blob: 4c4824653e80944f8d48d3b9b3ce201cfc8390e3 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _PPC64_PGTABLE_H
2#define _PPC64_PGTABLE_H
3
4#include <asm-generic/4level-fixup.h>
5
6/*
7 * This file contains the functions and defines necessary to modify and use
8 * the ppc64 hashed page table.
9 */
10
11#ifndef __ASSEMBLY__
12#include <linux/config.h>
13#include <linux/stddef.h>
14#include <asm/processor.h> /* For TASK_SIZE */
15#include <asm/mmu.h>
16#include <asm/page.h>
17#include <asm/tlbflush.h>
18#endif /* __ASSEMBLY__ */
19
20/* PMD_SHIFT determines what a second-level page table entry can map */
21#define PMD_SHIFT (PAGE_SHIFT + PAGE_SHIFT - 3)
22#define PMD_SIZE (1UL << PMD_SHIFT)
23#define PMD_MASK (~(PMD_SIZE-1))
24
25/* PGDIR_SHIFT determines what a third-level page table entry can map */
26#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3) + (PAGE_SHIFT - 2))
27#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
28#define PGDIR_MASK (~(PGDIR_SIZE-1))
29
30/*
31 * Entries per page directory level. The PTE level must use a 64b record
32 * for each page table entry. The PMD and PGD level use a 32b record for
33 * each entry by assuming that each entry is page aligned.
34 */
35#define PTE_INDEX_SIZE 9
36#define PMD_INDEX_SIZE 10
37#define PGD_INDEX_SIZE 10
38
39#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
40#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
41#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
42
43#define USER_PTRS_PER_PGD (1024)
44#define FIRST_USER_PGD_NR 0
45
46#define EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
47 PGD_INDEX_SIZE + PAGE_SHIFT)
48
49/*
50 * Size of EA range mapped by our pagetables.
51 */
52#define PGTABLE_EA_BITS 41
53#define PGTABLE_EA_MASK ((1UL<<PGTABLE_EA_BITS)-1)
54
55/*
56 * Define the address range of the vmalloc VM area.
57 */
58#define VMALLOC_START (0xD000000000000000ul)
59#define VMALLOC_END (VMALLOC_START + PGTABLE_EA_MASK)
60
61/*
62 * Define the address range of the imalloc VM area.
63 * (used for ioremap)
64 */
65#define IMALLOC_START (ioremap_bot)
66#define IMALLOC_VMADDR(x) ((unsigned long)(x))
67#define PHBS_IO_BASE (0xE000000000000000ul) /* Reserve 2 gigs for PHBs */
68#define IMALLOC_BASE (0xE000000080000000ul)
69#define IMALLOC_END (IMALLOC_BASE + PGTABLE_EA_MASK)
70
71/*
72 * Define the user address range
73 */
74#define USER_START (0UL)
75#define USER_END (USER_START + PGTABLE_EA_MASK)
76
77
78/*
79 * Bits in a linux-style PTE. These match the bits in the
80 * (hardware-defined) PowerPC PTE as closely as possible.
81 */
82#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
83#define _PAGE_USER 0x0002 /* matches one of the PP bits */
84#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
85#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
86#define _PAGE_GUARDED 0x0008
87#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
88#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
89#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
90#define _PAGE_DIRTY 0x0080 /* C: page changed */
91#define _PAGE_ACCESSED 0x0100 /* R: page referenced */
92#define _PAGE_RW 0x0200 /* software: user write access allowed */
93#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
94#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
95#define _PAGE_SECONDARY 0x8000 /* software: HPTE is in secondary group */
96#define _PAGE_GROUP_IX 0x7000 /* software: HPTE index within group */
97#define _PAGE_HUGE 0x10000 /* 16MB page */
98/* Bits 0x7000 identify the index within an HPT Group */
99#define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_SECONDARY | _PAGE_GROUP_IX)
100/* PAGE_MASK gives the right answer below, but only by accident */
101/* It should be preserving the high 48 bits and then specifically */
102/* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */
103#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS)
104
105#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
106
107#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
108
109/* __pgprot defined in asm-ppc64/page.h */
110#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
111
112#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
113#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
114#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
115#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
116#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
117#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
118#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
119#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
120 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
121#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
122
123#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
124#define HAVE_PAGE_AGP
125
126/*
127 * This bit in a hardware PTE indicates that the page is *not* executable.
128 */
129#define HW_NO_EXEC _PAGE_EXEC
130
131/*
132 * POWER4 and newer have per page execute protection, older chips can only
133 * do this on a segment (256MB) basis.
134 *
135 * Also, write permissions imply read permissions.
136 * This is the closest we can get..
137 *
138 * Note due to the way vm flags are laid out, the bits are XWR
139 */
140#define __P000 PAGE_NONE
141#define __P001 PAGE_READONLY
142#define __P010 PAGE_COPY
143#define __P011 PAGE_COPY
144#define __P100 PAGE_READONLY_X
145#define __P101 PAGE_READONLY_X
146#define __P110 PAGE_COPY_X
147#define __P111 PAGE_COPY_X
148
149#define __S000 PAGE_NONE
150#define __S001 PAGE_READONLY
151#define __S010 PAGE_SHARED
152#define __S011 PAGE_SHARED
153#define __S100 PAGE_READONLY_X
154#define __S101 PAGE_READONLY_X
155#define __S110 PAGE_SHARED_X
156#define __S111 PAGE_SHARED_X
157
158#ifndef __ASSEMBLY__
159
160/*
161 * ZERO_PAGE is a global shared page that is always zero: used
162 * for zero-mapped memory areas etc..
163 */
164extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
165#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
166#endif /* __ASSEMBLY__ */
167
168/* shift to put page number into pte */
169#define PTE_SHIFT (17)
170
171/* We allow 2^41 bytes of real memory, so we need 29 bits in the PMD
172 * to give the PTE page number. The bottom two bits are for flags. */
173#define PMD_TO_PTEPAGE_SHIFT (2)
174
175#ifdef CONFIG_HUGETLB_PAGE
176
177#ifndef __ASSEMBLY__
178int hash_huge_page(struct mm_struct *mm, unsigned long access,
179 unsigned long ea, unsigned long vsid, int local);
180
181void hugetlb_mm_free_pgd(struct mm_struct *mm);
182#endif /* __ASSEMBLY__ */
183
184#define HAVE_ARCH_UNMAPPED_AREA
185#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
186#else
187
188#define hash_huge_page(mm,a,ea,vsid,local) -1
189#define hugetlb_mm_free_pgd(mm) do {} while (0)
190
191#endif
192
193#ifndef __ASSEMBLY__
194
195/*
196 * Conversion functions: convert a page and protection to a page entry,
197 * and a page entry and page directory to the page they refer to.
198 *
199 * mk_pte takes a (struct page *) as input
200 */
201#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
202
203#define pfn_pte(pfn,pgprot) \
204({ \
205 pte_t pte; \
206 pte_val(pte) = ((unsigned long)(pfn) << PTE_SHIFT) | \
207 pgprot_val(pgprot); \
208 pte; \
209})
210
211#define pte_modify(_pte, newprot) \
212 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
213
214#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
215#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
216
217/* pte_clear moved to later in this file */
218
219#define pte_pfn(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT)))
220#define pte_page(x) pfn_to_page(pte_pfn(x))
221
222#define pmd_set(pmdp, ptep) \
223 (pmd_val(*(pmdp)) = (__ba_to_bpn(ptep) << PMD_TO_PTEPAGE_SHIFT))
224#define pmd_none(pmd) (!pmd_val(pmd))
225#define pmd_bad(pmd) (pmd_val(pmd) == 0)
226#define pmd_present(pmd) (pmd_val(pmd) != 0)
227#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
228#define pmd_page_kernel(pmd) \
229 (__bpn_to_ba(pmd_val(pmd) >> PMD_TO_PTEPAGE_SHIFT))
230#define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
231#define pgd_set(pgdp, pmdp) (pgd_val(*(pgdp)) = (__ba_to_bpn(pmdp)))
232#define pgd_none(pgd) (!pgd_val(pgd))
233#define pgd_bad(pgd) ((pgd_val(pgd)) == 0)
234#define pgd_present(pgd) (pgd_val(pgd) != 0UL)
235#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
236#define pgd_page(pgd) (__bpn_to_ba(pgd_val(pgd)))
237
238/*
239 * Find an entry in a page-table-directory. We combine the address region
240 * (the high order N bits) and the pgd portion of the address.
241 */
242/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
243#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x7ff)
244
245#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
246
247/* Find an entry in the second-level page table.. */
248#define pmd_offset(dir,addr) \
249 ((pmd_t *) pgd_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
250
251/* Find an entry in the third-level page table.. */
252#define pte_offset_kernel(dir,addr) \
253 ((pte_t *) pmd_page_kernel(*(dir)) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
254
255#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
256#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
257#define pte_unmap(pte) do { } while(0)
258#define pte_unmap_nested(pte) do { } while(0)
259
260/* to find an entry in a kernel page-table-directory */
261/* This now only contains the vmalloc pages */
262#define pgd_offset_k(address) pgd_offset(&init_mm, address)
263
264/* to find an entry in the ioremap page-table-directory */
265#define pgd_offset_i(address) (ioremap_pgd + pgd_index(address))
266
267#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
268
269/*
270 * The following only work if pte_present() is true.
271 * Undefined behaviour if not..
272 */
273static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
274static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
275static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
276static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
277static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
278static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
279static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE;}
280
281static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
282static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
283
284static inline pte_t pte_rdprotect(pte_t pte) {
285 pte_val(pte) &= ~_PAGE_USER; return pte; }
286static inline pte_t pte_exprotect(pte_t pte) {
287 pte_val(pte) &= ~_PAGE_EXEC; return pte; }
288static inline pte_t pte_wrprotect(pte_t pte) {
289 pte_val(pte) &= ~(_PAGE_RW); return pte; }
290static inline pte_t pte_mkclean(pte_t pte) {
291 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
292static inline pte_t pte_mkold(pte_t pte) {
293 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
294
295static inline pte_t pte_mkread(pte_t pte) {
296 pte_val(pte) |= _PAGE_USER; return pte; }
297static inline pte_t pte_mkexec(pte_t pte) {
298 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
299static inline pte_t pte_mkwrite(pte_t pte) {
300 pte_val(pte) |= _PAGE_RW; return pte; }
301static inline pte_t pte_mkdirty(pte_t pte) {
302 pte_val(pte) |= _PAGE_DIRTY; return pte; }
303static inline pte_t pte_mkyoung(pte_t pte) {
304 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
305static inline pte_t pte_mkhuge(pte_t pte) {
306 pte_val(pte) |= _PAGE_HUGE; return pte; }
307
308/* Atomic PTE updates */
309static inline unsigned long pte_update(pte_t *p, unsigned long clr)
310{
311 unsigned long old, tmp;
312
313 __asm__ __volatile__(
314 "1: ldarx %0,0,%3 # pte_update\n\
315 andi. %1,%0,%6\n\
316 bne- 1b \n\
317 andc %1,%0,%4 \n\
318 stdcx. %1,0,%3 \n\
319 bne- 1b"
320 : "=&r" (old), "=&r" (tmp), "=m" (*p)
321 : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
322 : "cc" );
323 return old;
324}
325
326/* PTE updating functions, this function puts the PTE in the
327 * batch, doesn't actually triggers the hash flush immediately,
328 * you need to call flush_tlb_pending() to do that.
329 */
330extern void hpte_update(struct mm_struct *mm, unsigned long addr, unsigned long pte,
331 int wrprot);
332
333static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
334{
335 unsigned long old;
336
337 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
338 return 0;
339 old = pte_update(ptep, _PAGE_ACCESSED);
340 if (old & _PAGE_HASHPTE) {
341 hpte_update(mm, addr, old, 0);
342 flush_tlb_pending();
343 }
344 return (old & _PAGE_ACCESSED) != 0;
345}
346#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
347#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
348({ \
349 int __r; \
350 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
351 __r; \
352})
353
354/*
355 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
356 * moment we always flush but we need to fix hpte_update and test if the
357 * optimisation is worth it.
358 */
359static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
360{
361 unsigned long old;
362
363 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
364 return 0;
365 old = pte_update(ptep, _PAGE_DIRTY);
366 if (old & _PAGE_HASHPTE)
367 hpte_update(mm, addr, old, 0);
368 return (old & _PAGE_DIRTY) != 0;
369}
370#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
371#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
372({ \
373 int __r; \
374 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
375 __r; \
376})
377
378#define __HAVE_ARCH_PTEP_SET_WRPROTECT
379static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
380{
381 unsigned long old;
382
383 if ((pte_val(*ptep) & _PAGE_RW) == 0)
384 return;
385 old = pte_update(ptep, _PAGE_RW);
386 if (old & _PAGE_HASHPTE)
387 hpte_update(mm, addr, old, 0);
388}
389
390/*
391 * We currently remove entries from the hashtable regardless of whether
392 * the entry was young or dirty. The generic routines only flush if the
393 * entry was young or dirty which is not good enough.
394 *
395 * We should be more intelligent about this but for the moment we override
396 * these functions and force a tlb flush unconditionally
397 */
398#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
399#define ptep_clear_flush_young(__vma, __address, __ptep) \
400({ \
401 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
402 __ptep); \
403 __young; \
404})
405
406#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
407#define ptep_clear_flush_dirty(__vma, __address, __ptep) \
408({ \
409 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
410 __ptep); \
411 flush_tlb_page(__vma, __address); \
412 __dirty; \
413})
414
415#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
416static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
417{
418 unsigned long old = pte_update(ptep, ~0UL);
419
420 if (old & _PAGE_HASHPTE)
421 hpte_update(mm, addr, old, 0);
422 return __pte(old);
423}
424
425static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep)
426{
427 unsigned long old = pte_update(ptep, ~0UL);
428
429 if (old & _PAGE_HASHPTE)
430 hpte_update(mm, addr, old, 0);
431}
432
433/*
434 * set_pte stores a linux PTE into the linux page table.
435 */
436static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
437 pte_t *ptep, pte_t pte)
438{
439 if (pte_present(*ptep)) {
440 pte_clear(mm, addr, ptep);
441 flush_tlb_pending();
442 }
443 *ptep = __pte(pte_val(pte)) & ~_PAGE_HPTEFLAGS;
444}
445
446/* Set the dirty and/or accessed bits atomically in a linux PTE, this
447 * function doesn't need to flush the hash entry
448 */
449#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
450static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
451{
452 unsigned long bits = pte_val(entry) &
453 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
454 unsigned long old, tmp;
455
456 __asm__ __volatile__(
457 "1: ldarx %0,0,%4\n\
458 andi. %1,%0,%6\n\
459 bne- 1b \n\
460 or %0,%3,%0\n\
461 stdcx. %0,0,%4\n\
462 bne- 1b"
463 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
464 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
465 :"cc");
466}
467#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
468 do { \
469 __ptep_set_access_flags(__ptep, __entry, __dirty); \
470 flush_tlb_page_nohash(__vma, __address); \
471 } while(0)
472
473/*
474 * Macro to mark a page protection value as "uncacheable".
475 */
476#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
477
478struct file;
479extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
480 unsigned long size, pgprot_t vma_prot);
481#define __HAVE_PHYS_MEM_ACCESS_PROT
482
483#define __HAVE_ARCH_PTE_SAME
484#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
485
486extern unsigned long ioremap_bot, ioremap_base;
487
488#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
489#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
490
491#define pte_ERROR(e) \
492 printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
493#define pmd_ERROR(e) \
494 printk("%s:%d: bad pmd %08x.\n", __FILE__, __LINE__, pmd_val(e))
495#define pgd_ERROR(e) \
496 printk("%s:%d: bad pgd %08x.\n", __FILE__, __LINE__, pgd_val(e))
497
498extern pgd_t swapper_pg_dir[1024];
499extern pgd_t ioremap_dir[1024];
500
501extern void paging_init(void);
502
503struct mmu_gather;
504void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev,
505 unsigned long start, unsigned long end);
506
507/*
508 * This gets called at the end of handling a page fault, when
509 * the kernel has put a new PTE into the page table for the process.
510 * We use it to put a corresponding HPTE into the hash table
511 * ahead of time, instead of waiting for the inevitable extra
512 * hash-table miss exception.
513 */
514struct vm_area_struct;
515extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
516
517/* Encode and de-code a swap entry */
518#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
519#define __swp_offset(entry) ((entry).val >> 8)
520#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
521#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT })
522#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT })
523#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
524#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_SHIFT)|_PAGE_FILE})
525#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT)
526
527/*
528 * kern_addr_valid is intended to indicate whether an address is a valid
529 * kernel address. Most 32-bit archs define it as always true (like this)
530 * but most 64-bit archs actually perform a test. What should we do here?
531 * The only use is in fs/ncpfs/dir.c
532 */
533#define kern_addr_valid(addr) (1)
534
535#define io_remap_page_range(vma, vaddr, paddr, size, prot) \
536 remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)
537
538#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
539 remap_pfn_range(vma, vaddr, pfn, size, prot)
540
541#define MK_IOSPACE_PFN(space, pfn) (pfn)
542#define GET_IOSPACE(pfn) 0
543#define GET_PFN(pfn) (pfn)
544
545void pgtable_cache_init(void);
546
547extern void hpte_init_native(void);
548extern void hpte_init_lpar(void);
549extern void hpte_init_iSeries(void);
550
551/* imalloc region types */
552#define IM_REGION_UNUSED 0x1
553#define IM_REGION_SUBSET 0x2
554#define IM_REGION_EXISTS 0x4
555#define IM_REGION_OVERLAP 0x8
556#define IM_REGION_SUPERSET 0x10
557
558extern struct vm_struct * im_get_free_area(unsigned long size);
559extern struct vm_struct * im_get_area(unsigned long v_addr, unsigned long size,
560 int region_type);
561unsigned long im_free(void *addr);
562
563extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
564 unsigned long va, unsigned long prpn,
565 int secondary, unsigned long hpteflags,
566 int bolted, int large);
567
568extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
569 unsigned long prpn, int secondary,
570 unsigned long hpteflags, int bolted, int large);
571
572/*
573 * find_linux_pte returns the address of a linux pte for a given
574 * effective address and directory. If not found, it returns zero.
575 */
576static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
577{
578 pgd_t *pg;
579 pmd_t *pm;
580 pte_t *pt = NULL;
581 pte_t pte;
582
583 pg = pgdir + pgd_index(ea);
584 if (!pgd_none(*pg)) {
585
586 pm = pmd_offset(pg, ea);
587 if (pmd_present(*pm)) {
588 pt = pte_offset_kernel(pm, ea);
589 pte = *pt;
590 if (!pte_present(pte))
591 pt = NULL;
592 }
593 }
594
595 return pt;
596}
597
598#include <asm-generic/pgtable.h>
599
600#endif /* __ASSEMBLY__ */
601
602#endif /* _PPC64_PGTABLE_H */