blob: 021f348900b1f1a49c2953639074e85522dba72e [file] [log] [blame]
Jaegeuk Kim0b81d072015-05-15 16:26:10 -07001/*
2 * This contains encryption functions for per-file encryption.
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Michael Halcrow, 2014.
8 *
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
15 *
16 * This has not yet undergone a rigorous security audit.
17 *
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
20 */
21
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070022#include <linux/pagemap.h>
23#include <linux/mempool.h>
24#include <linux/module.h>
25#include <linux/scatterlist.h>
26#include <linux/ratelimit.h>
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070027#include <linux/dcache.h>
Jaegeuk Kim03a8bb02016-04-12 16:05:36 -070028#include <linux/namei.h>
Daniel Walter8e989de2017-06-19 09:27:58 +020029#include <crypto/aes.h>
Eric Biggerseb9c5fd2018-01-05 10:45:00 -080030#include <crypto/skcipher.h>
Jaegeuk Kime6b120d2017-07-10 12:55:09 -070031#include "fscrypt_private.h"
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070032
33static unsigned int num_prealloc_crypto_pages = 32;
34static unsigned int num_prealloc_crypto_ctxs = 128;
35
36module_param(num_prealloc_crypto_pages, uint, 0444);
37MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 "Number of crypto pages to preallocate");
39module_param(num_prealloc_crypto_ctxs, uint, 0444);
40MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 "Number of crypto contexts to preallocate");
42
43static mempool_t *fscrypt_bounce_page_pool = NULL;
44
45static LIST_HEAD(fscrypt_free_ctxs);
46static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47
Eric Biggers05099232018-04-18 11:09:47 -070048static struct workqueue_struct *fscrypt_read_workqueue;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070049static DEFINE_MUTEX(fscrypt_init_mutex);
50
51static struct kmem_cache *fscrypt_ctx_cachep;
52struct kmem_cache *fscrypt_info_cachep;
53
Eric Biggers05099232018-04-18 11:09:47 -070054void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55{
56 queue_work(fscrypt_read_workqueue, work);
57}
58EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070060/**
61 * fscrypt_release_ctx() - Releases an encryption context
62 * @ctx: The encryption context to release.
63 *
64 * If the encryption context was allocated from the pre-allocated pool, returns
65 * it to that pool. Else, frees it.
66 *
67 * If there's a bounce page in the context, this frees that.
68 */
69void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70{
71 unsigned long flags;
72
Jaegeuk Kime6b120d2017-07-10 12:55:09 -070073 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070074 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 ctx->w.bounce_page = NULL;
76 }
77 ctx->w.control_page = NULL;
78 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 } else {
81 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 }
85}
86EXPORT_SYMBOL(fscrypt_release_ctx);
87
88/**
89 * fscrypt_get_ctx() - Gets an encryption context
90 * @inode: The inode for which we are doing the crypto
Jaegeuk Kimb32e4482016-04-11 15:51:57 -070091 * @gfp_flags: The gfp flag for memory allocation
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070092 *
93 * Allocates and initializes an encryption context.
94 *
95 * Return: An allocated and initialized encryption context on success; error
96 * value or NULL otherwise.
97 */
Jaegeuk Kime6b120d2017-07-10 12:55:09 -070098struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -070099{
100 struct fscrypt_ctx *ctx = NULL;
101 struct fscrypt_info *ci = inode->i_crypt_info;
102 unsigned long flags;
103
104 if (ci == NULL)
105 return ERR_PTR(-ENOKEY);
106
107 /*
108 * We first try getting the ctx from a free list because in
109 * the common case the ctx will have an allocated and
110 * initialized crypto tfm, so it's probably a worthwhile
111 * optimization. For the bounce page, we first try getting it
112 * from the kernel allocator because that's just about as fast
113 * as getting it from a list and because a cache of free pages
114 * should generally be a "last resort" option for a filesystem
115 * to be able to do its job.
116 */
117 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
118 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
119 struct fscrypt_ctx, free_list);
120 if (ctx)
121 list_del(&ctx->free_list);
122 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
123 if (!ctx) {
Jaegeuk Kimb32e4482016-04-11 15:51:57 -0700124 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700125 if (!ctx)
126 return ERR_PTR(-ENOMEM);
127 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 } else {
129 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 }
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700131 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700132 return ctx;
133}
134EXPORT_SYMBOL(fscrypt_get_ctx);
135
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700136int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
137 u64 lblk_num, struct page *src_page,
138 struct page *dest_page, unsigned int len,
139 unsigned int offs, gfp_t gfp_flags)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700140{
Eric Biggersfb445432016-10-12 23:30:16 -0400141 struct {
142 __le64 index;
Daniel Walter8e989de2017-06-19 09:27:58 +0200143 u8 padding[FS_IV_SIZE - sizeof(__le64)];
144 } iv;
Linus Torvaldsd4075742016-03-21 11:03:02 -0700145 struct skcipher_request *req = NULL;
Gilad Ben-Yossef743205f2017-10-18 08:00:44 +0100146 DECLARE_CRYPTO_WAIT(wait);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700147 struct scatterlist dst, src;
148 struct fscrypt_info *ci = inode->i_crypt_info;
Linus Torvaldsd4075742016-03-21 11:03:02 -0700149 struct crypto_skcipher *tfm = ci->ci_ctfm;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700150 int res = 0;
151
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700152 BUG_ON(len == 0);
153
Daniel Walter8e989de2017-06-19 09:27:58 +0200154 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
155 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
156 iv.index = cpu_to_le64(lblk_num);
157 memset(iv.padding, 0, sizeof(iv.padding));
158
159 if (ci->ci_essiv_tfm != NULL) {
160 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
161 (u8 *)&iv);
162 }
163
Jaegeuk Kimb32e4482016-04-11 15:51:57 -0700164 req = skcipher_request_alloc(tfm, gfp_flags);
Eric Biggers1e04ac82018-04-30 15:51:38 -0700165 if (!req)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700166 return -ENOMEM;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700167
Linus Torvaldsd4075742016-03-21 11:03:02 -0700168 skcipher_request_set_callback(
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700169 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
Gilad Ben-Yossef743205f2017-10-18 08:00:44 +0100170 crypto_req_done, &wait);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700171
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700172 sg_init_table(&dst, 1);
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700173 sg_set_page(&dst, dest_page, len, offs);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700174 sg_init_table(&src, 1);
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700175 sg_set_page(&src, src_page, len, offs);
Daniel Walter8e989de2017-06-19 09:27:58 +0200176 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700177 if (rw == FS_DECRYPT)
Gilad Ben-Yossef743205f2017-10-18 08:00:44 +0100178 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700179 else
Gilad Ben-Yossef743205f2017-10-18 08:00:44 +0100180 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
Linus Torvaldsd4075742016-03-21 11:03:02 -0700181 skcipher_request_free(req);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700182 if (res) {
183 printk_ratelimited(KERN_ERR
Linus Torvaldsd4075742016-03-21 11:03:02 -0700184 "%s: crypto_skcipher_encrypt() returned %d\n",
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700185 __func__, res);
186 return res;
187 }
188 return 0;
189}
190
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700191struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
192 gfp_t gfp_flags)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700193{
Jaegeuk Kimb32e4482016-04-11 15:51:57 -0700194 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700195 if (ctx->w.bounce_page == NULL)
196 return ERR_PTR(-ENOMEM);
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700197 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700198 return ctx->w.bounce_page;
199}
200
201/**
202 * fscypt_encrypt_page() - Encrypts a page
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700203 * @inode: The inode for which the encryption should take place
204 * @page: The page to encrypt. Must be locked for bounce-page
205 * encryption.
206 * @len: Length of data to encrypt in @page and encrypted
207 * data in returned page.
208 * @offs: Offset of data within @page and returned
209 * page holding encrypted data.
210 * @lblk_num: Logical block number. This must be unique for multiple
211 * calls with same inode, except when overwriting
212 * previously written data.
213 * @gfp_flags: The gfp flag for memory allocation
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700214 *
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700215 * Encrypts @page using the ctx encryption context. Performs encryption
216 * either in-place or into a newly allocated bounce page.
217 * Called on the page write path.
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700218 *
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700219 * Bounce page allocation is the default.
220 * In this case, the contents of @page are encrypted and stored in an
221 * allocated bounce page. @page has to be locked and the caller must call
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700222 * fscrypt_restore_control_page() on the returned ciphertext page to
223 * release the bounce buffer and the encryption context.
224 *
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700225 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
226 * fscrypt_operations. Here, the input-page is returned with its content
227 * encrypted.
228 *
229 * Return: A page with the encrypted content on success. Else, an
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700230 * error value or NULL.
231 */
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700232struct page *fscrypt_encrypt_page(const struct inode *inode,
233 struct page *page,
234 unsigned int len,
235 unsigned int offs,
236 u64 lblk_num, gfp_t gfp_flags)
237
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700238{
239 struct fscrypt_ctx *ctx;
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700240 struct page *ciphertext_page = page;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700241 int err;
242
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700243 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
244
245 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
246 /* with inplace-encryption we just encrypt the page */
247 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
248 ciphertext_page, len, offs,
249 gfp_flags);
250 if (err)
251 return ERR_PTR(err);
252
253 return ciphertext_page;
254 }
255
256 BUG_ON(!PageLocked(page));
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700257
Jaegeuk Kimb32e4482016-04-11 15:51:57 -0700258 ctx = fscrypt_get_ctx(inode, gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700259 if (IS_ERR(ctx))
260 return (struct page *)ctx;
261
262 /* The encryption operation will require a bounce page. */
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700263 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700264 if (IS_ERR(ciphertext_page))
265 goto errout;
266
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700267 ctx->w.control_page = page;
268 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
269 page, ciphertext_page, len, offs,
270 gfp_flags);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700271 if (err) {
272 ciphertext_page = ERR_PTR(err);
273 goto errout;
274 }
275 SetPagePrivate(ciphertext_page);
276 set_page_private(ciphertext_page, (unsigned long)ctx);
277 lock_page(ciphertext_page);
278 return ciphertext_page;
279
280errout:
281 fscrypt_release_ctx(ctx);
282 return ciphertext_page;
283}
284EXPORT_SYMBOL(fscrypt_encrypt_page);
285
286/**
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700287 * fscrypt_decrypt_page() - Decrypts a page in-place
288 * @inode: The corresponding inode for the page to decrypt.
289 * @page: The page to decrypt. Must be locked in case
290 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
291 * @len: Number of bytes in @page to be decrypted.
292 * @offs: Start of data in @page.
293 * @lblk_num: Logical block number.
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700294 *
295 * Decrypts page in-place using the ctx encryption context.
296 *
297 * Called from the read completion callback.
298 *
299 * Return: Zero on success, non-zero otherwise.
300 */
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700301int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
302 unsigned int len, unsigned int offs, u64 lblk_num)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700303{
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700304 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
305 BUG_ON(!PageLocked(page));
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700306
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700307 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
308 len, offs, GFP_NOFS);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700309}
310EXPORT_SYMBOL(fscrypt_decrypt_page);
311
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700312/*
313 * Validate dentries for encrypted directories to make sure we aren't
314 * potentially caching stale data after a key has been added or
315 * removed.
316 */
317static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
318{
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700319 struct dentry *dir;
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700320 int dir_has_key, cached_with_key;
321
Jaegeuk Kim03a8bb02016-04-12 16:05:36 -0700322 if (flags & LOOKUP_RCU)
323 return -ECHILD;
324
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700325 dir = dget_parent(dentry);
Eric Biggersd750ec72017-10-09 12:15:36 -0700326 if (!IS_ENCRYPTED(d_inode(dir))) {
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700327 dput(dir);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700328 return 0;
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700329 }
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700330
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700331 /* this should eventually be an flag in d_flags */
332 spin_lock(&dentry->d_lock);
333 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
334 spin_unlock(&dentry->d_lock);
Eric Biggers2984e522017-02-21 15:07:11 -0800335 dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
Jaegeuk Kimd7d75352016-04-11 15:10:11 -0700336 dput(dir);
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700337
338 /*
339 * If the dentry was cached without the key, and it is a
340 * negative dentry, it might be a valid name. We can't check
341 * if the key has since been made available due to locking
342 * reasons, so we fail the validation so ext4_lookup() can do
343 * this check.
344 *
345 * We also fail the validation if the dentry was created with
346 * the key present, but we no longer have the key, or vice versa.
347 */
348 if ((!cached_with_key && d_is_negative(dentry)) ||
349 (!cached_with_key && dir_has_key) ||
350 (cached_with_key && !dir_has_key))
351 return 0;
352 return 1;
353}
354
355const struct dentry_operations fscrypt_d_ops = {
356 .d_revalidate = fscrypt_d_revalidate,
357};
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700358
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700359void fscrypt_restore_control_page(struct page *page)
360{
361 struct fscrypt_ctx *ctx;
362
363 ctx = (struct fscrypt_ctx *)page_private(page);
364 set_page_private(page, (unsigned long)NULL);
365 ClearPagePrivate(page);
366 unlock_page(page);
367 fscrypt_release_ctx(ctx);
368}
369EXPORT_SYMBOL(fscrypt_restore_control_page);
370
371static void fscrypt_destroy(void)
372{
373 struct fscrypt_ctx *pos, *n;
374
375 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
376 kmem_cache_free(fscrypt_ctx_cachep, pos);
377 INIT_LIST_HEAD(&fscrypt_free_ctxs);
378 mempool_destroy(fscrypt_bounce_page_pool);
379 fscrypt_bounce_page_pool = NULL;
380}
381
382/**
383 * fscrypt_initialize() - allocate major buffers for fs encryption.
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700384 * @cop_flags: fscrypt operations flags
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700385 *
386 * We only call this when we start accessing encrypted files, since it
387 * results in memory getting allocated that wouldn't otherwise be used.
388 *
389 * Return: Zero on success, non-zero otherwise.
390 */
Jaegeuk Kime6b120d2017-07-10 12:55:09 -0700391int fscrypt_initialize(unsigned int cop_flags)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700392{
393 int i, res = -ENOMEM;
394
Eric Biggerse0af0832017-10-29 06:30:19 -0400395 /* No need to allocate a bounce page pool if this FS won't use it. */
396 if (cop_flags & FS_CFLG_OWN_PAGES)
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700397 return 0;
398
399 mutex_lock(&fscrypt_init_mutex);
400 if (fscrypt_bounce_page_pool)
401 goto already_initialized;
402
403 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
404 struct fscrypt_ctx *ctx;
405
406 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
407 if (!ctx)
408 goto fail;
409 list_add(&ctx->free_list, &fscrypt_free_ctxs);
410 }
411
412 fscrypt_bounce_page_pool =
413 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
414 if (!fscrypt_bounce_page_pool)
415 goto fail;
416
417already_initialized:
418 mutex_unlock(&fscrypt_init_mutex);
419 return 0;
420fail:
421 fscrypt_destroy();
422 mutex_unlock(&fscrypt_init_mutex);
423 return res;
424}
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700425
426/**
427 * fscrypt_init() - Set up for fs encryption.
428 */
429static int __init fscrypt_init(void)
430{
Eric Biggersf9866de2018-04-20 16:30:02 -0700431 /*
432 * Use an unbound workqueue to allow bios to be decrypted in parallel
433 * even when they happen to complete on the same CPU. This sacrifices
434 * locality, but it's worthwhile since decryption is CPU-intensive.
435 *
436 * Also use a high-priority workqueue to prioritize decryption work,
437 * which blocks reads from completing, over regular application tasks.
438 */
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700439 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
Eric Biggersf9866de2018-04-20 16:30:02 -0700440 WQ_UNBOUND | WQ_HIGHPRI,
441 num_online_cpus());
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700442 if (!fscrypt_read_workqueue)
443 goto fail;
444
445 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
446 if (!fscrypt_ctx_cachep)
447 goto fail_free_queue;
448
449 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
450 if (!fscrypt_info_cachep)
451 goto fail_free_ctx;
452
453 return 0;
454
455fail_free_ctx:
456 kmem_cache_destroy(fscrypt_ctx_cachep);
457fail_free_queue:
458 destroy_workqueue(fscrypt_read_workqueue);
459fail:
460 return -ENOMEM;
461}
462module_init(fscrypt_init)
463
464/**
465 * fscrypt_exit() - Shutdown the fs encryption system
466 */
467static void __exit fscrypt_exit(void)
468{
469 fscrypt_destroy();
470
471 if (fscrypt_read_workqueue)
472 destroy_workqueue(fscrypt_read_workqueue);
473 kmem_cache_destroy(fscrypt_ctx_cachep);
474 kmem_cache_destroy(fscrypt_info_cachep);
Daniel Walter8e989de2017-06-19 09:27:58 +0200475
476 fscrypt_essiv_cleanup();
Jaegeuk Kim0b81d072015-05-15 16:26:10 -0700477}
478module_exit(fscrypt_exit);
479
480MODULE_LICENSE("GPL");