blob: f1e88fe6bb4c06a1ae4764c49364e214f3152a8f [file] [log] [blame]
Alex Elder1f27f152014-02-14 12:29:18 -06001/*
2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#include <linux/io.h>
16#include <linux/of_address.h>
17
18#include "clk-kona.h"
19
20/* These are used when a selector or trigger is found to be unneeded */
21#define selector_clear_exists(sel) ((sel)->width = 0)
22#define trigger_clear_exists(trig) FLAG_CLEAR(trig, TRIG, EXISTS)
23
24LIST_HEAD(ccu_list); /* The list of set up CCUs */
25
26/* Validity checking */
27
28static bool clk_requires_trigger(struct kona_clk *bcm_clk)
29{
30 struct peri_clk_data *peri = bcm_clk->peri;
31 struct bcm_clk_sel *sel;
32 struct bcm_clk_div *div;
33
34 if (bcm_clk->type != bcm_clk_peri)
35 return false;
36
37 sel = &peri->sel;
38 if (sel->parent_count && selector_exists(sel))
39 return true;
40
41 div = &peri->div;
42 if (!divider_exists(div))
43 return false;
44
45 /* Fixed dividers don't need triggers */
46 if (!divider_is_fixed(div))
47 return true;
48
49 div = &peri->pre_div;
50
51 return divider_exists(div) && !divider_is_fixed(div);
52}
53
54static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
55{
56 struct peri_clk_data *peri;
57 struct bcm_clk_gate *gate;
58 struct bcm_clk_div *div;
59 struct bcm_clk_sel *sel;
60 struct bcm_clk_trig *trig;
61 const char *name;
62 u32 range;
63 u32 limit;
64
65 BUG_ON(bcm_clk->type != bcm_clk_peri);
66 peri = bcm_clk->peri;
67 name = bcm_clk->name;
68 range = bcm_clk->ccu->range;
69
70 limit = range - sizeof(u32);
71 limit = round_down(limit, sizeof(u32));
72
73 gate = &peri->gate;
74 if (gate_exists(gate)) {
75 if (gate->offset > limit) {
76 pr_err("%s: bad gate offset for %s (%u > %u)\n",
77 __func__, name, gate->offset, limit);
78 return false;
79 }
80 }
81
82 div = &peri->div;
83 if (divider_exists(div)) {
84 if (div->offset > limit) {
85 pr_err("%s: bad divider offset for %s (%u > %u)\n",
86 __func__, name, div->offset, limit);
87 return false;
88 }
89 }
90
91 div = &peri->pre_div;
92 if (divider_exists(div)) {
93 if (div->offset > limit) {
94 pr_err("%s: bad pre-divider offset for %s "
95 "(%u > %u)\n",
96 __func__, name, div->offset, limit);
97 return false;
98 }
99 }
100
101 sel = &peri->sel;
102 if (selector_exists(sel)) {
103 if (sel->offset > limit) {
104 pr_err("%s: bad selector offset for %s (%u > %u)\n",
105 __func__, name, sel->offset, limit);
106 return false;
107 }
108 }
109
110 trig = &peri->trig;
111 if (trigger_exists(trig)) {
112 if (trig->offset > limit) {
113 pr_err("%s: bad trigger offset for %s (%u > %u)\n",
114 __func__, name, trig->offset, limit);
115 return false;
116 }
117 }
118
119 trig = &peri->pre_trig;
120 if (trigger_exists(trig)) {
121 if (trig->offset > limit) {
122 pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
123 __func__, name, trig->offset, limit);
124 return false;
125 }
126 }
127
128 return true;
129}
130
131/* A bit position must be less than the number of bits in a 32-bit register. */
132static bool bit_posn_valid(u32 bit_posn, const char *field_name,
133 const char *clock_name)
134{
135 u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
136
137 if (bit_posn > limit) {
138 pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
139 field_name, clock_name, bit_posn, limit);
140 return false;
141 }
142 return true;
143}
144
145/*
146 * A bitfield must be at least 1 bit wide. Both the low-order and
147 * high-order bits must lie within a 32-bit register. We require
148 * fields to be less than 32 bits wide, mainly because we use
149 * shifting to produce field masks, and shifting a full word width
150 * is not well-defined by the C standard.
151 */
152static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
153 const char *clock_name)
154{
155 u32 limit = BITS_PER_BYTE * sizeof(u32);
156
157 if (!width) {
158 pr_err("%s: bad %s field width 0 for %s\n", __func__,
159 field_name, clock_name);
160 return false;
161 }
162 if (shift + width > limit) {
163 pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
164 field_name, clock_name, shift, width, limit);
165 return false;
166 }
167 return true;
168}
169
170/*
171 * All gates, if defined, have a status bit, and for hardware-only
172 * gates, that's it. Gates that can be software controlled also
173 * have an enable bit. And a gate that can be hardware or software
174 * controlled will have a hardware/software select bit.
175 */
176static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
177 const char *clock_name)
178{
179 if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
180 return false;
181
182 if (gate_is_sw_controllable(gate)) {
183 if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
184 return false;
185
186 if (gate_is_hw_controllable(gate)) {
187 if (!bit_posn_valid(gate->hw_sw_sel_bit,
188 "gate hw/sw select",
189 clock_name))
190 return false;
191 }
192 } else {
193 BUG_ON(!gate_is_hw_controllable(gate));
194 }
195
196 return true;
197}
198
199/*
200 * A selector bitfield must be valid. Its parent_sel array must
201 * also be reasonable for the field.
202 */
203static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
204 const char *clock_name)
205{
206 if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
207 return false;
208
209 if (sel->parent_count) {
210 u32 max_sel;
211 u32 limit;
212
213 /*
214 * Make sure the selector field can hold all the
215 * selector values we expect to be able to use. A
216 * clock only needs to have a selector defined if it
217 * has more than one parent. And in that case the
218 * highest selector value will be in the last entry
219 * in the array.
220 */
221 max_sel = sel->parent_sel[sel->parent_count - 1];
222 limit = (1 << sel->width) - 1;
223 if (max_sel > limit) {
224 pr_err("%s: bad selector for %s "
225 "(%u needs > %u bits)\n",
226 __func__, clock_name, max_sel,
227 sel->width);
228 return false;
229 }
230 } else {
231 pr_warn("%s: ignoring selector for %s (no parents)\n",
232 __func__, clock_name);
233 selector_clear_exists(sel);
234 kfree(sel->parent_sel);
235 sel->parent_sel = NULL;
236 }
237
238 return true;
239}
240
241/*
242 * A fixed divider just needs to be non-zero. A variable divider
243 * has to have a valid divider bitfield, and if it has a fraction,
244 * the width of the fraction must not be no more than the width of
245 * the divider as a whole.
246 */
247static bool div_valid(struct bcm_clk_div *div, const char *field_name,
248 const char *clock_name)
249{
250 if (divider_is_fixed(div)) {
251 /* Any fixed divider value but 0 is OK */
252 if (div->fixed == 0) {
253 pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
254 field_name, clock_name);
255 return false;
256 }
257 return true;
258 }
259 if (!bitfield_valid(div->shift, div->width, field_name, clock_name))
260 return false;
261
262 if (divider_has_fraction(div))
263 if (div->frac_width > div->width) {
264 pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
265 __func__, field_name, clock_name,
266 div->frac_width, div->width);
267 return false;
268 }
269
270 return true;
271}
272
273/*
274 * If a clock has two dividers, the combined number of fractional
275 * bits must be representable in a 32-bit unsigned value. This
276 * is because we scale up a dividend using both dividers before
277 * dividing to improve accuracy, and we need to avoid overflow.
278 */
279static bool kona_dividers_valid(struct kona_clk *bcm_clk)
280{
281 struct peri_clk_data *peri = bcm_clk->peri;
282 struct bcm_clk_div *div;
283 struct bcm_clk_div *pre_div;
284 u32 limit;
285
286 BUG_ON(bcm_clk->type != bcm_clk_peri);
287
288 if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
289 return true;
290
291 div = &peri->div;
292 pre_div = &peri->pre_div;
293 if (divider_is_fixed(div) || divider_is_fixed(pre_div))
294 return true;
295
296 limit = BITS_PER_BYTE * sizeof(u32);
297
298 return div->frac_width + pre_div->frac_width <= limit;
299}
300
301
302/* A trigger just needs to represent a valid bit position */
303static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
304 const char *clock_name)
305{
306 return bit_posn_valid(trig->bit, field_name, clock_name);
307}
308
309/* Determine whether the set of peripheral clock registers are valid. */
310static bool
311peri_clk_data_valid(struct kona_clk *bcm_clk)
312{
313 struct peri_clk_data *peri;
314 struct bcm_clk_gate *gate;
315 struct bcm_clk_sel *sel;
316 struct bcm_clk_div *div;
317 struct bcm_clk_div *pre_div;
318 struct bcm_clk_trig *trig;
319 const char *name;
320
321 BUG_ON(bcm_clk->type != bcm_clk_peri);
322
323 /*
324 * First validate register offsets. This is the only place
325 * where we need something from the ccu, so we do these
326 * together.
327 */
328 if (!peri_clk_data_offsets_valid(bcm_clk))
329 return false;
330
331 peri = bcm_clk->peri;
332 name = bcm_clk->name;
333 gate = &peri->gate;
334 if (gate_exists(gate) && !gate_valid(gate, "gate", name))
335 return false;
336
337 sel = &peri->sel;
338 if (selector_exists(sel)) {
339 if (!sel_valid(sel, "selector", name))
340 return false;
341
342 } else if (sel->parent_count > 1) {
343 pr_err("%s: multiple parents but no selector for %s\n",
344 __func__, name);
345
346 return false;
347 }
348
349 div = &peri->div;
350 pre_div = &peri->pre_div;
351 if (divider_exists(div)) {
352 if (!div_valid(div, "divider", name))
353 return false;
354
355 if (divider_exists(pre_div))
356 if (!div_valid(pre_div, "pre-divider", name))
357 return false;
358 } else if (divider_exists(pre_div)) {
359 pr_err("%s: pre-divider but no divider for %s\n", __func__,
360 name);
361 return false;
362 }
363
364 trig = &peri->trig;
365 if (trigger_exists(trig)) {
366 if (!trig_valid(trig, "trigger", name))
367 return false;
368
369 if (trigger_exists(&peri->pre_trig)) {
370 if (!trig_valid(trig, "pre-trigger", name)) {
371 return false;
372 }
373 }
374 if (!clk_requires_trigger(bcm_clk)) {
375 pr_warn("%s: ignoring trigger for %s (not needed)\n",
376 __func__, name);
377 trigger_clear_exists(trig);
378 }
379 } else if (trigger_exists(&peri->pre_trig)) {
380 pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
381 name);
382 return false;
383 } else if (clk_requires_trigger(bcm_clk)) {
384 pr_err("%s: required trigger missing for %s\n", __func__,
385 name);
386 return false;
387 }
388
389 return kona_dividers_valid(bcm_clk);
390}
391
392static bool kona_clk_valid(struct kona_clk *bcm_clk)
393{
394 switch (bcm_clk->type) {
395 case bcm_clk_peri:
396 if (!peri_clk_data_valid(bcm_clk))
397 return false;
398 break;
399 default:
400 pr_err("%s: unrecognized clock type (%d)\n", __func__,
401 (int)bcm_clk->type);
402 return false;
403 }
404 return true;
405}
406
407/*
408 * Scan an array of parent clock names to determine whether there
409 * are any entries containing BAD_CLK_NAME. Such entries are
410 * placeholders for non-supported clocks. Keep track of the
411 * position of each clock name in the original array.
412 *
413 * Allocates an array of pointers to to hold the names of all
414 * non-null entries in the original array, and returns a pointer to
415 * that array in *names. This will be used for registering the
416 * clock with the common clock code. On successful return,
417 * *count indicates how many entries are in that names array.
418 *
419 * If there is more than one entry in the resulting names array,
420 * another array is allocated to record the parent selector value
421 * for each (defined) parent clock. This is the value that
422 * represents this parent clock in the clock's source selector
423 * register. The position of the clock in the original parent array
424 * defines that selector value. The number of entries in this array
425 * is the same as the number of entries in the parent names array.
426 *
427 * The array of selector values is returned. If the clock has no
428 * parents, no selector is required and a null pointer is returned.
429 *
430 * Returns a null pointer if the clock names array supplied was
431 * null. (This is not an error.)
432 *
433 * Returns a pointer-coded error if an error occurs.
434 */
435static u32 *parent_process(const char *clocks[],
436 u32 *count, const char ***names)
437{
438 static const char **parent_names;
439 static u32 *parent_sel;
440 const char **clock;
441 u32 parent_count;
442 u32 bad_count = 0;
443 u32 orig_count;
444 u32 i;
445 u32 j;
446
447 *count = 0; /* In case of early return */
448 *names = NULL;
449 if (!clocks)
450 return NULL;
451
452 /*
453 * Count the number of names in the null-terminated array,
454 * and find out how many of those are actually clock names.
455 */
456 for (clock = clocks; *clock; clock++)
457 if (*clock == BAD_CLK_NAME)
458 bad_count++;
459 orig_count = (u32)(clock - clocks);
460 parent_count = orig_count - bad_count;
461
462 /* If all clocks are unsupported, we treat it as no clock */
463 if (!parent_count)
464 return NULL;
465
466 /* Avoid exceeding our parent clock limit */
467 if (parent_count > PARENT_COUNT_MAX) {
468 pr_err("%s: too many parents (%u > %u)\n", __func__,
469 parent_count, PARENT_COUNT_MAX);
470 return ERR_PTR(-EINVAL);
471 }
472
473 /*
474 * There is one parent name for each defined parent clock.
475 * We also maintain an array containing the selector value
476 * for each defined clock. If there's only one clock, the
477 * selector is not required, but we allocate space for the
478 * array anyway to keep things simple.
479 */
480 parent_names = kmalloc(parent_count * sizeof(parent_names), GFP_KERNEL);
481 if (!parent_names) {
482 pr_err("%s: error allocating %u parent names\n", __func__,
483 parent_count);
484 return ERR_PTR(-ENOMEM);
485 }
486
487 /* There is at least one parent, so allocate a selector array */
488
489 parent_sel = kmalloc(parent_count * sizeof(*parent_sel), GFP_KERNEL);
490 if (!parent_sel) {
491 pr_err("%s: error allocating %u parent selectors\n", __func__,
492 parent_count);
493 kfree(parent_names);
494
495 return ERR_PTR(-ENOMEM);
496 }
497
498 /* Now fill in the parent names and selector arrays */
499 for (i = 0, j = 0; i < orig_count; i++) {
500 if (clocks[i] != BAD_CLK_NAME) {
501 parent_names[j] = clocks[i];
502 parent_sel[j] = i;
503 j++;
504 }
505 }
506 *names = parent_names;
507 *count = parent_count;
508
509 return parent_sel;
510}
511
512static int
513clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
514 struct clk_init_data *init_data)
515{
516 const char **parent_names = NULL;
517 u32 parent_count = 0;
518 u32 *parent_sel;
519
520 /*
521 * If a peripheral clock has multiple parents, the value
522 * used by the hardware to select that parent is represented
523 * by the parent clock's position in the "clocks" list. Some
524 * values don't have defined or supported clocks; these will
525 * have BAD_CLK_NAME entries in the parents[] array. The
526 * list is terminated by a NULL entry.
527 *
528 * We need to supply (only) the names of defined parent
529 * clocks when registering a clock though, so we use an
530 * array of parent selector values to map between the
531 * indexes the common clock code uses and the selector
532 * values we need.
533 */
534 parent_sel = parent_process(clocks, &parent_count, &parent_names);
535 if (IS_ERR(parent_sel)) {
536 int ret = PTR_ERR(parent_sel);
537
538 pr_err("%s: error processing parent clocks for %s (%d)\n",
539 __func__, init_data->name, ret);
540
541 return ret;
542 }
543
544 init_data->parent_names = parent_names;
545 init_data->num_parents = parent_count;
546
547 sel->parent_count = parent_count;
548 sel->parent_sel = parent_sel;
549
550 return 0;
551}
552
553static void clk_sel_teardown(struct bcm_clk_sel *sel,
554 struct clk_init_data *init_data)
555{
556 kfree(sel->parent_sel);
557 sel->parent_sel = NULL;
558 sel->parent_count = 0;
559
560 init_data->num_parents = 0;
561 kfree(init_data->parent_names);
562 init_data->parent_names = NULL;
563}
564
565static void peri_clk_teardown(struct peri_clk_data *data,
566 struct clk_init_data *init_data)
567{
568 clk_sel_teardown(&data->sel, init_data);
569 init_data->ops = NULL;
570}
571
572/*
573 * Caller is responsible for freeing the parent_names[] and
574 * parent_sel[] arrays in the peripheral clock's "data" structure
575 * that can be assigned if the clock has one or more parent clocks
576 * associated with it.
577 */
578static int peri_clk_setup(struct ccu_data *ccu, struct peri_clk_data *data,
579 struct clk_init_data *init_data)
580{
581 init_data->ops = &kona_peri_clk_ops;
582 init_data->flags = 0;
583
584 return clk_sel_setup(data->clocks, &data->sel, init_data);
585}
586
587static void bcm_clk_teardown(struct kona_clk *bcm_clk)
588{
589 switch (bcm_clk->type) {
590 case bcm_clk_peri:
591 peri_clk_teardown(bcm_clk->data, &bcm_clk->init_data);
592 break;
593 default:
594 break;
595 }
596 bcm_clk->data = NULL;
597 bcm_clk->type = bcm_clk_none;
598}
599
600static void kona_clk_teardown(struct clk *clk)
601{
602 struct clk_hw *hw;
603 struct kona_clk *bcm_clk;
604
605 if (!clk)
606 return;
607
608 hw = __clk_get_hw(clk);
609 if (!hw) {
610 pr_err("%s: clk %p has null hw pointer\n", __func__, clk);
611 return;
612 }
613 clk_unregister(clk);
614
615 bcm_clk = to_kona_clk(hw);
616 bcm_clk_teardown(bcm_clk);
617}
618
619struct clk *kona_clk_setup(struct ccu_data *ccu, const char *name,
620 enum bcm_clk_type type, void *data)
621{
622 struct kona_clk *bcm_clk;
623 struct clk_init_data *init_data;
624 struct clk *clk = NULL;
625
626 bcm_clk = kzalloc(sizeof(*bcm_clk), GFP_KERNEL);
627 if (!bcm_clk) {
628 pr_err("%s: failed to allocate bcm_clk for %s\n", __func__,
629 name);
630 return NULL;
631 }
632 bcm_clk->ccu = ccu;
633 bcm_clk->name = name;
634
635 init_data = &bcm_clk->init_data;
636 init_data->name = name;
637 switch (type) {
638 case bcm_clk_peri:
639 if (peri_clk_setup(ccu, data, init_data))
640 goto out_free;
641 break;
642 default:
643 data = NULL;
644 break;
645 }
646 bcm_clk->type = type;
647 bcm_clk->data = data;
648
649 /* Make sure everything makes sense before we set it up */
650 if (!kona_clk_valid(bcm_clk)) {
651 pr_err("%s: clock data invalid for %s\n", __func__, name);
652 goto out_teardown;
653 }
654
655 bcm_clk->hw.init = init_data;
656 clk = clk_register(NULL, &bcm_clk->hw);
657 if (IS_ERR(clk)) {
658 pr_err("%s: error registering clock %s (%ld)\n", __func__,
659 name, PTR_ERR(clk));
660 goto out_teardown;
661 }
662 BUG_ON(!clk);
663
664 return clk;
665out_teardown:
666 bcm_clk_teardown(bcm_clk);
667out_free:
668 kfree(bcm_clk);
669
670 return NULL;
671}
672
673static void ccu_clks_teardown(struct ccu_data *ccu)
674{
675 u32 i;
676
677 for (i = 0; i < ccu->data.clk_num; i++)
678 kona_clk_teardown(ccu->data.clks[i]);
679 kfree(ccu->data.clks);
680}
681
682static void kona_ccu_teardown(struct ccu_data *ccu)
683{
684 if (!ccu)
685 return;
686
687 if (!ccu->base)
688 goto done;
689
690 of_clk_del_provider(ccu->node); /* safe if never added */
691 ccu_clks_teardown(ccu);
692 list_del(&ccu->links);
693 of_node_put(ccu->node);
694 iounmap(ccu->base);
695done:
696 kfree(ccu->name);
697 kfree(ccu);
698}
699
700/*
701 * Set up a CCU. Call the provided ccu_clks_setup callback to
702 * initialize the array of clocks provided by the CCU.
703 */
704void __init kona_dt_ccu_setup(struct device_node *node,
705 int (*ccu_clks_setup)(struct ccu_data *))
706{
707 struct ccu_data *ccu;
708 struct resource res = { 0 };
709 resource_size_t range;
710 int ret;
711
712 ccu = kzalloc(sizeof(*ccu), GFP_KERNEL);
713 if (ccu)
714 ccu->name = kstrdup(node->name, GFP_KERNEL);
715 if (!ccu || !ccu->name) {
716 pr_err("%s: unable to allocate CCU struct for %s\n",
717 __func__, node->name);
718 kfree(ccu);
719
720 return;
721 }
722
723 ret = of_address_to_resource(node, 0, &res);
724 if (ret) {
725 pr_err("%s: no valid CCU registers found for %s\n", __func__,
726 node->name);
727 goto out_err;
728 }
729
730 range = resource_size(&res);
731 if (range > (resource_size_t)U32_MAX) {
732 pr_err("%s: address range too large for %s\n", __func__,
733 node->name);
734 goto out_err;
735 }
736
737 ccu->range = (u32)range;
738 ccu->base = ioremap(res.start, ccu->range);
739 if (!ccu->base) {
740 pr_err("%s: unable to map CCU registers for %s\n", __func__,
741 node->name);
742 goto out_err;
743 }
744
745 spin_lock_init(&ccu->lock);
746 INIT_LIST_HEAD(&ccu->links);
747 ccu->node = of_node_get(node);
748
749 list_add_tail(&ccu->links, &ccu_list);
750
751 /* Set up clocks array (in ccu->data) */
752 if (ccu_clks_setup(ccu))
753 goto out_err;
754
755 ret = of_clk_add_provider(node, of_clk_src_onecell_get, &ccu->data);
756 if (ret) {
757 pr_err("%s: error adding ccu %s as provider (%d)\n", __func__,
758 node->name, ret);
759 goto out_err;
760 }
761
762 if (!kona_ccu_init(ccu))
763 pr_err("Broadcom %s initialization had errors\n", node->name);
764
765 return;
766out_err:
767 kona_ccu_teardown(ccu);
768 pr_err("Broadcom %s setup aborted\n", node->name);
769}