blob: dc6b6f2604e80419a477f4512d74c8ccd13516ba [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _X86_64_PGTABLE_H
2#define _X86_64_PGTABLE_H
3
4/*
5 * This file contains the functions and defines necessary to modify and use
6 * the x86-64 page table tree.
7 */
8#include <asm/processor.h>
9#include <asm/fixmap.h>
10#include <asm/bitops.h>
11#include <linux/threads.h>
12#include <asm/pda.h>
13
14extern pud_t level3_kernel_pgt[512];
15extern pud_t level3_physmem_pgt[512];
16extern pud_t level3_ident_pgt[512];
17extern pmd_t level2_kernel_pgt[512];
18extern pgd_t init_level4_pgt[];
19extern unsigned long __supported_pte_mask;
20
21#define swapper_pg_dir init_level4_pgt
22
23extern int nonx_setup(char *str);
24extern void paging_init(void);
25extern void clear_kernel_mapping(unsigned long addr, unsigned long size);
26
27extern unsigned long pgkern_mask;
28
29/*
30 * ZERO_PAGE is a global shared page that is always zero: used
31 * for zero-mapped memory areas etc..
32 */
33extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
34#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
35
36/*
37 * PGDIR_SHIFT determines what a top-level page table entry can map
38 */
39#define PGDIR_SHIFT 39
40#define PTRS_PER_PGD 512
41
42/*
43 * 3rd level page
44 */
45#define PUD_SHIFT 30
46#define PTRS_PER_PUD 512
47
48/*
49 * PMD_SHIFT determines the size of the area a middle-level
50 * page table can map
51 */
52#define PMD_SHIFT 21
53#define PTRS_PER_PMD 512
54
55/*
56 * entries per page directory level
57 */
58#define PTRS_PER_PTE 512
59
60#define pte_ERROR(e) \
61 printk("%s:%d: bad pte %p(%016lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
62#define pmd_ERROR(e) \
63 printk("%s:%d: bad pmd %p(%016lx).\n", __FILE__, __LINE__, &(e), pmd_val(e))
64#define pud_ERROR(e) \
65 printk("%s:%d: bad pud %p(%016lx).\n", __FILE__, __LINE__, &(e), pud_val(e))
66#define pgd_ERROR(e) \
67 printk("%s:%d: bad pgd %p(%016lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
68
69#define pgd_none(x) (!pgd_val(x))
70#define pud_none(x) (!pud_val(x))
71
72static inline void set_pte(pte_t *dst, pte_t val)
73{
74 pte_val(*dst) = pte_val(val);
75}
76#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
77
78static inline void set_pmd(pmd_t *dst, pmd_t val)
79{
80 pmd_val(*dst) = pmd_val(val);
81}
82
83static inline void set_pud(pud_t *dst, pud_t val)
84{
85 pud_val(*dst) = pud_val(val);
86}
87
88extern inline void pud_clear (pud_t *pud)
89{
90 set_pud(pud, __pud(0));
91}
92
93static inline void set_pgd(pgd_t *dst, pgd_t val)
94{
95 pgd_val(*dst) = pgd_val(val);
96}
97
98extern inline void pgd_clear (pgd_t * pgd)
99{
100 set_pgd(pgd, __pgd(0));
101}
102
103#define pud_page(pud) \
104((unsigned long) __va(pud_val(pud) & PHYSICAL_PAGE_MASK))
105
106#define ptep_get_and_clear(mm,addr,xp) __pte(xchg(&(xp)->pte, 0))
107#define pte_same(a, b) ((a).pte == (b).pte)
108
109#define PMD_SIZE (1UL << PMD_SHIFT)
110#define PMD_MASK (~(PMD_SIZE-1))
111#define PUD_SIZE (1UL << PUD_SHIFT)
112#define PUD_MASK (~(PUD_SIZE-1))
113#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
114#define PGDIR_MASK (~(PGDIR_SIZE-1))
115
116#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
117#define FIRST_USER_PGD_NR 0
118
119#ifndef __ASSEMBLY__
120#define MAXMEM 0x3fffffffffffUL
121#define VMALLOC_START 0xffffc20000000000UL
122#define VMALLOC_END 0xffffe1ffffffffffUL
123#define MODULES_VADDR 0xffffffff88000000UL
124#define MODULES_END 0xfffffffffff00000UL
125#define MODULES_LEN (MODULES_END - MODULES_VADDR)
126
127#define _PAGE_BIT_PRESENT 0
128#define _PAGE_BIT_RW 1
129#define _PAGE_BIT_USER 2
130#define _PAGE_BIT_PWT 3
131#define _PAGE_BIT_PCD 4
132#define _PAGE_BIT_ACCESSED 5
133#define _PAGE_BIT_DIRTY 6
134#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */
135#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
136#define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
137
138#define _PAGE_PRESENT 0x001
139#define _PAGE_RW 0x002
140#define _PAGE_USER 0x004
141#define _PAGE_PWT 0x008
142#define _PAGE_PCD 0x010
143#define _PAGE_ACCESSED 0x020
144#define _PAGE_DIRTY 0x040
145#define _PAGE_PSE 0x080 /* 2MB page */
146#define _PAGE_FILE 0x040 /* set:pagecache, unset:swap */
147#define _PAGE_GLOBAL 0x100 /* Global TLB entry */
148
149#define _PAGE_PROTNONE 0x080 /* If not present */
150#define _PAGE_NX (1UL<<_PAGE_BIT_NX)
151
152#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
153#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
154
155#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
156
157#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
158#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
159#define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
160#define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
161#define PAGE_COPY PAGE_COPY_NOEXEC
162#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
163#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
164#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
165#define __PAGE_KERNEL \
166 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
167#define __PAGE_KERNEL_EXEC \
168 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
169#define __PAGE_KERNEL_NOCACHE \
170 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_PCD | _PAGE_ACCESSED | _PAGE_NX)
171#define __PAGE_KERNEL_RO \
172 (_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
173#define __PAGE_KERNEL_VSYSCALL \
174 (_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
175#define __PAGE_KERNEL_VSYSCALL_NOCACHE \
176 (_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_PCD)
177#define __PAGE_KERNEL_LARGE \
178 (__PAGE_KERNEL | _PAGE_PSE)
179
180#define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL)
181
182#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
183#define PAGE_KERNEL_EXEC MAKE_GLOBAL(__PAGE_KERNEL_EXEC)
184#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
185#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
186#define PAGE_KERNEL_VSYSCALL32 __pgprot(__PAGE_KERNEL_VSYSCALL)
187#define PAGE_KERNEL_VSYSCALL MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL)
188#define PAGE_KERNEL_LARGE MAKE_GLOBAL(__PAGE_KERNEL_LARGE)
189#define PAGE_KERNEL_VSYSCALL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL_NOCACHE)
190
191/* xwr */
192#define __P000 PAGE_NONE
193#define __P001 PAGE_READONLY
194#define __P010 PAGE_COPY
195#define __P011 PAGE_COPY
196#define __P100 PAGE_READONLY_EXEC
197#define __P101 PAGE_READONLY_EXEC
198#define __P110 PAGE_COPY_EXEC
199#define __P111 PAGE_COPY_EXEC
200
201#define __S000 PAGE_NONE
202#define __S001 PAGE_READONLY
203#define __S010 PAGE_SHARED
204#define __S011 PAGE_SHARED
205#define __S100 PAGE_READONLY_EXEC
206#define __S101 PAGE_READONLY_EXEC
207#define __S110 PAGE_SHARED_EXEC
208#define __S111 PAGE_SHARED_EXEC
209
210static inline unsigned long pgd_bad(pgd_t pgd)
211{
212 unsigned long val = pgd_val(pgd);
213 val &= ~PTE_MASK;
214 val &= ~(_PAGE_USER | _PAGE_DIRTY);
215 return val & ~(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED);
216}
217
218static inline unsigned long pud_bad(pud_t pud)
219{
220 unsigned long val = pud_val(pud);
221 val &= ~PTE_MASK;
222 val &= ~(_PAGE_USER | _PAGE_DIRTY);
223 return val & ~(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED);
224}
225
226#define pte_none(x) (!pte_val(x))
227#define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
228#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
229
230#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* FIXME: is this
231 right? */
232#define pte_page(x) pfn_to_page(pte_pfn(x))
233#define pte_pfn(x) ((pte_val(x) >> PAGE_SHIFT) & __PHYSICAL_MASK)
234
235static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
236{
237 pte_t pte;
238 pte_val(pte) = (page_nr << PAGE_SHIFT);
239 pte_val(pte) |= pgprot_val(pgprot);
240 pte_val(pte) &= __supported_pte_mask;
241 return pte;
242}
243
244/*
245 * The following only work if pte_present() is true.
246 * Undefined behaviour if not..
247 */
248static inline int pte_user(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
249extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
250extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
251extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
252extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
253extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
254static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
255
256extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
257extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
258extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
259extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
260extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; }
261extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
262extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
263extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
264extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
265extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; }
266
267struct vm_area_struct;
268
269static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
270{
271 if (!pte_dirty(*ptep))
272 return 0;
273 return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep);
274}
275
276static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
277{
278 if (!pte_young(*ptep))
279 return 0;
280 return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
281}
282
283static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
284{
285 clear_bit(_PAGE_BIT_RW, ptep);
286}
287
288/*
289 * Macro to mark a page protection value as "uncacheable".
290 */
291#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT))
292
293#define __LARGE_PTE (_PAGE_PSE|_PAGE_PRESENT)
294static inline int pmd_large(pmd_t pte) {
295 return (pmd_val(pte) & __LARGE_PTE) == __LARGE_PTE;
296}
297
298
299/*
300 * Conversion functions: convert a page and protection to a page entry,
301 * and a page entry and page directory to the page they refer to.
302 */
303
304#define page_pte(page) page_pte_prot(page, __pgprot(0))
305
306/*
307 * Level 4 access.
308 */
309#define pgd_page(pgd) ((unsigned long) __va((unsigned long)pgd_val(pgd) & PTE_MASK))
310#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
311#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
312#define pgd_offset_k(address) (init_level4_pgt + pgd_index(address))
313#define pgd_present(pgd) (pgd_val(pgd) & _PAGE_PRESENT)
314#define mk_kernel_pgd(address) ((pgd_t){ (address) | _KERNPG_TABLE })
315
316/* PUD - Level3 access */
317/* to find an entry in a page-table-directory. */
318#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
319#define pud_offset(pgd, address) ((pud_t *) pgd_page(*(pgd)) + pud_index(address))
320#define pud_offset_k(pgd, addr) pud_offset(pgd, addr)
321#define pud_present(pud) (pud_val(pud) & _PAGE_PRESENT)
322
323static inline pud_t *__pud_offset_k(pud_t *pud, unsigned long address)
324{
325 return pud + pud_index(address);
326}
327
328/* PMD - Level 2 access */
329#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PTE_MASK))
330#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
331
332#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
333#define pmd_offset(dir, address) ((pmd_t *) pud_page(*(dir)) + \
334 pmd_index(address))
335#define pmd_none(x) (!pmd_val(x))
336#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
337#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
338#define pmd_bad(x) ((pmd_val(x) & (~PTE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE )
339#define pfn_pmd(nr,prot) (__pmd(((nr) << PAGE_SHIFT) | pgprot_val(prot)))
340#define pmd_pfn(x) ((pmd_val(x) >> PAGE_SHIFT) & __PHYSICAL_MASK)
341
342#define pte_to_pgoff(pte) ((pte_val(pte) & PHYSICAL_PAGE_MASK) >> PAGE_SHIFT)
343#define pgoff_to_pte(off) ((pte_t) { ((off) << PAGE_SHIFT) | _PAGE_FILE })
344#define PTE_FILE_MAX_BITS __PHYSICAL_MASK_SHIFT
345
346/* PTE - Level 1 access. */
347
348/* page, protection -> pte */
349#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
350#define mk_pte_huge(entry) (pte_val(entry) |= _PAGE_PRESENT | _PAGE_PSE)
351
352/* physical address -> PTE */
353static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
354{
355 pte_t pte;
356 pte_val(pte) = physpage | pgprot_val(pgprot);
357 return pte;
358}
359
360/* Change flags of a PTE */
361extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
362{
363 pte_val(pte) &= _PAGE_CHG_MASK;
364 pte_val(pte) |= pgprot_val(newprot);
365 pte_val(pte) &= __supported_pte_mask;
366 return pte;
367}
368
369#define pte_index(address) \
370 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
371#define pte_offset_kernel(dir, address) ((pte_t *) pmd_page_kernel(*(dir)) + \
372 pte_index(address))
373
374/* x86-64 always has all page tables mapped. */
375#define pte_offset_map(dir,address) pte_offset_kernel(dir,address)
376#define pte_offset_map_nested(dir,address) pte_offset_kernel(dir,address)
377#define pte_unmap(pte) /* NOP */
378#define pte_unmap_nested(pte) /* NOP */
379
380#define update_mmu_cache(vma,address,pte) do { } while (0)
381
382/* We only update the dirty/accessed state if we set
383 * the dirty bit by hand in the kernel, since the hardware
384 * will do the accessed bit for us, and we don't want to
385 * race with other CPU's that might be updating the dirty
386 * bit at the same time. */
387#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
388#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
389 do { \
390 if (__dirty) { \
391 set_pte(__ptep, __entry); \
392 flush_tlb_page(__vma, __address); \
393 } \
394 } while (0)
395
396/* Encode and de-code a swap entry */
397#define __swp_type(x) (((x).val >> 1) & 0x3f)
398#define __swp_offset(x) ((x).val >> 8)
399#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
400#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
401#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
402
403#endif /* !__ASSEMBLY__ */
404
405extern int kern_addr_valid(unsigned long addr);
406
407#define io_remap_page_range(vma, vaddr, paddr, size, prot) \
408 remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)
409
410#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
411 remap_pfn_range(vma, vaddr, pfn, size, prot)
412
413#define MK_IOSPACE_PFN(space, pfn) (pfn)
414#define GET_IOSPACE(pfn) 0
415#define GET_PFN(pfn) (pfn)
416
417#define HAVE_ARCH_UNMAPPED_AREA
418
419#define pgtable_cache_init() do { } while (0)
420#define check_pgt_cache() do { } while (0)
421
422#define PAGE_AGP PAGE_KERNEL_NOCACHE
423#define HAVE_PAGE_AGP 1
424
425/* fs/proc/kcore.c */
426#define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK)
427#define kc_offset_to_vaddr(o) \
428 (((o) & (1UL << (__VIRTUAL_MASK_SHIFT-1))) ? ((o) | (~__VIRTUAL_MASK)) : (o))
429
430#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
431#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
432#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
433#define __HAVE_ARCH_PTEP_SET_WRPROTECT
434#define __HAVE_ARCH_PTE_SAME
435#include <asm-generic/pgtable.h>
436
437#endif /* _X86_64_PGTABLE_H */