blob: ec759b60077a22c4c11f6fe813976930bb9e1905 [file] [log] [blame]
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed
52 * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs
53 * file together with modifications to the memory scanning parameters
54 * including the scan_thread pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#include <linux/init.h>
65#include <linux/kernel.h>
66#include <linux/list.h>
67#include <linux/sched.h>
68#include <linux/jiffies.h>
69#include <linux/delay.h>
70#include <linux/module.h>
71#include <linux/kthread.h>
72#include <linux/prio_tree.h>
73#include <linux/gfp.h>
74#include <linux/fs.h>
75#include <linux/debugfs.h>
76#include <linux/seq_file.h>
77#include <linux/cpumask.h>
78#include <linux/spinlock.h>
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
82#include <linux/cache.h>
83#include <linux/percpu.h>
84#include <linux/hardirq.h>
85#include <linux/mmzone.h>
86#include <linux/slab.h>
87#include <linux/thread_info.h>
88#include <linux/err.h>
89#include <linux/uaccess.h>
90#include <linux/string.h>
91#include <linux/nodemask.h>
92#include <linux/mm.h>
93
94#include <asm/sections.h>
95#include <asm/processor.h>
96#include <asm/atomic.h>
97
98#include <linux/kmemleak.h>
99
100/*
101 * Kmemleak configuration and common defines.
102 */
103#define MAX_TRACE 16 /* stack trace length */
104#define REPORTS_NR 50 /* maximum number of reported leaks */
105#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
106#define MSECS_SCAN_YIELD 10 /* CPU yielding period */
107#define SECS_FIRST_SCAN 60 /* delay before the first scan */
108#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
109
110#define BYTES_PER_POINTER sizeof(void *)
111
Catalin Marinas216c04b2009-06-17 18:29:02 +0100112/* GFP bitmask for kmemleak internal allocations */
113#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
114
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100115/* scanning area inside a memory block */
116struct kmemleak_scan_area {
117 struct hlist_node node;
118 unsigned long offset;
119 size_t length;
120};
121
122/*
123 * Structure holding the metadata for each allocated memory block.
124 * Modifications to such objects should be made while holding the
125 * object->lock. Insertions or deletions from object_list, gray_list or
126 * tree_node are already protected by the corresponding locks or mutex (see
127 * the notes on locking above). These objects are reference-counted
128 * (use_count) and freed using the RCU mechanism.
129 */
130struct kmemleak_object {
131 spinlock_t lock;
132 unsigned long flags; /* object status flags */
133 struct list_head object_list;
134 struct list_head gray_list;
135 struct prio_tree_node tree_node;
136 struct rcu_head rcu; /* object_list lockless traversal */
137 /* object usage count; object freed when use_count == 0 */
138 atomic_t use_count;
139 unsigned long pointer;
140 size_t size;
141 /* minimum number of a pointers found before it is considered leak */
142 int min_count;
143 /* the total number of pointers found pointing to this object */
144 int count;
145 /* memory ranges to be scanned inside an object (empty for all) */
146 struct hlist_head area_list;
147 unsigned long trace[MAX_TRACE];
148 unsigned int trace_len;
149 unsigned long jiffies; /* creation timestamp */
150 pid_t pid; /* pid of the current task */
151 char comm[TASK_COMM_LEN]; /* executable name */
152};
153
154/* flag representing the memory block allocation status */
155#define OBJECT_ALLOCATED (1 << 0)
156/* flag set after the first reporting of an unreference object */
157#define OBJECT_REPORTED (1 << 1)
158/* flag set to not scan the object */
159#define OBJECT_NO_SCAN (1 << 2)
160
161/* the list of all allocated objects */
162static LIST_HEAD(object_list);
163/* the list of gray-colored objects (see color_gray comment below) */
164static LIST_HEAD(gray_list);
165/* prio search tree for object boundaries */
166static struct prio_tree_root object_tree_root;
167/* rw_lock protecting the access to object_list and prio_tree_root */
168static DEFINE_RWLOCK(kmemleak_lock);
169
170/* allocation caches for kmemleak internal data */
171static struct kmem_cache *object_cache;
172static struct kmem_cache *scan_area_cache;
173
174/* set if tracing memory operations is enabled */
175static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
176/* set in the late_initcall if there were no errors */
177static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
178/* enables or disables early logging of the memory operations */
179static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
180/* set if a fata kmemleak error has occurred */
181static atomic_t kmemleak_error = ATOMIC_INIT(0);
182
183/* minimum and maximum address that may be valid pointers */
184static unsigned long min_addr = ULONG_MAX;
185static unsigned long max_addr;
186
187/* used for yielding the CPU to other tasks during scanning */
188static unsigned long next_scan_yield;
189static struct task_struct *scan_thread;
190static unsigned long jiffies_scan_yield;
191static unsigned long jiffies_min_age;
192/* delay between automatic memory scannings */
193static signed long jiffies_scan_wait;
194/* enables or disables the task stacks scanning */
195static int kmemleak_stack_scan;
196/* mutex protecting the memory scanning */
197static DEFINE_MUTEX(scan_mutex);
198/* mutex protecting the access to the /sys/kernel/debug/kmemleak file */
199static DEFINE_MUTEX(kmemleak_mutex);
200
201/* number of leaks reported (for limitation purposes) */
202static int reported_leaks;
203
204/*
Catalin Marinas20301172009-06-17 18:29:04 +0100205 * Early object allocation/freeing logging. Kmemleak is initialized after the
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100206 * kernel allocator. However, both the kernel allocator and kmemleak may
Catalin Marinas20301172009-06-17 18:29:04 +0100207 * allocate memory blocks which need to be tracked. Kmemleak defines an
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100208 * arbitrary buffer to hold the allocation/freeing information before it is
209 * fully initialized.
210 */
211
212/* kmemleak operation type for early logging */
213enum {
214 KMEMLEAK_ALLOC,
215 KMEMLEAK_FREE,
216 KMEMLEAK_NOT_LEAK,
217 KMEMLEAK_IGNORE,
218 KMEMLEAK_SCAN_AREA,
219 KMEMLEAK_NO_SCAN
220};
221
222/*
223 * Structure holding the information passed to kmemleak callbacks during the
224 * early logging.
225 */
226struct early_log {
227 int op_type; /* kmemleak operation type */
228 const void *ptr; /* allocated/freed memory block */
229 size_t size; /* memory block size */
230 int min_count; /* minimum reference count */
231 unsigned long offset; /* scan area offset */
232 size_t length; /* scan area length */
233};
234
235/* early logging buffer and current position */
236static struct early_log early_log[200];
237static int crt_early_log;
238
239static void kmemleak_disable(void);
240
241/*
242 * Print a warning and dump the stack trace.
243 */
244#define kmemleak_warn(x...) do { \
245 pr_warning(x); \
246 dump_stack(); \
247} while (0)
248
249/*
250 * Macro invoked when a serious kmemleak condition occured and cannot be
Catalin Marinas20301172009-06-17 18:29:04 +0100251 * recovered from. Kmemleak will be disabled and further allocation/freeing
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100252 * tracing no longer available.
253 */
Catalin Marinas000814f2009-06-17 18:29:03 +0100254#define kmemleak_stop(x...) do { \
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100255 kmemleak_warn(x); \
256 kmemleak_disable(); \
257} while (0)
258
259/*
260 * Object colors, encoded with count and min_count:
261 * - white - orphan object, not enough references to it (count < min_count)
262 * - gray - not orphan, not marked as false positive (min_count == 0) or
263 * sufficient references to it (count >= min_count)
264 * - black - ignore, it doesn't contain references (e.g. text section)
265 * (min_count == -1). No function defined for this color.
266 * Newly created objects don't have any color assigned (object->count == -1)
267 * before the next memory scan when they become white.
268 */
269static int color_white(const struct kmemleak_object *object)
270{
271 return object->count != -1 && object->count < object->min_count;
272}
273
274static int color_gray(const struct kmemleak_object *object)
275{
276 return object->min_count != -1 && object->count >= object->min_count;
277}
278
279/*
280 * Objects are considered referenced if their color is gray and they have not
281 * been deleted.
282 */
283static int referenced_object(struct kmemleak_object *object)
284{
285 return (object->flags & OBJECT_ALLOCATED) && color_gray(object);
286}
287
288/*
289 * Objects are considered unreferenced only if their color is white, they have
290 * not be deleted and have a minimum age to avoid false positives caused by
291 * pointers temporarily stored in CPU registers.
292 */
293static int unreferenced_object(struct kmemleak_object *object)
294{
295 return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
296 time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
297}
298
299/*
300 * Printing of the (un)referenced objects information, either to the seq file
301 * or to the kernel log. The print_referenced/print_unreferenced functions
302 * must be called with the object->lock held.
303 */
304#define print_helper(seq, x...) do { \
305 struct seq_file *s = (seq); \
306 if (s) \
307 seq_printf(s, x); \
308 else \
309 pr_info(x); \
310} while (0)
311
312static void print_referenced(struct kmemleak_object *object)
313{
314 pr_info("kmemleak: referenced object 0x%08lx (size %zu)\n",
315 object->pointer, object->size);
316}
317
318static void print_unreferenced(struct seq_file *seq,
319 struct kmemleak_object *object)
320{
321 int i;
322
323 print_helper(seq, "kmemleak: unreferenced object 0x%08lx (size %zu):\n",
324 object->pointer, object->size);
325 print_helper(seq, " comm \"%s\", pid %d, jiffies %lu\n",
326 object->comm, object->pid, object->jiffies);
327 print_helper(seq, " backtrace:\n");
328
329 for (i = 0; i < object->trace_len; i++) {
330 void *ptr = (void *)object->trace[i];
331 print_helper(seq, " [<%p>] %pS\n", ptr, ptr);
332 }
333}
334
335/*
336 * Print the kmemleak_object information. This function is used mainly for
337 * debugging special cases when kmemleak operations. It must be called with
338 * the object->lock held.
339 */
340static void dump_object_info(struct kmemleak_object *object)
341{
342 struct stack_trace trace;
343
344 trace.nr_entries = object->trace_len;
345 trace.entries = object->trace;
346
347 pr_notice("kmemleak: Object 0x%08lx (size %zu):\n",
348 object->tree_node.start, object->size);
349 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
350 object->comm, object->pid, object->jiffies);
351 pr_notice(" min_count = %d\n", object->min_count);
352 pr_notice(" count = %d\n", object->count);
353 pr_notice(" backtrace:\n");
354 print_stack_trace(&trace, 4);
355}
356
357/*
358 * Look-up a memory block metadata (kmemleak_object) in the priority search
359 * tree based on a pointer value. If alias is 0, only values pointing to the
360 * beginning of the memory block are allowed. The kmemleak_lock must be held
361 * when calling this function.
362 */
363static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
364{
365 struct prio_tree_node *node;
366 struct prio_tree_iter iter;
367 struct kmemleak_object *object;
368
369 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
370 node = prio_tree_next(&iter);
371 if (node) {
372 object = prio_tree_entry(node, struct kmemleak_object,
373 tree_node);
374 if (!alias && object->pointer != ptr) {
375 kmemleak_warn("kmemleak: Found object by alias");
376 object = NULL;
377 }
378 } else
379 object = NULL;
380
381 return object;
382}
383
384/*
385 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
386 * that once an object's use_count reached 0, the RCU freeing was already
387 * registered and the object should no longer be used. This function must be
388 * called under the protection of rcu_read_lock().
389 */
390static int get_object(struct kmemleak_object *object)
391{
392 return atomic_inc_not_zero(&object->use_count);
393}
394
395/*
396 * RCU callback to free a kmemleak_object.
397 */
398static void free_object_rcu(struct rcu_head *rcu)
399{
400 struct hlist_node *elem, *tmp;
401 struct kmemleak_scan_area *area;
402 struct kmemleak_object *object =
403 container_of(rcu, struct kmemleak_object, rcu);
404
405 /*
406 * Once use_count is 0 (guaranteed by put_object), there is no other
407 * code accessing this object, hence no need for locking.
408 */
409 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
410 hlist_del(elem);
411 kmem_cache_free(scan_area_cache, area);
412 }
413 kmem_cache_free(object_cache, object);
414}
415
416/*
417 * Decrement the object use_count. Once the count is 0, free the object using
418 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
419 * delete_object() path, the delayed RCU freeing ensures that there is no
420 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
421 * is also possible.
422 */
423static void put_object(struct kmemleak_object *object)
424{
425 if (!atomic_dec_and_test(&object->use_count))
426 return;
427
428 /* should only get here after delete_object was called */
429 WARN_ON(object->flags & OBJECT_ALLOCATED);
430
431 call_rcu(&object->rcu, free_object_rcu);
432}
433
434/*
435 * Look up an object in the prio search tree and increase its use_count.
436 */
437static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
438{
439 unsigned long flags;
440 struct kmemleak_object *object = NULL;
441
442 rcu_read_lock();
443 read_lock_irqsave(&kmemleak_lock, flags);
444 if (ptr >= min_addr && ptr < max_addr)
445 object = lookup_object(ptr, alias);
446 read_unlock_irqrestore(&kmemleak_lock, flags);
447
448 /* check whether the object is still available */
449 if (object && !get_object(object))
450 object = NULL;
451 rcu_read_unlock();
452
453 return object;
454}
455
456/*
457 * Create the metadata (struct kmemleak_object) corresponding to an allocated
458 * memory block and add it to the object_list and object_tree_root.
459 */
460static void create_object(unsigned long ptr, size_t size, int min_count,
461 gfp_t gfp)
462{
463 unsigned long flags;
464 struct kmemleak_object *object;
465 struct prio_tree_node *node;
466 struct stack_trace trace;
467
Catalin Marinas216c04b2009-06-17 18:29:02 +0100468 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100469 if (!object) {
Catalin Marinas000814f2009-06-17 18:29:03 +0100470 kmemleak_stop("kmemleak: Cannot allocate a kmemleak_object "
471 "structure\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100472 return;
473 }
474
475 INIT_LIST_HEAD(&object->object_list);
476 INIT_LIST_HEAD(&object->gray_list);
477 INIT_HLIST_HEAD(&object->area_list);
478 spin_lock_init(&object->lock);
479 atomic_set(&object->use_count, 1);
480 object->flags = OBJECT_ALLOCATED;
481 object->pointer = ptr;
482 object->size = size;
483 object->min_count = min_count;
484 object->count = -1; /* no color initially */
485 object->jiffies = jiffies;
486
487 /* task information */
488 if (in_irq()) {
489 object->pid = 0;
490 strncpy(object->comm, "hardirq", sizeof(object->comm));
491 } else if (in_softirq()) {
492 object->pid = 0;
493 strncpy(object->comm, "softirq", sizeof(object->comm));
494 } else {
495 object->pid = current->pid;
496 /*
497 * There is a small chance of a race with set_task_comm(),
498 * however using get_task_comm() here may cause locking
499 * dependency issues with current->alloc_lock. In the worst
500 * case, the command line is not correct.
501 */
502 strncpy(object->comm, current->comm, sizeof(object->comm));
503 }
504
505 /* kernel backtrace */
506 trace.max_entries = MAX_TRACE;
507 trace.nr_entries = 0;
508 trace.entries = object->trace;
509 trace.skip = 1;
510 save_stack_trace(&trace);
511 object->trace_len = trace.nr_entries;
512
513 INIT_PRIO_TREE_NODE(&object->tree_node);
514 object->tree_node.start = ptr;
515 object->tree_node.last = ptr + size - 1;
516
517 write_lock_irqsave(&kmemleak_lock, flags);
518 min_addr = min(min_addr, ptr);
519 max_addr = max(max_addr, ptr + size);
520 node = prio_tree_insert(&object_tree_root, &object->tree_node);
521 /*
522 * The code calling the kernel does not yet have the pointer to the
523 * memory block to be able to free it. However, we still hold the
524 * kmemleak_lock here in case parts of the kernel started freeing
525 * random memory blocks.
526 */
527 if (node != &object->tree_node) {
528 unsigned long flags;
529
Catalin Marinas000814f2009-06-17 18:29:03 +0100530 kmemleak_stop("kmemleak: Cannot insert 0x%lx into the object "
531 "search tree (already existing)\n", ptr);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100532 object = lookup_object(ptr, 1);
533 spin_lock_irqsave(&object->lock, flags);
534 dump_object_info(object);
535 spin_unlock_irqrestore(&object->lock, flags);
536
537 goto out;
538 }
539 list_add_tail_rcu(&object->object_list, &object_list);
540out:
541 write_unlock_irqrestore(&kmemleak_lock, flags);
542}
543
544/*
545 * Remove the metadata (struct kmemleak_object) for a memory block from the
546 * object_list and object_tree_root and decrement its use_count.
547 */
548static void delete_object(unsigned long ptr)
549{
550 unsigned long flags;
551 struct kmemleak_object *object;
552
553 write_lock_irqsave(&kmemleak_lock, flags);
554 object = lookup_object(ptr, 0);
555 if (!object) {
556 kmemleak_warn("kmemleak: Freeing unknown object at 0x%08lx\n",
557 ptr);
558 write_unlock_irqrestore(&kmemleak_lock, flags);
559 return;
560 }
561 prio_tree_remove(&object_tree_root, &object->tree_node);
562 list_del_rcu(&object->object_list);
563 write_unlock_irqrestore(&kmemleak_lock, flags);
564
565 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
566 WARN_ON(atomic_read(&object->use_count) < 1);
567
568 /*
569 * Locking here also ensures that the corresponding memory block
570 * cannot be freed when it is being scanned.
571 */
572 spin_lock_irqsave(&object->lock, flags);
573 if (object->flags & OBJECT_REPORTED)
574 print_referenced(object);
575 object->flags &= ~OBJECT_ALLOCATED;
576 spin_unlock_irqrestore(&object->lock, flags);
577 put_object(object);
578}
579
580/*
581 * Make a object permanently as gray-colored so that it can no longer be
582 * reported as a leak. This is used in general to mark a false positive.
583 */
584static void make_gray_object(unsigned long ptr)
585{
586 unsigned long flags;
587 struct kmemleak_object *object;
588
589 object = find_and_get_object(ptr, 0);
590 if (!object) {
591 kmemleak_warn("kmemleak: Graying unknown object at 0x%08lx\n",
592 ptr);
593 return;
594 }
595
596 spin_lock_irqsave(&object->lock, flags);
597 object->min_count = 0;
598 spin_unlock_irqrestore(&object->lock, flags);
599 put_object(object);
600}
601
602/*
603 * Mark the object as black-colored so that it is ignored from scans and
604 * reporting.
605 */
606static void make_black_object(unsigned long ptr)
607{
608 unsigned long flags;
609 struct kmemleak_object *object;
610
611 object = find_and_get_object(ptr, 0);
612 if (!object) {
613 kmemleak_warn("kmemleak: Blacking unknown object at 0x%08lx\n",
614 ptr);
615 return;
616 }
617
618 spin_lock_irqsave(&object->lock, flags);
619 object->min_count = -1;
620 spin_unlock_irqrestore(&object->lock, flags);
621 put_object(object);
622}
623
624/*
625 * Add a scanning area to the object. If at least one such area is added,
626 * kmemleak will only scan these ranges rather than the whole memory block.
627 */
628static void add_scan_area(unsigned long ptr, unsigned long offset,
629 size_t length, gfp_t gfp)
630{
631 unsigned long flags;
632 struct kmemleak_object *object;
633 struct kmemleak_scan_area *area;
634
635 object = find_and_get_object(ptr, 0);
636 if (!object) {
637 kmemleak_warn("kmemleak: Adding scan area to unknown "
638 "object at 0x%08lx\n", ptr);
639 return;
640 }
641
Catalin Marinas216c04b2009-06-17 18:29:02 +0100642 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100643 if (!area) {
644 kmemleak_warn("kmemleak: Cannot allocate a scan area\n");
645 goto out;
646 }
647
648 spin_lock_irqsave(&object->lock, flags);
649 if (offset + length > object->size) {
650 kmemleak_warn("kmemleak: Scan area larger than object "
651 "0x%08lx\n", ptr);
652 dump_object_info(object);
653 kmem_cache_free(scan_area_cache, area);
654 goto out_unlock;
655 }
656
657 INIT_HLIST_NODE(&area->node);
658 area->offset = offset;
659 area->length = length;
660
661 hlist_add_head(&area->node, &object->area_list);
662out_unlock:
663 spin_unlock_irqrestore(&object->lock, flags);
664out:
665 put_object(object);
666}
667
668/*
669 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
670 * pointer. Such object will not be scanned by kmemleak but references to it
671 * are searched.
672 */
673static void object_no_scan(unsigned long ptr)
674{
675 unsigned long flags;
676 struct kmemleak_object *object;
677
678 object = find_and_get_object(ptr, 0);
679 if (!object) {
680 kmemleak_warn("kmemleak: Not scanning unknown object at "
681 "0x%08lx\n", ptr);
682 return;
683 }
684
685 spin_lock_irqsave(&object->lock, flags);
686 object->flags |= OBJECT_NO_SCAN;
687 spin_unlock_irqrestore(&object->lock, flags);
688 put_object(object);
689}
690
691/*
692 * Log an early kmemleak_* call to the early_log buffer. These calls will be
693 * processed later once kmemleak is fully initialized.
694 */
695static void log_early(int op_type, const void *ptr, size_t size,
696 int min_count, unsigned long offset, size_t length)
697{
698 unsigned long flags;
699 struct early_log *log;
700
701 if (crt_early_log >= ARRAY_SIZE(early_log)) {
Catalin Marinas000814f2009-06-17 18:29:03 +0100702 kmemleak_stop("kmemleak: Early log buffer exceeded\n");
Catalin Marinas3c7b4e62009-06-11 13:22:39 +0100703 return;
704 }
705
706 /*
707 * There is no need for locking since the kernel is still in UP mode
708 * at this stage. Disabling the IRQs is enough.
709 */
710 local_irq_save(flags);
711 log = &early_log[crt_early_log];
712 log->op_type = op_type;
713 log->ptr = ptr;
714 log->size = size;
715 log->min_count = min_count;
716 log->offset = offset;
717 log->length = length;
718 crt_early_log++;
719 local_irq_restore(flags);
720}
721
722/*
723 * Memory allocation function callback. This function is called from the
724 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
725 * vmalloc etc.).
726 */
727void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
728{
729 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
730
731 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
732 create_object((unsigned long)ptr, size, min_count, gfp);
733 else if (atomic_read(&kmemleak_early_log))
734 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
735}
736EXPORT_SYMBOL_GPL(kmemleak_alloc);
737
738/*
739 * Memory freeing function callback. This function is called from the kernel
740 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
741 */
742void kmemleak_free(const void *ptr)
743{
744 pr_debug("%s(0x%p)\n", __func__, ptr);
745
746 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
747 delete_object((unsigned long)ptr);
748 else if (atomic_read(&kmemleak_early_log))
749 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
750}
751EXPORT_SYMBOL_GPL(kmemleak_free);
752
753/*
754 * Mark an already allocated memory block as a false positive. This will cause
755 * the block to no longer be reported as leak and always be scanned.
756 */
757void kmemleak_not_leak(const void *ptr)
758{
759 pr_debug("%s(0x%p)\n", __func__, ptr);
760
761 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
762 make_gray_object((unsigned long)ptr);
763 else if (atomic_read(&kmemleak_early_log))
764 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
765}
766EXPORT_SYMBOL(kmemleak_not_leak);
767
768/*
769 * Ignore a memory block. This is usually done when it is known that the
770 * corresponding block is not a leak and does not contain any references to
771 * other allocated memory blocks.
772 */
773void kmemleak_ignore(const void *ptr)
774{
775 pr_debug("%s(0x%p)\n", __func__, ptr);
776
777 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
778 make_black_object((unsigned long)ptr);
779 else if (atomic_read(&kmemleak_early_log))
780 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
781}
782EXPORT_SYMBOL(kmemleak_ignore);
783
784/*
785 * Limit the range to be scanned in an allocated memory block.
786 */
787void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
788 gfp_t gfp)
789{
790 pr_debug("%s(0x%p)\n", __func__, ptr);
791
792 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
793 add_scan_area((unsigned long)ptr, offset, length, gfp);
794 else if (atomic_read(&kmemleak_early_log))
795 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
796}
797EXPORT_SYMBOL(kmemleak_scan_area);
798
799/*
800 * Inform kmemleak not to scan the given memory block.
801 */
802void kmemleak_no_scan(const void *ptr)
803{
804 pr_debug("%s(0x%p)\n", __func__, ptr);
805
806 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
807 object_no_scan((unsigned long)ptr);
808 else if (atomic_read(&kmemleak_early_log))
809 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
810}
811EXPORT_SYMBOL(kmemleak_no_scan);
812
813/*
814 * Yield the CPU so that other tasks get a chance to run. The yielding is
815 * rate-limited to avoid excessive number of calls to the schedule() function
816 * during memory scanning.
817 */
818static void scan_yield(void)
819{
820 might_sleep();
821
822 if (time_is_before_eq_jiffies(next_scan_yield)) {
823 schedule();
824 next_scan_yield = jiffies + jiffies_scan_yield;
825 }
826}
827
828/*
829 * Memory scanning is a long process and it needs to be interruptable. This
830 * function checks whether such interrupt condition occured.
831 */
832static int scan_should_stop(void)
833{
834 if (!atomic_read(&kmemleak_enabled))
835 return 1;
836
837 /*
838 * This function may be called from either process or kthread context,
839 * hence the need to check for both stop conditions.
840 */
841 if (current->mm)
842 return signal_pending(current);
843 else
844 return kthread_should_stop();
845
846 return 0;
847}
848
849/*
850 * Scan a memory block (exclusive range) for valid pointers and add those
851 * found to the gray list.
852 */
853static void scan_block(void *_start, void *_end,
854 struct kmemleak_object *scanned)
855{
856 unsigned long *ptr;
857 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
858 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
859
860 for (ptr = start; ptr < end; ptr++) {
861 unsigned long flags;
862 unsigned long pointer = *ptr;
863 struct kmemleak_object *object;
864
865 if (scan_should_stop())
866 break;
867
868 /*
869 * When scanning a memory block with a corresponding
870 * kmemleak_object, the CPU yielding is handled in the calling
871 * code since it holds the object->lock to avoid the block
872 * freeing.
873 */
874 if (!scanned)
875 scan_yield();
876
877 object = find_and_get_object(pointer, 1);
878 if (!object)
879 continue;
880 if (object == scanned) {
881 /* self referenced, ignore */
882 put_object(object);
883 continue;
884 }
885
886 /*
887 * Avoid the lockdep recursive warning on object->lock being
888 * previously acquired in scan_object(). These locks are
889 * enclosed by scan_mutex.
890 */
891 spin_lock_irqsave_nested(&object->lock, flags,
892 SINGLE_DEPTH_NESTING);
893 if (!color_white(object)) {
894 /* non-orphan, ignored or new */
895 spin_unlock_irqrestore(&object->lock, flags);
896 put_object(object);
897 continue;
898 }
899
900 /*
901 * Increase the object's reference count (number of pointers
902 * to the memory block). If this count reaches the required
903 * minimum, the object's color will become gray and it will be
904 * added to the gray_list.
905 */
906 object->count++;
907 if (color_gray(object))
908 list_add_tail(&object->gray_list, &gray_list);
909 else
910 put_object(object);
911 spin_unlock_irqrestore(&object->lock, flags);
912 }
913}
914
915/*
916 * Scan a memory block corresponding to a kmemleak_object. A condition is
917 * that object->use_count >= 1.
918 */
919static void scan_object(struct kmemleak_object *object)
920{
921 struct kmemleak_scan_area *area;
922 struct hlist_node *elem;
923 unsigned long flags;
924
925 /*
926 * Once the object->lock is aquired, the corresponding memory block
927 * cannot be freed (the same lock is aquired in delete_object).
928 */
929 spin_lock_irqsave(&object->lock, flags);
930 if (object->flags & OBJECT_NO_SCAN)
931 goto out;
932 if (!(object->flags & OBJECT_ALLOCATED))
933 /* already freed object */
934 goto out;
935 if (hlist_empty(&object->area_list))
936 scan_block((void *)object->pointer,
937 (void *)(object->pointer + object->size), object);
938 else
939 hlist_for_each_entry(area, elem, &object->area_list, node)
940 scan_block((void *)(object->pointer + area->offset),
941 (void *)(object->pointer + area->offset
942 + area->length), object);
943out:
944 spin_unlock_irqrestore(&object->lock, flags);
945}
946
947/*
948 * Scan data sections and all the referenced memory blocks allocated via the
949 * kernel's standard allocators. This function must be called with the
950 * scan_mutex held.
951 */
952static void kmemleak_scan(void)
953{
954 unsigned long flags;
955 struct kmemleak_object *object, *tmp;
956 struct task_struct *task;
957 int i;
958
959 /* prepare the kmemleak_object's */
960 rcu_read_lock();
961 list_for_each_entry_rcu(object, &object_list, object_list) {
962 spin_lock_irqsave(&object->lock, flags);
963#ifdef DEBUG
964 /*
965 * With a few exceptions there should be a maximum of
966 * 1 reference to any object at this point.
967 */
968 if (atomic_read(&object->use_count) > 1) {
969 pr_debug("kmemleak: object->use_count = %d\n",
970 atomic_read(&object->use_count));
971 dump_object_info(object);
972 }
973#endif
974 /* reset the reference count (whiten the object) */
975 object->count = 0;
976 if (color_gray(object) && get_object(object))
977 list_add_tail(&object->gray_list, &gray_list);
978
979 spin_unlock_irqrestore(&object->lock, flags);
980 }
981 rcu_read_unlock();
982
983 /* data/bss scanning */
984 scan_block(_sdata, _edata, NULL);
985 scan_block(__bss_start, __bss_stop, NULL);
986
987#ifdef CONFIG_SMP
988 /* per-cpu sections scanning */
989 for_each_possible_cpu(i)
990 scan_block(__per_cpu_start + per_cpu_offset(i),
991 __per_cpu_end + per_cpu_offset(i), NULL);
992#endif
993
994 /*
995 * Struct page scanning for each node. The code below is not yet safe
996 * with MEMORY_HOTPLUG.
997 */
998 for_each_online_node(i) {
999 pg_data_t *pgdat = NODE_DATA(i);
1000 unsigned long start_pfn = pgdat->node_start_pfn;
1001 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1002 unsigned long pfn;
1003
1004 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1005 struct page *page;
1006
1007 if (!pfn_valid(pfn))
1008 continue;
1009 page = pfn_to_page(pfn);
1010 /* only scan if page is in use */
1011 if (page_count(page) == 0)
1012 continue;
1013 scan_block(page, page + 1, NULL);
1014 }
1015 }
1016
1017 /*
1018 * Scanning the task stacks may introduce false negatives and it is
1019 * not enabled by default.
1020 */
1021 if (kmemleak_stack_scan) {
1022 read_lock(&tasklist_lock);
1023 for_each_process(task)
1024 scan_block(task_stack_page(task),
1025 task_stack_page(task) + THREAD_SIZE, NULL);
1026 read_unlock(&tasklist_lock);
1027 }
1028
1029 /*
1030 * Scan the objects already referenced from the sections scanned
1031 * above. More objects will be referenced and, if there are no memory
1032 * leaks, all the objects will be scanned. The list traversal is safe
1033 * for both tail additions and removals from inside the loop. The
1034 * kmemleak objects cannot be freed from outside the loop because their
1035 * use_count was increased.
1036 */
1037 object = list_entry(gray_list.next, typeof(*object), gray_list);
1038 while (&object->gray_list != &gray_list) {
1039 scan_yield();
1040
1041 /* may add new objects to the list */
1042 if (!scan_should_stop())
1043 scan_object(object);
1044
1045 tmp = list_entry(object->gray_list.next, typeof(*object),
1046 gray_list);
1047
1048 /* remove the object from the list and release it */
1049 list_del(&object->gray_list);
1050 put_object(object);
1051
1052 object = tmp;
1053 }
1054 WARN_ON(!list_empty(&gray_list));
1055}
1056
1057/*
1058 * Thread function performing automatic memory scanning. Unreferenced objects
1059 * at the end of a memory scan are reported but only the first time.
1060 */
1061static int kmemleak_scan_thread(void *arg)
1062{
1063 static int first_run = 1;
1064
1065 pr_info("kmemleak: Automatic memory scanning thread started\n");
1066
1067 /*
1068 * Wait before the first scan to allow the system to fully initialize.
1069 */
1070 if (first_run) {
1071 first_run = 0;
1072 ssleep(SECS_FIRST_SCAN);
1073 }
1074
1075 while (!kthread_should_stop()) {
1076 struct kmemleak_object *object;
1077 signed long timeout = jiffies_scan_wait;
1078
1079 mutex_lock(&scan_mutex);
1080
1081 kmemleak_scan();
1082 reported_leaks = 0;
1083
1084 rcu_read_lock();
1085 list_for_each_entry_rcu(object, &object_list, object_list) {
1086 unsigned long flags;
1087
1088 if (reported_leaks >= REPORTS_NR)
1089 break;
1090 spin_lock_irqsave(&object->lock, flags);
1091 if (!(object->flags & OBJECT_REPORTED) &&
1092 unreferenced_object(object)) {
1093 print_unreferenced(NULL, object);
1094 object->flags |= OBJECT_REPORTED;
1095 reported_leaks++;
1096 } else if ((object->flags & OBJECT_REPORTED) &&
1097 referenced_object(object)) {
1098 print_referenced(object);
1099 object->flags &= ~OBJECT_REPORTED;
1100 }
1101 spin_unlock_irqrestore(&object->lock, flags);
1102 }
1103 rcu_read_unlock();
1104
1105 mutex_unlock(&scan_mutex);
1106 /* wait before the next scan */
1107 while (timeout && !kthread_should_stop())
1108 timeout = schedule_timeout_interruptible(timeout);
1109 }
1110
1111 pr_info("kmemleak: Automatic memory scanning thread ended\n");
1112
1113 return 0;
1114}
1115
1116/*
1117 * Start the automatic memory scanning thread. This function must be called
1118 * with the kmemleak_mutex held.
1119 */
1120void start_scan_thread(void)
1121{
1122 if (scan_thread)
1123 return;
1124 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1125 if (IS_ERR(scan_thread)) {
1126 pr_warning("kmemleak: Failed to create the scan thread\n");
1127 scan_thread = NULL;
1128 }
1129}
1130
1131/*
1132 * Stop the automatic memory scanning thread. This function must be called
1133 * with the kmemleak_mutex held.
1134 */
1135void stop_scan_thread(void)
1136{
1137 if (scan_thread) {
1138 kthread_stop(scan_thread);
1139 scan_thread = NULL;
1140 }
1141}
1142
1143/*
1144 * Iterate over the object_list and return the first valid object at or after
1145 * the required position with its use_count incremented. The function triggers
1146 * a memory scanning when the pos argument points to the first position.
1147 */
1148static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1149{
1150 struct kmemleak_object *object;
1151 loff_t n = *pos;
1152
1153 if (!n) {
1154 kmemleak_scan();
1155 reported_leaks = 0;
1156 }
1157 if (reported_leaks >= REPORTS_NR)
1158 return NULL;
1159
1160 rcu_read_lock();
1161 list_for_each_entry_rcu(object, &object_list, object_list) {
1162 if (n-- > 0)
1163 continue;
1164 if (get_object(object))
1165 goto out;
1166 }
1167 object = NULL;
1168out:
1169 rcu_read_unlock();
1170 return object;
1171}
1172
1173/*
1174 * Return the next object in the object_list. The function decrements the
1175 * use_count of the previous object and increases that of the next one.
1176 */
1177static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1178{
1179 struct kmemleak_object *prev_obj = v;
1180 struct kmemleak_object *next_obj = NULL;
1181 struct list_head *n = &prev_obj->object_list;
1182
1183 ++(*pos);
1184 if (reported_leaks >= REPORTS_NR)
1185 goto out;
1186
1187 rcu_read_lock();
1188 list_for_each_continue_rcu(n, &object_list) {
1189 next_obj = list_entry(n, struct kmemleak_object, object_list);
1190 if (get_object(next_obj))
1191 break;
1192 }
1193 rcu_read_unlock();
1194out:
1195 put_object(prev_obj);
1196 return next_obj;
1197}
1198
1199/*
1200 * Decrement the use_count of the last object required, if any.
1201 */
1202static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1203{
1204 if (v)
1205 put_object(v);
1206}
1207
1208/*
1209 * Print the information for an unreferenced object to the seq file.
1210 */
1211static int kmemleak_seq_show(struct seq_file *seq, void *v)
1212{
1213 struct kmemleak_object *object = v;
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&object->lock, flags);
1217 if (!unreferenced_object(object))
1218 goto out;
1219 print_unreferenced(seq, object);
1220 reported_leaks++;
1221out:
1222 spin_unlock_irqrestore(&object->lock, flags);
1223 return 0;
1224}
1225
1226static const struct seq_operations kmemleak_seq_ops = {
1227 .start = kmemleak_seq_start,
1228 .next = kmemleak_seq_next,
1229 .stop = kmemleak_seq_stop,
1230 .show = kmemleak_seq_show,
1231};
1232
1233static int kmemleak_open(struct inode *inode, struct file *file)
1234{
1235 int ret = 0;
1236
1237 if (!atomic_read(&kmemleak_enabled))
1238 return -EBUSY;
1239
1240 ret = mutex_lock_interruptible(&kmemleak_mutex);
1241 if (ret < 0)
1242 goto out;
1243 if (file->f_mode & FMODE_READ) {
1244 ret = mutex_lock_interruptible(&scan_mutex);
1245 if (ret < 0)
1246 goto kmemleak_unlock;
1247 ret = seq_open(file, &kmemleak_seq_ops);
1248 if (ret < 0)
1249 goto scan_unlock;
1250 }
1251 return ret;
1252
1253scan_unlock:
1254 mutex_unlock(&scan_mutex);
1255kmemleak_unlock:
1256 mutex_unlock(&kmemleak_mutex);
1257out:
1258 return ret;
1259}
1260
1261static int kmemleak_release(struct inode *inode, struct file *file)
1262{
1263 int ret = 0;
1264
1265 if (file->f_mode & FMODE_READ) {
1266 seq_release(inode, file);
1267 mutex_unlock(&scan_mutex);
1268 }
1269 mutex_unlock(&kmemleak_mutex);
1270
1271 return ret;
1272}
1273
1274/*
1275 * File write operation to configure kmemleak at run-time. The following
1276 * commands can be written to the /sys/kernel/debug/kmemleak file:
1277 * off - disable kmemleak (irreversible)
1278 * stack=on - enable the task stacks scanning
1279 * stack=off - disable the tasks stacks scanning
1280 * scan=on - start the automatic memory scanning thread
1281 * scan=off - stop the automatic memory scanning thread
1282 * scan=... - set the automatic memory scanning period in seconds (0 to
1283 * disable it)
1284 */
1285static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1286 size_t size, loff_t *ppos)
1287{
1288 char buf[64];
1289 int buf_size;
1290
1291 if (!atomic_read(&kmemleak_enabled))
1292 return -EBUSY;
1293
1294 buf_size = min(size, (sizeof(buf) - 1));
1295 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1296 return -EFAULT;
1297 buf[buf_size] = 0;
1298
1299 if (strncmp(buf, "off", 3) == 0)
1300 kmemleak_disable();
1301 else if (strncmp(buf, "stack=on", 8) == 0)
1302 kmemleak_stack_scan = 1;
1303 else if (strncmp(buf, "stack=off", 9) == 0)
1304 kmemleak_stack_scan = 0;
1305 else if (strncmp(buf, "scan=on", 7) == 0)
1306 start_scan_thread();
1307 else if (strncmp(buf, "scan=off", 8) == 0)
1308 stop_scan_thread();
1309 else if (strncmp(buf, "scan=", 5) == 0) {
1310 unsigned long secs;
1311 int err;
1312
1313 err = strict_strtoul(buf + 5, 0, &secs);
1314 if (err < 0)
1315 return err;
1316 stop_scan_thread();
1317 if (secs) {
1318 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1319 start_scan_thread();
1320 }
1321 } else
1322 return -EINVAL;
1323
1324 /* ignore the rest of the buffer, only one command at a time */
1325 *ppos += size;
1326 return size;
1327}
1328
1329static const struct file_operations kmemleak_fops = {
1330 .owner = THIS_MODULE,
1331 .open = kmemleak_open,
1332 .read = seq_read,
1333 .write = kmemleak_write,
1334 .llseek = seq_lseek,
1335 .release = kmemleak_release,
1336};
1337
1338/*
1339 * Perform the freeing of the kmemleak internal objects after waiting for any
1340 * current memory scan to complete.
1341 */
1342static int kmemleak_cleanup_thread(void *arg)
1343{
1344 struct kmemleak_object *object;
1345
1346 mutex_lock(&kmemleak_mutex);
1347 stop_scan_thread();
1348 mutex_unlock(&kmemleak_mutex);
1349
1350 mutex_lock(&scan_mutex);
1351 rcu_read_lock();
1352 list_for_each_entry_rcu(object, &object_list, object_list)
1353 delete_object(object->pointer);
1354 rcu_read_unlock();
1355 mutex_unlock(&scan_mutex);
1356
1357 return 0;
1358}
1359
1360/*
1361 * Start the clean-up thread.
1362 */
1363static void kmemleak_cleanup(void)
1364{
1365 struct task_struct *cleanup_thread;
1366
1367 cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1368 "kmemleak-clean");
1369 if (IS_ERR(cleanup_thread))
1370 pr_warning("kmemleak: Failed to create the clean-up thread\n");
1371}
1372
1373/*
1374 * Disable kmemleak. No memory allocation/freeing will be traced once this
1375 * function is called. Disabling kmemleak is an irreversible operation.
1376 */
1377static void kmemleak_disable(void)
1378{
1379 /* atomically check whether it was already invoked */
1380 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1381 return;
1382
1383 /* stop any memory operation tracing */
1384 atomic_set(&kmemleak_early_log, 0);
1385 atomic_set(&kmemleak_enabled, 0);
1386
1387 /* check whether it is too early for a kernel thread */
1388 if (atomic_read(&kmemleak_initialized))
1389 kmemleak_cleanup();
1390
1391 pr_info("Kernel memory leak detector disabled\n");
1392}
1393
1394/*
1395 * Allow boot-time kmemleak disabling (enabled by default).
1396 */
1397static int kmemleak_boot_config(char *str)
1398{
1399 if (!str)
1400 return -EINVAL;
1401 if (strcmp(str, "off") == 0)
1402 kmemleak_disable();
1403 else if (strcmp(str, "on") != 0)
1404 return -EINVAL;
1405 return 0;
1406}
1407early_param("kmemleak", kmemleak_boot_config);
1408
1409/*
Catalin Marinas20301172009-06-17 18:29:04 +01001410 * Kmemleak initialization.
Catalin Marinas3c7b4e62009-06-11 13:22:39 +01001411 */
1412void __init kmemleak_init(void)
1413{
1414 int i;
1415 unsigned long flags;
1416
1417 jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
1418 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1419 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1420
1421 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1422 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1423 INIT_PRIO_TREE_ROOT(&object_tree_root);
1424
1425 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1426 local_irq_save(flags);
1427 if (!atomic_read(&kmemleak_error)) {
1428 atomic_set(&kmemleak_enabled, 1);
1429 atomic_set(&kmemleak_early_log, 0);
1430 }
1431 local_irq_restore(flags);
1432
1433 /*
1434 * This is the point where tracking allocations is safe. Automatic
1435 * scanning is started during the late initcall. Add the early logged
1436 * callbacks to the kmemleak infrastructure.
1437 */
1438 for (i = 0; i < crt_early_log; i++) {
1439 struct early_log *log = &early_log[i];
1440
1441 switch (log->op_type) {
1442 case KMEMLEAK_ALLOC:
1443 kmemleak_alloc(log->ptr, log->size, log->min_count,
1444 GFP_KERNEL);
1445 break;
1446 case KMEMLEAK_FREE:
1447 kmemleak_free(log->ptr);
1448 break;
1449 case KMEMLEAK_NOT_LEAK:
1450 kmemleak_not_leak(log->ptr);
1451 break;
1452 case KMEMLEAK_IGNORE:
1453 kmemleak_ignore(log->ptr);
1454 break;
1455 case KMEMLEAK_SCAN_AREA:
1456 kmemleak_scan_area(log->ptr, log->offset, log->length,
1457 GFP_KERNEL);
1458 break;
1459 case KMEMLEAK_NO_SCAN:
1460 kmemleak_no_scan(log->ptr);
1461 break;
1462 default:
1463 WARN_ON(1);
1464 }
1465 }
1466}
1467
1468/*
1469 * Late initialization function.
1470 */
1471static int __init kmemleak_late_init(void)
1472{
1473 struct dentry *dentry;
1474
1475 atomic_set(&kmemleak_initialized, 1);
1476
1477 if (atomic_read(&kmemleak_error)) {
1478 /*
1479 * Some error occured and kmemleak was disabled. There is a
1480 * small chance that kmemleak_disable() was called immediately
1481 * after setting kmemleak_initialized and we may end up with
1482 * two clean-up threads but serialized by scan_mutex.
1483 */
1484 kmemleak_cleanup();
1485 return -ENOMEM;
1486 }
1487
1488 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1489 &kmemleak_fops);
1490 if (!dentry)
1491 pr_warning("kmemleak: Failed to create the debugfs kmemleak "
1492 "file\n");
1493 mutex_lock(&kmemleak_mutex);
1494 start_scan_thread();
1495 mutex_unlock(&kmemleak_mutex);
1496
1497 pr_info("Kernel memory leak detector initialized\n");
1498
1499 return 0;
1500}
1501late_initcall(kmemleak_late_init);