xaddr != nxaddr) {
1044 /* free relocated extent */
1045 xlen = lengthPXD(pxd);
1046 dbFree(ip, nxaddr, (s64) xlen);
1047 } else {
1048 /* free extended delta */
1049 xlen = lengthPXD(pxd) - n;
1050 xaddr = addressPXD(pxd) + xlen;
1051 dbFree(ip, xaddr, (s64) n);
1052 }
1053 }
1054
1055 extendOut:
1056 DT_PUTPAGE(smp);
1057 goto freeKeyName;
1058 }
1059
1060 /*
1061 * split leaf page <sp> into <sp> and a new right page <rp>.
1062 *
1063 * return <rp> pinned and its extent descriptor <rpxd>
1064 */
1065 /*
1066 * allocate new directory page extent and
1067 * new index page(s) to cover page split(s)
1068 *
1069 * allocation hint: ?
1070 */
1071 n = btstack->nsplit;
1072 pxdlist.maxnpxd = pxdlist.npxd = 0;
1073 xlen = sbi->nbperpage;
1074 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1075 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1076 PXDaddress(pxd, xaddr);
1077 PXDlength(pxd, xlen);
1078 pxdlist.maxnpxd++;
1079 continue;
1080 }
1081
1082 DT_PUTPAGE(smp);
1083
1084 /* undo allocation */
1085 goto splitOut;
1086 }
1087
1088 split->pxdlist = &pxdlist;
1089 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1090 DT_PUTPAGE(smp);
1091
1092 /* undo allocation */
1093 goto splitOut;
1094 }
1095
1096 /*
1097 * propagate up the router entry for the leaf page just split
1098 *
1099 * insert a router entry for the new page into the parent page,
1100 * propagate the insert/split up the tree by walking back the stack
1101 * of (bn of parent page, index of child page entry in parent page)
1102 * that were traversed during the search for the page that split.
1103 *
1104 * the propagation of insert/split up the tree stops if the root
1105 * splits or the page inserted into doesn't have to split to hold
1106 * the new entry.
1107 *
1108 * the parent entry for the split page remains the same, and
1109 * a new entry is inserted at its right with the first key and
1110 * block number of the new right page.
1111 *
1112 * There are a maximum of 4 pages pinned at any time:
1113 * two children, left parent and right parent (when the parent splits).
1114 * keep the child pages pinned while working on the parent.
1115 * make sure that all pins are released at exit.
1116 */
1117 while ((parent = BT_POP(btstack)) != NULL) {
1118 /* parent page specified by stack frame <parent> */
1119
1120 /* keep current child pages (<lp>, <rp>) pinned */
1121 lmp = smp;
1122 lp = sp;
1123
1124 /*
1125 * insert router entry in parent for new right child page <rp>
1126 */
1127 /* get the parent page <sp> */
1128 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1129 if (rc) {
1130 DT_PUTPAGE(lmp);
1131 DT_PUTPAGE(rmp);
1132 goto splitOut;
1133 }
1134
1135 /*
1136 * The new key entry goes ONE AFTER the index of parent entry,
1137 * because the split was to the right.
1138 */
1139 skip = parent->index + 1;
1140
1141 /*
1142 * compute the key for the router entry
1143 *
1144 * key suffix compression:
1145 * for internal pages that have leaf pages as children,
1146 * retain only what's needed to distinguish between
1147 * the new entry and the entry on the page to its left.
1148 * If the keys compare equal, retain the entire key.
1149 *
1150 * note that compression is performed only at computing
1151 * router key at the lowest internal level.
1152 * further compression of the key between pairs of higher
1153 * level internal pages loses too much information and
1154 * the search may fail.
1155 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1156 * results in two adjacent parent entries (a)(xx).
1157 * if split occurs between these two entries, and
1158 * if compression is applied, the router key of parent entry
1159 * of right page (x) will divert search for x into right
1160 * subtree and miss x in the left subtree.)
1161 *
1162 * the entire key must be retained for the next-to-leftmost
1163 * internal key at any level of the tree, or search may fail
1164 * (e.g., ?)
1165 */
1166 switch (rp->header.flag & BT_TYPE) {
1167 case BT_LEAF:
1168 /*
1169 * compute the length of prefix for suffix compression
1170 * between last entry of left page and first entry
1171 * of right page
1172 */
1173 if ((sp->header.flag & BT_ROOT && skip > 1) ||
1174 sp->header.prev != 0 || skip > 1) {
1175 /* compute uppercase router prefix key */
1176 rc = ciGetLeafPrefixKey(lp,
1177 lp->header.nextindex-1,
1178 rp, 0, &key,
1179 sbi->mntflag);
1180 if (rc) {
1181 DT_PUTPAGE(lmp);
1182 DT_PUTPAGE(rmp);
1183 DT_PUTPAGE(smp);
1184 goto splitOut;
1185 }
1186 } else {
1187 /* next to leftmost entry of
1188 lowest internal level */
1189
1190 /* compute uppercase router key */
1191 dtGetKey(rp, 0, &key, sbi->mntflag);
1192 key.name[key.namlen] = 0;
1193
1194 if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1195 ciToUpper(&key);
1196 }
1197
1198 n = NDTINTERNAL(key.namlen);
1199 break;
1200
1201 case BT_INTERNAL:
1202 dtGetKey(rp, 0, &key, sbi->mntflag);
1203 n = NDTINTERNAL(key.namlen);
1204 break;
1205
1206 default:
1207 jfs_err("dtSplitUp(): UFO!");
1208 break;
1209 }
1210
1211 /* unpin left child page */
1212 DT_PUTPAGE(lmp);
1213
1214 /*
1215 * compute the data for the router entry
1216 */
1217 data->xd = rpxd; /* child page xd */
1218
1219 /*
1220 * parent page is full - split the parent page
1221 */
1222 if (n > sp->header.freecnt) {
1223 /* init for parent page split */
1224 split->mp = smp;
1225 split->index = skip; /* index at insert */
1226 split->nslot = n;
1227 split->key = &key;
1228 /* split->data = data; */
1229
1230 /* unpin right child page */
1231 DT_PUTPAGE(rmp);
1232
1233 /* The split routines insert the new entry,
1234 * acquire txLock as appropriate.
1235 * return <rp> pinned and its block number <rbn>.
1236 */
1237 rc = (sp->header.flag & BT_ROOT) ?
1238 dtSplitRoot(tid, ip, split, &rmp) :
1239 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1240 if (rc) {
1241 DT_PUTPAGE(smp);
1242 goto splitOut;
1243 }
1244
1245 /* smp and rmp are pinned */
1246 }
1247 /*
1248 * parent page is not full - insert router entry in parent page
1249 */
1250 else {
1251 BT_MARK_DIRTY(smp, ip);
1252 /*
1253 * acquire a transaction lock on the parent page
1254 */
1255 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1256 dtlck = (struct dt_lock *) & tlck->lock;
1257 ASSERT(dtlck->index == 0);
1258 lv = & dtlck->lv[0];
1259
1260 /* linelock header */
1261 lv->offset = 0;
1262 lv->length = 1;
1263 dtlck->index++;
1264
1265 /* linelock stbl of non-root parent page */
1266 if (!(sp->header.flag & BT_ROOT)) {
1267 lv++;
1268 n = skip >> L2DTSLOTSIZE;
1269 lv->offset = sp->header.stblindex + n;
1270 lv->length =
1271 ((sp->header.nextindex -
1272 1) >> L2DTSLOTSIZE) - n + 1;
1273 dtlck->index++;
1274 }
1275
1276 dtInsertEntry(sp, skip, &key, data, &dtlck);
1277
1278 /* exit propagate up */
1279 break;
1280 }
1281 }
1282
1283 /* unpin current split and its right page */
1284 DT_PUTPAGE(smp);
1285 DT_PUTPAGE(rmp);
1286
1287 /*
1288 * free remaining extents allocated for split
1289 */
1290 splitOut:
1291 n = pxdlist.npxd;
1292 pxd = &pxdlist.pxd[n];
1293 for (; n < pxdlist.maxnpxd; n++, pxd++)
1294 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1295
1296 freeKeyName:
1297 kfree(key.name);
1298
1299 /* Rollback quota allocation */
1300 if (rc && quota_allocation)
1301 DQUOT_FREE_BLOCK(ip, quota_allocation);
1302
1303 dtSplitUp_Exit:
1304
1305 return rc;
1306}
1307
1308
1309/*
1310 * dtSplitPage()
1311 *
1312 * function: Split a non-root page of a btree.
1313 *
1314 * parameter:
1315 *
1316 * return: 0 - success;
1317 * errno - failure;
1318 * return split and new page pinned;
1319 */
1320static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1321 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1322{
1323 int rc = 0;
1324 struct metapage *smp;
1325 dtpage_t *sp;
1326 struct metapage *rmp;
1327 dtpage_t *rp; /* new right page allocated */
1328 s64 rbn; /* new right page block number */
1329 struct metapage *mp;
1330 dtpage_t *p;
1331 s64 nextbn;
1332 struct pxdlist *pxdlist;
1333 pxd_t *pxd;
1334 int skip, nextindex, half, left, nxt, off, si;
1335 struct ldtentry *ldtentry;
1336 struct idtentry *idtentry;
1337 u8 *stbl;
1338 struct dtslot *f;
1339 int fsi, stblsize;
1340 int n;
1341 struct dt_lock *sdtlck, *rdtlck;
1342 struct tlock *tlck;
1343 struct dt_lock *dtlck;
1344 struct lv *slv, *rlv, *lv;
1345
1346 /* get split page */
1347 smp = split->mp;
1348 sp = DT_PAGE(ip, smp);
1349
1350 /*
1351 * allocate the new right page for the split
1352 */
1353 pxdlist = split->pxdlist;
1354 pxd = &pxdlist->pxd[pxdlist->npxd];
1355 pxdlist->npxd++;
1356 rbn = addressPXD(pxd);
1357 rmp = get_metapage(ip, rbn, PSIZE, 1);
1358 if (rmp == NULL)
1359 return -EIO;
1360
1361 /* Allocate blocks to quota. */
1362 if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1363 release_metapage(rmp);
1364 return -EDQUOT;
1365 }
1366
1367 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1368
1369 BT_MARK_DIRTY(rmp, ip);
1370 /*
1371 * acquire a transaction lock on the new right page
1372 */
1373 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1374 rdtlck = (struct dt_lock *) & tlck->lock;
1375
1376 rp = (dtpage_t *) rmp->data;
1377 *rpp = rp;
1378 rp->header.self = *pxd;
1379
1380 BT_MARK_DIRTY(smp, ip);
1381 /*
1382 * acquire a transaction lock on the split page
1383 *
1384 * action:
1385 */
1386 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1387 sdtlck = (struct dt_lock *) & tlck->lock;
1388
1389 /* linelock header of split page */
1390 ASSERT(sdtlck->index == 0);
1391 slv = & sdtlck->lv[0];
1392 slv->offset = 0;
1393 slv->length = 1;
1394 sdtlck->index++;
1395
1396 /*
1397 * initialize/update sibling pointers between sp and rp
1398 */
1399 nextbn = le64_to_cpu(sp->header.next);
1400 rp->header.next = cpu_to_le64(nextbn);
1401 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1402 sp->header.next = cpu_to_le64(rbn);
1403
1404 /*
1405 * initialize new right page
1406 */
1407 rp->header.flag = sp->header.flag;
1408
1409 /* compute sorted entry table at start of extent data area */
1410 rp->header.nextindex = 0;
1411 rp->header.stblindex = 1;
1412
1413 n = PSIZE >> L2DTSLOTSIZE;
1414 rp->header.maxslot = n;
1415 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1416
1417 /* init freelist */
1418 fsi = rp->header.stblindex + stblsize;
1419 rp->header.freelist = fsi;
1420 rp->header.freecnt = rp->header.maxslot - fsi;
1421
1422 /*
1423 * sequential append at tail: append without split
1424 *
1425 * If splitting the last page on a level because of appending
1426 * a entry to it (skip is maxentry), it's likely that the access is
1427 * sequential. Adding an empty page on the side of the level is less
1428 * work and can push the fill factor much higher than normal.
1429 * If we're wrong it's no big deal, we'll just do the split the right
1430 * way next time.
1431 * (It may look like it's equally easy to do a similar hack for
1432 * reverse sorted data, that is, split the tree left,
1433 * but it's not. Be my guest.)
1434 */
1435 if (nextbn == 0 && split->index == sp->header.nextindex) {
1436 /* linelock header + stbl (first slot) of new page */
1437 rlv = & rdtlck->lv[rdtlck->index];
1438 rlv->offset = 0;
1439 rlv->length = 2;
1440 rdtlck->index++;
1441
1442 /*
1443 * initialize freelist of new right page
1444 */
1445 f = &rp->slot[fsi];
1446 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1447 f->next = fsi;
1448 f->next = -1;
1449
1450 /* insert entry at the first entry of the new right page */
1451 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1452
1453 goto out;
1454 }
1455
1456 /*
1457 * non-sequential insert (at possibly middle page)
1458 */
1459
1460 /*
1461 * update prev pointer of previous right sibling page;
1462 */
1463 if (nextbn != 0) {
1464 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1465 if (rc) {
1466 discard_metapage(rmp);
1467 return rc;
1468 }
1469
1470 BT_MARK_DIRTY(mp, ip);
1471 /*
1472 * acquire a transaction lock on the next page
1473 */
1474 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1475 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1476 tlck, ip, mp);
1477 dtlck = (struct dt_lock *) & tlck->lock;
1478
1479 /* linelock header of previous right sibling page */
1480 lv = & dtlck->lv[dtlck->index];
1481 lv->offset = 0;
1482 lv->length = 1;
1483 dtlck->index++;
1484
1485 p->header.prev = cpu_to_le64(rbn);
1486
1487 DT_PUTPAGE(mp);
1488 }
1489
1490 /*
1491 * split the data between the split and right pages.
1492 */
1493 skip = split->index;
1494 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1495 left = 0;
1496
1497 /*
1498 * compute fill factor for split pages
1499 *
1500 * <nxt> traces the next entry to move to rp
1501 * <off> traces the next entry to stay in sp
1502 */
1503 stbl = (u8 *) & sp->slot[sp->header.stblindex];
1504 nextindex = sp->header.nextindex;
1505 for (nxt = off = 0; nxt < nextindex; ++off) {
1506 if (off == skip)
1507 /* check for fill factor with new entry size */
1508 n = split->nslot;
1509 else {
1510 si = stbl[nxt];
1511 switch (sp->header.flag & BT_TYPE) {
1512 case BT_LEAF:
1513 ldtentry = (struct ldtentry *) & sp->slot[si];
1514 if (DO_INDEX(ip))
1515 n = NDTLEAF(ldtentry->namlen);
1516 else
1517 n = NDTLEAF_LEGACY(ldtentry->
1518 namlen);
1519 break;
1520
1521 case BT_INTERNAL:
1522 idtentry = (struct idtentry *) & sp->slot[si];
1523 n = NDTINTERNAL(idtentry->namlen);
1524 break;
1525
1526 default:
1527 break;
1528 }
1529
1530 ++nxt; /* advance to next entry to move in sp */
1531 }
1532
1533 left += n;
1534 if (left >= half)
1535 break;
1536 }
1537
1538 /* <nxt> poins to the 1st entry to move */
1539
1540 /*
1541 * move entries to right page
1542 *
1543 * dtMoveEntry() initializes rp and reserves entry for insertion
1544 *
1545 * split page moved out entries are linelocked;
1546 * new/right page moved in entries are linelocked;
1547 */
1548 /* linelock header + stbl of new right page */
1549 rlv = & rdtlck->lv[rdtlck->index];
1550 rlv->offset = 0;
1551 rlv->length = 5;
1552 rdtlck->index++;
1553
1554 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1555
1556 sp->header.nextindex = nxt;
1557
1558 /*
1559 * finalize freelist of new right page
1560 */
1561 fsi = rp->header.freelist;
1562 f = &rp->slot[fsi];
1563 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1564 f->next = fsi;
1565 f->next = -1;
1566
1567 /*
1568 * Update directory index table for entries now in right page
1569 */
1570 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1571 s64 lblock;
1572
1573 mp = NULL;
1574 stbl = DT_GETSTBL(rp);
1575 for (n = 0; n < rp->header.nextindex; n++) {
1576 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1577 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1578 rbn, n, &mp, &lblock);
1579 }
1580 if (mp)
1581 release_metapage(mp);
1582 }
1583
1584 /*
1585 * the skipped index was on the left page,
1586 */
1587 if (skip <= off) {
1588 /* insert the new entry in the split page */
1589 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1590
1591 /* linelock stbl of split page */
1592 if (sdtlck->index >= sdtlck->maxcnt)
1593 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1594 slv = & sdtlck->lv[sdtlck->index];
1595 n = skip >> L2DTSLOTSIZE;
1596 slv->offset = sp->header.stblindex + n;
1597 slv->length =
1598 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1599 sdtlck->index++;
1600 }
1601 /*
1602 * the skipped index was on the right page,
1603 */
1604 else {
1605 /* adjust the skip index to reflect the new position */
1606 skip -= nxt;
1607
1608 /* insert the new entry in the right page */
1609 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1610 }
1611
1612 out:
1613 *rmpp = rmp;
1614 *rpxdp = *pxd;
1615
1616 return rc;
1617}
1618
1619
1620/*
1621 * dtExtendPage()
1622 *
1623 * function: extend 1st/only directory leaf page
1624 *
1625 * parameter:
1626 *
1627 * return: 0 - success;
1628 * errno - failure;
1629 * return extended page pinned;
1630 */
1631static int dtExtendPage(tid_t tid,
1632 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1633{
1634 struct super_block *sb = ip->i_sb;
1635 int rc;
1636 struct metapage *smp, *pmp, *mp;
1637 dtpage_t *sp, *pp;
1638 struct pxdlist *pxdlist;
1639 pxd_t *pxd, *tpxd;
1640 int xlen, xsize;
1641 int newstblindex, newstblsize;
1642 int oldstblindex, oldstblsize;
1643 int fsi, last;
1644 struct dtslot *f;
1645 struct btframe *parent;
1646 int n;
1647 struct dt_lock *dtlck;
1648 s64 xaddr, txaddr;
1649 struct tlock *tlck;
1650 struct pxd_lock *pxdlock;
1651 struct lv *lv;
1652 uint type;
1653 struct ldtentry *ldtentry;
1654 u8 *stbl;
1655
1656 /* get page to extend */
1657 smp = split->mp;
1658 sp = DT_PAGE(ip, smp);
1659
1660 /* get parent/root page */
1661 parent = BT_POP(btstack);
1662 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1663 if (rc)
1664 return (rc);
1665
1666 /*
1667 * extend the extent
1668 */
1669 pxdlist = split->pxdlist;
1670 pxd = &pxdlist->pxd[pxdlist->npxd];
1671 pxdlist->npxd++;
1672
1673 xaddr = addressPXD(pxd);
1674 tpxd = &sp->header.self;
1675 txaddr = addressPXD(tpxd);
1676 /* in-place extension */
1677 if (xaddr == txaddr) {
1678 type = tlckEXTEND;
1679 }
1680 /* relocation */
1681 else {
1682 type = tlckNEW;
1683
1684 /* save moved extent descriptor for later free */
1685 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1686 pxdlock = (struct pxd_lock *) & tlck->lock;
1687 pxdlock->flag = mlckFREEPXD;
1688 pxdlock->pxd = sp->header.self;
1689 pxdlock->index = 1;
1690
1691 /*
1692 * Update directory index table to reflect new page address
1693 */
1694 if (DO_INDEX(ip)) {
1695 s64 lblock;
1696
1697 mp = NULL;
1698 stbl = DT_GETSTBL(sp);
1699 for (n = 0; n < sp->header.nextindex; n++) {
1700 ldtentry =
1701 (struct ldtentry *) & sp->slot[stbl[n]];
1702 modify_index(tid, ip,
1703 le32_to_cpu(ldtentry->index),
1704 xaddr, n, &mp, &lblock);
1705 }
1706 if (mp)
1707 release_metapage(mp);
1708 }
1709 }
1710
1711 /*
1712 * extend the page
1713 */
1714 sp->header.self = *pxd;
1715
1716 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1717
1718 BT_MARK_DIRTY(smp, ip);
1719 /*
1720 * acquire a transaction lock on the extended/leaf page
1721 */
1722 tlck = txLock(tid, ip, smp, tlckDTREE | type);
1723 dtlck = (struct dt_lock *) & tlck->lock;
1724 lv = & dtlck->lv[0];
1725
1726 /* update buffer extent descriptor of extended page */
1727 xlen = lengthPXD(pxd);
1728 xsize = xlen << JFS_SBI(sb)->l2bsize;
1729#ifdef _STILL_TO_PORT
1730 bmSetXD(smp, xaddr, xsize);
1731#endif /* _STILL_TO_PORT */
1732
1733 /*
1734 * copy old stbl to new stbl at start of extended area
1735 */
1736 oldstblindex = sp->header.stblindex;
1737 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1738 newstblindex = sp->header.maxslot;
1739 n = xsize >> L2DTSLOTSIZE;
1740 newstblsize = (n + 31) >> L2DTSLOTSIZE;
1741 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1742 sp->header.nextindex);
1743
1744 /*
1745 * in-line extension: linelock old area of extended page
1746 */
1747 if (type == tlckEXTEND) {
1748 /* linelock header */
1749 lv->offset = 0;
1750 lv->length = 1;
1751 dtlck->index++;
1752 lv++;
1753
1754 /* linelock new stbl of extended page */
1755 lv->offset = newstblindex;
1756 lv->length = newstblsize;
1757 }
1758 /*
1759 * relocation: linelock whole relocated area
1760 */
1761 else {
1762 lv->offset = 0;
1763 lv->length = sp->header.maxslot + newstblsize;
1764 }
1765
1766 dtlck->index++;
1767
1768 sp->header.maxslot = n;
1769 sp->header.stblindex = newstblindex;
1770 /* sp->header.nextindex remains the same */
1771
1772 /*
1773 * add old stbl region at head of freelist
1774 */
1775 fsi = oldstblindex;
1776 f = &sp->slot[fsi];
1777 last = sp->header.freelist;
1778 for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1779 f->next = last;
1780 last = fsi;
1781 }
1782 sp->header.freelist = last;
1783 sp->header.freecnt += oldstblsize;
1784
1785 /*
1786 * append free region of newly extended area at tail of freelist
1787 */
1788 /* init free region of newly extended area */
1789 fsi = n = newstblindex + newstblsize;
1790 f = &sp->slot[fsi];
1791 for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1792 f->next = fsi;
1793 f->next = -1;
1794
1795 /* append new free region at tail of old freelist */
1796 fsi = sp->header.freelist;
1797 if (fsi == -1)
1798 sp->header.freelist = n;
1799 else {
1800 do {
1801 f = &sp->slot[fsi];
1802 fsi = f->next;
1803 } while (fsi != -1);
1804
1805 f->next = n;
1806 }
1807
1808 sp->header.freecnt += sp->header.maxslot - n;
1809
1810 /*
1811 * insert the new entry
1812 */
1813 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1814
1815 BT_MARK_DIRTY(pmp, ip);
1816 /*
1817 * linelock any freeslots residing in old extent
1818 */
1819 if (type == tlckEXTEND) {
1820 n = sp->header.maxslot >> 2;
1821 if (sp->header.freelist < n)
1822 dtLinelockFreelist(sp, n, &dtlck);
1823 }
1824
1825 /*
1826 * update parent entry on the parent/root page
1827 */
1828 /*
1829 * acquire a transaction lock on the parent/root page
1830 */
1831 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1832 dtlck = (struct dt_lock *) & tlck->lock;
1833 lv = & dtlck->lv[dtlck->index];
1834
1835 /* linelock parent entry - 1st slot */
1836 lv->offset = 1;
1837 lv->length = 1;
1838 dtlck->index++;
1839
1840 /* update the parent pxd for page extension */
1841 tpxd = (pxd_t *) & pp->slot[1];
1842 *tpxd = *pxd;
1843
1844 DT_PUTPAGE(pmp);
1845 return 0;
1846}
1847
1848
1849/*
1850 * dtSplitRoot()
1851 *
1852 * function:
1853 * split the full root page into
1854 * original/root/split page and new right page
1855 * i.e., root remains fixed in tree anchor (inode) and
1856 * the root is copied to a single new right child page
1857 * since root page << non-root page, and
1858 * the split root page contains a single entry for the
1859 * new right child page.
1860 *
1861 * parameter:
1862 *
1863 * return: 0 - success;
1864 * errno - failure;
1865 * return new page pinned;
1866 */
1867static int dtSplitRoot(tid_t tid,
1868 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1869{
1870 struct super_block *sb = ip->i_sb;
1871 struct metapage *smp;
1872 dtroot_t *sp;
1873 struct metapage *rmp;
1874 dtpage_t *rp;
1875 s64 rbn;
1876 int xlen;
1877 int xsize;
1878 struct dtslot *f;
1879 s8 *stbl;
1880 int fsi, stblsize, n;
1881 struct idtentry *s;
1882 pxd_t *ppxd;
1883 struct pxdlist *pxdlist;
1884 pxd_t *pxd;
1885 struct dt_lock *dtlck;
1886 struct tlock *tlck;
1887 struct lv *lv;
1888
1889 /* get split root page */
1890 smp = split->mp;
1891 sp = &JFS_IP(ip)->i_dtroot;
1892
1893 /*
1894 * allocate/initialize a single (right) child page
1895 *
1896 * N.B. at first split, a one (or two) block to fit new entry
1897 * is allocated; at subsequent split, a full page is allocated;
1898 */
1899 pxdlist = split->pxdlist;
1900 pxd = &pxdlist->pxd[pxdlist->npxd];
1901 pxdlist->npxd++;
1902 rbn = addressPXD(pxd);
1903 xlen = lengthPXD(pxd);
1904 xsize = xlen << JFS_SBI(sb)->l2bsize;
1905 rmp = get_metapage(ip, rbn, xsize, 1);
1906 if (!rmp)
1907 return -EIO;
1908
1909 rp = rmp->data;
1910
1911 /* Allocate blocks to quota. */
1912 if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1913 release_metapage(rmp);
1914 return -EDQUOT;
1915 }
1916
1917 BT_MARK_DIRTY(rmp, ip);
1918 /*
1919 * acquire a transaction lock on the new right page
1920 */
1921 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1922 dtlck = (struct dt_lock *) & tlck->lock;
1923
1924 rp->header.flag =
1925 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1926 rp->header.self = *pxd;
1927
1928 /* initialize sibling pointers */
1929 rp->header.next = 0;
1930 rp->header.prev = 0;
1931
1932 /*
1933 * move in-line root page into new right page extent
1934 */
1935 /* linelock header + copied entries + new stbl (1st slot) in new page */
1936 ASSERT(dtlck->index == 0);
1937 lv = & dtlck->lv[0];
1938 lv->offset = 0;
1939 lv->length = 10; /* 1 + 8 + 1 */
1940 dtlck->index++;
1941
1942 n = xsize >> L2DTSLOTSIZE;
1943 rp->header.maxslot = n;
1944 stblsize = (n + 31) >> L2DTSLOTSIZE;
1945
1946 /* copy old stbl to new stbl at start of extended area */
1947 rp->header.stblindex = DTROOTMAXSLOT;
1948 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1949 memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1950 rp->header.nextindex = sp->header.nextindex;
1951
1952 /* copy old data area to start of new data area */
1953 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1954
1955 /*
1956 * append free region of newly extended area at tail of freelist
1957 */
1958 /* init free region of newly extended area */
1959 fsi = n = DTROOTMAXSLOT + stblsize;
1960 f = &rp->slot[fsi];
1961 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1962 f->next = fsi;
1963 f->next = -1;
1964
1965 /* append new free region at tail of old freelist */
1966 fsi = sp->header.freelist;
1967 if (fsi == -1)
1968 rp->header.freelist = n;
1969 else {
1970 rp->header.freelist = fsi;
1971
1972 do {
1973 f = &rp->slot[fsi];
1974 fsi = f->next;
1975 } while (fsi != -1);
1976
1977 f->next = n;
1978 }
1979
1980 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1981
1982 /*
1983 * Update directory index table for entries now in right page
1984 */
1985 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1986 s64 lblock;
1987 struct metapage *mp = NULL;
1988 struct ldtentry *ldtentry;
1989
1990 stbl = DT_GETSTBL(rp);
1991 for (n = 0; n < rp->header.nextindex; n++) {
1992 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1993 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1994 rbn, n, &mp, &lblock);
1995 }
1996 if (mp)
1997 release_metapage(mp);
1998 }
1999 /*
2000 * insert the new entry into the new right/child page
2001 * (skip index in the new right page will not change)
2002 */
2003 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2004
2005 /*
2006 * reset parent/root page
2007 *
2008 * set the 1st entry offset to 0, which force the left-most key
2009 * at any level of the tree to be less than any search key.
2010 *
2011 * The btree comparison code guarantees that the left-most key on any
2012 * level of the tree is never used, so it doesn't need to be filled in.
2013 */
2014 BT_MARK_DIRTY(smp, ip);
2015 /*
2016 * acquire a transaction lock on the root page (in-memory inode)
2017 */
2018 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2019 dtlck = (struct dt_lock *) & tlck->lock;
2020
2021 /* linelock root */
2022 ASSERT(dtlck->index == 0);
2023 lv = & dtlck->lv[0];
2024 lv->offset = 0;
2025 lv->length = DTROOTMAXSLOT;
2026 dtlck->index++;
2027
2028 /* update page header of root */
2029 if (sp->header.flag & BT_LEAF) {
2030 sp->header.flag &= ~BT_LEAF;
2031 sp->header.flag |= BT_INTERNAL;
2032 }
2033
2034 /* init the first entry */
2035 s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2036 ppxd = (pxd_t *) s;
2037 *ppxd = *pxd;
2038 s->next = -1;
2039 s->namlen = 0;
2040
2041 stbl = sp->header.stbl;
2042 stbl[0] = DTENTRYSTART;
2043 sp->header.nextindex = 1;
2044
2045 /* init freelist */
2046 fsi = DTENTRYSTART + 1;
2047 f = &sp->slot[fsi];
2048
2049 /* init free region of remaining area */
2050 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2051 f->next = fsi;
2052 f->next = -1;
2053
2054 sp->header.freelist = DTENTRYSTART + 1;
2055 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2056
2057 *rmpp = rmp;
2058
2059 return 0;
2060}
2061
2062
2063/*
2064 * dtDelete()
2065 *
2066 * function: delete the entry(s) referenced by a key.
2067 *
2068 * parameter:
2069 *
2070 * return:
2071 */
2072int dtDelete(tid_t tid,
2073 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2074{
2075 int rc = 0;
2076 s64 bn;
2077 struct metapage *mp, *imp;
2078 dtpage_t *p;
2079 int index;
2080 struct btstack btstack;
2081 struct dt_lock *dtlck;
2082 struct tlock *tlck;
2083 struct lv *lv;
2084 int i;
2085 struct ldtentry *ldtentry;
2086 u8 *stbl;
2087 u32 table_index, next_index;
2088 struct metapage *nmp;
2089 dtpage_t *np;
2090
2091 /*
2092 * search for the entry to delete:
2093 *
2094 * dtSearch() returns (leaf page pinned, index at which to delete).
2095 */
2096 if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2097 return rc;
2098
2099 /* retrieve search result */
2100 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2101
2102 /*
2103 * We need to find put the index of the next entry into the
2104 * directory index table in order to resume a readdir from this
2105 * entry.
2106 */
2107 if (DO_INDEX(ip)) {
2108 stbl = DT_GETSTBL(p);
2109 ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2110 table_index = le32_to_cpu(ldtentry->index);
2111 if (index == (p->header.nextindex - 1)) {
2112 /*
2113 * Last entry in this leaf page
2114 */
2115 if ((p->header.flag & BT_ROOT)
2116 || (p->header.next == 0))
2117 next_index = -1;
2118 else {
2119 /* Read next leaf page */
2120 DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2121 nmp, PSIZE, np, rc);
2122 if (rc)
2123 next_index = -1;
2124 else {
2125 stbl = DT_GETSTBL(np);
2126 ldtentry =
2127 (struct ldtentry *) & np->
2128 slot[stbl[0]];
2129 next_index =
2130 le32_to_cpu(ldtentry->index);
2131 DT_PUTPAGE(nmp);
2132 }
2133 }
2134 } else {
2135 ldtentry =
2136 (struct ldtentry *) & p->slot[stbl[index + 1]];
2137 next_index = le32_to_cpu(ldtentry->index);
2138 }
2139 free_index(tid, ip, table_index, next_index);
2140 }
2141 /*
2142 * the leaf page becomes empty, delete the page
2143 */
2144 if (p->header.nextindex == 1) {
2145 /* delete empty page */
2146 rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2147 }
2148 /*
2149 * the leaf page has other entries remaining:
2150 *
2151 * delete the entry from the leaf page.
2152 */
2153 else {
2154 BT_MARK_DIRTY(mp, ip);
2155 /*
2156 * acquire a transaction lock on the leaf page
2157 */
2158 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2159 dtlck = (struct dt_lock *) & tlck->lock;
2160
2161 /*
2162 * Do not assume that dtlck->index will be zero. During a
2163 * rename within a directory, this transaction may have
2164 * modified this page already when adding the new entry.
2165 */
2166
2167 /* linelock header */
2168 if (dtlck->index >= dtlck->maxcnt)
2169 dtlck = (struct dt_lock *) txLinelock(dtlck);
2170 lv = & dtlck->lv[dtlck->index];
2171 lv->offset = 0;
2172 lv->length = 1;
2173 dtlck->index++;
2174
2175 /* linelock stbl of non-root leaf page */
2176 if (!(p->header.flag & BT_ROOT)) {
2177 if (dtlck->index >= dtlck->maxcnt)
2178 dtlck = (struct dt_lock *) txLinelock(dtlck);
2179 lv = & dtlck->lv[dtlck->index];
2180 i = index >> L2DTSLOTSIZE;
2181 lv->offset = p->header.stblindex + i;
2182 lv->length =
2183 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2184 i + 1;
2185 dtlck->index++;
2186 }
2187
2188 /* free the leaf entry */
2189 dtDeleteEntry(p, index, &dtlck);
2190
2191 /*
2192 * Update directory index table for entries moved in stbl
2193 */
2194 if (DO_INDEX(ip) && index < p->header.nextindex) {
2195 s64 lblock;
2196
2197 imp = NULL;
2198 stbl = DT_GETSTBL(p);
2199 for (i = index; i < p->header.nextindex; i++) {
2200 ldtentry =
2201 (struct ldtentry *) & p->slot[stbl[i]];
2202 modify_index(tid, ip,
2203 le32_to_cpu(ldtentry->index),
2204 bn, i, &imp, &lblock);
2205 }
2206 if (imp)
2207 release_metapage(imp);
2208 }
2209
2210 DT_PUTPAGE(mp);
2211 }
2212
2213 return rc;
2214}
2215
2216
2217/*
2218 * dtDeleteUp()
2219 *
2220 * function:
2221 * free empty pages as propagating deletion up the tree
2222 *
2223 * parameter:
2224 *
2225 * return:
2226 */
2227static int dtDeleteUp(tid_t tid, struct inode *ip,
2228 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2229{
2230 int rc = 0;
2231 struct metapage *mp;
2232 dtpage_t *p;
2233 int index, nextindex;
2234 int xlen;
2235 struct btframe *parent;
2236 struct dt_lock *dtlck;
2237 struct tlock *tlck;
2238 struct lv *lv;
2239 struct pxd_lock *pxdlock;
2240 int i;
2241
2242 /*
2243 * keep the root leaf page which has become empty
2244 */
2245 if (BT_IS_ROOT(fmp)) {
2246 /*
2247 * reset the root
2248 *
2249 * dtInitRoot() acquires txlock on the root
2250 */
2251 dtInitRoot(tid, ip, PARENT(ip));
2252
2253 DT_PUTPAGE(fmp);
2254
2255 return 0;
2256 }
2257
2258 /*
2259 * free the non-root leaf page
2260 */
2261 /*
2262 * acquire a transaction lock on the page
2263 *
2264 * write FREEXTENT|NOREDOPAGE log record
2265 * N.B. linelock is overlaid as freed extent descriptor, and
2266 * the buffer page is freed;
2267 */
2268 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2269 pxdlock = (struct pxd_lock *) & tlck->lock;
2270 pxdlock->flag = mlckFREEPXD;
2271 pxdlock->pxd = fp->header.self;
2272 pxdlock->index = 1;
2273
2274 /* update sibling pointers */
2275 if ((rc = dtRelink(tid, ip, fp))) {
2276 BT_PUTPAGE(fmp);
2277 return rc;
2278 }
2279
2280 xlen = lengthPXD(&fp->header.self);
2281
2282 /* Free quota allocation. */
2283 DQUOT_FREE_BLOCK(ip, xlen);
2284
2285 /* free/invalidate its buffer page */
2286 discard_metapage(fmp);
2287
2288 /*
2289 * propagate page deletion up the directory tree
2290 *
2291 * If the delete from the parent page makes it empty,
2292 * continue all the way up the tree.
2293 * stop if the root page is reached (which is never deleted) or
2294 * if the entry deletion does not empty the page.
2295 */
2296 while ((parent = BT_POP(btstack)) != NULL) {
2297 /* pin the parent page <sp> */
2298 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2299 if (rc)
2300 return rc;
2301
2302 /*
2303 * free the extent of the child page deleted
2304 */
2305 index = parent->index;
2306
2307 /*
2308 * delete the entry for the child page from parent
2309 */
2310 nextindex = p->header.nextindex;
2311
2312 /*
2313 * the parent has the single entry being deleted:
2314 *
2315 * free the parent page which has become empty.
2316 */
2317 if (nextindex == 1) {
2318 /*
2319 * keep the root internal page which has become empty
2320 */
2321 if (p->header.flag & BT_ROOT) {
2322 /*
2323 * reset the root
2324 *
2325 * dtInitRoot() acquires txlock on the root
2326 */
2327 dtInitRoot(tid, ip, PARENT(ip));
2328
2329 DT_PUTPAGE(mp);
2330
2331 return 0;
2332 }
2333 /*
2334 * free the parent page
2335 */
2336 else {
2337 /*
2338 * acquire a transaction lock on the page
2339 *
2340 * write FREEXTENT|NOREDOPAGE log record
2341 */
2342 tlck =
2343 txMaplock(tid, ip,
2344 tlckDTREE | tlckFREE);
2345 pxdlock = (struct pxd_lock *) & tlck->lock;
2346 pxdlock->flag = mlckFREEPXD;
2347 pxdlock->pxd = p->header.self;
2348 pxdlock->index = 1;
2349
2350 /* update sibling pointers */
2351 if ((rc = dtRelink(tid, ip, p))) {
2352 DT_PUTPAGE(mp);
2353 return rc;
2354 }
2355
2356 xlen = lengthPXD(&p->header.self);
2357
2358 /* Free quota allocation */
2359 DQUOT_FREE_BLOCK(ip, xlen);
2360
2361 /* free/invalidate its buffer page */
2362 discard_metapage(mp);
2363
2364 /* propagate up */
2365 continue;
2366 }
2367 }
2368
2369 /*
2370 * the parent has other entries remaining:
2371 *
2372 * delete the router entry from the parent page.
2373 */
2374 BT_MARK_DIRTY(mp, ip);
2375 /*
2376 * acquire a transaction lock on the page
2377 *
2378 * action: router entry deletion
2379 */
2380 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2381 dtlck = (struct dt_lock *) & tlck->lock;
2382
2383 /* linelock header */
2384 if (dtlck->index >= dtlck->maxcnt)
2385 dtlck = (struct dt_lock *) txLinelock(dtlck);
2386 lv = & dtlck->lv[dtlck->index];
2387 lv->offset = 0;
2388 lv->length = 1;
2389 dtlck->index++;
2390
2391 /* linelock stbl of non-root leaf page */
2392 if (!(p->header.flag & BT_ROOT)) {
2393 if (dtlck->index < dtlck->maxcnt)
2394 lv++;
2395 else {
2396 dtlck = (struct dt_lock *) txLinelock(dtlck);
2397 lv = & dtlck->lv[0];
2398 }
2399 i = index >> L2DTSLOTSIZE;
2400 lv->offset = p->header.stblindex + i;
2401 lv->length =
2402 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2403 i + 1;
2404 dtlck->index++;
2405 }
2406
2407 /* free the router entry */
2408 dtDeleteEntry(p, index, &dtlck);
2409
2410 /* reset key of new leftmost entry of level (for consistency) */
2411 if (index == 0 &&
2412 ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2413 dtTruncateEntry(p, 0, &dtlck);
2414
2415 /* unpin the parent page */
2416 DT_PUTPAGE(mp);
2417
2418 /* exit propagation up */
2419 break;
2420 }
2421
2422 return 0;
2423}
2424
2425#ifdef _NOTYET
2426/*
2427 * NAME: dtRelocate()
2428 *
2429 * FUNCTION: relocate dtpage (internal or leaf) of directory;
2430 * This function is mainly used by defragfs utility.
2431 */
2432int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2433 s64 nxaddr)
2434{
2435 int rc = 0;
2436 struct metapage *mp, *pmp, *lmp, *rmp;
2437 dtpage_t *p, *pp, *rp = 0, *lp= 0;
2438 s64 bn;
2439 int index;
2440 struct btstack btstack;
2441 pxd_t *pxd;
2442 s64 oxaddr, nextbn, prevbn;
2443 int xlen, xsize;
2444 struct tlock *tlck;
2445 struct dt_lock *dtlck;
2446 struct pxd_lock *pxdlock;
2447 s8 *stbl;
2448 struct lv *lv;
2449
2450 oxaddr = addressPXD(opxd);
2451 xlen = lengthPXD(opxd);
2452
2453 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2454 (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2455 xlen);
2456
2457 /*
2458 * 1. get the internal parent dtpage covering
2459 * router entry for the tartget page to be relocated;
2460 */
2461 rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2462 if (rc)
2463 return rc;
2464
2465 /* retrieve search result */
2466 DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2467 jfs_info("dtRelocate: parent router entry validated.");
2468
2469 /*
2470 * 2. relocate the target dtpage
2471 */
2472 /* read in the target page from src extent */
2473 DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2474 if (rc) {
2475 /* release the pinned parent page */
2476 DT_PUTPAGE(pmp);
2477 return rc;
2478 }
2479
2480 /*
2481 * read in sibling pages if any to update sibling pointers;
2482 */
2483 rmp = NULL;
2484 if (p->header.next) {
2485 nextbn = le64_to_cpu(p->header.next);
2486 DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2487 if (rc) {
2488 DT_PUTPAGE(mp);
2489 DT_PUTPAGE(pmp);
2490 return (rc);
2491 }
2492 }
2493
2494 lmp = NULL;
2495 if (p->header.prev) {
2496 prevbn = le64_to_cpu(p->header.prev);
2497 DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2498 if (rc) {
2499 DT_PUTPAGE(mp);
2500 DT_PUTPAGE(pmp);
2501 if (rmp)
2502 DT_PUTPAGE(rmp);
2503 return (rc);
2504 }
2505 }
2506
2507 /* at this point, all xtpages to be updated are in memory */
2508
2509 /*
2510 * update sibling pointers of sibling dtpages if any;
2511 */
2512 if (lmp) {
2513 tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2514 dtlck = (struct dt_lock *) & tlck->lock;
2515 /* linelock header */
2516 ASSERT(dtlck->index == 0);
2517 lv = & dtlck->lv[0];
2518 lv->offset = 0;
2519 lv->length = 1;
2520 dtlck->index++;
2521
2522 lp->header.next = cpu_to_le64(nxaddr);
2523 DT_PUTPAGE(lmp);
2524 }
2525
2526 if (rmp) {
2527 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2528 dtlck = (struct dt_lock *) & tlck->lock;
2529 /* linelock header */
2530 ASSERT(dtlck->index == 0);
2531 lv = & dtlck->lv[0];
2532 lv->offset = 0;
2533 lv->length = 1;
2534 dtlck->index++;
2535
2536 rp->header.prev = cpu_to_le64(nxaddr);
2537 DT_PUTPAGE(rmp);
2538 }
2539
2540 /*
2541 * update the target dtpage to be relocated
2542 *
2543 * write LOG_REDOPAGE of LOG_NEW type for dst page
2544 * for the whole target page (logredo() will apply
2545 * after image and update bmap for allocation of the
2546 * dst extent), and update bmap for allocation of
2547 * the dst extent;
2548 */
2549 tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2550 dtlck = (struct dt_lock *) & tlck->lock;
2551 /* linelock header */
2552 ASSERT(dtlck->index == 0);
2553 lv = & dtlck->lv[0];
2554
2555 /* update the self address in the dtpage header */
2556 pxd = &p->header.self;
2557 PXDaddress(pxd, nxaddr);
2558
2559 /* the dst page is the same as the src page, i.e.,
2560 * linelock for afterimage of the whole page;
2561 */
2562 lv->offset = 0;
2563 lv->length = p->header.maxslot;
2564 dtlck->index++;
2565
2566 /* update the buffer extent descriptor of the dtpage */
2567 xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2568#ifdef _STILL_TO_PORT
2569 bmSetXD(mp, nxaddr, xsize);
2570#endif /* _STILL_TO_PORT */
2571 /* unpin the relocated page */
2572 DT_PUTPAGE(mp);
2573 jfs_info("dtRelocate: target dtpage relocated.");
2574
2575 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2576 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2577 * will also force a bmap update ).
2578 */
2579
2580 /*
2581 * 3. acquire maplock for the source extent to be freed;
2582 */
2583 /* for dtpage relocation, write a LOG_NOREDOPAGE record
2584 * for the source dtpage (logredo() will init NoRedoPage
2585 * filter and will also update bmap for free of the source
2586 * dtpage), and upadte bmap for free of the source dtpage;
2587 */
2588 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2589 pxdlock = (struct pxd_lock *) & tlck->lock;
2590 pxdlock->flag = mlckFREEPXD;
2591 PXDaddress(&pxdlock->pxd, oxaddr);
2592 PXDlength(&pxdlock->pxd, xlen);
2593 pxdlock->index = 1;
2594
2595 /*
2596 * 4. update the parent router entry for relocation;
2597 *
2598 * acquire tlck for the parent entry covering the target dtpage;
2599 * write LOG_REDOPAGE to apply after image only;
2600 */
2601 jfs_info("dtRelocate: update parent router entry.");
2602 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2603 dtlck = (struct dt_lock *) & tlck->lock;
2604 lv = & dtlck->lv[dtlck->index];
2605
2606 /* update the PXD with the new address */
2607 stbl = DT_GETSTBL(pp);
2608 pxd = (pxd_t *) & pp->slot[stbl[index]];
2609 PXDaddress(pxd, nxaddr);
2610 lv->offset = stbl[index];
2611 lv->length = 1;
2612 dtlck->index++;
2613
2614 /* unpin the parent dtpage */
2615 DT_PUTPAGE(pmp);
2616
2617 return rc;
2618}
2619
2620/*
2621 * NAME: dtSearchNode()
2622 *
2623 * FUNCTION: Search for an dtpage containing a specified address
2624 * This function is mainly used by defragfs utility.
2625 *
2626 * NOTE: Search result on stack, the found page is pinned at exit.
2627 * The result page must be an internal dtpage.
2628 * lmxaddr give the address of the left most page of the
2629 * dtree level, in which the required dtpage resides.
2630 */
2631static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2632 struct btstack * btstack)
2633{
2634 int rc = 0;
2635 s64 bn;
2636 struct metapage *mp;
2637 dtpage_t *p;
2638 int psize = 288; /* initial in-line directory */
2639 s8 *stbl;
2640 int i;
2641 pxd_t *pxd;
2642 struct btframe *btsp;
2643
2644 BT_CLR(btstack); /* reset stack */
2645
2646 /*
2647 * descend tree to the level with specified leftmost page
2648 *
2649 * by convention, root bn = 0.
2650 */
2651 for (bn = 0;;) {
2652 /* get/pin the page to search */
2653 DT_GETPAGE(ip, bn, mp, psize, p, rc);
2654 if (rc)
2655 return rc;
2656
2657 /* does the xaddr of leftmost page of the levevl
2658 * matches levevl search key ?
2659 */
2660 if (p->header.flag & BT_ROOT) {
2661 if (lmxaddr == 0)
2662 break;
2663 } else if (addressPXD(&p->header.self) == lmxaddr)
2664 break;
2665
2666 /*
2667 * descend down to leftmost child page
2668 */
2669 if (p->header.flag & BT_LEAF) {
2670 DT_PUTPAGE(mp);
2671 return -ESTALE;
2672 }
2673
2674 /* get the leftmost entry */
2675 stbl = DT_GETSTBL(p);
2676 pxd = (pxd_t *) & p->slot[stbl[0]];
2677
2678 /* get the child page block address */
2679 bn = addressPXD(pxd);
2680 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2681 /* unpin the parent page */
2682 DT_PUTPAGE(mp);
2683 }
2684
2685 /*
2686 * search each page at the current levevl
2687 */
2688 loop:
2689 stbl = DT_GETSTBL(p);
2690 for (i = 0; i < p->header.nextindex; i++) {
2691 pxd = (pxd_t *) & p->slot[stbl[i]];
2692
2693 /* found the specified router entry */
2694 if (addressPXD(pxd) == addressPXD(kpxd) &&
2695 lengthPXD(pxd) == lengthPXD(kpxd)) {
2696 btsp = btstack->top;
2697 btsp->bn = bn;
2698 btsp->index = i;
2699 btsp->mp = mp;
2700
2701 return 0;
2702 }
2703 }
2704
2705 /* get the right sibling page if any */
2706 if (p->header.next)
2707 bn = le64_to_cpu(p->header.next);
2708 else {
2709 DT_PUTPAGE(mp);
2710 return -ESTALE;
2711 }
2712
2713 /* unpin current page */
2714 DT_PUTPAGE(mp);
2715
2716 /* get the right sibling page */
2717 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2718 if (rc)
2719 return rc;
2720
2721 goto loop;
2722}
2723#endif /* _NOTYET */
2724
2725/*
2726 * dtRelink()
2727 *
2728 * function:
2729 * link around a freed page.
2730 *
2731 * parameter:
2732 * fp: page to be freed
2733 *
2734 * return:
2735 */
2736static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2737{
2738 int rc;
2739 struct metapage *mp;
2740 s64 nextbn, prevbn;
2741 struct tlock *tlck;
2742 struct dt_lock *dtlck;
2743 struct lv *lv;
2744
2745 nextbn = le64_to_cpu(p->header.next);
2746 prevbn = le64_to_cpu(p->header.prev);
2747
2748 /* update prev pointer of the next page */
2749 if (nextbn != 0) {
2750 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2751 if (rc)
2752 return rc;
2753
2754 BT_MARK_DIRTY(mp, ip);
2755 /*
2756 * acquire a transaction lock on the next page
2757 *
2758 * action: update prev pointer;
2759 */
2760 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2761 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2762 tlck, ip, mp);
2763 dtlck = (struct dt_lock *) & tlck->lock;
2764
2765 /* linelock header */
2766 if (dtlck->index >= dtlck->maxcnt)
2767 dtlck = (struct dt_lock *) txLinelock(dtlck);
2768 lv = & dtlck->lv[dtlck->index];
2769 lv->offset = 0;
2770 lv->length = 1;
2771 dtlck->index++;
2772
2773 p->header.prev = cpu_to_le64(prevbn);
2774 DT_PUTPAGE(mp);
2775 }
2776
2777 /* update next pointer of the previous page */
2778 if (prevbn != 0) {
2779 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2780 if (rc)
2781 return rc;
2782
2783 BT_MARK_DIRTY(mp, ip);
2784 /*
2785 * acquire a transaction lock on the prev page
2786 *
2787 * action: update next pointer;
2788 */
2789 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2790 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2791 tlck, ip, mp);
2792 dtlck = (struct dt_lock *) & tlck->lock;
2793
2794 /* linelock header */
2795 if (dtlck->index >= dtlck->maxcnt)
2796 dtlck = (struct dt_lock *) txLinelock(dtlck);
2797 lv = & dtlck->lv[dtlck->index];
2798 lv->offset = 0;
2799 lv->length = 1;
2800 dtlck->index++;
2801
2802 p->header.next = cpu_to_le64(nextbn);
2803 DT_PUTPAGE(mp);
2804 }
2805
2806 return 0;
2807}
2808
2809
2810/*
2811 * dtInitRoot()
2812 *
2813 * initialize directory root (inline in inode)
2814 */
2815void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2816{
2817 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2818 dtroot_t *p;
2819 int fsi;
2820 struct dtslot *f;
2821 struct tlock *tlck;
2822 struct dt_lock *dtlck;
2823 struct lv *lv;
2824 u16 xflag_save;
2825
2826 /*
2827 * If this was previously an non-empty directory, we need to remove
2828 * the old directory table.
2829 */
2830 if (DO_INDEX(ip)) {
2831 if (!jfs_dirtable_inline(ip)) {
2832 struct tblock *tblk = tid_to_tblock(tid);
2833 /*
2834 * We're playing games with the tid's xflag. If
2835 * we're removing a regular file, the file's xtree
2836 * is committed with COMMIT_PMAP, but we always
2837 * commit the directories xtree with COMMIT_PWMAP.
2838 */
2839 xflag_save = tblk->xflag;
2840 tblk->xflag = 0;
2841 /*
2842 * xtTruncate isn't guaranteed to fully truncate
2843 * the xtree. The caller needs to check i_size
2844 * after committing the transaction to see if
2845 * additional truncation is needed. The
2846 * COMMIT_Stale flag tells caller that we
2847 * initiated the truncation.
2848 */
2849 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2850 set_cflag(COMMIT_Stale, ip);
2851
2852 tblk->xflag = xflag_save;
2853 } else
2854 ip->i_size = 1;
2855
2856 jfs_ip->next_index = 2;
2857 } else
2858 ip->i_size = IDATASIZE;
2859
2860 /*
2861 * acquire a transaction lock on the root
2862 *
2863 * action: directory initialization;
2864 */
2865 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2866 tlckDTREE | tlckENTRY | tlckBTROOT);
2867 dtlck = (struct dt_lock *) & tlck->lock;
2868
2869 /* linelock root */
2870 ASSERT(dtlck->index == 0);
2871 lv = & dtlck->lv[0];
2872 lv->offset = 0;
2873 lv->length = DTROOTMAXSLOT;
2874 dtlck->index++;
2875
2876 p = &jfs_ip->i_dtroot;
2877
2878 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2879
2880 p->header.nextindex = 0;
2881
2882 /* init freelist */
2883 fsi = 1;
2884 f = &p->slot[fsi];
2885
2886 /* init data area of root */
2887 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2888 f->next = fsi;
2889 f->next = -1;
2890
2891 p->header.freelist = 1;
2892 p->header.freecnt = 8;
2893
2894 /* init '..' entry */
2895 p->header.idotdot = cpu_to_le32(idotdot);
2896
2897 return;
2898}
2899
2900/*
2901 * add_missing_indices()
2902 *
2903 * function: Fix dtree page in which one or more entries has an invalid index.
2904 * fsck.jfs should really fix this, but it currently does not.
2905 * Called from jfs_readdir when bad index is detected.
2906 */
2907static void add_missing_indices(struct inode *inode, s64 bn)
2908{
2909 struct ldtentry *d;
2910 struct dt_lock *dtlck;
2911 int i;
2912 uint index;
2913 struct lv *lv;
2914 struct metapage *mp;
2915 dtpage_t *p;
2916 int rc;
2917 s8 *stbl;
2918 tid_t tid;
2919 struct tlock *tlck;
2920
2921 tid = txBegin(inode->i_sb, 0);
2922
2923 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2924
2925 if (rc) {
2926 printk(KERN_ERR "DT_GETPAGE failed!\n");
2927 goto end;
2928 }
2929 BT_MARK_DIRTY(mp, inode);
2930
2931 ASSERT(p->header.flag & BT_LEAF);
2932
2933 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2934 dtlck = (struct dt_lock *) &tlck->lock;
2935
2936 stbl = DT_GETSTBL(p);
2937 for (i = 0; i < p->header.nextindex; i++) {
2938 d = (struct ldtentry *) &p->slot[stbl[i]];
2939 index = le32_to_cpu(d->index);
2940 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2941 d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2942 if (dtlck->index >= dtlck->maxcnt)
2943 dtlck = (struct dt_lock *) txLinelock(dtlck);
2944 lv = &dtlck->lv[dtlck->index];
2945 lv->offset = stbl[i];
2946 lv->length = 1;
2947 dtlck->index++;
2948 }
2949 }
2950
2951 DT_PUTPAGE(mp);
2952 (void) txCommit(tid, 1, &inode, 0);
2953end:
2954 txEnd(tid);
2955}
2956
2957/*
2958 * Buffer to hold directory entry info while traversing a dtree page
2959 * before being fed to the filldir function
2960 */
2961struct jfs_dirent {
2962 loff_t position;
2963 int ino;
2964 u16 name_len;
2965 char name[0];
2966};
2967
2968/*
2969 * function to determine next variable-sized jfs_dirent in buffer
2970 */
2971static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2972{
2973 return (struct jfs_dirent *)
2974 ((char *)dirent +
2975 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2976 sizeof (loff_t) - 1) &
2977 ~(sizeof (loff_t) - 1)));
2978}
2979
2980/*
2981 * jfs_readdir()
2982 *
2983 * function: read directory entries sequentially
2984 * from the specified entry offset
2985 *
2986 * parameter:
2987 *
2988 * return: offset = (pn, index) of start entry
2989 * of next jfs_readdir()/dtRead()
2990 */
2991int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
2992{
2993 struct inode *ip = filp->f_dentry->d_inode;
2994 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
2995 int rc = 0;
2996 loff_t dtpos; /* legacy OS/2 style position */
2997 struct dtoffset {
2998 s16 pn;
2999 s16 index;
3000 s32 unused;
3001 } *dtoffset = (struct dtoffset *) &dtpos;
3002 s64 bn;
3003 struct metapage *mp;
3004 dtpage_t *p;
3005 int index;
3006 s8 *stbl;
3007 struct btstack btstack;
3008 int i, next;
3009 struct ldtentry *d;
3010 struct dtslot *t;
3011 int d_namleft, len, outlen;
3012 unsigned long dirent_buf;
3013 char *name_ptr;
3014 u32 dir_index;
3015 int do_index = 0;
3016 uint loop_count = 0;
3017 struct jfs_dirent *jfs_dirent;
3018 int jfs_dirents;
3019 int overflow, fix_page, page_fixed = 0;
3020 static int unique_pos = 2; /* If we can't fix broken index */
3021
3022 if (filp->f_pos == DIREND)
3023 return 0;
3024
3025 if (DO_INDEX(ip)) {
3026 /*
3027 * persistent index is stored in directory entries.
3028 * Special cases: 0 = .
3029 * 1 = ..
3030 * -1 = End of directory
3031 */
3032 do_index = 1;
3033
3034 dir_index = (u32) filp->f_pos;
3035
3036 if (dir_index > 1) {
3037 struct dir_table_slot dirtab_slot;
3038
3039 if (dtEmpty(ip) ||
3040 (dir_index >= JFS_IP(ip)->next_index)) {
3041 /* Stale position. Directory has shrunk */
3042 filp->f_pos = DIREND;
3043 return 0;
3044 }
3045 repeat:
3046 rc = read_index(ip, dir_index, &dirtab_slot);
3047 if (rc) {
3048 filp->f_pos = DIREND;
3049 return rc;
3050 }
3051 if (dirtab_slot.flag == DIR_INDEX_FREE) {
3052 if (loop_count++ > JFS_IP(ip)->next_index) {
3053 jfs_err("jfs_readdir detected "
3054 "infinite loop!");
3055 filp->f_pos = DIREND;
3056 return 0;
3057 }
3058 dir_index = le32_to_cpu(dirtab_slot.addr2);
3059 if (dir_index == -1) {
3060 filp->f_pos = DIREND;
3061 return 0;
3062 }
3063 goto repeat;
3064 }
3065 bn = addressDTS(&dirtab_slot);
3066 index = dirtab_slot.slot;
3067 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3068 if (rc) {
3069 filp->f_pos = DIREND;
3070 return 0;
3071 }
3072 if (p->header.flag & BT_INTERNAL) {
3073 jfs_err("jfs_readdir: bad index table");
3074 DT_PUTPAGE(mp);
3075 filp->f_pos = -1;
3076 return 0;
3077 }
3078 } else {
3079 if (dir_index == 0) {
3080 /*
3081 * self "."
3082 */
3083 filp->f_pos = 0;
3084 if (filldir(dirent, ".", 1, 0, ip->i_ino,
3085 DT_DIR))
3086 return 0;
3087 }
3088 /*
3089 * parent ".."
3090 */
3091 filp->f_pos = 1;
3092 if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3093 return 0;
3094
3095 /*
3096 * Find first entry of left-most leaf
3097 */
3098 if (dtEmpty(ip)) {
3099 filp->f_pos = DIREND;
3100 return 0;
3101 }
3102
3103 if ((rc = dtReadFirst(ip, &btstack)))
3104 return rc;
3105
3106 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3107 }
3108 } else {
3109 /*
3110 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3111 *
3112 * pn = index = 0: First entry "."
3113 * pn = 0; index = 1: Second entry ".."
3114 * pn > 0: Real entries, pn=1 -> leftmost page
3115 * pn = index = -1: No more entries
3116 */
3117 dtpos = filp->f_pos;
3118 if (dtpos == 0) {
3119 /* build "." entry */
3120
3121 if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3122 DT_DIR))
3123 return 0;
3124 dtoffset->index = 1;
3125 filp->f_pos = dtpos;
3126 }
3127
3128 if (dtoffset->pn == 0) {
3129 if (dtoffset->index == 1) {
3130 /* build ".." entry */
3131
3132 if (filldir(dirent, "..", 2, filp->f_pos,
3133 PARENT(ip), DT_DIR))
3134 return 0;
3135 } else {
3136 jfs_err("jfs_readdir called with "
3137 "invalid offset!");
3138 }
3139 dtoffset->pn = 1;
3140 dtoffset->index = 0;
3141 filp->f_pos = dtpos;
3142 }
3143
3144 if (dtEmpty(ip)) {
3145 filp->f_pos = DIREND;
3146 return 0;
3147 }
3148
3149 if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3150 jfs_err("jfs_readdir: unexpected rc = %d "
3151 "from dtReadNext", rc);
3152 filp->f_pos = DIREND;
3153 return 0;
3154 }
3155 /* get start leaf page and index */
3156 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3157
3158 /* offset beyond directory eof ? */
3159 if (bn < 0) {
3160 filp->f_pos = DIREND;
3161 return 0;
3162 }
3163 }
3164
3165 dirent_buf = __get_free_page(GFP_KERNEL);
3166 if (dirent_buf == 0) {
3167 DT_PUTPAGE(mp);
3168 jfs_warn("jfs_readdir: __get_free_page failed!");
3169 filp->f_pos = DIREND;
3170 return -ENOMEM;
3171 }
3172
3173 while (1) {
3174 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3175 jfs_dirents = 0;
3176 overflow = fix_page = 0;
3177
3178 stbl = DT_GETSTBL(p);
3179
3180 for (i = index; i < p->header.nextindex; i++) {
3181 d = (struct ldtentry *) & p->slot[stbl[i]];
3182
3183 if (((long) jfs_dirent + d->namlen + 1) >
3184 (dirent_buf + PSIZE)) {
3185 /* DBCS codepages could overrun dirent_buf */
3186 index = i;
3187 overflow = 1;
3188 break;
3189 }
3190
3191 d_namleft = d->namlen;
3192 name_ptr = jfs_dirent->name;
3193 jfs_dirent->ino = le32_to_cpu(d->inumber);
3194
3195 if (do_index) {
3196 len = min(d_namleft, DTLHDRDATALEN);
3197 jfs_dirent->position = le32_to_cpu(d->index);
3198 /*
3199 * d->index should always be valid, but it
3200 * isn't. fsck.jfs doesn't create the
3201 * directory index for the lost+found
3202 * directory. Rather than let it go,
3203 * we can try to fix it.
3204 */
3205 if ((jfs_dirent->position < 2) ||
3206 (jfs_dirent->position >=
3207 JFS_IP(ip)->next_index)) {
3208 if (!page_fixed && !isReadOnly(ip)) {
3209 fix_page = 1;
3210 /*
3211 * setting overflow and setting
3212 * index to i will cause the
3213 * same page to be processed
3214 * again starting here
3215 */
3216 overflow = 1;
3217 index = i;
3218 break;
3219 }
3220 jfs_dirent->position = unique_pos++;
3221 }
3222 } else {
3223 jfs_dirent->position = dtpos;
3224 len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3225 }
3226
3227 /* copy the name of head/only segment */
3228 outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3229 codepage);
3230 jfs_dirent->name_len = outlen;
3231
3232 /* copy name in the additional segment(s) */
3233 next = d->next;
3234 while (next >= 0) {
3235 t = (struct dtslot *) & p->slot[next];
3236 name_ptr += outlen;
3237 d_namleft -= len;
3238 /* Sanity Check */
3239 if (d_namleft == 0) {
3240 jfs_error(ip->i_sb,
3241 "JFS:Dtree error: ino = "
3242 "%ld, bn=%Ld, index = %d",
3243 (long)ip->i_ino,
3244 (long long)bn,
3245 i);
3246 goto skip_one;
3247 }
3248 len = min(d_namleft, DTSLOTDATALEN);
3249 outlen = jfs_strfromUCS_le(name_ptr, t->name,
3250 len, codepage);
3251 jfs_dirent->name_len += outlen;
3252
3253 next = t->next;
3254 }
3255
3256 jfs_dirents++;
3257 jfs_dirent = next_jfs_dirent(jfs_dirent);
3258skip_one:
3259 if (!do_index)
3260 dtoffset->index++;
3261 }
3262
3263 if (!overflow) {
3264 /* Point to next leaf page */
3265 if (p->header.flag & BT_ROOT)
3266 bn = 0;
3267 else {
3268 bn = le64_to_cpu(p->header.next);
3269 index = 0;
3270 /* update offset (pn:index) for new page */
3271 if (!do_index) {
3272 dtoffset->pn++;
3273 dtoffset->index = 0;
3274 }
3275 }
3276 page_fixed = 0;
3277 }
3278
3279 /* unpin previous leaf page */
3280 DT_PUTPAGE(mp);
3281
3282 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3283 while (jfs_dirents--) {
3284 filp->f_pos = jfs_dirent->position;
3285 if (filldir(dirent, jfs_dirent->name,
3286 jfs_dirent->name_len, filp->f_pos,
3287 jfs_dirent->ino, DT_UNKNOWN))
3288 goto out;
3289 jfs_dirent = next_jfs_dirent(jfs_dirent);
3290 }
3291
3292 if (fix_page) {
3293 add_missing_indices(ip, bn);
3294 page_fixed = 1;
3295 }
3296
3297 if (!overflow && (bn == 0)) {
3298 filp->f_pos = DIREND;
3299 break;
3300 }
3301
3302 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3303 if (rc) {
3304 free_page(dirent_buf);
3305 return rc;
3306 }
3307 }
3308
3309 out:
3310 free_page(dirent_buf);
3311
3312 return rc;
3313}
3314
3315
3316/*
3317 * dtReadFirst()
3318 *
3319 * function: get the leftmost page of the directory
3320 */
3321static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3322{
3323 int rc = 0;
3324 s64 bn;
3325 int psize = 288; /* initial in-line directory */
3326 struct metapage *mp;
3327 dtpage_t *p;
3328 s8 *stbl;
3329 struct btframe *btsp;
3330 pxd_t *xd;
3331
3332 BT_CLR(btstack); /* reset stack */
3333
3334 /*
3335 * descend leftmost path of the tree
3336 *
3337 * by convention, root bn = 0.
3338 */
3339 for (bn = 0;;) {
3340 DT_GETPAGE(ip, bn, mp, psize, p, rc);
3341 if (rc)
3342 return rc;
3343
3344 /*
3345 * leftmost leaf page
3346 */
3347 if (p->header.flag & BT_LEAF) {
3348 /* return leftmost entry */
3349 btsp = btstack->top;
3350 btsp->bn = bn;
3351 btsp->index = 0;
3352 btsp->mp = mp;
3353
3354 return 0;
3355 }
3356
3357 /*
3358 * descend down to leftmost child page
3359 */
3360 if (BT_STACK_FULL(btstack)) {
3361 DT_PUTPAGE(mp);
3362 jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3363 BT_STACK_DUMP(btstack);
3364 return -EIO;
3365 }
3366 /* push (bn, index) of the parent page/entry */
3367 BT_PUSH(btstack, bn, 0);
3368
3369 /* get the leftmost entry */
3370 stbl = DT_GETSTBL(p);
3371 xd = (pxd_t *) & p->slot[stbl[0]];
3372
3373 /* get the child page block address */
3374 bn = addressPXD(xd);
3375 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3376
3377 /* unpin the parent page */
3378 DT_PUTPAGE(mp);
3379 }
3380}
3381
3382
3383/*
3384 * dtReadNext()
3385 *
3386 * function: get the page of the specified offset (pn:index)
3387 *
3388 * return: if (offset > eof), bn = -1;
3389 *
3390 * note: if index > nextindex of the target leaf page,
3391 * start with 1st entry of next leaf page;
3392 */
3393static int dtReadNext(struct inode *ip, loff_t * offset,
3394 struct btstack * btstack)
3395{
3396 int rc = 0;
3397 struct dtoffset {
3398 s16 pn;
3399 s16 index;
3400 s32 unused;
3401 } *dtoffset = (struct dtoffset *) offset;
3402 s64 bn;
3403 struct metapage *mp;
3404 dtpage_t *p;
3405 int index;
3406 int pn;
3407 s8 *stbl;
3408 struct btframe *btsp, *parent;
3409 pxd_t *xd;
3410
3411 /*
3412 * get leftmost leaf page pinned
3413 */
3414 if ((rc = dtReadFirst(ip, btstack)))
3415 return rc;
3416
3417 /* get leaf page */
3418 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3419
3420 /* get the start offset (pn:index) */
3421 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3422 index = dtoffset->index;
3423
3424 /* start at leftmost page ? */
3425 if (pn == 0) {
3426 /* offset beyond eof ? */
3427 if (index < p->header.nextindex)
3428 goto out;
3429
3430 if (p->header.flag & BT_ROOT) {
3431 bn = -1;
3432 goto out;
3433 }
3434
3435 /* start with 1st entry of next leaf page */
3436 dtoffset->pn++;
3437 dtoffset->index = index = 0;
3438 goto a;
3439 }
3440
3441 /* start at non-leftmost page: scan parent pages for large pn */
3442 if (p->header.flag & BT_ROOT) {
3443 bn = -1;
3444 goto out;
3445 }
3446
3447 /* start after next leaf page ? */
3448 if (pn > 1)
3449 goto b;
3450
3451 /* get leaf page pn = 1 */
3452 a:
3453 bn = le64_to_cpu(p->header.next);
3454
3455 /* unpin leaf page */
3456 DT_PUTPAGE(mp);
3457
3458 /* offset beyond eof ? */
3459 if (bn == 0) {
3460 bn = -1;
3461 goto out;
3462 }
3463
3464 goto c;
3465
3466 /*
3467 * scan last internal page level to get target leaf page
3468 */
3469 b:
3470 /* unpin leftmost leaf page */
3471 DT_PUTPAGE(mp);
3472
3473 /* get left most parent page */
3474 btsp = btstack->top;
3475 parent = btsp - 1;
3476 bn = parent->bn;
3477 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3478 if (rc)
3479 return rc;
3480
3481 /* scan parent pages at last internal page level */
3482 while (pn >= p->header.nextindex) {
3483 pn -= p->header.nextindex;
3484
3485 /* get next parent page address */
3486 bn = le64_to_cpu(p->header.next);
3487
3488 /* unpin current parent page */
3489 DT_PUTPAGE(mp);
3490
3491 /* offset beyond eof ? */
3492 if (bn == 0) {
3493 bn = -1;
3494 goto out;
3495 }
3496
3497 /* get next parent page */
3498 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3499 if (rc)
3500 return rc;
3501
3502 /* update parent page stack frame */
3503 parent->bn = bn;
3504 }
3505
3506 /* get leaf page address */
3507 stbl = DT_GETSTBL(p);
3508 xd = (pxd_t *) & p->slot[stbl[pn]];
3509 bn = addressPXD(xd);
3510
3511 /* unpin parent page */
3512 DT_PUTPAGE(mp);
3513
3514 /*
3515 * get target leaf page
3516 */
3517 c:
3518 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3519 if (rc)
3520 return rc;
3521
3522 /*
3523 * leaf page has been completed:
3524 * start with 1st entry of next leaf page
3525 */
3526 if (index >= p->header.nextindex) {
3527 bn = le64_to_cpu(p->header.next);
3528
3529 /* unpin leaf page */
3530 DT_PUTPAGE(mp);
3531
3532 /* offset beyond eof ? */
3533 if (bn == 0) {
3534 bn = -1;
3535 goto out;
3536 }
3537
3538 /* get next leaf page */
3539 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3540 if (rc)
3541 return rc;
3542
3543 /* start with 1st entry of next leaf page */
3544 dtoffset->pn++;
3545 dtoffset->index = 0;
3546 }
3547
3548 out:
3549 /* return target leaf page pinned */
3550 btsp = btstack->top;
3551 btsp->bn = bn;
3552 btsp->index = dtoffset->index;
3553 btsp->mp = mp;
3554
3555 return 0;
3556}
3557
3558
3559/*
3560 * dtCompare()
3561 *
3562 * function: compare search key with an internal entry
3563 *
3564 * return:
3565 * < 0 if k is < record
3566 * = 0 if k is = record
3567 * > 0 if k is > record
3568 */
3569static int dtCompare(struct component_name * key, /* search key */
3570 dtpage_t * p, /* directory page */
3571 int si)
3572{ /* entry slot index */
3573 wchar_t *kname;
3574 __le16 *name;
3575 int klen, namlen, len, rc;
3576 struct idtentry *ih;
3577 struct dtslot *t;
3578
3579 /*
3580 * force the left-most key on internal pages, at any level of
3581 * the tree, to be less than any search key.
3582 * this obviates having to update the leftmost key on an internal
3583 * page when the user inserts a new key in the tree smaller than
3584 * anything that has been stored.
3585 *
3586 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3587 * at any internal page at any level of the tree,
3588 * it descends to child of the entry anyway -
3589 * ? make the entry as min size dummy entry)
3590 *
3591 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3592 * return (1);
3593 */
3594
3595 kname = key->name;
3596 klen = key->namlen;
3597
3598 ih = (struct idtentry *) & p->slot[si];
3599 si = ih->next;
3600 name = ih->name;
3601 namlen = ih->namlen;
3602 len = min(namlen, DTIHDRDATALEN);
3603
3604 /* compare with head/only segment */
3605 len = min(klen, len);
3606 if ((rc = UniStrncmp_le(kname, name, len)))
3607 return rc;
3608
3609 klen -= len;
3610 namlen -= len;
3611
3612 /* compare with additional segment(s) */
3613 kname += len;
3614 while (klen > 0 && namlen > 0) {
3615 /* compare with next name segment */
3616 t = (struct dtslot *) & p->slot[si];
3617 len = min(namlen, DTSLOTDATALEN);
3618 len = min(klen, len);
3619 name = t->name;
3620 if ((rc = UniStrncmp_le(kname, name, len)))
3621 return rc;
3622
3623 klen -= len;
3624 namlen -= len;
3625 kname += len;
3626 si = t->next;
3627 }
3628
3629 return (klen - namlen);
3630}
3631
3632
3633
3634
3635/*
3636 * ciCompare()
3637 *
3638 * function: compare search key with an (leaf/internal) entry
3639 *
3640 * return:
3641 * < 0 if k is < record
3642 * = 0 if k is = record
3643 * > 0 if k is > record
3644 */
3645static int ciCompare(struct component_name * key, /* search key */
3646 dtpage_t * p, /* directory page */
3647 int si, /* entry slot index */
3648 int flag)
3649{
3650 wchar_t *kname, x;
3651 __le16 *name;
3652 int klen, namlen, len, rc;
3653 struct ldtentry *lh;
3654 struct idtentry *ih;
3655 struct dtslot *t;
3656 int i;
3657
3658 /*
3659 * force the left-most key on internal pages, at any level of
3660 * the tree, to be less than any search key.
3661 * this obviates having to update the leftmost key on an internal
3662 * page when the user inserts a new key in the tree smaller than
3663 * anything that has been stored.
3664 *
3665 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3666 * at any internal page at any level of the tree,
3667 * it descends to child of the entry anyway -
3668 * ? make the entry as min size dummy entry)
3669 *
3670 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3671 * return (1);
3672 */
3673
3674 kname = key->name;
3675 klen = key->namlen;
3676
3677 /*
3678 * leaf page entry
3679 */
3680 if (p->header.flag & BT_LEAF) {
3681 lh = (struct ldtentry *) & p->slot[si];
3682 si = lh->next;
3683 name = lh->name;
3684 namlen = lh->namlen;
3685 if (flag & JFS_DIR_INDEX)
3686 len = min(namlen, DTLHDRDATALEN);
3687 else
3688 len = min(namlen, DTLHDRDATALEN_LEGACY);
3689 }
3690 /*
3691 * internal page entry
3692 */
3693 else {
3694 ih = (struct idtentry *) & p->slot[si];
3695 si = ih->next;
3696 name = ih->name;
3697 namlen = ih->namlen;
3698 len = min(namlen, DTIHDRDATALEN);
3699 }
3700
3701 /* compare with head/only segment */
3702 len = min(klen, len);
3703 for (i = 0; i < len; i++, kname++, name++) {
3704 /* only uppercase if case-insensitive support is on */
3705 if ((flag & JFS_OS2) == JFS_OS2)
3706 x = UniToupper(le16_to_cpu(*name));
3707 else
3708 x = le16_to_cpu(*name);
3709 if ((rc = *kname - x))
3710 return rc;
3711 }
3712
3713 klen -= len;
3714 namlen -= len;
3715
3716 /* compare with additional segment(s) */
3717 while (klen > 0 && namlen > 0) {
3718 /* compare with next name segment */
3719 t = (struct dtslot *) & p->slot[si];
3720 len = min(namlen, DTSLOTDATALEN);
3721 len = min(klen, len);
3722 name = t->name;
3723 for (i = 0; i < len; i++, kname++, name++) {
3724 /* only uppercase if case-insensitive support is on */
3725 if ((flag & JFS_OS2) == JFS_OS2)
3726 x = UniToupper(le16_to_cpu(*name));
3727 else
3728 x = le16_to_cpu(*name);
3729
3730 if ((rc = *kname - x))
3731 return rc;
3732 }
3733
3734 klen -= len;
3735 namlen -= len;
3736 si = t->next;
3737 }
3738
3739 return (klen - namlen);
3740}
3741
3742
3743/*
3744 * ciGetLeafPrefixKey()
3745 *
3746 * function: compute prefix of suffix compression
3747 * from two adjacent leaf entries
3748 * across page boundary
3749 *
3750 * return: non-zero on error
3751 *
3752 */
3753static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3754 int ri, struct component_name * key, int flag)
3755{
3756 int klen, namlen;
3757 wchar_t *pl, *pr, *kname;
3758 struct component_name lkey;
3759 struct component_name rkey;
3760
3761 lkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3762 GFP_KERNEL);
3763 if (lkey.name == NULL)
3764 return -ENOSPC;
3765
3766 rkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3767 GFP_KERNEL);
3768 if (rkey.name == NULL) {
3769 kfree(lkey.name);
3770 return -ENOSPC;
3771 }
3772
3773 /* get left and right key */
3774 dtGetKey(lp, li, &lkey, flag);
3775 lkey.name[lkey.namlen] = 0;
3776
3777 if ((flag & JFS_OS2) == JFS_OS2)
3778 ciToUpper(&lkey);
3779
3780 dtGetKey(rp, ri, &rkey, flag);
3781 rkey.name[rkey.namlen] = 0;
3782
3783
3784 if ((flag & JFS_OS2) == JFS_OS2)
3785 ciToUpper(&rkey);
3786
3787 /* compute prefix */
3788 klen = 0;
3789 kname = key->name;
3790 namlen = min(lkey.namlen, rkey.namlen);
3791 for (pl = lkey.name, pr = rkey.name;
3792 namlen; pl++, pr++, namlen--, klen++, kname++) {
3793 *kname = *pr;
3794 if (*pl != *pr) {
3795 key->namlen = klen + 1;
3796 goto free_names;
3797 }
3798 }
3799
3800 /* l->namlen <= r->namlen since l <= r */
3801 if (lkey.namlen < rkey.namlen) {
3802 *kname = *pr;
3803 key->namlen = klen + 1;
3804 } else /* l->namelen == r->namelen */
3805 key->namlen = klen;
3806
3807free_names:
3808 kfree(lkey.name);
3809 kfree(rkey.name);
3810 return 0;
3811}
3812
3813
3814
3815/*
3816 * dtGetKey()
3817 *
3818 * function: get key of the entry
3819 */
3820static void dtGetKey(dtpage_t * p, int i, /* entry index */
3821 struct component_name * key, int flag)
3822{
3823 int si;
3824 s8 *stbl;
3825 struct ldtentry *lh;
3826 struct idtentry *ih;
3827 struct dtslot *t;
3828 int namlen, len;
3829 wchar_t *kname;
3830 __le16 *name;
3831
3832 /* get entry */
3833 stbl = DT_GETSTBL(p);
3834 si = stbl[i];
3835 if (p->header.flag & BT_LEAF) {
3836 lh = (struct ldtentry *) & p->slot[si];
3837 si = lh->next;
3838 namlen = lh->namlen;
3839 name = lh->name;
3840 if (flag & JFS_DIR_INDEX)
3841 len = min(namlen, DTLHDRDATALEN);
3842 else
3843 len = min(namlen, DTLHDRDATALEN_LEGACY);
3844 } else {
3845 ih = (struct idtentry *) & p->slot[si];
3846 si = ih->next;
3847 namlen = ih->namlen;
3848 name = ih->name;
3849 len = min(namlen, DTIHDRDATALEN);
3850 }
3851
3852 key->namlen = namlen;
3853 kname = key->name;
3854
3855 /*
3856 * move head/only segment
3857 */
3858 UniStrncpy_from_le(kname, name, len);
3859
3860 /*
3861 * move additional segment(s)
3862 */
3863 while (si >= 0) {
3864 /* get next segment */
3865 t = &p->slot[si];
3866 kname += len;
3867 namlen -= len;
3868 len = min(namlen, DTSLOTDATALEN);
3869 UniStrncpy_from_le(kname, t->name, len);
3870
3871 si = t->next;
3872 }
3873}
3874
3875
3876/*
3877 * dtInsertEntry()
3878 *
3879 * function: allocate free slot(s) and
3880 * write a leaf/internal entry
3881 *
3882 * return: entry slot index
3883 */
3884static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3885 ddata_t * data, struct dt_lock ** dtlock)
3886{
3887 struct dtslot *h, *t;
3888 struct ldtentry *lh = NULL;
3889 struct idtentry *ih = NULL;
3890 int hsi, fsi, klen, len, nextindex;
3891 wchar_t *kname;
3892 __le16 *name;
3893 s8 *stbl;
3894 pxd_t *xd;
3895 struct dt_lock *dtlck = *dtlock;
3896 struct lv *lv;
3897 int xsi, n;
3898 s64 bn = 0;
3899 struct metapage *mp = NULL;
3900
3901 klen = key->namlen;
3902 kname = key->name;
3903
3904 /* allocate a free slot */
3905 hsi = fsi = p->header.freelist;
3906 h = &p->slot[fsi];
3907 p->header.freelist = h->next;
3908 --p->header.freecnt;
3909
3910 /* open new linelock */
3911 if (dtlck->index >= dtlck->maxcnt)
3912 dtlck = (struct dt_lock *) txLinelock(dtlck);
3913
3914 lv = & dtlck->lv[dtlck->index];
3915 lv->offset = hsi;
3916
3917 /* write head/only segment */
3918 if (p->header.flag & BT_LEAF) {
3919 lh = (struct ldtentry *) h;
3920 lh->next = h->next;
3921 lh->inumber = cpu_to_le32(data->leaf.ino);
3922 lh->namlen = klen;
3923 name = lh->name;
3924 if (data->leaf.ip) {
3925 len = min(klen, DTLHDRDATALEN);
3926 if (!(p->header.flag & BT_ROOT))
3927 bn = addressPXD(&p->header.self);
3928 lh->index = cpu_to_le32(add_index(data->leaf.tid,
3929 data->leaf.ip,
3930 bn, index));
3931 } else
3932 len = min(klen, DTLHDRDATALEN_LEGACY);
3933 } else {
3934 ih = (struct idtentry *) h;
3935 ih->next = h->next;
3936 xd = (pxd_t *) ih;
3937 *xd = data->xd;
3938 ih->namlen = klen;
3939 name = ih->name;
3940 len = min(klen, DTIHDRDATALEN);
3941 }
3942
3943 UniStrncpy_to_le(name, kname, len);
3944
3945 n = 1;
3946 xsi = hsi;
3947
3948 /* write additional segment(s) */
3949 t = h;
3950 klen -= len;
3951 while (klen) {
3952 /* get free slot */
3953 fsi = p->header.freelist;
3954 t = &p->slot[fsi];
3955 p->header.freelist = t->next;
3956 --p->header.freecnt;
3957
3958 /* is next slot contiguous ? */
3959 if (fsi != xsi + 1) {
3960 /* close current linelock */
3961 lv->length = n;
3962 dtlck->index++;
3963
3964 /* open new linelock */
3965 if (dtlck->index < dtlck->maxcnt)
3966 lv++;
3967 else {
3968 dtlck = (struct dt_lock *) txLinelock(dtlck);
3969 lv = & dtlck->lv[0];
3970 }
3971
3972 lv->offset = fsi;
3973 n = 0;
3974 }
3975
3976 kname += len;
3977 len = min(klen, DTSLOTDATALEN);
3978 UniStrncpy_to_le(t->name, kname, len);
3979
3980 n++;
3981 xsi = fsi;
3982 klen -= len;
3983 }
3984
3985 /* close current linelock */
3986 lv->length = n;
3987 dtlck->index++;
3988
3989 *dtlock = dtlck;
3990
3991 /* terminate last/only segment */
3992 if (h == t) {
3993 /* single segment entry */
3994 if (p->header.flag & BT_LEAF)
3995 lh->next = -1;
3996 else
3997 ih->next = -1;
3998 } else
3999 /* multi-segment entry */
4000 t->next = -1;
4001
4002 /* if insert into middle, shift right succeeding entries in stbl */
4003 stbl = DT_GETSTBL(p);
4004 nextindex = p->header.nextindex;
4005 if (index < nextindex) {
4006 memmove(stbl + index + 1, stbl + index, nextindex - index);
4007
4008 if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4009 s64 lblock;
4010
4011 /*
4012 * Need to update slot number for entries that moved
4013 * in the stbl
4014 */
4015 mp = NULL;
4016 for (n = index + 1; n <= nextindex; n++) {
4017 lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4018 modify_index(data->leaf.tid, data->leaf.ip,
4019 le32_to_cpu(lh->index), bn, n,
4020 &mp, &lblock);
4021 }
4022 if (mp)
4023 release_metapage(mp);
4024 }
4025 }
4026
4027 stbl[index] = hsi;
4028
4029 /* advance next available entry index of stbl */
4030 ++p->header.nextindex;
4031}
4032
4033
4034/*
4035 * dtMoveEntry()
4036 *
4037 * function: move entries from split/left page to new/right page
4038 *
4039 * nextindex of dst page and freelist/freecnt of both pages
4040 * are updated.
4041 */
4042static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4043 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4044 int do_index)
4045{
4046 int ssi, next; /* src slot index */
4047 int di; /* dst entry index */
4048 int dsi; /* dst slot index */
4049 s8 *sstbl, *dstbl; /* sorted entry table */
4050 int snamlen, len;
4051 struct ldtentry *slh, *dlh = NULL;
4052 struct idtentry *sih, *dih = NULL;
4053 struct dtslot *h, *s, *d;
4054 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4055 struct lv *slv, *dlv;
4056 int xssi, ns, nd;
4057 int sfsi;
4058
4059 sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4060 dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4061
4062 dsi = dp->header.freelist; /* first (whole page) free slot */
4063 sfsi = sp->header.freelist;
4064
4065 /* linelock destination entry slot */
4066 dlv = & ddtlck->lv[ddtlck->index];
4067 dlv->offset = dsi;
4068
4069 /* linelock source entry slot */
4070 slv = & sdtlck->lv[sdtlck->index];
4071 slv->offset = sstbl[si];
4072 xssi = slv->offset - 1;
4073
4074 /*
4075 * move entries
4076 */
4077 ns = nd = 0;
4078 for (di = 0; si < sp->header.nextindex; si++, di++) {
4079 ssi = sstbl[si];
4080 dstbl[di] = dsi;
4081
4082 /* is next slot contiguous ? */
4083 if (ssi != xssi + 1) {
4084 /* close current linelock */
4085 slv->length = ns;
4086 sdtlck->index++;
4087
4088 /* open new linelock */
4089 if (sdtlck->index < sdtlck->maxcnt)
4090 slv++;
4091 else {
4092 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4093 slv = & sdtlck->lv[0];
4094 }
4095
4096 slv->offset = ssi;
4097 ns = 0;
4098 }
4099
4100 /*
4101 * move head/only segment of an entry
4102 */
4103 /* get dst slot */
4104 h = d = &dp->slot[dsi];
4105
4106 /* get src slot and move */
4107 s = &sp->slot[ssi];
4108 if (sp->header.flag & BT_LEAF) {
4109 /* get source entry */
4110 slh = (struct ldtentry *) s;
4111 dlh = (struct ldtentry *) h;
4112 snamlen = slh->namlen;
4113
4114 if (do_index) {
4115 len = min(snamlen, DTLHDRDATALEN);
4116 dlh->index = slh->index; /* little-endian */
4117 } else
4118 len = min(snamlen, DTLHDRDATALEN_LEGACY);
4119
4120 memcpy(dlh, slh, 6 + len * 2);
4121
4122 next = slh->next;
4123
4124 /* update dst head/only segment next field */
4125 dsi++;
4126 dlh->next = dsi;
4127 } else {
4128 sih = (struct idtentry *) s;
4129 snamlen = sih->namlen;
4130
4131 len = min(snamlen, DTIHDRDATALEN);
4132 dih = (struct idtentry *) h;
4133 memcpy(dih, sih, 10 + len * 2);
4134 next = sih->next;
4135
4136 dsi++;
4137 dih->next = dsi;
4138 }
4139
4140 /* free src head/only segment */
4141 s->next = sfsi;
4142 s->cnt = 1;
4143 sfsi = ssi;
4144
4145 ns++;
4146 nd++;
4147 xssi = ssi;
4148
4149 /*
4150 * move additional segment(s) of the entry
4151 */
4152 snamlen -= len;
4153 while ((ssi = next) >= 0) {
4154 /* is next slot contiguous ? */
4155 if (ssi != xssi + 1) {
4156 /* close current linelock */
4157 slv->length = ns;
4158 sdtlck->index++;
4159
4160 /* open new linelock */
4161 if (sdtlck->index < sdtlck->maxcnt)
4162 slv++;
4163 else {
4164 sdtlck =
4165 (struct dt_lock *)
4166 txLinelock(sdtlck);
4167 slv = & sdtlck->lv[0];
4168 }
4169
4170 slv->offset = ssi;
4171 ns = 0;
4172 }
4173
4174 /* get next source segment */
4175 s = &sp->slot[ssi];
4176
4177 /* get next destination free slot */
4178 d++;
4179
4180 len = min(snamlen, DTSLOTDATALEN);
4181 UniStrncpy_le(d->name, s->name, len);
4182
4183 ns++;
4184 nd++;
4185 xssi = ssi;
4186
4187 dsi++;
4188 d->next = dsi;
4189
4190 /* free source segment */
4191 next = s->next;
4192 s->next = sfsi;
4193 s->cnt = 1;
4194 sfsi = ssi;
4195
4196 snamlen -= len;
4197 } /* end while */
4198
4199 /* terminate dst last/only segment */
4200 if (h == d) {
4201 /* single segment entry */
4202 if (dp->header.flag & BT_LEAF)
4203 dlh->next = -1;
4204 else
4205 dih->next = -1;
4206 } else
4207 /* multi-segment entry */
4208 d->next = -1;
4209 } /* end for */
4210
4211 /* close current linelock */
4212 slv->length = ns;
4213 sdtlck->index++;
4214 *sdtlock = sdtlck;
4215
4216 dlv->length = nd;
4217 ddtlck->index++;
4218 *ddtlock = ddtlck;
4219
4220 /* update source header */
4221 sp->header.freelist = sfsi;
4222 sp->header.freecnt += nd;
4223
4224 /* update destination header */
4225 dp->header.nextindex = di;
4226
4227 dp->header.freelist = dsi;
4228 dp->header.freecnt -= nd;
4229}
4230
4231
4232/*
4233 * dtDeleteEntry()
4234 *
4235 * function: free a (leaf/internal) entry
4236 *
4237 * log freelist header, stbl, and each segment slot of entry
4238 * (even though last/only segment next field is modified,
4239 * physical image logging requires all segment slots of
4240 * the entry logged to avoid applying previous updates
4241 * to the same slots)
4242 */
4243static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4244{
4245 int fsi; /* free entry slot index */
4246 s8 *stbl;
4247 struct dtslot *t;
4248 int si, freecnt;
4249 struct dt_lock *dtlck = *dtlock;
4250 struct lv *lv;
4251 int xsi, n;
4252
4253 /* get free entry slot index */
4254 stbl = DT_GETSTBL(p);
4255 fsi = stbl[fi];
4256
4257 /* open new linelock */
4258 if (dtlck->index >= dtlck->maxcnt)
4259 dtlck = (struct dt_lock *) txLinelock(dtlck);
4260 lv = & dtlck->lv[dtlck->index];
4261
4262 lv->offset = fsi;
4263
4264 /* get the head/only segment */
4265 t = &p->slot[fsi];
4266 if (p->header.flag & BT_LEAF)
4267 si = ((struct ldtentry *) t)->next;
4268 else
4269 si = ((struct idtentry *) t)->next;
4270 t->next = si;
4271 t->cnt = 1;
4272
4273 n = freecnt = 1;
4274 xsi = fsi;
4275
4276 /* find the last/only segment */
4277 while (si >= 0) {
4278 /* is next slot contiguous ? */
4279 if (si != xsi + 1) {
4280 /* close current linelock */
4281 lv->length = n;
4282 dtlck->index++;
4283
4284 /* open new linelock */
4285 if (dtlck->index < dtlck->maxcnt)
4286 lv++;
4287 else {
4288 dtlck = (struct dt_lock *) txLinelock(dtlck);
4289 lv = & dtlck->lv[0];
4290 }
4291
4292 lv->offset = si;
4293 n = 0;
4294 }
4295
4296 n++;
4297 xsi = si;
4298 freecnt++;
4299
4300 t = &p->slot[si];
4301 t->cnt = 1;
4302 si = t->next;
4303 }
4304
4305 /* close current linelock */
4306 lv->length = n;
4307 dtlck->index++;
4308
4309 *dtlock = dtlck;
4310
4311 /* update freelist */
4312 t->next = p->header.freelist;
4313 p->header.freelist = fsi;
4314 p->header.freecnt += freecnt;
4315
4316 /* if delete from middle,
4317 * shift left the succedding entries in the stbl
4318 */
4319 si = p->header.nextindex;
4320 if (fi < si - 1)
4321 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4322
4323 p->header.nextindex--;
4324}
4325
4326
4327/*
4328 * dtTruncateEntry()
4329 *
4330 * function: truncate a (leaf/internal) entry
4331 *
4332 * log freelist header, stbl, and each segment slot of entry
4333 * (even though last/only segment next field is modified,
4334 * physical image logging requires all segment slots of
4335 * the entry logged to avoid applying previous updates
4336 * to the same slots)
4337 */
4338static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4339{
4340 int tsi; /* truncate entry slot index */
4341 s8 *stbl;
4342 struct dtslot *t;
4343 int si, freecnt;
4344 struct dt_lock *dtlck = *dtlock;
4345 struct lv *lv;
4346 int fsi, xsi, n;
4347
4348 /* get free entry slot index */
4349 stbl = DT_GETSTBL(p);
4350 tsi = stbl[ti];
4351
4352 /* open new linelock */
4353 if (dtlck->index >= dtlck->maxcnt)
4354 dtlck = (struct dt_lock *) txLinelock(dtlck);
4355 lv = & dtlck->lv[dtlck->index];
4356
4357 lv->offset = tsi;
4358
4359 /* get the head/only segment */
4360 t = &p->slot[tsi];
4361 ASSERT(p->header.flag & BT_INTERNAL);
4362 ((struct idtentry *) t)->namlen = 0;
4363 si = ((struct idtentry *) t)->next;
4364 ((struct idtentry *) t)->next = -1;
4365
4366 n = 1;
4367 freecnt = 0;
4368 fsi = si;
4369 xsi = tsi;
4370
4371 /* find the last/only segment */
4372 while (si >= 0) {
4373 /* is next slot contiguous ? */
4374 if (si != xsi + 1) {
4375 /* close current linelock */
4376 lv->length = n;
4377 dtlck->index++;
4378
4379 /* open new linelock */
4380 if (dtlck->index < dtlck->maxcnt)
4381 lv++;
4382 else {
4383 dtlck = (struct dt_lock *) txLinelock(dtlck);
4384 lv = & dtlck->lv[0];
4385 }
4386
4387 lv->offset = si;
4388 n = 0;
4389 }
4390
4391 n++;
4392 xsi = si;
4393 freecnt++;
4394
4395 t = &p->slot[si];
4396 t->cnt = 1;
4397 si = t->next;
4398 }
4399
4400 /* close current linelock */
4401 lv->length = n;
4402 dtlck->index++;
4403
4404 *dtlock = dtlck;
4405
4406 /* update freelist */
4407 if (freecnt == 0)
4408 return;
4409 t->next = p->header.freelist;
4410 p->header.freelist = fsi;
4411 p->header.freecnt += freecnt;
4412}
4413
4414
4415/*
4416 * dtLinelockFreelist()
4417 */
4418static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4419 int m, /* max slot index */
4420 struct dt_lock ** dtlock)
4421{
4422 int fsi; /* free entry slot index */
4423 struct dtslot *t;
4424 int si;
4425 struct dt_lock *dtlck = *dtlock;
4426 struct lv *lv;
4427 int xsi, n;
4428
4429 /* get free entry slot index */
4430 fsi = p->header.freelist;
4431
4432 /* open new linelock */
4433 if (dtlck->index >= dtlck->maxcnt)
4434 dtlck = (struct dt_lock *) txLinelock(dtlck);
4435 lv = & dtlck->lv[dtlck->index];
4436
4437 lv->offset = fsi;
4438
4439 n = 1;
4440 xsi = fsi;
4441
4442 t = &p->slot[fsi];
4443 si = t->next;
4444
4445 /* find the last/only segment */
4446 while (si < m && si >= 0) {
4447 /* is next slot contiguous ? */
4448 if (si != xsi + 1) {
4449 /* close current linelock */
4450 lv->length = n;
4451 dtlck->index++;
4452
4453 /* open new linelock */
4454 if (dtlck->index < dtlck->maxcnt)
4455 lv++;
4456 else {
4457 dtlck = (struct dt_lock *) txLinelock(dtlck);
4458 lv = & dtlck->lv[0];
4459 }
4460
4461 lv->offset = si;
4462 n = 0;
4463 }
4464
4465 n++;
4466 xsi = si;
4467
4468 t = &p->slot[si];
4469 si = t->next;
4470 }
4471
4472 /* close current linelock */
4473 lv->length = n;
4474 dtlck->index++;
4475
4476 *dtlock = dtlck;
4477}
4478
4479
4480/*
4481 * NAME: dtModify
4482 *
4483 * FUNCTION: Modify the inode number part of a directory entry
4484 *
4485 * PARAMETERS:
4486 * tid - Transaction id
4487 * ip - Inode of parent directory
4488 * key - Name of entry to be modified
4489 * orig_ino - Original inode number expected in entry
4490 * new_ino - New inode number to put into entry
4491 * flag - JFS_RENAME
4492 *
4493 * RETURNS:
4494 * -ESTALE - If entry found does not match orig_ino passed in
4495 * -ENOENT - If no entry can be found to match key
4496 * 0 - If successfully modified entry
4497 */
4498int dtModify(tid_t tid, struct inode *ip,
4499 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4500{
4501 int rc;
4502 s64 bn;
4503 struct metapage *mp;
4504 dtpage_t *p;
4505 int index;
4506 struct btstack btstack;
4507 struct tlock *tlck;
4508 struct dt_lock *dtlck;
4509 struct lv *lv;
4510 s8 *stbl;
4511 int entry_si; /* entry slot index */
4512 struct ldtentry *entry;
4513
4514 /*
4515 * search for the entry to modify:
4516 *
4517 * dtSearch() returns (leaf page pinned, index at which to modify).
4518 */
4519 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4520 return rc;
4521
4522 /* retrieve search result */
4523 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4524
4525 BT_MARK_DIRTY(mp, ip);
4526 /*
4527 * acquire a transaction lock on the leaf page of named entry
4528 */
4529 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4530 dtlck = (struct dt_lock *) & tlck->lock;
4531
4532 /* get slot index of the entry */
4533 stbl = DT_GETSTBL(p);
4534 entry_si = stbl[index];
4535
4536 /* linelock entry */
4537 ASSERT(dtlck->index == 0);
4538 lv = & dtlck->lv[0];
4539 lv->offset = entry_si;
4540 lv->length = 1;
4541 dtlck->index++;
4542
4543 /* get the head/only segment */
4544 entry = (struct ldtentry *) & p->slot[entry_si];
4545
4546 /* substitute the inode number of the entry */
4547 entry->inumber = cpu_to_le32(new_ino);
4548
4549 /* unpin the leaf page */
4550 DT_PUTPAGE(mp);
4551
4552 return 0;
4553}
4554
4555#ifdef _JFS_DEBUG_DTREE
4556/*
4557 * dtDisplayTree()
4558 *
4559 * function: traverse forward
4560 */
4561int dtDisplayTree(struct inode *ip)
4562{
4563 int rc;
4564 struct metapage *mp;
4565 dtpage_t *p;
4566 s64 bn, pbn;
4567 int index, lastindex, v, h;
4568 pxd_t *xd;
4569 struct btstack btstack;
4570 struct btframe *btsp;
4571 struct btframe *parent;
4572 u8 *stbl;
4573 int psize = 256;
4574
4575 printk("display B+-tree.\n");
4576
4577 /* clear stack */
4578 btsp = btstack.stack;
4579
4580 /*
4581 * start with root
4582 *
4583 * root resides in the inode
4584 */
4585 bn = 0;
4586 v = h = 0;
4587
4588 /*
4589 * first access of each page:
4590 */
4591 newPage:
4592 DT_GETPAGE(ip, bn, mp, psize, p, rc);
4593 if (rc)
4594 return rc;
4595
4596 /* process entries forward from first index */
4597 index = 0;
4598 lastindex = p->header.nextindex - 1;
4599
4600 if (p->header.flag & BT_INTERNAL) {
4601 /*
4602 * first access of each internal page
4603 */
4604 printf("internal page ");
4605 dtDisplayPage(ip, bn, p);
4606
4607 goto getChild;
4608 } else { /* (p->header.flag & BT_LEAF) */
4609
4610 /*
4611 * first access of each leaf page
4612 */
4613 printf("leaf page ");
4614 dtDisplayPage(ip, bn, p);
4615
4616 /*
4617 * process leaf page entries
4618 *
4619 for ( ; index <= lastindex; index++)
4620 {
4621 }
4622 */
4623
4624 /* unpin the leaf page */
4625 DT_PUTPAGE(mp);
4626 }
4627
4628 /*
4629 * go back up to the parent page
4630 */
4631 getParent:
4632 /* pop/restore parent entry for the current child page */
4633 if ((parent = (btsp == btstack.stack ? NULL : --btsp)) == NULL)
4634 /* current page must have been root */
4635 return;
4636
4637 /*
4638 * parent page scan completed
4639 */
4640 if ((index = parent->index) == (lastindex = parent->lastindex)) {
4641 /* go back up to the parent page */
4642 goto getParent;
4643 }
4644
4645 /*
4646 * parent page has entries remaining
4647 */
4648 /* get back the parent page */
4649 bn = parent->bn;
4650 /* v = parent->level; */
4651 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
4652 if (rc)
4653 return rc;
4654
4655 /* get next parent entry */
4656 index++;
4657
4658 /*
4659 * internal page: go down to child page of current entry
4660 */
4661 getChild:
4662 /* push/save current parent entry for the child page */
4663 btsp->bn = pbn = bn;
4664 btsp->index = index;
4665 btsp->lastindex = lastindex;
4666 /* btsp->level = v; */
4667 /* btsp->node = h; */
4668 ++btsp;
4669
4670 /* get current entry for the child page */
4671 stbl = DT_GETSTBL(p);
4672 xd = (pxd_t *) & p->slot[stbl[index]];
4673
4674 /*
4675 * first access of each internal entry:
4676 */
4677
4678 /* get child page */
4679 bn = addressPXD(xd);
4680 psize = lengthPXD(xd) << ip->i_ipmnt->i_l2bsize;
4681
4682 printk("traverse down 0x%Lx[%d]->0x%Lx\n", pbn, index, bn);
4683 v++;
4684 h = index;
4685
4686 /* release parent page */
4687 DT_PUTPAGE(mp);
4688
4689 /* process the child page */
4690 goto newPage;
4691}
4692
4693
4694/*
4695 * dtDisplayPage()
4696 *
4697 * function: display page
4698 */
4699int dtDisplayPage(struct inode *ip, s64 bn, dtpage_t * p)
4700{
4701 int rc;
4702 struct metapage *mp;
4703 struct ldtentry *lh;
4704 struct idtentry *ih;
4705 pxd_t *xd;
4706 int i, j;
4707 u8 *stbl;
4708 wchar_t name[JFS_NAME_MAX + 1];
4709 struct component_name key = { 0, name };
4710 int freepage = 0;
4711
4712 if (p == NULL) {
4713 freepage = 1;
4714 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
4715 if (rc)
4716 return rc;
4717 }
4718
4719 /* display page control */
4720 printk("bn:0x%Lx flag:0x%08x nextindex:%d\n",
4721 bn, p->header.flag, p->header.nextindex);
4722
4723 /* display entries */
4724 stbl = DT_GETSTBL(p);
4725 for (i = 0, j = 1; i < p->header.nextindex; i++, j++) {
4726 dtGetKey(p, i, &key, JFS_SBI(ip->i_sb)->mntflag);
4727 key.name[key.namlen] = '\0';
4728 if (p->header.flag & BT_LEAF) {
4729 lh = (struct ldtentry *) & p->slot[stbl[i]];
4730 printf("\t[%d] %s:%d", i, key.name,
4731 le32_to_cpu(lh->inumber));
4732 } else {
4733 ih = (struct idtentry *) & p->slot[stbl[i]];
4734 xd = (pxd_t *) ih;
4735 bn = addressPXD(xd);
4736 printf("\t[%d] %s:0x%Lx", i, key.name, bn);
4737 }
4738
4739 if (j == 4) {
4740 printf("\n");
4741 j = 0;
4742 }
4743 }
4744
4745 printf("\n");
4746
4747 if (freepage)
4748 DT_PUTPAGE(mp);
4749
4750 return 0;
4751}
4752#endif /* _JFS_DEBUG_DTREE */