blob: 900f5bc7e3366480426f0674ec4a2ca5c2113f7d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13#include <linux/types.h>
14#include <linux/fs.h>
15#include <linux/file.h>
16#include <linux/slab.h>
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kmod.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/ctype.h>
23#include <asm/uaccess.h>
24#include <linux/poll.h>
25#include <linux/seq_file.h>
26#include <linux/proc_fs.h>
27#include <linux/net.h>
28#include <linux/workqueue.h>
29#include <asm/ioctls.h>
30#include <linux/sunrpc/types.h>
31#include <linux/sunrpc/cache.h>
32#include <linux/sunrpc/stats.h>
33
34#define RPCDBG_FACILITY RPCDBG_CACHE
35
36static void cache_defer_req(struct cache_req *req, struct cache_head *item);
37static void cache_revisit_request(struct cache_head *item);
38
39void cache_init(struct cache_head *h)
40{
41 time_t now = get_seconds();
42 h->next = NULL;
43 h->flags = 0;
44 atomic_set(&h->refcnt, 1);
45 h->expiry_time = now + CACHE_NEW_EXPIRY;
46 h->last_refresh = now;
47}
48
49
50static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
51/*
52 * This is the generic cache management routine for all
53 * the authentication caches.
54 * It checks the currency of a cache item and will (later)
55 * initiate an upcall to fill it if needed.
56 *
57 *
58 * Returns 0 if the cache_head can be used, or cache_puts it and returns
59 * -EAGAIN if upcall is pending,
60 * -ENOENT if cache entry was negative
61 */
62int cache_check(struct cache_detail *detail,
63 struct cache_head *h, struct cache_req *rqstp)
64{
65 int rv;
66 long refresh_age, age;
67
68 /* First decide return status as best we can */
69 if (!test_bit(CACHE_VALID, &h->flags) ||
70 h->expiry_time < get_seconds())
71 rv = -EAGAIN;
72 else if (detail->flush_time > h->last_refresh)
73 rv = -EAGAIN;
74 else {
75 /* entry is valid */
76 if (test_bit(CACHE_NEGATIVE, &h->flags))
77 rv = -ENOENT;
78 else rv = 0;
79 }
80
81 /* now see if we want to start an upcall */
82 refresh_age = (h->expiry_time - h->last_refresh);
83 age = get_seconds() - h->last_refresh;
84
85 if (rqstp == NULL) {
86 if (rv == -EAGAIN)
87 rv = -ENOENT;
88 } else if (rv == -EAGAIN || age > refresh_age/2) {
89 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
90 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
91 switch (cache_make_upcall(detail, h)) {
92 case -EINVAL:
93 clear_bit(CACHE_PENDING, &h->flags);
94 if (rv == -EAGAIN) {
95 set_bit(CACHE_NEGATIVE, &h->flags);
96 cache_fresh(detail, h, get_seconds()+CACHE_NEW_EXPIRY);
97 rv = -ENOENT;
98 }
99 break;
100
101 case -EAGAIN:
102 clear_bit(CACHE_PENDING, &h->flags);
103 cache_revisit_request(h);
104 break;
105 }
106 }
107 }
108
109 if (rv == -EAGAIN)
110 cache_defer_req(rqstp, h);
111
112 if (rv && h)
113 detail->cache_put(h, detail);
114 return rv;
115}
116
117static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
118
119void cache_fresh(struct cache_detail *detail,
120 struct cache_head *head, time_t expiry)
121{
122
123 head->expiry_time = expiry;
124 head->last_refresh = get_seconds();
125 if (!test_and_set_bit(CACHE_VALID, &head->flags))
126 cache_revisit_request(head);
127 if (test_and_clear_bit(CACHE_PENDING, &head->flags))
128 queue_loose(detail, head);
129}
130
131/*
132 * caches need to be periodically cleaned.
133 * For this we maintain a list of cache_detail and
134 * a current pointer into that list and into the table
135 * for that entry.
136 *
137 * Each time clean_cache is called it finds the next non-empty entry
138 * in the current table and walks the list in that entry
139 * looking for entries that can be removed.
140 *
141 * An entry gets removed if:
142 * - The expiry is before current time
143 * - The last_refresh time is before the flush_time for that cache
144 *
145 * later we might drop old entries with non-NEVER expiry if that table
146 * is getting 'full' for some definition of 'full'
147 *
148 * The question of "how often to scan a table" is an interesting one
149 * and is answered in part by the use of the "nextcheck" field in the
150 * cache_detail.
151 * When a scan of a table begins, the nextcheck field is set to a time
152 * that is well into the future.
153 * While scanning, if an expiry time is found that is earlier than the
154 * current nextcheck time, nextcheck is set to that expiry time.
155 * If the flush_time is ever set to a time earlier than the nextcheck
156 * time, the nextcheck time is then set to that flush_time.
157 *
158 * A table is then only scanned if the current time is at least
159 * the nextcheck time.
160 *
161 */
162
163static LIST_HEAD(cache_list);
164static DEFINE_SPINLOCK(cache_list_lock);
165static struct cache_detail *current_detail;
166static int current_index;
167
168static struct file_operations cache_file_operations;
169static struct file_operations content_file_operations;
170static struct file_operations cache_flush_operations;
171
172static void do_cache_clean(void *data);
173static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
174
175void cache_register(struct cache_detail *cd)
176{
177 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
178 if (cd->proc_ent) {
179 struct proc_dir_entry *p;
180 cd->proc_ent->owner = THIS_MODULE;
181 cd->channel_ent = cd->content_ent = NULL;
182
183 p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
184 cd->proc_ent);
185 cd->flush_ent = p;
186 if (p) {
187 p->proc_fops = &cache_flush_operations;
188 p->owner = THIS_MODULE;
189 p->data = cd;
190 }
191
192 if (cd->cache_request || cd->cache_parse) {
193 p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
194 cd->proc_ent);
195 cd->channel_ent = p;
196 if (p) {
197 p->proc_fops = &cache_file_operations;
198 p->owner = THIS_MODULE;
199 p->data = cd;
200 }
201 }
202 if (cd->cache_show) {
203 p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
204 cd->proc_ent);
205 cd->content_ent = p;
206 if (p) {
207 p->proc_fops = &content_file_operations;
208 p->owner = THIS_MODULE;
209 p->data = cd;
210 }
211 }
212 }
213 rwlock_init(&cd->hash_lock);
214 INIT_LIST_HEAD(&cd->queue);
215 spin_lock(&cache_list_lock);
216 cd->nextcheck = 0;
217 cd->entries = 0;
218 atomic_set(&cd->readers, 0);
219 cd->last_close = 0;
220 cd->last_warn = -1;
221 list_add(&cd->others, &cache_list);
222 spin_unlock(&cache_list_lock);
223
224 /* start the cleaning process */
225 schedule_work(&cache_cleaner);
226}
227
228int cache_unregister(struct cache_detail *cd)
229{
230 cache_purge(cd);
231 spin_lock(&cache_list_lock);
232 write_lock(&cd->hash_lock);
233 if (cd->entries || atomic_read(&cd->inuse)) {
234 write_unlock(&cd->hash_lock);
235 spin_unlock(&cache_list_lock);
236 return -EBUSY;
237 }
238 if (current_detail == cd)
239 current_detail = NULL;
240 list_del_init(&cd->others);
241 write_unlock(&cd->hash_lock);
242 spin_unlock(&cache_list_lock);
243 if (cd->proc_ent) {
244 if (cd->flush_ent)
245 remove_proc_entry("flush", cd->proc_ent);
246 if (cd->channel_ent)
247 remove_proc_entry("channel", cd->proc_ent);
248 if (cd->content_ent)
249 remove_proc_entry("content", cd->proc_ent);
250
251 cd->proc_ent = NULL;
252 remove_proc_entry(cd->name, proc_net_rpc);
253 }
254 if (list_empty(&cache_list)) {
255 /* module must be being unloaded so its safe to kill the worker */
256 cancel_delayed_work(&cache_cleaner);
257 flush_scheduled_work();
258 }
259 return 0;
260}
261
262/* clean cache tries to find something to clean
263 * and cleans it.
264 * It returns 1 if it cleaned something,
265 * 0 if it didn't find anything this time
266 * -1 if it fell off the end of the list.
267 */
268static int cache_clean(void)
269{
270 int rv = 0;
271 struct list_head *next;
272
273 spin_lock(&cache_list_lock);
274
275 /* find a suitable table if we don't already have one */
276 while (current_detail == NULL ||
277 current_index >= current_detail->hash_size) {
278 if (current_detail)
279 next = current_detail->others.next;
280 else
281 next = cache_list.next;
282 if (next == &cache_list) {
283 current_detail = NULL;
284 spin_unlock(&cache_list_lock);
285 return -1;
286 }
287 current_detail = list_entry(next, struct cache_detail, others);
288 if (current_detail->nextcheck > get_seconds())
289 current_index = current_detail->hash_size;
290 else {
291 current_index = 0;
292 current_detail->nextcheck = get_seconds()+30*60;
293 }
294 }
295
296 /* find a non-empty bucket in the table */
297 while (current_detail &&
298 current_index < current_detail->hash_size &&
299 current_detail->hash_table[current_index] == NULL)
300 current_index++;
301
302 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
303
304 if (current_detail && current_index < current_detail->hash_size) {
305 struct cache_head *ch, **cp;
306 struct cache_detail *d;
307
308 write_lock(&current_detail->hash_lock);
309
310 /* Ok, now to clean this strand */
311
312 cp = & current_detail->hash_table[current_index];
313 ch = *cp;
314 for (; ch; cp= & ch->next, ch= *cp) {
315 if (current_detail->nextcheck > ch->expiry_time)
316 current_detail->nextcheck = ch->expiry_time+1;
317 if (ch->expiry_time >= get_seconds()
318 && ch->last_refresh >= current_detail->flush_time
319 )
320 continue;
321 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
322 queue_loose(current_detail, ch);
323
324 if (atomic_read(&ch->refcnt) == 1)
325 break;
326 }
327 if (ch) {
328 *cp = ch->next;
329 ch->next = NULL;
330 current_detail->entries--;
331 rv = 1;
332 }
333 write_unlock(&current_detail->hash_lock);
334 d = current_detail;
335 if (!ch)
336 current_index ++;
337 spin_unlock(&cache_list_lock);
338 if (ch)
339 d->cache_put(ch, d);
340 } else
341 spin_unlock(&cache_list_lock);
342
343 return rv;
344}
345
346/*
347 * We want to regularly clean the cache, so we need to schedule some work ...
348 */
349static void do_cache_clean(void *data)
350{
351 int delay = 5;
352 if (cache_clean() == -1)
353 delay = 30*HZ;
354
355 if (list_empty(&cache_list))
356 delay = 0;
357
358 if (delay)
359 schedule_delayed_work(&cache_cleaner, delay);
360}
361
362
363/*
364 * Clean all caches promptly. This just calls cache_clean
365 * repeatedly until we are sure that every cache has had a chance to
366 * be fully cleaned
367 */
368void cache_flush(void)
369{
370 while (cache_clean() != -1)
371 cond_resched();
372 while (cache_clean() != -1)
373 cond_resched();
374}
375
376void cache_purge(struct cache_detail *detail)
377{
378 detail->flush_time = LONG_MAX;
379 detail->nextcheck = get_seconds();
380 cache_flush();
381 detail->flush_time = 1;
382}
383
384
385
386/*
387 * Deferral and Revisiting of Requests.
388 *
389 * If a cache lookup finds a pending entry, we
390 * need to defer the request and revisit it later.
391 * All deferred requests are stored in a hash table,
392 * indexed by "struct cache_head *".
393 * As it may be wasteful to store a whole request
394 * structure, we allow the request to provide a
395 * deferred form, which must contain a
396 * 'struct cache_deferred_req'
397 * This cache_deferred_req contains a method to allow
398 * it to be revisited when cache info is available
399 */
400
401#define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
402#define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
403
404#define DFR_MAX 300 /* ??? */
405
406static DEFINE_SPINLOCK(cache_defer_lock);
407static LIST_HEAD(cache_defer_list);
408static struct list_head cache_defer_hash[DFR_HASHSIZE];
409static int cache_defer_cnt;
410
411static void cache_defer_req(struct cache_req *req, struct cache_head *item)
412{
413 struct cache_deferred_req *dreq;
414 int hash = DFR_HASH(item);
415
416 dreq = req->defer(req);
417 if (dreq == NULL)
418 return;
419
420 dreq->item = item;
421 dreq->recv_time = get_seconds();
422
423 spin_lock(&cache_defer_lock);
424
425 list_add(&dreq->recent, &cache_defer_list);
426
427 if (cache_defer_hash[hash].next == NULL)
428 INIT_LIST_HEAD(&cache_defer_hash[hash]);
429 list_add(&dreq->hash, &cache_defer_hash[hash]);
430
431 /* it is in, now maybe clean up */
432 dreq = NULL;
433 if (++cache_defer_cnt > DFR_MAX) {
434 /* too much in the cache, randomly drop
435 * first or last
436 */
437 if (net_random()&1)
438 dreq = list_entry(cache_defer_list.next,
439 struct cache_deferred_req,
440 recent);
441 else
442 dreq = list_entry(cache_defer_list.prev,
443 struct cache_deferred_req,
444 recent);
445 list_del(&dreq->recent);
446 list_del(&dreq->hash);
447 cache_defer_cnt--;
448 }
449 spin_unlock(&cache_defer_lock);
450
451 if (dreq) {
452 /* there was one too many */
453 dreq->revisit(dreq, 1);
454 }
455 if (test_bit(CACHE_VALID, &item->flags)) {
456 /* must have just been validated... */
457 cache_revisit_request(item);
458 }
459}
460
461static void cache_revisit_request(struct cache_head *item)
462{
463 struct cache_deferred_req *dreq;
464 struct list_head pending;
465
466 struct list_head *lp;
467 int hash = DFR_HASH(item);
468
469 INIT_LIST_HEAD(&pending);
470 spin_lock(&cache_defer_lock);
471
472 lp = cache_defer_hash[hash].next;
473 if (lp) {
474 while (lp != &cache_defer_hash[hash]) {
475 dreq = list_entry(lp, struct cache_deferred_req, hash);
476 lp = lp->next;
477 if (dreq->item == item) {
478 list_del(&dreq->hash);
479 list_move(&dreq->recent, &pending);
480 cache_defer_cnt--;
481 }
482 }
483 }
484 spin_unlock(&cache_defer_lock);
485
486 while (!list_empty(&pending)) {
487 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
488 list_del_init(&dreq->recent);
489 dreq->revisit(dreq, 0);
490 }
491}
492
493void cache_clean_deferred(void *owner)
494{
495 struct cache_deferred_req *dreq, *tmp;
496 struct list_head pending;
497
498
499 INIT_LIST_HEAD(&pending);
500 spin_lock(&cache_defer_lock);
501
502 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
503 if (dreq->owner == owner) {
504 list_del(&dreq->hash);
505 list_move(&dreq->recent, &pending);
506 cache_defer_cnt--;
507 }
508 }
509 spin_unlock(&cache_defer_lock);
510
511 while (!list_empty(&pending)) {
512 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
513 list_del_init(&dreq->recent);
514 dreq->revisit(dreq, 1);
515 }
516}
517
518/*
519 * communicate with user-space
520 *
521 * We have a magic /proc file - /proc/sunrpc/cache
522 * On read, you get a full request, or block
523 * On write, an update request is processed
524 * Poll works if anything to read, and always allows write
525 *
526 * Implemented by linked list of requests. Each open file has
527 * a ->private that also exists in this list. New request are added
528 * to the end and may wakeup and preceding readers.
529 * New readers are added to the head. If, on read, an item is found with
530 * CACHE_UPCALLING clear, we free it from the list.
531 *
532 */
533
534static DEFINE_SPINLOCK(queue_lock);
535static DECLARE_MUTEX(queue_io_sem);
536
537struct cache_queue {
538 struct list_head list;
539 int reader; /* if 0, then request */
540};
541struct cache_request {
542 struct cache_queue q;
543 struct cache_head *item;
544 char * buf;
545 int len;
546 int readers;
547};
548struct cache_reader {
549 struct cache_queue q;
550 int offset; /* if non-0, we have a refcnt on next request */
551};
552
553static ssize_t
554cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
555{
556 struct cache_reader *rp = filp->private_data;
557 struct cache_request *rq;
558 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
559 int err;
560
561 if (count == 0)
562 return 0;
563
564 down(&queue_io_sem); /* protect against multiple concurrent
565 * readers on this file */
566 again:
567 spin_lock(&queue_lock);
568 /* need to find next request */
569 while (rp->q.list.next != &cd->queue &&
570 list_entry(rp->q.list.next, struct cache_queue, list)
571 ->reader) {
572 struct list_head *next = rp->q.list.next;
573 list_move(&rp->q.list, next);
574 }
575 if (rp->q.list.next == &cd->queue) {
576 spin_unlock(&queue_lock);
577 up(&queue_io_sem);
578 if (rp->offset)
579 BUG();
580 return 0;
581 }
582 rq = container_of(rp->q.list.next, struct cache_request, q.list);
583 if (rq->q.reader) BUG();
584 if (rp->offset == 0)
585 rq->readers++;
586 spin_unlock(&queue_lock);
587
588 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
589 err = -EAGAIN;
590 spin_lock(&queue_lock);
591 list_move(&rp->q.list, &rq->q.list);
592 spin_unlock(&queue_lock);
593 } else {
594 if (rp->offset + count > rq->len)
595 count = rq->len - rp->offset;
596 err = -EFAULT;
597 if (copy_to_user(buf, rq->buf + rp->offset, count))
598 goto out;
599 rp->offset += count;
600 if (rp->offset >= rq->len) {
601 rp->offset = 0;
602 spin_lock(&queue_lock);
603 list_move(&rp->q.list, &rq->q.list);
604 spin_unlock(&queue_lock);
605 }
606 err = 0;
607 }
608 out:
609 if (rp->offset == 0) {
610 /* need to release rq */
611 spin_lock(&queue_lock);
612 rq->readers--;
613 if (rq->readers == 0 &&
614 !test_bit(CACHE_PENDING, &rq->item->flags)) {
615 list_del(&rq->q.list);
616 spin_unlock(&queue_lock);
617 cd->cache_put(rq->item, cd);
618 kfree(rq->buf);
619 kfree(rq);
620 } else
621 spin_unlock(&queue_lock);
622 }
623 if (err == -EAGAIN)
624 goto again;
625 up(&queue_io_sem);
626 return err ? err : count;
627}
628
629static char write_buf[8192]; /* protected by queue_io_sem */
630
631static ssize_t
632cache_write(struct file *filp, const char __user *buf, size_t count,
633 loff_t *ppos)
634{
635 int err;
636 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
637
638 if (count == 0)
639 return 0;
640 if (count >= sizeof(write_buf))
641 return -EINVAL;
642
643 down(&queue_io_sem);
644
645 if (copy_from_user(write_buf, buf, count)) {
646 up(&queue_io_sem);
647 return -EFAULT;
648 }
649 write_buf[count] = '\0';
650 if (cd->cache_parse)
651 err = cd->cache_parse(cd, write_buf, count);
652 else
653 err = -EINVAL;
654
655 up(&queue_io_sem);
656 return err ? err : count;
657}
658
659static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
660
661static unsigned int
662cache_poll(struct file *filp, poll_table *wait)
663{
664 unsigned int mask;
665 struct cache_reader *rp = filp->private_data;
666 struct cache_queue *cq;
667 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
668
669 poll_wait(filp, &queue_wait, wait);
670
671 /* alway allow write */
672 mask = POLL_OUT | POLLWRNORM;
673
674 if (!rp)
675 return mask;
676
677 spin_lock(&queue_lock);
678
679 for (cq= &rp->q; &cq->list != &cd->queue;
680 cq = list_entry(cq->list.next, struct cache_queue, list))
681 if (!cq->reader) {
682 mask |= POLLIN | POLLRDNORM;
683 break;
684 }
685 spin_unlock(&queue_lock);
686 return mask;
687}
688
689static int
690cache_ioctl(struct inode *ino, struct file *filp,
691 unsigned int cmd, unsigned long arg)
692{
693 int len = 0;
694 struct cache_reader *rp = filp->private_data;
695 struct cache_queue *cq;
696 struct cache_detail *cd = PDE(ino)->data;
697
698 if (cmd != FIONREAD || !rp)
699 return -EINVAL;
700
701 spin_lock(&queue_lock);
702
703 /* only find the length remaining in current request,
704 * or the length of the next request
705 */
706 for (cq= &rp->q; &cq->list != &cd->queue;
707 cq = list_entry(cq->list.next, struct cache_queue, list))
708 if (!cq->reader) {
709 struct cache_request *cr =
710 container_of(cq, struct cache_request, q);
711 len = cr->len - rp->offset;
712 break;
713 }
714 spin_unlock(&queue_lock);
715
716 return put_user(len, (int __user *)arg);
717}
718
719static int
720cache_open(struct inode *inode, struct file *filp)
721{
722 struct cache_reader *rp = NULL;
723
724 nonseekable_open(inode, filp);
725 if (filp->f_mode & FMODE_READ) {
726 struct cache_detail *cd = PDE(inode)->data;
727
728 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
729 if (!rp)
730 return -ENOMEM;
731 rp->offset = 0;
732 rp->q.reader = 1;
733 atomic_inc(&cd->readers);
734 spin_lock(&queue_lock);
735 list_add(&rp->q.list, &cd->queue);
736 spin_unlock(&queue_lock);
737 }
738 filp->private_data = rp;
739 return 0;
740}
741
742static int
743cache_release(struct inode *inode, struct file *filp)
744{
745 struct cache_reader *rp = filp->private_data;
746 struct cache_detail *cd = PDE(inode)->data;
747
748 if (rp) {
749 spin_lock(&queue_lock);
750 if (rp->offset) {
751 struct cache_queue *cq;
752 for (cq= &rp->q; &cq->list != &cd->queue;
753 cq = list_entry(cq->list.next, struct cache_queue, list))
754 if (!cq->reader) {
755 container_of(cq, struct cache_request, q)
756 ->readers--;
757 break;
758 }
759 rp->offset = 0;
760 }
761 list_del(&rp->q.list);
762 spin_unlock(&queue_lock);
763
764 filp->private_data = NULL;
765 kfree(rp);
766
767 cd->last_close = get_seconds();
768 atomic_dec(&cd->readers);
769 }
770 return 0;
771}
772
773
774
775static struct file_operations cache_file_operations = {
776 .owner = THIS_MODULE,
777 .llseek = no_llseek,
778 .read = cache_read,
779 .write = cache_write,
780 .poll = cache_poll,
781 .ioctl = cache_ioctl, /* for FIONREAD */
782 .open = cache_open,
783 .release = cache_release,
784};
785
786
787static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
788{
789 struct cache_queue *cq;
790 spin_lock(&queue_lock);
791 list_for_each_entry(cq, &detail->queue, list)
792 if (!cq->reader) {
793 struct cache_request *cr = container_of(cq, struct cache_request, q);
794 if (cr->item != ch)
795 continue;
796 if (cr->readers != 0)
797 break;
798 list_del(&cr->q.list);
799 spin_unlock(&queue_lock);
800 detail->cache_put(cr->item, detail);
801 kfree(cr->buf);
802 kfree(cr);
803 return;
804 }
805 spin_unlock(&queue_lock);
806}
807
808/*
809 * Support routines for text-based upcalls.
810 * Fields are separated by spaces.
811 * Fields are either mangled to quote space tab newline slosh with slosh
812 * or a hexified with a leading \x
813 * Record is terminated with newline.
814 *
815 */
816
817void qword_add(char **bpp, int *lp, char *str)
818{
819 char *bp = *bpp;
820 int len = *lp;
821 char c;
822
823 if (len < 0) return;
824
825 while ((c=*str++) && len)
826 switch(c) {
827 case ' ':
828 case '\t':
829 case '\n':
830 case '\\':
831 if (len >= 4) {
832 *bp++ = '\\';
833 *bp++ = '0' + ((c & 0300)>>6);
834 *bp++ = '0' + ((c & 0070)>>3);
835 *bp++ = '0' + ((c & 0007)>>0);
836 }
837 len -= 4;
838 break;
839 default:
840 *bp++ = c;
841 len--;
842 }
843 if (c || len <1) len = -1;
844 else {
845 *bp++ = ' ';
846 len--;
847 }
848 *bpp = bp;
849 *lp = len;
850}
851
852void qword_addhex(char **bpp, int *lp, char *buf, int blen)
853{
854 char *bp = *bpp;
855 int len = *lp;
856
857 if (len < 0) return;
858
859 if (len > 2) {
860 *bp++ = '\\';
861 *bp++ = 'x';
862 len -= 2;
863 while (blen && len >= 2) {
864 unsigned char c = *buf++;
865 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
866 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
867 len -= 2;
868 blen--;
869 }
870 }
871 if (blen || len<1) len = -1;
872 else {
873 *bp++ = ' ';
874 len--;
875 }
876 *bpp = bp;
877 *lp = len;
878}
879
880static void warn_no_listener(struct cache_detail *detail)
881{
882 if (detail->last_warn != detail->last_close) {
883 detail->last_warn = detail->last_close;
884 if (detail->warn_no_listener)
885 detail->warn_no_listener(detail);
886 }
887}
888
889/*
890 * register an upcall request to user-space.
891 * Each request is at most one page long.
892 */
893static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
894{
895
896 char *buf;
897 struct cache_request *crq;
898 char *bp;
899 int len;
900
901 if (detail->cache_request == NULL)
902 return -EINVAL;
903
904 if (atomic_read(&detail->readers) == 0 &&
905 detail->last_close < get_seconds() - 30) {
906 warn_no_listener(detail);
907 return -EINVAL;
908 }
909
910 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
911 if (!buf)
912 return -EAGAIN;
913
914 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
915 if (!crq) {
916 kfree(buf);
917 return -EAGAIN;
918 }
919
920 bp = buf; len = PAGE_SIZE;
921
922 detail->cache_request(detail, h, &bp, &len);
923
924 if (len < 0) {
925 kfree(buf);
926 kfree(crq);
927 return -EAGAIN;
928 }
929 crq->q.reader = 0;
930 crq->item = cache_get(h);
931 crq->buf = buf;
932 crq->len = PAGE_SIZE - len;
933 crq->readers = 0;
934 spin_lock(&queue_lock);
935 list_add_tail(&crq->q.list, &detail->queue);
936 spin_unlock(&queue_lock);
937 wake_up(&queue_wait);
938 return 0;
939}
940
941/*
942 * parse a message from user-space and pass it
943 * to an appropriate cache
944 * Messages are, like requests, separated into fields by
945 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
946 *
947 * Message is
948 * reply cachename expiry key ... content....
949 *
950 * key and content are both parsed by cache
951 */
952
953#define isodigit(c) (isdigit(c) && c <= '7')
954int qword_get(char **bpp, char *dest, int bufsize)
955{
956 /* return bytes copied, or -1 on error */
957 char *bp = *bpp;
958 int len = 0;
959
960 while (*bp == ' ') bp++;
961
962 if (bp[0] == '\\' && bp[1] == 'x') {
963 /* HEX STRING */
964 bp += 2;
965 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
966 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
967 bp++;
968 byte <<= 4;
969 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
970 *dest++ = byte;
971 bp++;
972 len++;
973 }
974 } else {
975 /* text with \nnn octal quoting */
976 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
977 if (*bp == '\\' &&
978 isodigit(bp[1]) && (bp[1] <= '3') &&
979 isodigit(bp[2]) &&
980 isodigit(bp[3])) {
981 int byte = (*++bp -'0');
982 bp++;
983 byte = (byte << 3) | (*bp++ - '0');
984 byte = (byte << 3) | (*bp++ - '0');
985 *dest++ = byte;
986 len++;
987 } else {
988 *dest++ = *bp++;
989 len++;
990 }
991 }
992 }
993
994 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
995 return -1;
996 while (*bp == ' ') bp++;
997 *bpp = bp;
998 *dest = '\0';
999 return len;
1000}
1001
1002
1003/*
1004 * support /proc/sunrpc/cache/$CACHENAME/content
1005 * as a seqfile.
1006 * We call ->cache_show passing NULL for the item to
1007 * get a header, then pass each real item in the cache
1008 */
1009
1010struct handle {
1011 struct cache_detail *cd;
1012};
1013
1014static void *c_start(struct seq_file *m, loff_t *pos)
1015{
1016 loff_t n = *pos;
1017 unsigned hash, entry;
1018 struct cache_head *ch;
1019 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1020
1021
1022 read_lock(&cd->hash_lock);
1023 if (!n--)
1024 return SEQ_START_TOKEN;
1025 hash = n >> 32;
1026 entry = n & ((1LL<<32) - 1);
1027
1028 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1029 if (!entry--)
1030 return ch;
1031 n &= ~((1LL<<32) - 1);
1032 do {
1033 hash++;
1034 n += 1LL<<32;
1035 } while(hash < cd->hash_size &&
1036 cd->hash_table[hash]==NULL);
1037 if (hash >= cd->hash_size)
1038 return NULL;
1039 *pos = n+1;
1040 return cd->hash_table[hash];
1041}
1042
1043static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1044{
1045 struct cache_head *ch = p;
1046 int hash = (*pos >> 32);
1047 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1048
1049 if (p == SEQ_START_TOKEN)
1050 hash = 0;
1051 else if (ch->next == NULL) {
1052 hash++;
1053 *pos += 1LL<<32;
1054 } else {
1055 ++*pos;
1056 return ch->next;
1057 }
1058 *pos &= ~((1LL<<32) - 1);
1059 while (hash < cd->hash_size &&
1060 cd->hash_table[hash] == NULL) {
1061 hash++;
1062 *pos += 1LL<<32;
1063 }
1064 if (hash >= cd->hash_size)
1065 return NULL;
1066 ++*pos;
1067 return cd->hash_table[hash];
1068}
1069
1070static void c_stop(struct seq_file *m, void *p)
1071{
1072 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1073 read_unlock(&cd->hash_lock);
1074}
1075
1076static int c_show(struct seq_file *m, void *p)
1077{
1078 struct cache_head *cp = p;
1079 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1080
1081 if (p == SEQ_START_TOKEN)
1082 return cd->cache_show(m, cd, NULL);
1083
1084 ifdebug(CACHE)
1085 seq_printf(m, "# expiry=%ld refcnt=%d\n",
1086 cp->expiry_time, atomic_read(&cp->refcnt));
1087 cache_get(cp);
1088 if (cache_check(cd, cp, NULL))
1089 /* cache_check does a cache_put on failure */
1090 seq_printf(m, "# ");
1091 else
1092 cache_put(cp, cd);
1093
1094 return cd->cache_show(m, cd, cp);
1095}
1096
1097static struct seq_operations cache_content_op = {
1098 .start = c_start,
1099 .next = c_next,
1100 .stop = c_stop,
1101 .show = c_show,
1102};
1103
1104static int content_open(struct inode *inode, struct file *file)
1105{
1106 int res;
1107 struct handle *han;
1108 struct cache_detail *cd = PDE(inode)->data;
1109
1110 han = kmalloc(sizeof(*han), GFP_KERNEL);
1111 if (han == NULL)
1112 return -ENOMEM;
1113
1114 han->cd = cd;
1115
1116 res = seq_open(file, &cache_content_op);
1117 if (res)
1118 kfree(han);
1119 else
1120 ((struct seq_file *)file->private_data)->private = han;
1121
1122 return res;
1123}
1124static int content_release(struct inode *inode, struct file *file)
1125{
1126 struct seq_file *m = (struct seq_file *)file->private_data;
1127 struct handle *han = m->private;
1128 kfree(han);
1129 m->private = NULL;
1130 return seq_release(inode, file);
1131}
1132
1133static struct file_operations content_file_operations = {
1134 .open = content_open,
1135 .read = seq_read,
1136 .llseek = seq_lseek,
1137 .release = content_release,
1138};
1139
1140static ssize_t read_flush(struct file *file, char __user *buf,
1141 size_t count, loff_t *ppos)
1142{
1143 struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1144 char tbuf[20];
1145 unsigned long p = *ppos;
1146 int len;
1147
1148 sprintf(tbuf, "%lu\n", cd->flush_time);
1149 len = strlen(tbuf);
1150 if (p >= len)
1151 return 0;
1152 len -= p;
1153 if (len > count) len = count;
1154 if (copy_to_user(buf, (void*)(tbuf+p), len))
1155 len = -EFAULT;
1156 else
1157 *ppos += len;
1158 return len;
1159}
1160
1161static ssize_t write_flush(struct file * file, const char __user * buf,
1162 size_t count, loff_t *ppos)
1163{
1164 struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1165 char tbuf[20];
1166 char *ep;
1167 long flushtime;
1168 if (*ppos || count > sizeof(tbuf)-1)
1169 return -EINVAL;
1170 if (copy_from_user(tbuf, buf, count))
1171 return -EFAULT;
1172 tbuf[count] = 0;
1173 flushtime = simple_strtoul(tbuf, &ep, 0);
1174 if (*ep && *ep != '\n')
1175 return -EINVAL;
1176
1177 cd->flush_time = flushtime;
1178 cd->nextcheck = get_seconds();
1179 cache_flush();
1180
1181 *ppos += count;
1182 return count;
1183}
1184
1185static struct file_operations cache_flush_operations = {
1186 .open = nonseekable_open,
1187 .read = read_flush,
1188 .write = write_flush,
1189};