blob: 2c8c14ebf2058e5dedf45437432f1306e9f58c80 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Recieve
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
117 * placed.
118 *
119 * V. Miscellaneous
120 *
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
126 *
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
128 *
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
131 *
132 * TODO:
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
135 */
136
137#include <linux/config.h>
138#include <linux/module.h>
139#include <linux/moduleparam.h>
140#include <linux/kernel.h>
141#include <linux/types.h>
142#include <linux/slab.h>
143#include <linux/delay.h>
144#include <linux/init.h>
145#include <linux/pci.h>
146#include <linux/netdevice.h>
147#include <linux/etherdevice.h>
148#include <linux/mii.h>
149#include <linux/if_vlan.h>
150#include <linux/skbuff.h>
151#include <linux/ethtool.h>
152#include <linux/string.h>
153#include <asm/unaligned.h>
154
155
156#define DRV_NAME "e100"
157#define DRV_EXT "-NAPI"
158#define DRV_VERSION "3.3.6-k2"DRV_EXT
159#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
160#define DRV_COPYRIGHT "Copyright(c) 1999-2004 Intel Corporation"
161#define PFX DRV_NAME ": "
162
163#define E100_WATCHDOG_PERIOD (2 * HZ)
164#define E100_NAPI_WEIGHT 16
165
166MODULE_DESCRIPTION(DRV_DESCRIPTION);
167MODULE_AUTHOR(DRV_COPYRIGHT);
168MODULE_LICENSE("GPL");
169MODULE_VERSION(DRV_VERSION);
170
171static int debug = 3;
172module_param(debug, int, 0);
173MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
174#define DPRINTK(nlevel, klevel, fmt, args...) \
175 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
176 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
177 __FUNCTION__ , ## args))
178
179#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
180 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
181 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
182static struct pci_device_id e100_id_table[] = {
183 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
184 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
186 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
191 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
197 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
205 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
206 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
214 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
215 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
216 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
217 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
218 { 0, }
219};
220MODULE_DEVICE_TABLE(pci, e100_id_table);
221
222enum mac {
223 mac_82557_D100_A = 0,
224 mac_82557_D100_B = 1,
225 mac_82557_D100_C = 2,
226 mac_82558_D101_A4 = 4,
227 mac_82558_D101_B0 = 5,
228 mac_82559_D101M = 8,
229 mac_82559_D101S = 9,
230 mac_82550_D102 = 12,
231 mac_82550_D102_C = 13,
232 mac_82551_E = 14,
233 mac_82551_F = 15,
234 mac_82551_10 = 16,
235 mac_unknown = 0xFF,
236};
237
238enum phy {
239 phy_100a = 0x000003E0,
240 phy_100c = 0x035002A8,
241 phy_82555_tx = 0x015002A8,
242 phy_nsc_tx = 0x5C002000,
243 phy_82562_et = 0x033002A8,
244 phy_82562_em = 0x032002A8,
245 phy_82562_ek = 0x031002A8,
246 phy_82562_eh = 0x017002A8,
247 phy_unknown = 0xFFFFFFFF,
248};
249
250/* CSR (Control/Status Registers) */
251struct csr {
252 struct {
253 u8 status;
254 u8 stat_ack;
255 u8 cmd_lo;
256 u8 cmd_hi;
257 u32 gen_ptr;
258 } scb;
259 u32 port;
260 u16 flash_ctrl;
261 u8 eeprom_ctrl_lo;
262 u8 eeprom_ctrl_hi;
263 u32 mdi_ctrl;
264 u32 rx_dma_count;
265};
266
267enum scb_status {
268 rus_ready = 0x10,
269 rus_mask = 0x3C,
270};
271
Malli Chilakala1f533672005-04-28 19:17:20 -0700272enum ru_state {
273 RU_SUSPENDED = 0,
274 RU_RUNNING = 1,
275 RU_UNINITIALIZED = -1,
276};
277
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278enum scb_stat_ack {
279 stat_ack_not_ours = 0x00,
280 stat_ack_sw_gen = 0x04,
281 stat_ack_rnr = 0x10,
282 stat_ack_cu_idle = 0x20,
283 stat_ack_frame_rx = 0x40,
284 stat_ack_cu_cmd_done = 0x80,
285 stat_ack_not_present = 0xFF,
286 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
287 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
288};
289
290enum scb_cmd_hi {
291 irq_mask_none = 0x00,
292 irq_mask_all = 0x01,
293 irq_sw_gen = 0x02,
294};
295
296enum scb_cmd_lo {
297 cuc_nop = 0x00,
298 ruc_start = 0x01,
299 ruc_load_base = 0x06,
300 cuc_start = 0x10,
301 cuc_resume = 0x20,
302 cuc_dump_addr = 0x40,
303 cuc_dump_stats = 0x50,
304 cuc_load_base = 0x60,
305 cuc_dump_reset = 0x70,
306};
307
308enum cuc_dump {
309 cuc_dump_complete = 0x0000A005,
310 cuc_dump_reset_complete = 0x0000A007,
311};
312
313enum port {
314 software_reset = 0x0000,
315 selftest = 0x0001,
316 selective_reset = 0x0002,
317};
318
319enum eeprom_ctrl_lo {
320 eesk = 0x01,
321 eecs = 0x02,
322 eedi = 0x04,
323 eedo = 0x08,
324};
325
326enum mdi_ctrl {
327 mdi_write = 0x04000000,
328 mdi_read = 0x08000000,
329 mdi_ready = 0x10000000,
330};
331
332enum eeprom_op {
333 op_write = 0x05,
334 op_read = 0x06,
335 op_ewds = 0x10,
336 op_ewen = 0x13,
337};
338
339enum eeprom_offsets {
340 eeprom_cnfg_mdix = 0x03,
341 eeprom_id = 0x0A,
342 eeprom_config_asf = 0x0D,
343 eeprom_smbus_addr = 0x90,
344};
345
346enum eeprom_cnfg_mdix {
347 eeprom_mdix_enabled = 0x0080,
348};
349
350enum eeprom_id {
351 eeprom_id_wol = 0x0020,
352};
353
354enum eeprom_config_asf {
355 eeprom_asf = 0x8000,
356 eeprom_gcl = 0x4000,
357};
358
359enum cb_status {
360 cb_complete = 0x8000,
361 cb_ok = 0x2000,
362};
363
364enum cb_command {
365 cb_nop = 0x0000,
366 cb_iaaddr = 0x0001,
367 cb_config = 0x0002,
368 cb_multi = 0x0003,
369 cb_tx = 0x0004,
370 cb_ucode = 0x0005,
371 cb_dump = 0x0006,
372 cb_tx_sf = 0x0008,
373 cb_cid = 0x1f00,
374 cb_i = 0x2000,
375 cb_s = 0x4000,
376 cb_el = 0x8000,
377};
378
379struct rfd {
380 u16 status;
381 u16 command;
382 u32 link;
383 u32 rbd;
384 u16 actual_size;
385 u16 size;
386};
387
388struct rx {
389 struct rx *next, *prev;
390 struct sk_buff *skb;
391 dma_addr_t dma_addr;
392};
393
394#if defined(__BIG_ENDIAN_BITFIELD)
395#define X(a,b) b,a
396#else
397#define X(a,b) a,b
398#endif
399struct config {
400/*0*/ u8 X(byte_count:6, pad0:2);
401/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
402/*2*/ u8 adaptive_ifs;
403/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
404 term_write_cache_line:1), pad3:4);
405/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
406/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
407/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
408 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
409 rx_discard_overruns:1), rx_save_bad_frames:1);
410/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
411 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
412 tx_dynamic_tbd:1);
413/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
414/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
415 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
416/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
417 loopback:2);
418/*11*/ u8 X(linear_priority:3, pad11:5);
419/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
420/*13*/ u8 ip_addr_lo;
421/*14*/ u8 ip_addr_hi;
422/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
423 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
424 pad15_2:1), crs_or_cdt:1);
425/*16*/ u8 fc_delay_lo;
426/*17*/ u8 fc_delay_hi;
427/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
428 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
429/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
430 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
431 full_duplex_force:1), full_duplex_pin:1);
432/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
433/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
434/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
435 u8 pad_d102[9];
436};
437
438#define E100_MAX_MULTICAST_ADDRS 64
439struct multi {
440 u16 count;
441 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
442};
443
444/* Important: keep total struct u32-aligned */
445#define UCODE_SIZE 134
446struct cb {
447 u16 status;
448 u16 command;
449 u32 link;
450 union {
451 u8 iaaddr[ETH_ALEN];
452 u32 ucode[UCODE_SIZE];
453 struct config config;
454 struct multi multi;
455 struct {
456 u32 tbd_array;
457 u16 tcb_byte_count;
458 u8 threshold;
459 u8 tbd_count;
460 struct {
461 u32 buf_addr;
462 u16 size;
463 u16 eol;
464 } tbd;
465 } tcb;
466 u32 dump_buffer_addr;
467 } u;
468 struct cb *next, *prev;
469 dma_addr_t dma_addr;
470 struct sk_buff *skb;
471};
472
473enum loopback {
474 lb_none = 0, lb_mac = 1, lb_phy = 3,
475};
476
477struct stats {
478 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
479 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
480 tx_multiple_collisions, tx_total_collisions;
481 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
482 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
483 rx_short_frame_errors;
484 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
485 u16 xmt_tco_frames, rcv_tco_frames;
486 u32 complete;
487};
488
489struct mem {
490 struct {
491 u32 signature;
492 u32 result;
493 } selftest;
494 struct stats stats;
495 u8 dump_buf[596];
496};
497
498struct param_range {
499 u32 min;
500 u32 max;
501 u32 count;
502};
503
504struct params {
505 struct param_range rfds;
506 struct param_range cbs;
507};
508
509struct nic {
510 /* Begin: frequently used values: keep adjacent for cache effect */
511 u32 msg_enable ____cacheline_aligned;
512 struct net_device *netdev;
513 struct pci_dev *pdev;
514
515 struct rx *rxs ____cacheline_aligned;
516 struct rx *rx_to_use;
517 struct rx *rx_to_clean;
518 struct rfd blank_rfd;
Malli Chilakala1f533672005-04-28 19:17:20 -0700519 enum ru_state ru_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700520
521 spinlock_t cb_lock ____cacheline_aligned;
522 spinlock_t cmd_lock;
523 struct csr __iomem *csr;
524 enum scb_cmd_lo cuc_cmd;
525 unsigned int cbs_avail;
526 struct cb *cbs;
527 struct cb *cb_to_use;
528 struct cb *cb_to_send;
529 struct cb *cb_to_clean;
530 u16 tx_command;
531 /* End: frequently used values: keep adjacent for cache effect */
532
533 enum {
534 ich = (1 << 0),
535 promiscuous = (1 << 1),
536 multicast_all = (1 << 2),
537 wol_magic = (1 << 3),
538 ich_10h_workaround = (1 << 4),
539 } flags ____cacheline_aligned;
540
541 enum mac mac;
542 enum phy phy;
543 struct params params;
544 struct net_device_stats net_stats;
545 struct timer_list watchdog;
546 struct timer_list blink_timer;
547 struct mii_if_info mii;
Malli Chilakala2acdb1e2005-04-28 19:16:58 -0700548 struct work_struct tx_timeout_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549 enum loopback loopback;
550
551 struct mem *mem;
552 dma_addr_t dma_addr;
553
554 dma_addr_t cbs_dma_addr;
555 u8 adaptive_ifs;
556 u8 tx_threshold;
557 u32 tx_frames;
558 u32 tx_collisions;
559 u32 tx_deferred;
560 u32 tx_single_collisions;
561 u32 tx_multiple_collisions;
562 u32 tx_fc_pause;
563 u32 tx_tco_frames;
564
565 u32 rx_fc_pause;
566 u32 rx_fc_unsupported;
567 u32 rx_tco_frames;
568 u32 rx_over_length_errors;
569
570 u8 rev_id;
571 u16 leds;
572 u16 eeprom_wc;
573 u16 eeprom[256];
574};
575
576static inline void e100_write_flush(struct nic *nic)
577{
578 /* Flush previous PCI writes through intermediate bridges
579 * by doing a benign read */
580 (void)readb(&nic->csr->scb.status);
581}
582
583static inline void e100_enable_irq(struct nic *nic)
584{
585 unsigned long flags;
586
587 spin_lock_irqsave(&nic->cmd_lock, flags);
588 writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
589 spin_unlock_irqrestore(&nic->cmd_lock, flags);
590 e100_write_flush(nic);
591}
592
593static inline void e100_disable_irq(struct nic *nic)
594{
595 unsigned long flags;
596
597 spin_lock_irqsave(&nic->cmd_lock, flags);
598 writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
599 spin_unlock_irqrestore(&nic->cmd_lock, flags);
600 e100_write_flush(nic);
601}
602
603static void e100_hw_reset(struct nic *nic)
604{
605 /* Put CU and RU into idle with a selective reset to get
606 * device off of PCI bus */
607 writel(selective_reset, &nic->csr->port);
608 e100_write_flush(nic); udelay(20);
609
610 /* Now fully reset device */
611 writel(software_reset, &nic->csr->port);
612 e100_write_flush(nic); udelay(20);
613
614 /* Mask off our interrupt line - it's unmasked after reset */
615 e100_disable_irq(nic);
616}
617
618static int e100_self_test(struct nic *nic)
619{
620 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
621
622 /* Passing the self-test is a pretty good indication
623 * that the device can DMA to/from host memory */
624
625 nic->mem->selftest.signature = 0;
626 nic->mem->selftest.result = 0xFFFFFFFF;
627
628 writel(selftest | dma_addr, &nic->csr->port);
629 e100_write_flush(nic);
630 /* Wait 10 msec for self-test to complete */
631 msleep(10);
632
633 /* Interrupts are enabled after self-test */
634 e100_disable_irq(nic);
635
636 /* Check results of self-test */
637 if(nic->mem->selftest.result != 0) {
638 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
639 nic->mem->selftest.result);
640 return -ETIMEDOUT;
641 }
642 if(nic->mem->selftest.signature == 0) {
643 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
644 return -ETIMEDOUT;
645 }
646
647 return 0;
648}
649
650static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
651{
652 u32 cmd_addr_data[3];
653 u8 ctrl;
654 int i, j;
655
656 /* Three cmds: write/erase enable, write data, write/erase disable */
657 cmd_addr_data[0] = op_ewen << (addr_len - 2);
658 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
659 cpu_to_le16(data);
660 cmd_addr_data[2] = op_ewds << (addr_len - 2);
661
662 /* Bit-bang cmds to write word to eeprom */
663 for(j = 0; j < 3; j++) {
664
665 /* Chip select */
666 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
667 e100_write_flush(nic); udelay(4);
668
669 for(i = 31; i >= 0; i--) {
670 ctrl = (cmd_addr_data[j] & (1 << i)) ?
671 eecs | eedi : eecs;
672 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
673 e100_write_flush(nic); udelay(4);
674
675 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
676 e100_write_flush(nic); udelay(4);
677 }
678 /* Wait 10 msec for cmd to complete */
679 msleep(10);
680
681 /* Chip deselect */
682 writeb(0, &nic->csr->eeprom_ctrl_lo);
683 e100_write_flush(nic); udelay(4);
684 }
685};
686
687/* General technique stolen from the eepro100 driver - very clever */
688static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
689{
690 u32 cmd_addr_data;
691 u16 data = 0;
692 u8 ctrl;
693 int i;
694
695 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
696
697 /* Chip select */
698 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
699 e100_write_flush(nic); udelay(4);
700
701 /* Bit-bang to read word from eeprom */
702 for(i = 31; i >= 0; i--) {
703 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
704 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
705 e100_write_flush(nic); udelay(4);
706
707 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
708 e100_write_flush(nic); udelay(4);
709
710 /* Eeprom drives a dummy zero to EEDO after receiving
711 * complete address. Use this to adjust addr_len. */
712 ctrl = readb(&nic->csr->eeprom_ctrl_lo);
713 if(!(ctrl & eedo) && i > 16) {
714 *addr_len -= (i - 16);
715 i = 17;
716 }
717
718 data = (data << 1) | (ctrl & eedo ? 1 : 0);
719 }
720
721 /* Chip deselect */
722 writeb(0, &nic->csr->eeprom_ctrl_lo);
723 e100_write_flush(nic); udelay(4);
724
725 return le16_to_cpu(data);
726};
727
728/* Load entire EEPROM image into driver cache and validate checksum */
729static int e100_eeprom_load(struct nic *nic)
730{
731 u16 addr, addr_len = 8, checksum = 0;
732
733 /* Try reading with an 8-bit addr len to discover actual addr len */
734 e100_eeprom_read(nic, &addr_len, 0);
735 nic->eeprom_wc = 1 << addr_len;
736
737 for(addr = 0; addr < nic->eeprom_wc; addr++) {
738 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
739 if(addr < nic->eeprom_wc - 1)
740 checksum += cpu_to_le16(nic->eeprom[addr]);
741 }
742
743 /* The checksum, stored in the last word, is calculated such that
744 * the sum of words should be 0xBABA */
745 checksum = le16_to_cpu(0xBABA - checksum);
746 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
747 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
748 return -EAGAIN;
749 }
750
751 return 0;
752}
753
754/* Save (portion of) driver EEPROM cache to device and update checksum */
755static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
756{
757 u16 addr, addr_len = 8, checksum = 0;
758
759 /* Try reading with an 8-bit addr len to discover actual addr len */
760 e100_eeprom_read(nic, &addr_len, 0);
761 nic->eeprom_wc = 1 << addr_len;
762
763 if(start + count >= nic->eeprom_wc)
764 return -EINVAL;
765
766 for(addr = start; addr < start + count; addr++)
767 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
768
769 /* The checksum, stored in the last word, is calculated such that
770 * the sum of words should be 0xBABA */
771 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
772 checksum += cpu_to_le16(nic->eeprom[addr]);
773 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
774 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
775 nic->eeprom[nic->eeprom_wc - 1]);
776
777 return 0;
778}
779
780#define E100_WAIT_SCB_TIMEOUT 40
781static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
782{
783 unsigned long flags;
784 unsigned int i;
785 int err = 0;
786
787 spin_lock_irqsave(&nic->cmd_lock, flags);
788
789 /* Previous command is accepted when SCB clears */
790 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
791 if(likely(!readb(&nic->csr->scb.cmd_lo)))
792 break;
793 cpu_relax();
794 if(unlikely(i > (E100_WAIT_SCB_TIMEOUT >> 1)))
795 udelay(5);
796 }
797 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
798 err = -EAGAIN;
799 goto err_unlock;
800 }
801
802 if(unlikely(cmd != cuc_resume))
803 writel(dma_addr, &nic->csr->scb.gen_ptr);
804 writeb(cmd, &nic->csr->scb.cmd_lo);
805
806err_unlock:
807 spin_unlock_irqrestore(&nic->cmd_lock, flags);
808
809 return err;
810}
811
812static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
813 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
814{
815 struct cb *cb;
816 unsigned long flags;
817 int err = 0;
818
819 spin_lock_irqsave(&nic->cb_lock, flags);
820
821 if(unlikely(!nic->cbs_avail)) {
822 err = -ENOMEM;
823 goto err_unlock;
824 }
825
826 cb = nic->cb_to_use;
827 nic->cb_to_use = cb->next;
828 nic->cbs_avail--;
829 cb->skb = skb;
830
831 if(unlikely(!nic->cbs_avail))
832 err = -ENOSPC;
833
834 cb_prepare(nic, cb, skb);
835
836 /* Order is important otherwise we'll be in a race with h/w:
837 * set S-bit in current first, then clear S-bit in previous. */
838 cb->command |= cpu_to_le16(cb_s);
839 wmb();
840 cb->prev->command &= cpu_to_le16(~cb_s);
841
842 while(nic->cb_to_send != nic->cb_to_use) {
843 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
844 nic->cb_to_send->dma_addr))) {
845 /* Ok, here's where things get sticky. It's
846 * possible that we can't schedule the command
847 * because the controller is too busy, so
848 * let's just queue the command and try again
849 * when another command is scheduled. */
850 break;
851 } else {
852 nic->cuc_cmd = cuc_resume;
853 nic->cb_to_send = nic->cb_to_send->next;
854 }
855 }
856
857err_unlock:
858 spin_unlock_irqrestore(&nic->cb_lock, flags);
859
860 return err;
861}
862
863static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
864{
865 u32 data_out = 0;
866 unsigned int i;
867
868 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
869
870 for(i = 0; i < 100; i++) {
871 udelay(20);
872 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
873 break;
874 }
875
876 DPRINTK(HW, DEBUG,
877 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
878 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
879 return (u16)data_out;
880}
881
882static int mdio_read(struct net_device *netdev, int addr, int reg)
883{
884 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
885}
886
887static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
888{
889 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
890}
891
892static void e100_get_defaults(struct nic *nic)
893{
894 struct param_range rfds = { .min = 64, .max = 256, .count = 64 };
895 struct param_range cbs = { .min = 64, .max = 256, .count = 64 };
896
897 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
898 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
899 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
900 if(nic->mac == mac_unknown)
901 nic->mac = mac_82557_D100_A;
902
903 nic->params.rfds = rfds;
904 nic->params.cbs = cbs;
905
906 /* Quadwords to DMA into FIFO before starting frame transmit */
907 nic->tx_threshold = 0xE0;
908
909 nic->tx_command = cpu_to_le16(cb_tx | cb_i | cb_tx_sf |
910 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : 0));
911
912 /* Template for a freshly allocated RFD */
913 nic->blank_rfd.command = cpu_to_le16(cb_el);
914 nic->blank_rfd.rbd = 0xFFFFFFFF;
915 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
916
917 /* MII setup */
918 nic->mii.phy_id_mask = 0x1F;
919 nic->mii.reg_num_mask = 0x1F;
920 nic->mii.dev = nic->netdev;
921 nic->mii.mdio_read = mdio_read;
922 nic->mii.mdio_write = mdio_write;
923}
924
925static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
926{
927 struct config *config = &cb->u.config;
928 u8 *c = (u8 *)config;
929
930 cb->command = cpu_to_le16(cb_config);
931
932 memset(config, 0, sizeof(struct config));
933
934 config->byte_count = 0x16; /* bytes in this struct */
935 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
936 config->direct_rx_dma = 0x1; /* reserved */
937 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
938 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
939 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
940 config->tx_underrun_retry = 0x3; /* # of underrun retries */
941 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
942 config->pad10 = 0x6;
943 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
944 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
945 config->ifs = 0x6; /* x16 = inter frame spacing */
946 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
947 config->pad15_1 = 0x1;
948 config->pad15_2 = 0x1;
949 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
950 config->fc_delay_hi = 0x40; /* time delay for fc frame */
951 config->tx_padding = 0x1; /* 1=pad short frames */
952 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
953 config->pad18 = 0x1;
954 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
955 config->pad20_1 = 0x1F;
956 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
957 config->pad21_1 = 0x5;
958
959 config->adaptive_ifs = nic->adaptive_ifs;
960 config->loopback = nic->loopback;
961
962 if(nic->mii.force_media && nic->mii.full_duplex)
963 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
964
965 if(nic->flags & promiscuous || nic->loopback) {
966 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
967 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
968 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
969 }
970
971 if(nic->flags & multicast_all)
972 config->multicast_all = 0x1; /* 1=accept, 0=no */
973
974 if(!(nic->flags & wol_magic))
975 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
976
977 if(nic->mac >= mac_82558_D101_A4) {
978 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
979 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
980 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
981 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
982 if(nic->mac >= mac_82559_D101M)
983 config->tno_intr = 0x1; /* TCO stats enable */
984 else
985 config->standard_stat_counter = 0x0;
986 }
987
988 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
989 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
990 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
991 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
992 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
993 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
994}
995
996static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
997{
998 int i;
999 static const u32 ucode[UCODE_SIZE] = {
1000 /* NFS packets are misinterpreted as TCO packets and
1001 * incorrectly routed to the BMC over SMBus. This
1002 * microcode patch checks the fragmented IP bit in the
1003 * NFS/UDP header to distinguish between NFS and TCO. */
1004 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF,
1005 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000,
1006 0x00906EFD, 0x00900EFD, 0x00E00EF8,
1007 };
1008
1009 if(nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1010 for(i = 0; i < UCODE_SIZE; i++)
1011 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1012 cb->command = cpu_to_le16(cb_ucode);
1013 } else
1014 cb->command = cpu_to_le16(cb_nop);
1015}
1016
1017static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1018 struct sk_buff *skb)
1019{
1020 cb->command = cpu_to_le16(cb_iaaddr);
1021 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1022}
1023
1024static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1025{
1026 cb->command = cpu_to_le16(cb_dump);
1027 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1028 offsetof(struct mem, dump_buf));
1029}
1030
1031#define NCONFIG_AUTO_SWITCH 0x0080
1032#define MII_NSC_CONG MII_RESV1
1033#define NSC_CONG_ENABLE 0x0100
1034#define NSC_CONG_TXREADY 0x0400
1035#define ADVERTISE_FC_SUPPORTED 0x0400
1036static int e100_phy_init(struct nic *nic)
1037{
1038 struct net_device *netdev = nic->netdev;
1039 u32 addr;
1040 u16 bmcr, stat, id_lo, id_hi, cong;
1041
1042 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1043 for(addr = 0; addr < 32; addr++) {
1044 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1045 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1046 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1047 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1048 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1049 break;
1050 }
1051 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1052 if(addr == 32)
1053 return -EAGAIN;
1054
1055 /* Selected the phy and isolate the rest */
1056 for(addr = 0; addr < 32; addr++) {
1057 if(addr != nic->mii.phy_id) {
1058 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1059 } else {
1060 bmcr = mdio_read(netdev, addr, MII_BMCR);
1061 mdio_write(netdev, addr, MII_BMCR,
1062 bmcr & ~BMCR_ISOLATE);
1063 }
1064 }
1065
1066 /* Get phy ID */
1067 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1068 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1069 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1070 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1071
1072 /* Handle National tx phys */
1073#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1074 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1075 /* Disable congestion control */
1076 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1077 cong |= NSC_CONG_TXREADY;
1078 cong &= ~NSC_CONG_ENABLE;
1079 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1080 }
1081
1082 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1083 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1084 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)))
1085 /* enable/disable MDI/MDI-X auto-switching */
1086 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1087 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1088
1089 return 0;
1090}
1091
1092static int e100_hw_init(struct nic *nic)
1093{
1094 int err;
1095
1096 e100_hw_reset(nic);
1097
1098 DPRINTK(HW, ERR, "e100_hw_init\n");
1099 if(!in_interrupt() && (err = e100_self_test(nic)))
1100 return err;
1101
1102 if((err = e100_phy_init(nic)))
1103 return err;
1104 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1105 return err;
1106 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1107 return err;
1108 if((err = e100_exec_cb(nic, NULL, e100_load_ucode)))
1109 return err;
1110 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1111 return err;
1112 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1113 return err;
1114 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1115 nic->dma_addr + offsetof(struct mem, stats))))
1116 return err;
1117 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1118 return err;
1119
1120 e100_disable_irq(nic);
1121
1122 return 0;
1123}
1124
1125static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1126{
1127 struct net_device *netdev = nic->netdev;
1128 struct dev_mc_list *list = netdev->mc_list;
1129 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1130
1131 cb->command = cpu_to_le16(cb_multi);
1132 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1133 for(i = 0; list && i < count; i++, list = list->next)
1134 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1135 ETH_ALEN);
1136}
1137
1138static void e100_set_multicast_list(struct net_device *netdev)
1139{
1140 struct nic *nic = netdev_priv(netdev);
1141
1142 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1143 netdev->mc_count, netdev->flags);
1144
1145 if(netdev->flags & IFF_PROMISC)
1146 nic->flags |= promiscuous;
1147 else
1148 nic->flags &= ~promiscuous;
1149
1150 if(netdev->flags & IFF_ALLMULTI ||
1151 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1152 nic->flags |= multicast_all;
1153 else
1154 nic->flags &= ~multicast_all;
1155
1156 e100_exec_cb(nic, NULL, e100_configure);
1157 e100_exec_cb(nic, NULL, e100_multi);
1158}
1159
1160static void e100_update_stats(struct nic *nic)
1161{
1162 struct net_device_stats *ns = &nic->net_stats;
1163 struct stats *s = &nic->mem->stats;
1164 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1165 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1166 &s->complete;
1167
1168 /* Device's stats reporting may take several microseconds to
1169 * complete, so where always waiting for results of the
1170 * previous command. */
1171
1172 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1173 *complete = 0;
1174 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1175 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1176 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1177 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1178 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1179 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1180 ns->collisions += nic->tx_collisions;
1181 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1182 le32_to_cpu(s->tx_lost_crs);
1183 ns->rx_dropped += le32_to_cpu(s->rx_resource_errors);
1184 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1185 nic->rx_over_length_errors;
1186 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1187 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1188 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1189 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1190 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1191 le32_to_cpu(s->rx_alignment_errors) +
1192 le32_to_cpu(s->rx_short_frame_errors) +
1193 le32_to_cpu(s->rx_cdt_errors);
1194 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1195 nic->tx_single_collisions +=
1196 le32_to_cpu(s->tx_single_collisions);
1197 nic->tx_multiple_collisions +=
1198 le32_to_cpu(s->tx_multiple_collisions);
1199 if(nic->mac >= mac_82558_D101_A4) {
1200 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1201 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1202 nic->rx_fc_unsupported +=
1203 le32_to_cpu(s->fc_rcv_unsupported);
1204 if(nic->mac >= mac_82559_D101M) {
1205 nic->tx_tco_frames +=
1206 le16_to_cpu(s->xmt_tco_frames);
1207 nic->rx_tco_frames +=
1208 le16_to_cpu(s->rcv_tco_frames);
1209 }
1210 }
1211 }
1212
Malli Chilakala1f533672005-04-28 19:17:20 -07001213
1214 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1215 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216}
1217
1218static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1219{
1220 /* Adjust inter-frame-spacing (IFS) between two transmits if
1221 * we're getting collisions on a half-duplex connection. */
1222
1223 if(duplex == DUPLEX_HALF) {
1224 u32 prev = nic->adaptive_ifs;
1225 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1226
1227 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1228 (nic->tx_frames > min_frames)) {
1229 if(nic->adaptive_ifs < 60)
1230 nic->adaptive_ifs += 5;
1231 } else if (nic->tx_frames < min_frames) {
1232 if(nic->adaptive_ifs >= 5)
1233 nic->adaptive_ifs -= 5;
1234 }
1235 if(nic->adaptive_ifs != prev)
1236 e100_exec_cb(nic, NULL, e100_configure);
1237 }
1238}
1239
1240static void e100_watchdog(unsigned long data)
1241{
1242 struct nic *nic = (struct nic *)data;
1243 struct ethtool_cmd cmd;
1244
1245 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1246
1247 /* mii library handles link maintenance tasks */
1248
1249 mii_ethtool_gset(&nic->mii, &cmd);
1250
1251 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1252 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1253 cmd.speed == SPEED_100 ? "100" : "10",
1254 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1255 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1256 DPRINTK(LINK, INFO, "link down\n");
1257 }
1258
1259 mii_check_link(&nic->mii);
1260
1261 /* Software generated interrupt to recover from (rare) Rx
1262 * allocation failure.
1263 * Unfortunately have to use a spinlock to not re-enable interrupts
1264 * accidentally, due to hardware that shares a register between the
1265 * interrupt mask bit and the SW Interrupt generation bit */
1266 spin_lock_irq(&nic->cmd_lock);
1267 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1268 spin_unlock_irq(&nic->cmd_lock);
1269 e100_write_flush(nic);
1270
1271 e100_update_stats(nic);
1272 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1273
1274 if(nic->mac <= mac_82557_D100_C)
1275 /* Issue a multicast command to workaround a 557 lock up */
1276 e100_set_multicast_list(nic->netdev);
1277
1278 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1279 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1280 nic->flags |= ich_10h_workaround;
1281 else
1282 nic->flags &= ~ich_10h_workaround;
1283
1284 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1285}
1286
1287static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1288 struct sk_buff *skb)
1289{
1290 cb->command = nic->tx_command;
1291 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1292 cb->u.tcb.tcb_byte_count = 0;
1293 cb->u.tcb.threshold = nic->tx_threshold;
1294 cb->u.tcb.tbd_count = 1;
1295 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1296 skb->data, skb->len, PCI_DMA_TODEVICE));
1297 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1298}
1299
1300static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1301{
1302 struct nic *nic = netdev_priv(netdev);
1303 int err;
1304
1305 if(nic->flags & ich_10h_workaround) {
1306 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1307 Issue a NOP command followed by a 1us delay before
1308 issuing the Tx command. */
Malli Chilakala1f533672005-04-28 19:17:20 -07001309 if(e100_exec_cmd(nic, cuc_nop, 0))
1310 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001311 udelay(1);
1312 }
1313
1314 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1315
1316 switch(err) {
1317 case -ENOSPC:
1318 /* We queued the skb, but now we're out of space. */
1319 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1320 netif_stop_queue(netdev);
1321 break;
1322 case -ENOMEM:
1323 /* This is a hard error - log it. */
1324 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1325 netif_stop_queue(netdev);
1326 return 1;
1327 }
1328
1329 netdev->trans_start = jiffies;
1330 return 0;
1331}
1332
1333static inline int e100_tx_clean(struct nic *nic)
1334{
1335 struct cb *cb;
1336 int tx_cleaned = 0;
1337
1338 spin_lock(&nic->cb_lock);
1339
1340 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
1341 nic->cb_to_clean->status);
1342
1343 /* Clean CBs marked complete */
1344 for(cb = nic->cb_to_clean;
1345 cb->status & cpu_to_le16(cb_complete);
1346 cb = nic->cb_to_clean = cb->next) {
1347 if(likely(cb->skb != NULL)) {
1348 nic->net_stats.tx_packets++;
1349 nic->net_stats.tx_bytes += cb->skb->len;
1350
1351 pci_unmap_single(nic->pdev,
1352 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1353 le16_to_cpu(cb->u.tcb.tbd.size),
1354 PCI_DMA_TODEVICE);
1355 dev_kfree_skb_any(cb->skb);
1356 cb->skb = NULL;
1357 tx_cleaned = 1;
1358 }
1359 cb->status = 0;
1360 nic->cbs_avail++;
1361 }
1362
1363 spin_unlock(&nic->cb_lock);
1364
1365 /* Recover from running out of Tx resources in xmit_frame */
1366 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1367 netif_wake_queue(nic->netdev);
1368
1369 return tx_cleaned;
1370}
1371
1372static void e100_clean_cbs(struct nic *nic)
1373{
1374 if(nic->cbs) {
1375 while(nic->cbs_avail != nic->params.cbs.count) {
1376 struct cb *cb = nic->cb_to_clean;
1377 if(cb->skb) {
1378 pci_unmap_single(nic->pdev,
1379 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1380 le16_to_cpu(cb->u.tcb.tbd.size),
1381 PCI_DMA_TODEVICE);
1382 dev_kfree_skb(cb->skb);
1383 }
1384 nic->cb_to_clean = nic->cb_to_clean->next;
1385 nic->cbs_avail++;
1386 }
1387 pci_free_consistent(nic->pdev,
1388 sizeof(struct cb) * nic->params.cbs.count,
1389 nic->cbs, nic->cbs_dma_addr);
1390 nic->cbs = NULL;
1391 nic->cbs_avail = 0;
1392 }
1393 nic->cuc_cmd = cuc_start;
1394 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1395 nic->cbs;
1396}
1397
1398static int e100_alloc_cbs(struct nic *nic)
1399{
1400 struct cb *cb;
1401 unsigned int i, count = nic->params.cbs.count;
1402
1403 nic->cuc_cmd = cuc_start;
1404 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1405 nic->cbs_avail = 0;
1406
1407 nic->cbs = pci_alloc_consistent(nic->pdev,
1408 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1409 if(!nic->cbs)
1410 return -ENOMEM;
1411
1412 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1413 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1414 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1415
1416 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1417 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1418 ((i+1) % count) * sizeof(struct cb));
1419 cb->skb = NULL;
1420 }
1421
1422 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1423 nic->cbs_avail = count;
1424
1425 return 0;
1426}
1427
Malli Chilakala1f533672005-04-28 19:17:20 -07001428static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429{
Malli Chilakala1f533672005-04-28 19:17:20 -07001430 if(!nic->rxs) return;
1431 if(RU_SUSPENDED != nic->ru_running) return;
1432
1433 /* handle init time starts */
1434 if(!rx) rx = nic->rxs;
1435
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436 /* (Re)start RU if suspended or idle and RFA is non-NULL */
Malli Chilakala1f533672005-04-28 19:17:20 -07001437 if(rx->skb) {
1438 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1439 nic->ru_running = RU_RUNNING;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440 }
1441}
1442
1443#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1444static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1445{
1446 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN)))
1447 return -ENOMEM;
1448
1449 /* Align, init, and map the RFD. */
1450 rx->skb->dev = nic->netdev;
1451 skb_reserve(rx->skb, NET_IP_ALIGN);
1452 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
1453 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1454 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1455
Malli Chilakala1f533672005-04-28 19:17:20 -07001456 if(pci_dma_mapping_error(rx->dma_addr)) {
1457 dev_kfree_skb_any(rx->skb);
1458 rx->skb = 0;
1459 rx->dma_addr = 0;
1460 return -ENOMEM;
1461 }
1462
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463 /* Link the RFD to end of RFA by linking previous RFD to
1464 * this one, and clearing EL bit of previous. */
1465 if(rx->prev->skb) {
1466 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1467 put_unaligned(cpu_to_le32(rx->dma_addr),
1468 (u32 *)&prev_rfd->link);
1469 wmb();
1470 prev_rfd->command &= ~cpu_to_le16(cb_el);
1471 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1472 sizeof(struct rfd), PCI_DMA_TODEVICE);
1473 }
1474
1475 return 0;
1476}
1477
1478static inline int e100_rx_indicate(struct nic *nic, struct rx *rx,
1479 unsigned int *work_done, unsigned int work_to_do)
1480{
1481 struct sk_buff *skb = rx->skb;
1482 struct rfd *rfd = (struct rfd *)skb->data;
1483 u16 rfd_status, actual_size;
1484
1485 if(unlikely(work_done && *work_done >= work_to_do))
1486 return -EAGAIN;
1487
1488 /* Need to sync before taking a peek at cb_complete bit */
1489 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1490 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1491 rfd_status = le16_to_cpu(rfd->status);
1492
1493 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1494
1495 /* If data isn't ready, nothing to indicate */
1496 if(unlikely(!(rfd_status & cb_complete)))
Malli Chilakala1f533672005-04-28 19:17:20 -07001497 return -ENODATA;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001498
1499 /* Get actual data size */
1500 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1501 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1502 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1503
1504 /* Get data */
1505 pci_unmap_single(nic->pdev, rx->dma_addr,
1506 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1507
Malli Chilakala1f533672005-04-28 19:17:20 -07001508 /* this allows for a fast restart without re-enabling interrupts */
1509 if(le16_to_cpu(rfd->command) & cb_el)
1510 nic->ru_running = RU_SUSPENDED;
1511
Linus Torvalds1da177e2005-04-16 15:20:36 -07001512 /* Pull off the RFD and put the actual data (minus eth hdr) */
1513 skb_reserve(skb, sizeof(struct rfd));
1514 skb_put(skb, actual_size);
1515 skb->protocol = eth_type_trans(skb, nic->netdev);
1516
1517 if(unlikely(!(rfd_status & cb_ok))) {
1518 /* Don't indicate if hardware indicates errors */
1519 nic->net_stats.rx_dropped++;
1520 dev_kfree_skb_any(skb);
1521 } else if(actual_size > nic->netdev->mtu + VLAN_ETH_HLEN) {
1522 /* Don't indicate oversized frames */
1523 nic->rx_over_length_errors++;
1524 nic->net_stats.rx_dropped++;
1525 dev_kfree_skb_any(skb);
1526 } else {
1527 nic->net_stats.rx_packets++;
1528 nic->net_stats.rx_bytes += actual_size;
1529 nic->netdev->last_rx = jiffies;
1530 netif_receive_skb(skb);
1531 if(work_done)
1532 (*work_done)++;
1533 }
1534
1535 rx->skb = NULL;
1536
1537 return 0;
1538}
1539
1540static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1541 unsigned int work_to_do)
1542{
1543 struct rx *rx;
Malli Chilakala1f533672005-04-28 19:17:20 -07001544 int restart_required = 0;
1545 struct rx *rx_to_start = NULL;
1546
1547 /* are we already rnr? then pay attention!!! this ensures that
1548 * the state machine progression never allows a start with a
1549 * partially cleaned list, avoiding a race between hardware
1550 * and rx_to_clean when in NAPI mode */
1551 if(RU_SUSPENDED == nic->ru_running)
1552 restart_required = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001553
1554 /* Indicate newly arrived packets */
1555 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
Malli Chilakala1f533672005-04-28 19:17:20 -07001556 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1557 if(-EAGAIN == err) {
1558 /* hit quota so have more work to do, restart once
1559 * cleanup is complete */
1560 restart_required = 0;
1561 break;
1562 } else if(-ENODATA == err)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563 break; /* No more to clean */
1564 }
1565
Malli Chilakala1f533672005-04-28 19:17:20 -07001566 /* save our starting point as the place we'll restart the receiver */
1567 if(restart_required)
1568 rx_to_start = nic->rx_to_clean;
1569
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570 /* Alloc new skbs to refill list */
1571 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1572 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1573 break; /* Better luck next time (see watchdog) */
1574 }
1575
Malli Chilakala1f533672005-04-28 19:17:20 -07001576 if(restart_required) {
1577 // ack the rnr?
1578 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1579 e100_start_receiver(nic, rx_to_start);
1580 if(work_done)
1581 (*work_done)++;
1582 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583}
1584
1585static void e100_rx_clean_list(struct nic *nic)
1586{
1587 struct rx *rx;
1588 unsigned int i, count = nic->params.rfds.count;
1589
Malli Chilakala1f533672005-04-28 19:17:20 -07001590 nic->ru_running = RU_UNINITIALIZED;
1591
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592 if(nic->rxs) {
1593 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1594 if(rx->skb) {
1595 pci_unmap_single(nic->pdev, rx->dma_addr,
1596 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1597 dev_kfree_skb(rx->skb);
1598 }
1599 }
1600 kfree(nic->rxs);
1601 nic->rxs = NULL;
1602 }
1603
1604 nic->rx_to_use = nic->rx_to_clean = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001605}
1606
1607static int e100_rx_alloc_list(struct nic *nic)
1608{
1609 struct rx *rx;
1610 unsigned int i, count = nic->params.rfds.count;
1611
1612 nic->rx_to_use = nic->rx_to_clean = NULL;
Malli Chilakala1f533672005-04-28 19:17:20 -07001613 nic->ru_running = RU_UNINITIALIZED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614
1615 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
1616 return -ENOMEM;
1617 memset(nic->rxs, 0, sizeof(struct rx) * count);
1618
1619 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1620 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1621 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1622 if(e100_rx_alloc_skb(nic, rx)) {
1623 e100_rx_clean_list(nic);
1624 return -ENOMEM;
1625 }
1626 }
1627
1628 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
Malli Chilakala1f533672005-04-28 19:17:20 -07001629 nic->ru_running = RU_SUSPENDED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001630
1631 return 0;
1632}
1633
1634static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
1635{
1636 struct net_device *netdev = dev_id;
1637 struct nic *nic = netdev_priv(netdev);
1638 u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1639
1640 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1641
1642 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1643 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1644 return IRQ_NONE;
1645
1646 /* Ack interrupt(s) */
1647 writeb(stat_ack, &nic->csr->scb.stat_ack);
1648
1649 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1650 if(stat_ack & stat_ack_rnr)
Malli Chilakala1f533672005-04-28 19:17:20 -07001651 nic->ru_running = RU_SUSPENDED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652
1653 e100_disable_irq(nic);
1654 netif_rx_schedule(netdev);
1655
1656 return IRQ_HANDLED;
1657}
1658
1659static int e100_poll(struct net_device *netdev, int *budget)
1660{
1661 struct nic *nic = netdev_priv(netdev);
1662 unsigned int work_to_do = min(netdev->quota, *budget);
1663 unsigned int work_done = 0;
1664 int tx_cleaned;
1665
1666 e100_rx_clean(nic, &work_done, work_to_do);
1667 tx_cleaned = e100_tx_clean(nic);
1668
1669 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1670 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1671 netif_rx_complete(netdev);
1672 e100_enable_irq(nic);
1673 return 0;
1674 }
1675
1676 *budget -= work_done;
1677 netdev->quota -= work_done;
1678
1679 return 1;
1680}
1681
1682#ifdef CONFIG_NET_POLL_CONTROLLER
1683static void e100_netpoll(struct net_device *netdev)
1684{
1685 struct nic *nic = netdev_priv(netdev);
1686 e100_disable_irq(nic);
1687 e100_intr(nic->pdev->irq, netdev, NULL);
1688 e100_tx_clean(nic);
1689 e100_enable_irq(nic);
1690}
1691#endif
1692
1693static struct net_device_stats *e100_get_stats(struct net_device *netdev)
1694{
1695 struct nic *nic = netdev_priv(netdev);
1696 return &nic->net_stats;
1697}
1698
1699static int e100_set_mac_address(struct net_device *netdev, void *p)
1700{
1701 struct nic *nic = netdev_priv(netdev);
1702 struct sockaddr *addr = p;
1703
1704 if (!is_valid_ether_addr(addr->sa_data))
1705 return -EADDRNOTAVAIL;
1706
1707 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1708 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
1709
1710 return 0;
1711}
1712
1713static int e100_change_mtu(struct net_device *netdev, int new_mtu)
1714{
1715 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1716 return -EINVAL;
1717 netdev->mtu = new_mtu;
1718 return 0;
1719}
1720
1721static int e100_asf(struct nic *nic)
1722{
1723 /* ASF can be enabled from eeprom */
1724 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
1725 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
1726 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
1727 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
1728}
1729
1730static int e100_up(struct nic *nic)
1731{
1732 int err;
1733
1734 if((err = e100_rx_alloc_list(nic)))
1735 return err;
1736 if((err = e100_alloc_cbs(nic)))
1737 goto err_rx_clean_list;
1738 if((err = e100_hw_init(nic)))
1739 goto err_clean_cbs;
1740 e100_set_multicast_list(nic->netdev);
Malli Chilakala1f533672005-04-28 19:17:20 -07001741 e100_start_receiver(nic, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001742 mod_timer(&nic->watchdog, jiffies);
1743 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
1744 nic->netdev->name, nic->netdev)))
1745 goto err_no_irq;
1746 e100_enable_irq(nic);
1747 netif_wake_queue(nic->netdev);
1748 return 0;
1749
1750err_no_irq:
1751 del_timer_sync(&nic->watchdog);
1752err_clean_cbs:
1753 e100_clean_cbs(nic);
1754err_rx_clean_list:
1755 e100_rx_clean_list(nic);
1756 return err;
1757}
1758
1759static void e100_down(struct nic *nic)
1760{
1761 e100_hw_reset(nic);
1762 free_irq(nic->pdev->irq, nic->netdev);
1763 del_timer_sync(&nic->watchdog);
1764 netif_carrier_off(nic->netdev);
1765 netif_stop_queue(nic->netdev);
1766 e100_clean_cbs(nic);
1767 e100_rx_clean_list(nic);
1768}
1769
1770static void e100_tx_timeout(struct net_device *netdev)
1771{
1772 struct nic *nic = netdev_priv(netdev);
1773
Malli Chilakala2acdb1e2005-04-28 19:16:58 -07001774 /* Reset outside of interrupt context, to avoid request_irq
1775 * in interrupt context */
1776 schedule_work(&nic->tx_timeout_task);
1777}
1778
1779static void e100_tx_timeout_task(struct net_device *netdev)
1780{
1781 struct nic *nic = netdev_priv(netdev);
1782
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
1784 readb(&nic->csr->scb.status));
1785 e100_down(netdev_priv(netdev));
1786 e100_up(netdev_priv(netdev));
1787}
1788
1789static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
1790{
1791 int err;
1792 struct sk_buff *skb;
1793
1794 /* Use driver resources to perform internal MAC or PHY
1795 * loopback test. A single packet is prepared and transmitted
1796 * in loopback mode, and the test passes if the received
1797 * packet compares byte-for-byte to the transmitted packet. */
1798
1799 if((err = e100_rx_alloc_list(nic)))
1800 return err;
1801 if((err = e100_alloc_cbs(nic)))
1802 goto err_clean_rx;
1803
1804 /* ICH PHY loopback is broken so do MAC loopback instead */
1805 if(nic->flags & ich && loopback_mode == lb_phy)
1806 loopback_mode = lb_mac;
1807
1808 nic->loopback = loopback_mode;
1809 if((err = e100_hw_init(nic)))
1810 goto err_loopback_none;
1811
1812 if(loopback_mode == lb_phy)
1813 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
1814 BMCR_LOOPBACK);
1815
Malli Chilakala1f533672005-04-28 19:17:20 -07001816 e100_start_receiver(nic, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001817
1818 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
1819 err = -ENOMEM;
1820 goto err_loopback_none;
1821 }
1822 skb_put(skb, ETH_DATA_LEN);
1823 memset(skb->data, 0xFF, ETH_DATA_LEN);
1824 e100_xmit_frame(skb, nic->netdev);
1825
1826 msleep(10);
1827
1828 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
1829 skb->data, ETH_DATA_LEN))
1830 err = -EAGAIN;
1831
1832err_loopback_none:
1833 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
1834 nic->loopback = lb_none;
1835 e100_hw_init(nic);
1836 e100_clean_cbs(nic);
1837err_clean_rx:
1838 e100_rx_clean_list(nic);
1839 return err;
1840}
1841
1842#define MII_LED_CONTROL 0x1B
1843static void e100_blink_led(unsigned long data)
1844{
1845 struct nic *nic = (struct nic *)data;
1846 enum led_state {
1847 led_on = 0x01,
1848 led_off = 0x04,
1849 led_on_559 = 0x05,
1850 led_on_557 = 0x07,
1851 };
1852
1853 nic->leds = (nic->leds & led_on) ? led_off :
1854 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
1855 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
1856 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
1857}
1858
1859static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1860{
1861 struct nic *nic = netdev_priv(netdev);
1862 return mii_ethtool_gset(&nic->mii, cmd);
1863}
1864
1865static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1866{
1867 struct nic *nic = netdev_priv(netdev);
1868 int err;
1869
1870 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
1871 err = mii_ethtool_sset(&nic->mii, cmd);
1872 e100_exec_cb(nic, NULL, e100_configure);
1873
1874 return err;
1875}
1876
1877static void e100_get_drvinfo(struct net_device *netdev,
1878 struct ethtool_drvinfo *info)
1879{
1880 struct nic *nic = netdev_priv(netdev);
1881 strcpy(info->driver, DRV_NAME);
1882 strcpy(info->version, DRV_VERSION);
1883 strcpy(info->fw_version, "N/A");
1884 strcpy(info->bus_info, pci_name(nic->pdev));
1885}
1886
1887static int e100_get_regs_len(struct net_device *netdev)
1888{
1889 struct nic *nic = netdev_priv(netdev);
1890#define E100_PHY_REGS 0x1C
1891#define E100_REGS_LEN 1 + E100_PHY_REGS + \
1892 sizeof(nic->mem->dump_buf) / sizeof(u32)
1893 return E100_REGS_LEN * sizeof(u32);
1894}
1895
1896static void e100_get_regs(struct net_device *netdev,
1897 struct ethtool_regs *regs, void *p)
1898{
1899 struct nic *nic = netdev_priv(netdev);
1900 u32 *buff = p;
1901 int i;
1902
1903 regs->version = (1 << 24) | nic->rev_id;
1904 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
1905 readb(&nic->csr->scb.cmd_lo) << 16 |
1906 readw(&nic->csr->scb.status);
1907 for(i = E100_PHY_REGS; i >= 0; i--)
1908 buff[1 + E100_PHY_REGS - i] =
1909 mdio_read(netdev, nic->mii.phy_id, i);
1910 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
1911 e100_exec_cb(nic, NULL, e100_dump);
1912 msleep(10);
1913 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
1914 sizeof(nic->mem->dump_buf));
1915}
1916
1917static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1918{
1919 struct nic *nic = netdev_priv(netdev);
1920 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
1921 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
1922}
1923
1924static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1925{
1926 struct nic *nic = netdev_priv(netdev);
1927
1928 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
1929 return -EOPNOTSUPP;
1930
1931 if(wol->wolopts)
1932 nic->flags |= wol_magic;
1933 else
1934 nic->flags &= ~wol_magic;
1935
1936 pci_enable_wake(nic->pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
1937 e100_exec_cb(nic, NULL, e100_configure);
1938
1939 return 0;
1940}
1941
1942static u32 e100_get_msglevel(struct net_device *netdev)
1943{
1944 struct nic *nic = netdev_priv(netdev);
1945 return nic->msg_enable;
1946}
1947
1948static void e100_set_msglevel(struct net_device *netdev, u32 value)
1949{
1950 struct nic *nic = netdev_priv(netdev);
1951 nic->msg_enable = value;
1952}
1953
1954static int e100_nway_reset(struct net_device *netdev)
1955{
1956 struct nic *nic = netdev_priv(netdev);
1957 return mii_nway_restart(&nic->mii);
1958}
1959
1960static u32 e100_get_link(struct net_device *netdev)
1961{
1962 struct nic *nic = netdev_priv(netdev);
1963 return mii_link_ok(&nic->mii);
1964}
1965
1966static int e100_get_eeprom_len(struct net_device *netdev)
1967{
1968 struct nic *nic = netdev_priv(netdev);
1969 return nic->eeprom_wc << 1;
1970}
1971
1972#define E100_EEPROM_MAGIC 0x1234
1973static int e100_get_eeprom(struct net_device *netdev,
1974 struct ethtool_eeprom *eeprom, u8 *bytes)
1975{
1976 struct nic *nic = netdev_priv(netdev);
1977
1978 eeprom->magic = E100_EEPROM_MAGIC;
1979 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
1980
1981 return 0;
1982}
1983
1984static int e100_set_eeprom(struct net_device *netdev,
1985 struct ethtool_eeprom *eeprom, u8 *bytes)
1986{
1987 struct nic *nic = netdev_priv(netdev);
1988
1989 if(eeprom->magic != E100_EEPROM_MAGIC)
1990 return -EINVAL;
1991
1992 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
1993
1994 return e100_eeprom_save(nic, eeprom->offset >> 1,
1995 (eeprom->len >> 1) + 1);
1996}
1997
1998static void e100_get_ringparam(struct net_device *netdev,
1999 struct ethtool_ringparam *ring)
2000{
2001 struct nic *nic = netdev_priv(netdev);
2002 struct param_range *rfds = &nic->params.rfds;
2003 struct param_range *cbs = &nic->params.cbs;
2004
2005 ring->rx_max_pending = rfds->max;
2006 ring->tx_max_pending = cbs->max;
2007 ring->rx_mini_max_pending = 0;
2008 ring->rx_jumbo_max_pending = 0;
2009 ring->rx_pending = rfds->count;
2010 ring->tx_pending = cbs->count;
2011 ring->rx_mini_pending = 0;
2012 ring->rx_jumbo_pending = 0;
2013}
2014
2015static int e100_set_ringparam(struct net_device *netdev,
2016 struct ethtool_ringparam *ring)
2017{
2018 struct nic *nic = netdev_priv(netdev);
2019 struct param_range *rfds = &nic->params.rfds;
2020 struct param_range *cbs = &nic->params.cbs;
2021
2022 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2023 return -EINVAL;
2024
2025 if(netif_running(netdev))
2026 e100_down(nic);
2027 rfds->count = max(ring->rx_pending, rfds->min);
2028 rfds->count = min(rfds->count, rfds->max);
2029 cbs->count = max(ring->tx_pending, cbs->min);
2030 cbs->count = min(cbs->count, cbs->max);
2031 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2032 rfds->count, cbs->count);
2033 if(netif_running(netdev))
2034 e100_up(nic);
2035
2036 return 0;
2037}
2038
2039static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2040 "Link test (on/offline)",
2041 "Eeprom test (on/offline)",
2042 "Self test (offline)",
2043 "Mac loopback (offline)",
2044 "Phy loopback (offline)",
2045};
2046#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2047
2048static int e100_diag_test_count(struct net_device *netdev)
2049{
2050 return E100_TEST_LEN;
2051}
2052
2053static void e100_diag_test(struct net_device *netdev,
2054 struct ethtool_test *test, u64 *data)
2055{
2056 struct ethtool_cmd cmd;
2057 struct nic *nic = netdev_priv(netdev);
2058 int i, err;
2059
2060 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2061 data[0] = !mii_link_ok(&nic->mii);
2062 data[1] = e100_eeprom_load(nic);
2063 if(test->flags & ETH_TEST_FL_OFFLINE) {
2064
2065 /* save speed, duplex & autoneg settings */
2066 err = mii_ethtool_gset(&nic->mii, &cmd);
2067
2068 if(netif_running(netdev))
2069 e100_down(nic);
2070 data[2] = e100_self_test(nic);
2071 data[3] = e100_loopback_test(nic, lb_mac);
2072 data[4] = e100_loopback_test(nic, lb_phy);
2073
2074 /* restore speed, duplex & autoneg settings */
2075 err = mii_ethtool_sset(&nic->mii, &cmd);
2076
2077 if(netif_running(netdev))
2078 e100_up(nic);
2079 }
2080 for(i = 0; i < E100_TEST_LEN; i++)
2081 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2082}
2083
2084static int e100_phys_id(struct net_device *netdev, u32 data)
2085{
2086 struct nic *nic = netdev_priv(netdev);
2087
2088 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2089 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2090 mod_timer(&nic->blink_timer, jiffies);
2091 msleep_interruptible(data * 1000);
2092 del_timer_sync(&nic->blink_timer);
2093 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2094
2095 return 0;
2096}
2097
2098static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2099 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2100 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2101 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2102 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2103 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2104 "tx_heartbeat_errors", "tx_window_errors",
2105 /* device-specific stats */
2106 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2107 "tx_flow_control_pause", "rx_flow_control_pause",
2108 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2109};
2110#define E100_NET_STATS_LEN 21
2111#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2112
2113static int e100_get_stats_count(struct net_device *netdev)
2114{
2115 return E100_STATS_LEN;
2116}
2117
2118static void e100_get_ethtool_stats(struct net_device *netdev,
2119 struct ethtool_stats *stats, u64 *data)
2120{
2121 struct nic *nic = netdev_priv(netdev);
2122 int i;
2123
2124 for(i = 0; i < E100_NET_STATS_LEN; i++)
2125 data[i] = ((unsigned long *)&nic->net_stats)[i];
2126
2127 data[i++] = nic->tx_deferred;
2128 data[i++] = nic->tx_single_collisions;
2129 data[i++] = nic->tx_multiple_collisions;
2130 data[i++] = nic->tx_fc_pause;
2131 data[i++] = nic->rx_fc_pause;
2132 data[i++] = nic->rx_fc_unsupported;
2133 data[i++] = nic->tx_tco_frames;
2134 data[i++] = nic->rx_tco_frames;
2135}
2136
2137static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2138{
2139 switch(stringset) {
2140 case ETH_SS_TEST:
2141 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2142 break;
2143 case ETH_SS_STATS:
2144 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2145 break;
2146 }
2147}
2148
2149static struct ethtool_ops e100_ethtool_ops = {
2150 .get_settings = e100_get_settings,
2151 .set_settings = e100_set_settings,
2152 .get_drvinfo = e100_get_drvinfo,
2153 .get_regs_len = e100_get_regs_len,
2154 .get_regs = e100_get_regs,
2155 .get_wol = e100_get_wol,
2156 .set_wol = e100_set_wol,
2157 .get_msglevel = e100_get_msglevel,
2158 .set_msglevel = e100_set_msglevel,
2159 .nway_reset = e100_nway_reset,
2160 .get_link = e100_get_link,
2161 .get_eeprom_len = e100_get_eeprom_len,
2162 .get_eeprom = e100_get_eeprom,
2163 .set_eeprom = e100_set_eeprom,
2164 .get_ringparam = e100_get_ringparam,
2165 .set_ringparam = e100_set_ringparam,
2166 .self_test_count = e100_diag_test_count,
2167 .self_test = e100_diag_test,
2168 .get_strings = e100_get_strings,
2169 .phys_id = e100_phys_id,
2170 .get_stats_count = e100_get_stats_count,
2171 .get_ethtool_stats = e100_get_ethtool_stats,
2172};
2173
2174static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2175{
2176 struct nic *nic = netdev_priv(netdev);
2177
2178 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2179}
2180
2181static int e100_alloc(struct nic *nic)
2182{
2183 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2184 &nic->dma_addr);
2185 return nic->mem ? 0 : -ENOMEM;
2186}
2187
2188static void e100_free(struct nic *nic)
2189{
2190 if(nic->mem) {
2191 pci_free_consistent(nic->pdev, sizeof(struct mem),
2192 nic->mem, nic->dma_addr);
2193 nic->mem = NULL;
2194 }
2195}
2196
2197static int e100_open(struct net_device *netdev)
2198{
2199 struct nic *nic = netdev_priv(netdev);
2200 int err = 0;
2201
2202 netif_carrier_off(netdev);
2203 if((err = e100_up(nic)))
2204 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2205 return err;
2206}
2207
2208static int e100_close(struct net_device *netdev)
2209{
2210 e100_down(netdev_priv(netdev));
2211 return 0;
2212}
2213
2214static int __devinit e100_probe(struct pci_dev *pdev,
2215 const struct pci_device_id *ent)
2216{
2217 struct net_device *netdev;
2218 struct nic *nic;
2219 int err;
2220
2221 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2222 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2223 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2224 return -ENOMEM;
2225 }
2226
2227 netdev->open = e100_open;
2228 netdev->stop = e100_close;
2229 netdev->hard_start_xmit = e100_xmit_frame;
2230 netdev->get_stats = e100_get_stats;
2231 netdev->set_multicast_list = e100_set_multicast_list;
2232 netdev->set_mac_address = e100_set_mac_address;
2233 netdev->change_mtu = e100_change_mtu;
2234 netdev->do_ioctl = e100_do_ioctl;
2235 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2236 netdev->tx_timeout = e100_tx_timeout;
2237 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2238 netdev->poll = e100_poll;
2239 netdev->weight = E100_NAPI_WEIGHT;
2240#ifdef CONFIG_NET_POLL_CONTROLLER
2241 netdev->poll_controller = e100_netpoll;
2242#endif
2243 strcpy(netdev->name, pci_name(pdev));
2244
2245 nic = netdev_priv(netdev);
2246 nic->netdev = netdev;
2247 nic->pdev = pdev;
2248 nic->msg_enable = (1 << debug) - 1;
2249 pci_set_drvdata(pdev, netdev);
2250
2251 if((err = pci_enable_device(pdev))) {
2252 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2253 goto err_out_free_dev;
2254 }
2255
2256 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2257 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2258 "base address, aborting.\n");
2259 err = -ENODEV;
2260 goto err_out_disable_pdev;
2261 }
2262
2263 if((err = pci_request_regions(pdev, DRV_NAME))) {
2264 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2265 goto err_out_disable_pdev;
2266 }
2267
2268 if((err = pci_set_dma_mask(pdev, 0xFFFFFFFFULL))) {
2269 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2270 goto err_out_free_res;
2271 }
2272
2273 SET_MODULE_OWNER(netdev);
2274 SET_NETDEV_DEV(netdev, &pdev->dev);
2275
2276 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2277 if(!nic->csr) {
2278 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2279 err = -ENOMEM;
2280 goto err_out_free_res;
2281 }
2282
2283 if(ent->driver_data)
2284 nic->flags |= ich;
2285 else
2286 nic->flags &= ~ich;
2287
2288 e100_get_defaults(nic);
2289
Malli Chilakala1f533672005-04-28 19:17:20 -07002290 /* locks must be initialized before calling hw_reset */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291 spin_lock_init(&nic->cb_lock);
2292 spin_lock_init(&nic->cmd_lock);
2293
2294 /* Reset the device before pci_set_master() in case device is in some
2295 * funky state and has an interrupt pending - hint: we don't have the
2296 * interrupt handler registered yet. */
2297 e100_hw_reset(nic);
2298
2299 pci_set_master(pdev);
2300
2301 init_timer(&nic->watchdog);
2302 nic->watchdog.function = e100_watchdog;
2303 nic->watchdog.data = (unsigned long)nic;
2304 init_timer(&nic->blink_timer);
2305 nic->blink_timer.function = e100_blink_led;
2306 nic->blink_timer.data = (unsigned long)nic;
2307
Malli Chilakala2acdb1e2005-04-28 19:16:58 -07002308 INIT_WORK(&nic->tx_timeout_task,
2309 (void (*)(void *))e100_tx_timeout_task, netdev);
2310
Linus Torvalds1da177e2005-04-16 15:20:36 -07002311 if((err = e100_alloc(nic))) {
2312 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2313 goto err_out_iounmap;
2314 }
2315
2316 e100_phy_init(nic);
2317
2318 if((err = e100_eeprom_load(nic)))
2319 goto err_out_free;
2320
2321 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2322 if(!is_valid_ether_addr(netdev->dev_addr)) {
2323 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2324 "EEPROM, aborting.\n");
2325 err = -EAGAIN;
2326 goto err_out_free;
2327 }
2328
2329 /* Wol magic packet can be enabled from eeprom */
2330 if((nic->mac >= mac_82558_D101_A4) &&
2331 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2332 nic->flags |= wol_magic;
2333
2334 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
2335
2336 strcpy(netdev->name, "eth%d");
2337 if((err = register_netdev(netdev))) {
2338 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2339 goto err_out_free;
2340 }
2341
2342 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, "
2343 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2344 pci_resource_start(pdev, 0), pdev->irq,
2345 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2346 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2347
2348 return 0;
2349
2350err_out_free:
2351 e100_free(nic);
2352err_out_iounmap:
2353 iounmap(nic->csr);
2354err_out_free_res:
2355 pci_release_regions(pdev);
2356err_out_disable_pdev:
2357 pci_disable_device(pdev);
2358err_out_free_dev:
2359 pci_set_drvdata(pdev, NULL);
2360 free_netdev(netdev);
2361 return err;
2362}
2363
2364static void __devexit e100_remove(struct pci_dev *pdev)
2365{
2366 struct net_device *netdev = pci_get_drvdata(pdev);
2367
2368 if(netdev) {
2369 struct nic *nic = netdev_priv(netdev);
2370 unregister_netdev(netdev);
2371 e100_free(nic);
2372 iounmap(nic->csr);
2373 free_netdev(netdev);
2374 pci_release_regions(pdev);
2375 pci_disable_device(pdev);
2376 pci_set_drvdata(pdev, NULL);
2377 }
2378}
2379
2380#ifdef CONFIG_PM
2381static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2382{
2383 struct net_device *netdev = pci_get_drvdata(pdev);
2384 struct nic *nic = netdev_priv(netdev);
2385
2386 if(netif_running(netdev))
2387 e100_down(nic);
2388 e100_hw_reset(nic);
2389 netif_device_detach(netdev);
2390
2391 pci_save_state(pdev);
2392 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic)));
2393 pci_disable_device(pdev);
2394 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2395
2396 return 0;
2397}
2398
2399static int e100_resume(struct pci_dev *pdev)
2400{
2401 struct net_device *netdev = pci_get_drvdata(pdev);
2402 struct nic *nic = netdev_priv(netdev);
2403
2404 pci_set_power_state(pdev, PCI_D0);
2405 pci_restore_state(pdev);
Malli Chilakala1f533672005-04-28 19:17:20 -07002406 if(e100_hw_init(nic))
2407 DPRINTK(HW, ERR, "e100_hw_init failed\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002408
2409 netif_device_attach(netdev);
2410 if(netif_running(netdev))
2411 e100_up(nic);
2412
2413 return 0;
2414}
2415#endif
2416
2417static struct pci_driver e100_driver = {
2418 .name = DRV_NAME,
2419 .id_table = e100_id_table,
2420 .probe = e100_probe,
2421 .remove = __devexit_p(e100_remove),
2422#ifdef CONFIG_PM
2423 .suspend = e100_suspend,
2424 .resume = e100_resume,
2425#endif
2426};
2427
2428static int __init e100_init_module(void)
2429{
2430 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2431 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2432 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2433 }
2434 return pci_module_init(&e100_driver);
2435}
2436
2437static void __exit e100_cleanup_module(void)
2438{
2439 pci_unregister_driver(&e100_driver);
2440}
2441
2442module_init(e100_init_module);
2443module_exit(e100_cleanup_module);