Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* $Id: dma.h,v 1.1.1.1 2001/04/19 20:00:38 ak Exp $ |
| 2 | * linux/include/asm/dma.h: Defines for using and allocating dma channels. |
| 3 | * Written by Hennus Bergman, 1992. |
| 4 | * High DMA channel support & info by Hannu Savolainen |
| 5 | * and John Boyd, Nov. 1992. |
| 6 | */ |
| 7 | |
| 8 | #ifndef _ASM_DMA_H |
| 9 | #define _ASM_DMA_H |
| 10 | |
| 11 | #include <linux/config.h> |
| 12 | #include <linux/spinlock.h> /* And spinlocks */ |
| 13 | #include <asm/io.h> /* need byte IO */ |
| 14 | #include <linux/delay.h> |
| 15 | |
| 16 | |
| 17 | #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER |
| 18 | #define dma_outb outb_p |
| 19 | #else |
| 20 | #define dma_outb outb |
| 21 | #endif |
| 22 | |
| 23 | #define dma_inb inb |
| 24 | |
| 25 | /* |
| 26 | * NOTES about DMA transfers: |
| 27 | * |
| 28 | * controller 1: channels 0-3, byte operations, ports 00-1F |
| 29 | * controller 2: channels 4-7, word operations, ports C0-DF |
| 30 | * |
| 31 | * - ALL registers are 8 bits only, regardless of transfer size |
| 32 | * - channel 4 is not used - cascades 1 into 2. |
| 33 | * - channels 0-3 are byte - addresses/counts are for physical bytes |
| 34 | * - channels 5-7 are word - addresses/counts are for physical words |
| 35 | * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries |
| 36 | * - transfer count loaded to registers is 1 less than actual count |
| 37 | * - controller 2 offsets are all even (2x offsets for controller 1) |
| 38 | * - page registers for 5-7 don't use data bit 0, represent 128K pages |
| 39 | * - page registers for 0-3 use bit 0, represent 64K pages |
| 40 | * |
| 41 | * DMA transfers are limited to the lower 16MB of _physical_ memory. |
| 42 | * Note that addresses loaded into registers must be _physical_ addresses, |
| 43 | * not logical addresses (which may differ if paging is active). |
| 44 | * |
| 45 | * Address mapping for channels 0-3: |
| 46 | * |
| 47 | * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses) |
| 48 | * | ... | | ... | | ... | |
| 49 | * | ... | | ... | | ... | |
| 50 | * | ... | | ... | | ... | |
| 51 | * P7 ... P0 A7 ... A0 A7 ... A0 |
| 52 | * | Page | Addr MSB | Addr LSB | (DMA registers) |
| 53 | * |
| 54 | * Address mapping for channels 5-7: |
| 55 | * |
| 56 | * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses) |
| 57 | * | ... | \ \ ... \ \ \ ... \ \ |
| 58 | * | ... | \ \ ... \ \ \ ... \ (not used) |
| 59 | * | ... | \ \ ... \ \ \ ... \ |
| 60 | * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0 |
| 61 | * | Page | Addr MSB | Addr LSB | (DMA registers) |
| 62 | * |
| 63 | * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses |
| 64 | * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at |
| 65 | * the hardware level, so odd-byte transfers aren't possible). |
| 66 | * |
| 67 | * Transfer count (_not # bytes_) is limited to 64K, represented as actual |
| 68 | * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more, |
| 69 | * and up to 128K bytes may be transferred on channels 5-7 in one operation. |
| 70 | * |
| 71 | */ |
| 72 | |
| 73 | #define MAX_DMA_CHANNELS 8 |
| 74 | |
Andi Kleen | a2f1b42 | 2005-11-05 17:25:53 +0100 | [diff] [blame] | 75 | |
| 76 | /* 16MB ISA DMA zone */ |
| 77 | #define MAX_DMA_PFN ((16*1024*1024) >> PAGE_SHIFT) |
| 78 | |
| 79 | /* 4GB broken PCI/AGP hardware bus master zone */ |
| 80 | #define MAX_DMA32_PFN ((4UL*1024*1024*1024) >> PAGE_SHIFT) |
| 81 | |
| 82 | /* Compat define for old dma zone */ |
| 83 | #define MAX_DMA_ADDRESS ((unsigned long)__va(MAX_DMA_PFN << PAGE_SHIFT)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 84 | |
| 85 | /* 8237 DMA controllers */ |
| 86 | #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */ |
| 87 | #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */ |
| 88 | |
| 89 | /* DMA controller registers */ |
| 90 | #define DMA1_CMD_REG 0x08 /* command register (w) */ |
| 91 | #define DMA1_STAT_REG 0x08 /* status register (r) */ |
| 92 | #define DMA1_REQ_REG 0x09 /* request register (w) */ |
| 93 | #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */ |
| 94 | #define DMA1_MODE_REG 0x0B /* mode register (w) */ |
| 95 | #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */ |
| 96 | #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */ |
| 97 | #define DMA1_RESET_REG 0x0D /* Master Clear (w) */ |
| 98 | #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */ |
| 99 | #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */ |
| 100 | |
| 101 | #define DMA2_CMD_REG 0xD0 /* command register (w) */ |
| 102 | #define DMA2_STAT_REG 0xD0 /* status register (r) */ |
| 103 | #define DMA2_REQ_REG 0xD2 /* request register (w) */ |
| 104 | #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */ |
| 105 | #define DMA2_MODE_REG 0xD6 /* mode register (w) */ |
| 106 | #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */ |
| 107 | #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */ |
| 108 | #define DMA2_RESET_REG 0xDA /* Master Clear (w) */ |
| 109 | #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */ |
| 110 | #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */ |
| 111 | |
| 112 | #define DMA_ADDR_0 0x00 /* DMA address registers */ |
| 113 | #define DMA_ADDR_1 0x02 |
| 114 | #define DMA_ADDR_2 0x04 |
| 115 | #define DMA_ADDR_3 0x06 |
| 116 | #define DMA_ADDR_4 0xC0 |
| 117 | #define DMA_ADDR_5 0xC4 |
| 118 | #define DMA_ADDR_6 0xC8 |
| 119 | #define DMA_ADDR_7 0xCC |
| 120 | |
| 121 | #define DMA_CNT_0 0x01 /* DMA count registers */ |
| 122 | #define DMA_CNT_1 0x03 |
| 123 | #define DMA_CNT_2 0x05 |
| 124 | #define DMA_CNT_3 0x07 |
| 125 | #define DMA_CNT_4 0xC2 |
| 126 | #define DMA_CNT_5 0xC6 |
| 127 | #define DMA_CNT_6 0xCA |
| 128 | #define DMA_CNT_7 0xCE |
| 129 | |
| 130 | #define DMA_PAGE_0 0x87 /* DMA page registers */ |
| 131 | #define DMA_PAGE_1 0x83 |
| 132 | #define DMA_PAGE_2 0x81 |
| 133 | #define DMA_PAGE_3 0x82 |
| 134 | #define DMA_PAGE_5 0x8B |
| 135 | #define DMA_PAGE_6 0x89 |
| 136 | #define DMA_PAGE_7 0x8A |
| 137 | |
| 138 | #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ |
| 139 | #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ |
| 140 | #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */ |
| 141 | |
| 142 | #define DMA_AUTOINIT 0x10 |
| 143 | |
| 144 | |
| 145 | extern spinlock_t dma_spin_lock; |
| 146 | |
| 147 | static __inline__ unsigned long claim_dma_lock(void) |
| 148 | { |
| 149 | unsigned long flags; |
| 150 | spin_lock_irqsave(&dma_spin_lock, flags); |
| 151 | return flags; |
| 152 | } |
| 153 | |
| 154 | static __inline__ void release_dma_lock(unsigned long flags) |
| 155 | { |
| 156 | spin_unlock_irqrestore(&dma_spin_lock, flags); |
| 157 | } |
| 158 | |
| 159 | /* enable/disable a specific DMA channel */ |
| 160 | static __inline__ void enable_dma(unsigned int dmanr) |
| 161 | { |
| 162 | if (dmanr<=3) |
| 163 | dma_outb(dmanr, DMA1_MASK_REG); |
| 164 | else |
| 165 | dma_outb(dmanr & 3, DMA2_MASK_REG); |
| 166 | } |
| 167 | |
| 168 | static __inline__ void disable_dma(unsigned int dmanr) |
| 169 | { |
| 170 | if (dmanr<=3) |
| 171 | dma_outb(dmanr | 4, DMA1_MASK_REG); |
| 172 | else |
| 173 | dma_outb((dmanr & 3) | 4, DMA2_MASK_REG); |
| 174 | } |
| 175 | |
| 176 | /* Clear the 'DMA Pointer Flip Flop'. |
| 177 | * Write 0 for LSB/MSB, 1 for MSB/LSB access. |
| 178 | * Use this once to initialize the FF to a known state. |
| 179 | * After that, keep track of it. :-) |
| 180 | * --- In order to do that, the DMA routines below should --- |
| 181 | * --- only be used while holding the DMA lock ! --- |
| 182 | */ |
| 183 | static __inline__ void clear_dma_ff(unsigned int dmanr) |
| 184 | { |
| 185 | if (dmanr<=3) |
| 186 | dma_outb(0, DMA1_CLEAR_FF_REG); |
| 187 | else |
| 188 | dma_outb(0, DMA2_CLEAR_FF_REG); |
| 189 | } |
| 190 | |
| 191 | /* set mode (above) for a specific DMA channel */ |
| 192 | static __inline__ void set_dma_mode(unsigned int dmanr, char mode) |
| 193 | { |
| 194 | if (dmanr<=3) |
| 195 | dma_outb(mode | dmanr, DMA1_MODE_REG); |
| 196 | else |
| 197 | dma_outb(mode | (dmanr&3), DMA2_MODE_REG); |
| 198 | } |
| 199 | |
| 200 | /* Set only the page register bits of the transfer address. |
| 201 | * This is used for successive transfers when we know the contents of |
| 202 | * the lower 16 bits of the DMA current address register, but a 64k boundary |
| 203 | * may have been crossed. |
| 204 | */ |
| 205 | static __inline__ void set_dma_page(unsigned int dmanr, char pagenr) |
| 206 | { |
| 207 | switch(dmanr) { |
| 208 | case 0: |
| 209 | dma_outb(pagenr, DMA_PAGE_0); |
| 210 | break; |
| 211 | case 1: |
| 212 | dma_outb(pagenr, DMA_PAGE_1); |
| 213 | break; |
| 214 | case 2: |
| 215 | dma_outb(pagenr, DMA_PAGE_2); |
| 216 | break; |
| 217 | case 3: |
| 218 | dma_outb(pagenr, DMA_PAGE_3); |
| 219 | break; |
| 220 | case 5: |
| 221 | dma_outb(pagenr & 0xfe, DMA_PAGE_5); |
| 222 | break; |
| 223 | case 6: |
| 224 | dma_outb(pagenr & 0xfe, DMA_PAGE_6); |
| 225 | break; |
| 226 | case 7: |
| 227 | dma_outb(pagenr & 0xfe, DMA_PAGE_7); |
| 228 | break; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | |
| 233 | /* Set transfer address & page bits for specific DMA channel. |
| 234 | * Assumes dma flipflop is clear. |
| 235 | */ |
| 236 | static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) |
| 237 | { |
| 238 | set_dma_page(dmanr, a>>16); |
| 239 | if (dmanr <= 3) { |
| 240 | dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); |
| 241 | dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); |
| 242 | } else { |
| 243 | dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); |
| 244 | dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | |
| 249 | /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for |
| 250 | * a specific DMA channel. |
| 251 | * You must ensure the parameters are valid. |
| 252 | * NOTE: from a manual: "the number of transfers is one more |
| 253 | * than the initial word count"! This is taken into account. |
| 254 | * Assumes dma flip-flop is clear. |
| 255 | * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. |
| 256 | */ |
| 257 | static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) |
| 258 | { |
| 259 | count--; |
| 260 | if (dmanr <= 3) { |
| 261 | dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); |
| 262 | dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); |
| 263 | } else { |
| 264 | dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); |
| 265 | dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | |
| 270 | /* Get DMA residue count. After a DMA transfer, this |
| 271 | * should return zero. Reading this while a DMA transfer is |
| 272 | * still in progress will return unpredictable results. |
| 273 | * If called before the channel has been used, it may return 1. |
| 274 | * Otherwise, it returns the number of _bytes_ left to transfer. |
| 275 | * |
| 276 | * Assumes DMA flip-flop is clear. |
| 277 | */ |
| 278 | static __inline__ int get_dma_residue(unsigned int dmanr) |
| 279 | { |
| 280 | unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE |
| 281 | : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE; |
| 282 | |
| 283 | /* using short to get 16-bit wrap around */ |
| 284 | unsigned short count; |
| 285 | |
| 286 | count = 1 + dma_inb(io_port); |
| 287 | count += dma_inb(io_port) << 8; |
| 288 | |
| 289 | return (dmanr<=3)? count : (count<<1); |
| 290 | } |
| 291 | |
| 292 | |
| 293 | /* These are in kernel/dma.c: */ |
| 294 | extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */ |
| 295 | extern void free_dma(unsigned int dmanr); /* release it again */ |
| 296 | |
| 297 | /* From PCI */ |
| 298 | |
| 299 | #ifdef CONFIG_PCI |
| 300 | extern int isa_dma_bridge_buggy; |
| 301 | #else |
| 302 | #define isa_dma_bridge_buggy (0) |
| 303 | #endif |
| 304 | |
| 305 | #endif /* _ASM_DMA_H */ |