Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/m68k/atari/time.c |
| 3 | * |
| 4 | * Atari time and real time clock stuff |
| 5 | * |
| 6 | * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek |
| 7 | * |
| 8 | * This file is subject to the terms and conditions of the GNU General Public |
| 9 | * License. See the file COPYING in the main directory of this archive |
| 10 | * for more details. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/types.h> |
| 14 | #include <linux/mc146818rtc.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/rtc.h> |
| 18 | #include <linux/bcd.h> |
| 19 | |
| 20 | #include <asm/atariints.h> |
| 21 | |
| 22 | void __init |
| 23 | atari_sched_init(irqreturn_t (*timer_routine)(int, void *, struct pt_regs *)) |
| 24 | { |
| 25 | /* set Timer C data Register */ |
| 26 | mfp.tim_dt_c = INT_TICKS; |
| 27 | /* start timer C, div = 1:100 */ |
| 28 | mfp.tim_ct_cd = (mfp.tim_ct_cd & 15) | 0x60; |
| 29 | /* install interrupt service routine for MFP Timer C */ |
| 30 | request_irq(IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW, |
| 31 | "timer", timer_routine); |
| 32 | } |
| 33 | |
| 34 | /* ++andreas: gettimeoffset fixed to check for pending interrupt */ |
| 35 | |
| 36 | #define TICK_SIZE 10000 |
| 37 | |
| 38 | /* This is always executed with interrupts disabled. */ |
| 39 | unsigned long atari_gettimeoffset (void) |
| 40 | { |
| 41 | unsigned long ticks, offset = 0; |
| 42 | |
| 43 | /* read MFP timer C current value */ |
| 44 | ticks = mfp.tim_dt_c; |
| 45 | /* The probability of underflow is less than 2% */ |
| 46 | if (ticks > INT_TICKS - INT_TICKS / 50) |
| 47 | /* Check for pending timer interrupt */ |
| 48 | if (mfp.int_pn_b & (1 << 5)) |
| 49 | offset = TICK_SIZE; |
| 50 | |
| 51 | ticks = INT_TICKS - ticks; |
| 52 | ticks = ticks * 10000L / INT_TICKS; |
| 53 | |
| 54 | return ticks + offset; |
| 55 | } |
| 56 | |
| 57 | |
| 58 | static void mste_read(struct MSTE_RTC *val) |
| 59 | { |
| 60 | #define COPY(v) val->v=(mste_rtc.v & 0xf) |
| 61 | do { |
| 62 | COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; |
| 63 | COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; |
| 64 | COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; |
| 65 | COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; |
| 66 | COPY(year_tens) ; |
| 67 | /* prevent from reading the clock while it changed */ |
| 68 | } while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); |
| 69 | #undef COPY |
| 70 | } |
| 71 | |
| 72 | static void mste_write(struct MSTE_RTC *val) |
| 73 | { |
| 74 | #define COPY(v) mste_rtc.v=val->v |
| 75 | do { |
| 76 | COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; |
| 77 | COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; |
| 78 | COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; |
| 79 | COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ; |
| 80 | COPY(year_tens) ; |
| 81 | /* prevent from writing the clock while it changed */ |
| 82 | } while (val->sec_ones != (mste_rtc.sec_ones & 0xf)); |
| 83 | #undef COPY |
| 84 | } |
| 85 | |
| 86 | #define RTC_READ(reg) \ |
| 87 | ({ unsigned char __val; \ |
| 88 | (void) atari_writeb(reg,&tt_rtc.regsel); \ |
| 89 | __val = tt_rtc.data; \ |
| 90 | __val; \ |
| 91 | }) |
| 92 | |
| 93 | #define RTC_WRITE(reg,val) \ |
| 94 | do { \ |
| 95 | atari_writeb(reg,&tt_rtc.regsel); \ |
| 96 | tt_rtc.data = (val); \ |
| 97 | } while(0) |
| 98 | |
| 99 | |
| 100 | #define HWCLK_POLL_INTERVAL 5 |
| 101 | |
| 102 | int atari_mste_hwclk( int op, struct rtc_time *t ) |
| 103 | { |
| 104 | int hour, year; |
| 105 | int hr24=0; |
| 106 | struct MSTE_RTC val; |
| 107 | |
| 108 | mste_rtc.mode=(mste_rtc.mode | 1); |
| 109 | hr24=mste_rtc.mon_tens & 1; |
| 110 | mste_rtc.mode=(mste_rtc.mode & ~1); |
| 111 | |
| 112 | if (op) { |
| 113 | /* write: prepare values */ |
| 114 | |
| 115 | val.sec_ones = t->tm_sec % 10; |
| 116 | val.sec_tens = t->tm_sec / 10; |
| 117 | val.min_ones = t->tm_min % 10; |
| 118 | val.min_tens = t->tm_min / 10; |
| 119 | hour = t->tm_hour; |
| 120 | if (!hr24) { |
| 121 | if (hour > 11) |
| 122 | hour += 20 - 12; |
| 123 | if (hour == 0 || hour == 20) |
| 124 | hour += 12; |
| 125 | } |
| 126 | val.hr_ones = hour % 10; |
| 127 | val.hr_tens = hour / 10; |
| 128 | val.day_ones = t->tm_mday % 10; |
| 129 | val.day_tens = t->tm_mday / 10; |
| 130 | val.mon_ones = (t->tm_mon+1) % 10; |
| 131 | val.mon_tens = (t->tm_mon+1) / 10; |
| 132 | year = t->tm_year - 80; |
| 133 | val.year_ones = year % 10; |
| 134 | val.year_tens = year / 10; |
| 135 | val.weekday = t->tm_wday; |
| 136 | mste_write(&val); |
| 137 | mste_rtc.mode=(mste_rtc.mode | 1); |
| 138 | val.year_ones = (year % 4); /* leap year register */ |
| 139 | mste_rtc.mode=(mste_rtc.mode & ~1); |
| 140 | } |
| 141 | else { |
| 142 | mste_read(&val); |
| 143 | t->tm_sec = val.sec_ones + val.sec_tens * 10; |
| 144 | t->tm_min = val.min_ones + val.min_tens * 10; |
| 145 | hour = val.hr_ones + val.hr_tens * 10; |
| 146 | if (!hr24) { |
| 147 | if (hour == 12 || hour == 12 + 20) |
| 148 | hour -= 12; |
| 149 | if (hour >= 20) |
| 150 | hour += 12 - 20; |
| 151 | } |
| 152 | t->tm_hour = hour; |
| 153 | t->tm_mday = val.day_ones + val.day_tens * 10; |
| 154 | t->tm_mon = val.mon_ones + val.mon_tens * 10 - 1; |
| 155 | t->tm_year = val.year_ones + val.year_tens * 10 + 80; |
| 156 | t->tm_wday = val.weekday; |
| 157 | } |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | int atari_tt_hwclk( int op, struct rtc_time *t ) |
| 162 | { |
| 163 | int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0; |
| 164 | unsigned long flags; |
| 165 | unsigned char ctrl; |
| 166 | int pm = 0; |
| 167 | |
| 168 | ctrl = RTC_READ(RTC_CONTROL); /* control registers are |
| 169 | * independent from the UIP */ |
| 170 | |
| 171 | if (op) { |
| 172 | /* write: prepare values */ |
| 173 | |
| 174 | sec = t->tm_sec; |
| 175 | min = t->tm_min; |
| 176 | hour = t->tm_hour; |
| 177 | day = t->tm_mday; |
| 178 | mon = t->tm_mon + 1; |
| 179 | year = t->tm_year - atari_rtc_year_offset; |
| 180 | wday = t->tm_wday + (t->tm_wday >= 0); |
| 181 | |
| 182 | if (!(ctrl & RTC_24H)) { |
| 183 | if (hour > 11) { |
| 184 | pm = 0x80; |
| 185 | if (hour != 12) |
| 186 | hour -= 12; |
| 187 | } |
| 188 | else if (hour == 0) |
| 189 | hour = 12; |
| 190 | } |
| 191 | |
| 192 | if (!(ctrl & RTC_DM_BINARY)) { |
| 193 | BIN_TO_BCD(sec); |
| 194 | BIN_TO_BCD(min); |
| 195 | BIN_TO_BCD(hour); |
| 196 | BIN_TO_BCD(day); |
| 197 | BIN_TO_BCD(mon); |
| 198 | BIN_TO_BCD(year); |
| 199 | if (wday >= 0) BIN_TO_BCD(wday); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | /* Reading/writing the clock registers is a bit critical due to |
| 204 | * the regular update cycle of the RTC. While an update is in |
| 205 | * progress, registers 0..9 shouldn't be touched. |
| 206 | * The problem is solved like that: If an update is currently in |
| 207 | * progress (the UIP bit is set), the process sleeps for a while |
| 208 | * (50ms). This really should be enough, since the update cycle |
| 209 | * normally needs 2 ms. |
| 210 | * If the UIP bit reads as 0, we have at least 244 usecs until the |
| 211 | * update starts. This should be enough... But to be sure, |
| 212 | * additionally the RTC_SET bit is set to prevent an update cycle. |
| 213 | */ |
| 214 | |
Nishanth Aravamudan | 28faa42 | 2005-11-07 01:01:12 -0800 | [diff] [blame] | 215 | while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) |
| 216 | schedule_timeout_interruptible(HWCLK_POLL_INTERVAL); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 217 | |
| 218 | local_irq_save(flags); |
| 219 | RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET ); |
| 220 | if (!op) { |
| 221 | sec = RTC_READ( RTC_SECONDS ); |
| 222 | min = RTC_READ( RTC_MINUTES ); |
| 223 | hour = RTC_READ( RTC_HOURS ); |
| 224 | day = RTC_READ( RTC_DAY_OF_MONTH ); |
| 225 | mon = RTC_READ( RTC_MONTH ); |
| 226 | year = RTC_READ( RTC_YEAR ); |
| 227 | wday = RTC_READ( RTC_DAY_OF_WEEK ); |
| 228 | } |
| 229 | else { |
| 230 | RTC_WRITE( RTC_SECONDS, sec ); |
| 231 | RTC_WRITE( RTC_MINUTES, min ); |
| 232 | RTC_WRITE( RTC_HOURS, hour + pm); |
| 233 | RTC_WRITE( RTC_DAY_OF_MONTH, day ); |
| 234 | RTC_WRITE( RTC_MONTH, mon ); |
| 235 | RTC_WRITE( RTC_YEAR, year ); |
| 236 | if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday ); |
| 237 | } |
| 238 | RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET ); |
| 239 | local_irq_restore(flags); |
| 240 | |
| 241 | if (!op) { |
| 242 | /* read: adjust values */ |
| 243 | |
| 244 | if (hour & 0x80) { |
| 245 | hour &= ~0x80; |
| 246 | pm = 1; |
| 247 | } |
| 248 | |
| 249 | if (!(ctrl & RTC_DM_BINARY)) { |
| 250 | BCD_TO_BIN(sec); |
| 251 | BCD_TO_BIN(min); |
| 252 | BCD_TO_BIN(hour); |
| 253 | BCD_TO_BIN(day); |
| 254 | BCD_TO_BIN(mon); |
| 255 | BCD_TO_BIN(year); |
| 256 | BCD_TO_BIN(wday); |
| 257 | } |
| 258 | |
| 259 | if (!(ctrl & RTC_24H)) { |
| 260 | if (!pm && hour == 12) |
| 261 | hour = 0; |
| 262 | else if (pm && hour != 12) |
| 263 | hour += 12; |
| 264 | } |
| 265 | |
| 266 | t->tm_sec = sec; |
| 267 | t->tm_min = min; |
| 268 | t->tm_hour = hour; |
| 269 | t->tm_mday = day; |
| 270 | t->tm_mon = mon - 1; |
| 271 | t->tm_year = year + atari_rtc_year_offset; |
| 272 | t->tm_wday = wday - 1; |
| 273 | } |
| 274 | |
| 275 | return( 0 ); |
| 276 | } |
| 277 | |
| 278 | |
| 279 | int atari_mste_set_clock_mmss (unsigned long nowtime) |
| 280 | { |
| 281 | short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60; |
| 282 | struct MSTE_RTC val; |
| 283 | unsigned char rtc_minutes; |
| 284 | |
| 285 | mste_read(&val); |
| 286 | rtc_minutes= val.min_ones + val.min_tens * 10; |
| 287 | if ((rtc_minutes < real_minutes |
| 288 | ? real_minutes - rtc_minutes |
| 289 | : rtc_minutes - real_minutes) < 30) |
| 290 | { |
| 291 | val.sec_ones = real_seconds % 10; |
| 292 | val.sec_tens = real_seconds / 10; |
| 293 | val.min_ones = real_minutes % 10; |
| 294 | val.min_tens = real_minutes / 10; |
| 295 | mste_write(&val); |
| 296 | } |
| 297 | else |
| 298 | return -1; |
| 299 | return 0; |
| 300 | } |
| 301 | |
| 302 | int atari_tt_set_clock_mmss (unsigned long nowtime) |
| 303 | { |
| 304 | int retval = 0; |
| 305 | short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60; |
| 306 | unsigned char save_control, save_freq_select, rtc_minutes; |
| 307 | |
| 308 | save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */ |
| 309 | RTC_WRITE (RTC_CONTROL, save_control | RTC_SET); |
| 310 | |
| 311 | save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */ |
| 312 | RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2); |
| 313 | |
| 314 | rtc_minutes = RTC_READ (RTC_MINUTES); |
| 315 | if (!(save_control & RTC_DM_BINARY)) |
| 316 | BCD_TO_BIN (rtc_minutes); |
| 317 | |
| 318 | /* Since we're only adjusting minutes and seconds, don't interfere |
| 319 | with hour overflow. This avoids messing with unknown time zones |
| 320 | but requires your RTC not to be off by more than 30 minutes. */ |
| 321 | if ((rtc_minutes < real_minutes |
| 322 | ? real_minutes - rtc_minutes |
| 323 | : rtc_minutes - real_minutes) < 30) |
| 324 | { |
| 325 | if (!(save_control & RTC_DM_BINARY)) |
| 326 | { |
| 327 | BIN_TO_BCD (real_seconds); |
| 328 | BIN_TO_BCD (real_minutes); |
| 329 | } |
| 330 | RTC_WRITE (RTC_SECONDS, real_seconds); |
| 331 | RTC_WRITE (RTC_MINUTES, real_minutes); |
| 332 | } |
| 333 | else |
| 334 | retval = -1; |
| 335 | |
| 336 | RTC_WRITE (RTC_FREQ_SELECT, save_freq_select); |
| 337 | RTC_WRITE (RTC_CONTROL, save_control); |
| 338 | return retval; |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * Local variables: |
| 343 | * c-indent-level: 4 |
| 344 | * tab-width: 8 |
| 345 | * End: |
| 346 | */ |