Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2013 Broadcom Corporation |
| 3 | * Copyright 2013 Linaro Limited |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public License as |
| 7 | * published by the Free Software Foundation version 2. |
| 8 | * |
| 9 | * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| 10 | * kind, whether express or implied; without even the implied warranty |
| 11 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/io.h> |
| 16 | #include <linux/of_address.h> |
| 17 | |
| 18 | #include "clk-kona.h" |
| 19 | |
| 20 | /* These are used when a selector or trigger is found to be unneeded */ |
| 21 | #define selector_clear_exists(sel) ((sel)->width = 0) |
| 22 | #define trigger_clear_exists(trig) FLAG_CLEAR(trig, TRIG, EXISTS) |
| 23 | |
| 24 | LIST_HEAD(ccu_list); /* The list of set up CCUs */ |
| 25 | |
| 26 | /* Validity checking */ |
| 27 | |
| 28 | static bool clk_requires_trigger(struct kona_clk *bcm_clk) |
| 29 | { |
| 30 | struct peri_clk_data *peri = bcm_clk->peri; |
| 31 | struct bcm_clk_sel *sel; |
| 32 | struct bcm_clk_div *div; |
| 33 | |
| 34 | if (bcm_clk->type != bcm_clk_peri) |
| 35 | return false; |
| 36 | |
| 37 | sel = &peri->sel; |
| 38 | if (sel->parent_count && selector_exists(sel)) |
| 39 | return true; |
| 40 | |
| 41 | div = &peri->div; |
| 42 | if (!divider_exists(div)) |
| 43 | return false; |
| 44 | |
| 45 | /* Fixed dividers don't need triggers */ |
| 46 | if (!divider_is_fixed(div)) |
| 47 | return true; |
| 48 | |
| 49 | div = &peri->pre_div; |
| 50 | |
| 51 | return divider_exists(div) && !divider_is_fixed(div); |
| 52 | } |
| 53 | |
| 54 | static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk) |
| 55 | { |
| 56 | struct peri_clk_data *peri; |
| 57 | struct bcm_clk_gate *gate; |
| 58 | struct bcm_clk_div *div; |
| 59 | struct bcm_clk_sel *sel; |
| 60 | struct bcm_clk_trig *trig; |
| 61 | const char *name; |
| 62 | u32 range; |
| 63 | u32 limit; |
| 64 | |
| 65 | BUG_ON(bcm_clk->type != bcm_clk_peri); |
| 66 | peri = bcm_clk->peri; |
| 67 | name = bcm_clk->name; |
| 68 | range = bcm_clk->ccu->range; |
| 69 | |
| 70 | limit = range - sizeof(u32); |
| 71 | limit = round_down(limit, sizeof(u32)); |
| 72 | |
| 73 | gate = &peri->gate; |
| 74 | if (gate_exists(gate)) { |
| 75 | if (gate->offset > limit) { |
| 76 | pr_err("%s: bad gate offset for %s (%u > %u)\n", |
| 77 | __func__, name, gate->offset, limit); |
| 78 | return false; |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | div = &peri->div; |
| 83 | if (divider_exists(div)) { |
| 84 | if (div->offset > limit) { |
| 85 | pr_err("%s: bad divider offset for %s (%u > %u)\n", |
| 86 | __func__, name, div->offset, limit); |
| 87 | return false; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | div = &peri->pre_div; |
| 92 | if (divider_exists(div)) { |
| 93 | if (div->offset > limit) { |
| 94 | pr_err("%s: bad pre-divider offset for %s " |
| 95 | "(%u > %u)\n", |
| 96 | __func__, name, div->offset, limit); |
| 97 | return false; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | sel = &peri->sel; |
| 102 | if (selector_exists(sel)) { |
| 103 | if (sel->offset > limit) { |
| 104 | pr_err("%s: bad selector offset for %s (%u > %u)\n", |
| 105 | __func__, name, sel->offset, limit); |
| 106 | return false; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | trig = &peri->trig; |
| 111 | if (trigger_exists(trig)) { |
| 112 | if (trig->offset > limit) { |
| 113 | pr_err("%s: bad trigger offset for %s (%u > %u)\n", |
| 114 | __func__, name, trig->offset, limit); |
| 115 | return false; |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | trig = &peri->pre_trig; |
| 120 | if (trigger_exists(trig)) { |
| 121 | if (trig->offset > limit) { |
| 122 | pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n", |
| 123 | __func__, name, trig->offset, limit); |
| 124 | return false; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | return true; |
| 129 | } |
| 130 | |
| 131 | /* A bit position must be less than the number of bits in a 32-bit register. */ |
| 132 | static bool bit_posn_valid(u32 bit_posn, const char *field_name, |
| 133 | const char *clock_name) |
| 134 | { |
| 135 | u32 limit = BITS_PER_BYTE * sizeof(u32) - 1; |
| 136 | |
| 137 | if (bit_posn > limit) { |
| 138 | pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__, |
| 139 | field_name, clock_name, bit_posn, limit); |
| 140 | return false; |
| 141 | } |
| 142 | return true; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * A bitfield must be at least 1 bit wide. Both the low-order and |
| 147 | * high-order bits must lie within a 32-bit register. We require |
| 148 | * fields to be less than 32 bits wide, mainly because we use |
| 149 | * shifting to produce field masks, and shifting a full word width |
| 150 | * is not well-defined by the C standard. |
| 151 | */ |
| 152 | static bool bitfield_valid(u32 shift, u32 width, const char *field_name, |
| 153 | const char *clock_name) |
| 154 | { |
| 155 | u32 limit = BITS_PER_BYTE * sizeof(u32); |
| 156 | |
| 157 | if (!width) { |
| 158 | pr_err("%s: bad %s field width 0 for %s\n", __func__, |
| 159 | field_name, clock_name); |
| 160 | return false; |
| 161 | } |
| 162 | if (shift + width > limit) { |
| 163 | pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__, |
| 164 | field_name, clock_name, shift, width, limit); |
| 165 | return false; |
| 166 | } |
| 167 | return true; |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * All gates, if defined, have a status bit, and for hardware-only |
| 172 | * gates, that's it. Gates that can be software controlled also |
| 173 | * have an enable bit. And a gate that can be hardware or software |
| 174 | * controlled will have a hardware/software select bit. |
| 175 | */ |
| 176 | static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name, |
| 177 | const char *clock_name) |
| 178 | { |
| 179 | if (!bit_posn_valid(gate->status_bit, "gate status", clock_name)) |
| 180 | return false; |
| 181 | |
| 182 | if (gate_is_sw_controllable(gate)) { |
| 183 | if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name)) |
| 184 | return false; |
| 185 | |
| 186 | if (gate_is_hw_controllable(gate)) { |
| 187 | if (!bit_posn_valid(gate->hw_sw_sel_bit, |
| 188 | "gate hw/sw select", |
| 189 | clock_name)) |
| 190 | return false; |
| 191 | } |
| 192 | } else { |
| 193 | BUG_ON(!gate_is_hw_controllable(gate)); |
| 194 | } |
| 195 | |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * A selector bitfield must be valid. Its parent_sel array must |
| 201 | * also be reasonable for the field. |
| 202 | */ |
| 203 | static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name, |
| 204 | const char *clock_name) |
| 205 | { |
| 206 | if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name)) |
| 207 | return false; |
| 208 | |
| 209 | if (sel->parent_count) { |
| 210 | u32 max_sel; |
| 211 | u32 limit; |
| 212 | |
| 213 | /* |
| 214 | * Make sure the selector field can hold all the |
| 215 | * selector values we expect to be able to use. A |
| 216 | * clock only needs to have a selector defined if it |
| 217 | * has more than one parent. And in that case the |
| 218 | * highest selector value will be in the last entry |
| 219 | * in the array. |
| 220 | */ |
| 221 | max_sel = sel->parent_sel[sel->parent_count - 1]; |
| 222 | limit = (1 << sel->width) - 1; |
| 223 | if (max_sel > limit) { |
| 224 | pr_err("%s: bad selector for %s " |
| 225 | "(%u needs > %u bits)\n", |
| 226 | __func__, clock_name, max_sel, |
| 227 | sel->width); |
| 228 | return false; |
| 229 | } |
| 230 | } else { |
| 231 | pr_warn("%s: ignoring selector for %s (no parents)\n", |
| 232 | __func__, clock_name); |
| 233 | selector_clear_exists(sel); |
| 234 | kfree(sel->parent_sel); |
| 235 | sel->parent_sel = NULL; |
| 236 | } |
| 237 | |
| 238 | return true; |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * A fixed divider just needs to be non-zero. A variable divider |
| 243 | * has to have a valid divider bitfield, and if it has a fraction, |
| 244 | * the width of the fraction must not be no more than the width of |
| 245 | * the divider as a whole. |
| 246 | */ |
| 247 | static bool div_valid(struct bcm_clk_div *div, const char *field_name, |
| 248 | const char *clock_name) |
| 249 | { |
| 250 | if (divider_is_fixed(div)) { |
| 251 | /* Any fixed divider value but 0 is OK */ |
| 252 | if (div->fixed == 0) { |
| 253 | pr_err("%s: bad %s fixed value 0 for %s\n", __func__, |
| 254 | field_name, clock_name); |
| 255 | return false; |
| 256 | } |
| 257 | return true; |
| 258 | } |
| 259 | if (!bitfield_valid(div->shift, div->width, field_name, clock_name)) |
| 260 | return false; |
| 261 | |
| 262 | if (divider_has_fraction(div)) |
| 263 | if (div->frac_width > div->width) { |
| 264 | pr_warn("%s: bad %s fraction width for %s (%u > %u)\n", |
| 265 | __func__, field_name, clock_name, |
| 266 | div->frac_width, div->width); |
| 267 | return false; |
| 268 | } |
| 269 | |
| 270 | return true; |
| 271 | } |
| 272 | |
| 273 | /* |
| 274 | * If a clock has two dividers, the combined number of fractional |
| 275 | * bits must be representable in a 32-bit unsigned value. This |
| 276 | * is because we scale up a dividend using both dividers before |
| 277 | * dividing to improve accuracy, and we need to avoid overflow. |
| 278 | */ |
| 279 | static bool kona_dividers_valid(struct kona_clk *bcm_clk) |
| 280 | { |
| 281 | struct peri_clk_data *peri = bcm_clk->peri; |
| 282 | struct bcm_clk_div *div; |
| 283 | struct bcm_clk_div *pre_div; |
| 284 | u32 limit; |
| 285 | |
| 286 | BUG_ON(bcm_clk->type != bcm_clk_peri); |
| 287 | |
| 288 | if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div)) |
| 289 | return true; |
| 290 | |
| 291 | div = &peri->div; |
| 292 | pre_div = &peri->pre_div; |
| 293 | if (divider_is_fixed(div) || divider_is_fixed(pre_div)) |
| 294 | return true; |
| 295 | |
| 296 | limit = BITS_PER_BYTE * sizeof(u32); |
| 297 | |
| 298 | return div->frac_width + pre_div->frac_width <= limit; |
| 299 | } |
| 300 | |
| 301 | |
| 302 | /* A trigger just needs to represent a valid bit position */ |
| 303 | static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name, |
| 304 | const char *clock_name) |
| 305 | { |
| 306 | return bit_posn_valid(trig->bit, field_name, clock_name); |
| 307 | } |
| 308 | |
| 309 | /* Determine whether the set of peripheral clock registers are valid. */ |
| 310 | static bool |
| 311 | peri_clk_data_valid(struct kona_clk *bcm_clk) |
| 312 | { |
| 313 | struct peri_clk_data *peri; |
| 314 | struct bcm_clk_gate *gate; |
| 315 | struct bcm_clk_sel *sel; |
| 316 | struct bcm_clk_div *div; |
| 317 | struct bcm_clk_div *pre_div; |
| 318 | struct bcm_clk_trig *trig; |
| 319 | const char *name; |
| 320 | |
| 321 | BUG_ON(bcm_clk->type != bcm_clk_peri); |
| 322 | |
| 323 | /* |
| 324 | * First validate register offsets. This is the only place |
| 325 | * where we need something from the ccu, so we do these |
| 326 | * together. |
| 327 | */ |
| 328 | if (!peri_clk_data_offsets_valid(bcm_clk)) |
| 329 | return false; |
| 330 | |
| 331 | peri = bcm_clk->peri; |
| 332 | name = bcm_clk->name; |
| 333 | gate = &peri->gate; |
| 334 | if (gate_exists(gate) && !gate_valid(gate, "gate", name)) |
| 335 | return false; |
| 336 | |
| 337 | sel = &peri->sel; |
| 338 | if (selector_exists(sel)) { |
| 339 | if (!sel_valid(sel, "selector", name)) |
| 340 | return false; |
| 341 | |
| 342 | } else if (sel->parent_count > 1) { |
| 343 | pr_err("%s: multiple parents but no selector for %s\n", |
| 344 | __func__, name); |
| 345 | |
| 346 | return false; |
| 347 | } |
| 348 | |
| 349 | div = &peri->div; |
| 350 | pre_div = &peri->pre_div; |
| 351 | if (divider_exists(div)) { |
| 352 | if (!div_valid(div, "divider", name)) |
| 353 | return false; |
| 354 | |
| 355 | if (divider_exists(pre_div)) |
| 356 | if (!div_valid(pre_div, "pre-divider", name)) |
| 357 | return false; |
| 358 | } else if (divider_exists(pre_div)) { |
| 359 | pr_err("%s: pre-divider but no divider for %s\n", __func__, |
| 360 | name); |
| 361 | return false; |
| 362 | } |
| 363 | |
| 364 | trig = &peri->trig; |
| 365 | if (trigger_exists(trig)) { |
| 366 | if (!trig_valid(trig, "trigger", name)) |
| 367 | return false; |
| 368 | |
| 369 | if (trigger_exists(&peri->pre_trig)) { |
| 370 | if (!trig_valid(trig, "pre-trigger", name)) { |
| 371 | return false; |
| 372 | } |
| 373 | } |
| 374 | if (!clk_requires_trigger(bcm_clk)) { |
| 375 | pr_warn("%s: ignoring trigger for %s (not needed)\n", |
| 376 | __func__, name); |
| 377 | trigger_clear_exists(trig); |
| 378 | } |
| 379 | } else if (trigger_exists(&peri->pre_trig)) { |
| 380 | pr_err("%s: pre-trigger but no trigger for %s\n", __func__, |
| 381 | name); |
| 382 | return false; |
| 383 | } else if (clk_requires_trigger(bcm_clk)) { |
| 384 | pr_err("%s: required trigger missing for %s\n", __func__, |
| 385 | name); |
| 386 | return false; |
| 387 | } |
| 388 | |
| 389 | return kona_dividers_valid(bcm_clk); |
| 390 | } |
| 391 | |
| 392 | static bool kona_clk_valid(struct kona_clk *bcm_clk) |
| 393 | { |
| 394 | switch (bcm_clk->type) { |
| 395 | case bcm_clk_peri: |
| 396 | if (!peri_clk_data_valid(bcm_clk)) |
| 397 | return false; |
| 398 | break; |
| 399 | default: |
| 400 | pr_err("%s: unrecognized clock type (%d)\n", __func__, |
| 401 | (int)bcm_clk->type); |
| 402 | return false; |
| 403 | } |
| 404 | return true; |
| 405 | } |
| 406 | |
| 407 | /* |
| 408 | * Scan an array of parent clock names to determine whether there |
| 409 | * are any entries containing BAD_CLK_NAME. Such entries are |
| 410 | * placeholders for non-supported clocks. Keep track of the |
| 411 | * position of each clock name in the original array. |
| 412 | * |
| 413 | * Allocates an array of pointers to to hold the names of all |
| 414 | * non-null entries in the original array, and returns a pointer to |
| 415 | * that array in *names. This will be used for registering the |
| 416 | * clock with the common clock code. On successful return, |
| 417 | * *count indicates how many entries are in that names array. |
| 418 | * |
| 419 | * If there is more than one entry in the resulting names array, |
| 420 | * another array is allocated to record the parent selector value |
| 421 | * for each (defined) parent clock. This is the value that |
| 422 | * represents this parent clock in the clock's source selector |
| 423 | * register. The position of the clock in the original parent array |
| 424 | * defines that selector value. The number of entries in this array |
| 425 | * is the same as the number of entries in the parent names array. |
| 426 | * |
| 427 | * The array of selector values is returned. If the clock has no |
| 428 | * parents, no selector is required and a null pointer is returned. |
| 429 | * |
| 430 | * Returns a null pointer if the clock names array supplied was |
| 431 | * null. (This is not an error.) |
| 432 | * |
| 433 | * Returns a pointer-coded error if an error occurs. |
| 434 | */ |
| 435 | static u32 *parent_process(const char *clocks[], |
| 436 | u32 *count, const char ***names) |
| 437 | { |
| 438 | static const char **parent_names; |
| 439 | static u32 *parent_sel; |
| 440 | const char **clock; |
| 441 | u32 parent_count; |
| 442 | u32 bad_count = 0; |
| 443 | u32 orig_count; |
| 444 | u32 i; |
| 445 | u32 j; |
| 446 | |
| 447 | *count = 0; /* In case of early return */ |
| 448 | *names = NULL; |
| 449 | if (!clocks) |
| 450 | return NULL; |
| 451 | |
| 452 | /* |
| 453 | * Count the number of names in the null-terminated array, |
| 454 | * and find out how many of those are actually clock names. |
| 455 | */ |
| 456 | for (clock = clocks; *clock; clock++) |
| 457 | if (*clock == BAD_CLK_NAME) |
| 458 | bad_count++; |
| 459 | orig_count = (u32)(clock - clocks); |
| 460 | parent_count = orig_count - bad_count; |
| 461 | |
| 462 | /* If all clocks are unsupported, we treat it as no clock */ |
| 463 | if (!parent_count) |
| 464 | return NULL; |
| 465 | |
| 466 | /* Avoid exceeding our parent clock limit */ |
| 467 | if (parent_count > PARENT_COUNT_MAX) { |
| 468 | pr_err("%s: too many parents (%u > %u)\n", __func__, |
| 469 | parent_count, PARENT_COUNT_MAX); |
| 470 | return ERR_PTR(-EINVAL); |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * There is one parent name for each defined parent clock. |
| 475 | * We also maintain an array containing the selector value |
| 476 | * for each defined clock. If there's only one clock, the |
| 477 | * selector is not required, but we allocate space for the |
| 478 | * array anyway to keep things simple. |
| 479 | */ |
| 480 | parent_names = kmalloc(parent_count * sizeof(parent_names), GFP_KERNEL); |
| 481 | if (!parent_names) { |
| 482 | pr_err("%s: error allocating %u parent names\n", __func__, |
| 483 | parent_count); |
| 484 | return ERR_PTR(-ENOMEM); |
| 485 | } |
| 486 | |
| 487 | /* There is at least one parent, so allocate a selector array */ |
| 488 | |
| 489 | parent_sel = kmalloc(parent_count * sizeof(*parent_sel), GFP_KERNEL); |
| 490 | if (!parent_sel) { |
| 491 | pr_err("%s: error allocating %u parent selectors\n", __func__, |
| 492 | parent_count); |
| 493 | kfree(parent_names); |
| 494 | |
| 495 | return ERR_PTR(-ENOMEM); |
| 496 | } |
| 497 | |
| 498 | /* Now fill in the parent names and selector arrays */ |
| 499 | for (i = 0, j = 0; i < orig_count; i++) { |
| 500 | if (clocks[i] != BAD_CLK_NAME) { |
| 501 | parent_names[j] = clocks[i]; |
| 502 | parent_sel[j] = i; |
| 503 | j++; |
| 504 | } |
| 505 | } |
| 506 | *names = parent_names; |
| 507 | *count = parent_count; |
| 508 | |
| 509 | return parent_sel; |
| 510 | } |
| 511 | |
| 512 | static int |
| 513 | clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel, |
| 514 | struct clk_init_data *init_data) |
| 515 | { |
| 516 | const char **parent_names = NULL; |
| 517 | u32 parent_count = 0; |
| 518 | u32 *parent_sel; |
| 519 | |
| 520 | /* |
| 521 | * If a peripheral clock has multiple parents, the value |
| 522 | * used by the hardware to select that parent is represented |
| 523 | * by the parent clock's position in the "clocks" list. Some |
| 524 | * values don't have defined or supported clocks; these will |
| 525 | * have BAD_CLK_NAME entries in the parents[] array. The |
| 526 | * list is terminated by a NULL entry. |
| 527 | * |
| 528 | * We need to supply (only) the names of defined parent |
| 529 | * clocks when registering a clock though, so we use an |
| 530 | * array of parent selector values to map between the |
| 531 | * indexes the common clock code uses and the selector |
| 532 | * values we need. |
| 533 | */ |
| 534 | parent_sel = parent_process(clocks, &parent_count, &parent_names); |
| 535 | if (IS_ERR(parent_sel)) { |
| 536 | int ret = PTR_ERR(parent_sel); |
| 537 | |
| 538 | pr_err("%s: error processing parent clocks for %s (%d)\n", |
| 539 | __func__, init_data->name, ret); |
| 540 | |
| 541 | return ret; |
| 542 | } |
| 543 | |
| 544 | init_data->parent_names = parent_names; |
| 545 | init_data->num_parents = parent_count; |
| 546 | |
| 547 | sel->parent_count = parent_count; |
| 548 | sel->parent_sel = parent_sel; |
| 549 | |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | static void clk_sel_teardown(struct bcm_clk_sel *sel, |
| 554 | struct clk_init_data *init_data) |
| 555 | { |
| 556 | kfree(sel->parent_sel); |
| 557 | sel->parent_sel = NULL; |
| 558 | sel->parent_count = 0; |
| 559 | |
| 560 | init_data->num_parents = 0; |
| 561 | kfree(init_data->parent_names); |
| 562 | init_data->parent_names = NULL; |
| 563 | } |
| 564 | |
| 565 | static void peri_clk_teardown(struct peri_clk_data *data, |
| 566 | struct clk_init_data *init_data) |
| 567 | { |
| 568 | clk_sel_teardown(&data->sel, init_data); |
| 569 | init_data->ops = NULL; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Caller is responsible for freeing the parent_names[] and |
| 574 | * parent_sel[] arrays in the peripheral clock's "data" structure |
| 575 | * that can be assigned if the clock has one or more parent clocks |
| 576 | * associated with it. |
| 577 | */ |
| 578 | static int peri_clk_setup(struct ccu_data *ccu, struct peri_clk_data *data, |
| 579 | struct clk_init_data *init_data) |
| 580 | { |
| 581 | init_data->ops = &kona_peri_clk_ops; |
| 582 | init_data->flags = 0; |
| 583 | |
| 584 | return clk_sel_setup(data->clocks, &data->sel, init_data); |
| 585 | } |
| 586 | |
| 587 | static void bcm_clk_teardown(struct kona_clk *bcm_clk) |
| 588 | { |
| 589 | switch (bcm_clk->type) { |
| 590 | case bcm_clk_peri: |
| 591 | peri_clk_teardown(bcm_clk->data, &bcm_clk->init_data); |
| 592 | break; |
| 593 | default: |
| 594 | break; |
| 595 | } |
| 596 | bcm_clk->data = NULL; |
| 597 | bcm_clk->type = bcm_clk_none; |
| 598 | } |
| 599 | |
| 600 | static void kona_clk_teardown(struct clk *clk) |
| 601 | { |
| 602 | struct clk_hw *hw; |
| 603 | struct kona_clk *bcm_clk; |
| 604 | |
| 605 | if (!clk) |
| 606 | return; |
| 607 | |
| 608 | hw = __clk_get_hw(clk); |
| 609 | if (!hw) { |
| 610 | pr_err("%s: clk %p has null hw pointer\n", __func__, clk); |
| 611 | return; |
| 612 | } |
| 613 | clk_unregister(clk); |
| 614 | |
| 615 | bcm_clk = to_kona_clk(hw); |
| 616 | bcm_clk_teardown(bcm_clk); |
| 617 | } |
| 618 | |
| 619 | struct clk *kona_clk_setup(struct ccu_data *ccu, const char *name, |
| 620 | enum bcm_clk_type type, void *data) |
| 621 | { |
| 622 | struct kona_clk *bcm_clk; |
| 623 | struct clk_init_data *init_data; |
| 624 | struct clk *clk = NULL; |
| 625 | |
| 626 | bcm_clk = kzalloc(sizeof(*bcm_clk), GFP_KERNEL); |
| 627 | if (!bcm_clk) { |
| 628 | pr_err("%s: failed to allocate bcm_clk for %s\n", __func__, |
| 629 | name); |
| 630 | return NULL; |
| 631 | } |
| 632 | bcm_clk->ccu = ccu; |
| 633 | bcm_clk->name = name; |
| 634 | |
| 635 | init_data = &bcm_clk->init_data; |
| 636 | init_data->name = name; |
| 637 | switch (type) { |
| 638 | case bcm_clk_peri: |
| 639 | if (peri_clk_setup(ccu, data, init_data)) |
| 640 | goto out_free; |
| 641 | break; |
| 642 | default: |
| 643 | data = NULL; |
| 644 | break; |
| 645 | } |
| 646 | bcm_clk->type = type; |
| 647 | bcm_clk->data = data; |
| 648 | |
| 649 | /* Make sure everything makes sense before we set it up */ |
| 650 | if (!kona_clk_valid(bcm_clk)) { |
| 651 | pr_err("%s: clock data invalid for %s\n", __func__, name); |
| 652 | goto out_teardown; |
| 653 | } |
| 654 | |
| 655 | bcm_clk->hw.init = init_data; |
| 656 | clk = clk_register(NULL, &bcm_clk->hw); |
| 657 | if (IS_ERR(clk)) { |
| 658 | pr_err("%s: error registering clock %s (%ld)\n", __func__, |
| 659 | name, PTR_ERR(clk)); |
| 660 | goto out_teardown; |
| 661 | } |
| 662 | BUG_ON(!clk); |
| 663 | |
| 664 | return clk; |
| 665 | out_teardown: |
| 666 | bcm_clk_teardown(bcm_clk); |
| 667 | out_free: |
| 668 | kfree(bcm_clk); |
| 669 | |
| 670 | return NULL; |
| 671 | } |
| 672 | |
| 673 | static void ccu_clks_teardown(struct ccu_data *ccu) |
| 674 | { |
| 675 | u32 i; |
| 676 | |
| 677 | for (i = 0; i < ccu->data.clk_num; i++) |
| 678 | kona_clk_teardown(ccu->data.clks[i]); |
| 679 | kfree(ccu->data.clks); |
| 680 | } |
| 681 | |
| 682 | static void kona_ccu_teardown(struct ccu_data *ccu) |
| 683 | { |
| 684 | if (!ccu) |
| 685 | return; |
| 686 | |
| 687 | if (!ccu->base) |
| 688 | goto done; |
| 689 | |
| 690 | of_clk_del_provider(ccu->node); /* safe if never added */ |
| 691 | ccu_clks_teardown(ccu); |
| 692 | list_del(&ccu->links); |
| 693 | of_node_put(ccu->node); |
| 694 | iounmap(ccu->base); |
| 695 | done: |
| 696 | kfree(ccu->name); |
| 697 | kfree(ccu); |
| 698 | } |
| 699 | |
| 700 | /* |
| 701 | * Set up a CCU. Call the provided ccu_clks_setup callback to |
| 702 | * initialize the array of clocks provided by the CCU. |
| 703 | */ |
| 704 | void __init kona_dt_ccu_setup(struct device_node *node, |
| 705 | int (*ccu_clks_setup)(struct ccu_data *)) |
| 706 | { |
| 707 | struct ccu_data *ccu; |
| 708 | struct resource res = { 0 }; |
| 709 | resource_size_t range; |
| 710 | int ret; |
| 711 | |
| 712 | ccu = kzalloc(sizeof(*ccu), GFP_KERNEL); |
| 713 | if (ccu) |
| 714 | ccu->name = kstrdup(node->name, GFP_KERNEL); |
| 715 | if (!ccu || !ccu->name) { |
| 716 | pr_err("%s: unable to allocate CCU struct for %s\n", |
| 717 | __func__, node->name); |
| 718 | kfree(ccu); |
| 719 | |
| 720 | return; |
| 721 | } |
| 722 | |
| 723 | ret = of_address_to_resource(node, 0, &res); |
| 724 | if (ret) { |
| 725 | pr_err("%s: no valid CCU registers found for %s\n", __func__, |
| 726 | node->name); |
| 727 | goto out_err; |
| 728 | } |
| 729 | |
| 730 | range = resource_size(&res); |
| 731 | if (range > (resource_size_t)U32_MAX) { |
| 732 | pr_err("%s: address range too large for %s\n", __func__, |
| 733 | node->name); |
| 734 | goto out_err; |
| 735 | } |
| 736 | |
| 737 | ccu->range = (u32)range; |
| 738 | ccu->base = ioremap(res.start, ccu->range); |
| 739 | if (!ccu->base) { |
| 740 | pr_err("%s: unable to map CCU registers for %s\n", __func__, |
| 741 | node->name); |
| 742 | goto out_err; |
| 743 | } |
| 744 | |
| 745 | spin_lock_init(&ccu->lock); |
| 746 | INIT_LIST_HEAD(&ccu->links); |
| 747 | ccu->node = of_node_get(node); |
| 748 | |
| 749 | list_add_tail(&ccu->links, &ccu_list); |
| 750 | |
| 751 | /* Set up clocks array (in ccu->data) */ |
| 752 | if (ccu_clks_setup(ccu)) |
| 753 | goto out_err; |
| 754 | |
| 755 | ret = of_clk_add_provider(node, of_clk_src_onecell_get, &ccu->data); |
| 756 | if (ret) { |
| 757 | pr_err("%s: error adding ccu %s as provider (%d)\n", __func__, |
| 758 | node->name, ret); |
| 759 | goto out_err; |
| 760 | } |
| 761 | |
| 762 | if (!kona_ccu_init(ccu)) |
| 763 | pr_err("Broadcom %s initialization had errors\n", node->name); |
| 764 | |
| 765 | return; |
| 766 | out_err: |
| 767 | kona_ccu_teardown(ccu); |
| 768 | pr_err("Broadcom %s setup aborted\n", node->name); |
| 769 | } |