blob: ed2846240f962bed0a694a64cf19113975f01fdf [file] [log] [blame]
Christoph Lameter81819f02007-05-06 14:49:36 -07001/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list.
70 * There is no list for full slabs. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * Otherwise there is no need to track full slabs unless we have to
73 * track full slabs for debugging purposes.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
90/*
91 * Issues still to be resolved:
92 *
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
95 * enough frequent updates. There are 16 pointers in a cacheline.so at
96 * max 16 cpus could compete. Likely okay.
97 *
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
99 *
Christoph Lameter81819f02007-05-06 14:49:36 -0700100 * - SLAB_DEBUG_INITIAL is not supported but I have never seen a use of
101 * it.
102 *
103 * - Variable sizing of the per node arrays
104 */
105
106/* Enable to test recovery from slab corruption on boot */
107#undef SLUB_RESILIENCY_TEST
108
109#if PAGE_SHIFT <= 12
110
111/*
112 * Small page size. Make sure that we do not fragment memory
113 */
114#define DEFAULT_MAX_ORDER 1
115#define DEFAULT_MIN_OBJECTS 4
116
117#else
118
119/*
120 * Large page machines are customarily able to handle larger
121 * page orders.
122 */
123#define DEFAULT_MAX_ORDER 2
124#define DEFAULT_MIN_OBJECTS 8
125
126#endif
127
128/*
129 * Flags from the regular SLAB that SLUB does not support:
130 */
131#define SLUB_UNIMPLEMENTED (SLAB_DEBUG_INITIAL)
132
Christoph Lameter2086d262007-05-06 14:49:46 -0700133/*
134 * Mininum number of partial slabs. These will be left on the partial
135 * lists even if they are empty. kmem_cache_shrink may reclaim them.
136 */
Christoph Lametere95eed52007-05-06 14:49:44 -0700137#define MIN_PARTIAL 2
138
Christoph Lameter2086d262007-05-06 14:49:46 -0700139/*
140 * Maximum number of desirable partial slabs.
141 * The existence of more partial slabs makes kmem_cache_shrink
142 * sort the partial list by the number of objects in the.
143 */
144#define MAX_PARTIAL 10
145
Christoph Lameter81819f02007-05-06 14:49:36 -0700146#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
147 SLAB_POISON | SLAB_STORE_USER)
148/*
149 * Set of flags that will prevent slab merging
150 */
151#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
152 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
153
154#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
155 SLAB_CACHE_DMA)
156
157#ifndef ARCH_KMALLOC_MINALIGN
Christoph Lameter47bfdc02007-05-06 14:49:37 -0700158#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
Christoph Lameter81819f02007-05-06 14:49:36 -0700159#endif
160
161#ifndef ARCH_SLAB_MINALIGN
Christoph Lameter47bfdc02007-05-06 14:49:37 -0700162#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
Christoph Lameter81819f02007-05-06 14:49:36 -0700163#endif
164
165/* Internal SLUB flags */
166#define __OBJECT_POISON 0x80000000 /* Poison object */
167
168static int kmem_size = sizeof(struct kmem_cache);
169
170#ifdef CONFIG_SMP
171static struct notifier_block slab_notifier;
172#endif
173
174static enum {
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
177 UP, /* Everything works */
178 SYSFS /* Sysfs up */
179} slab_state = DOWN;
180
181/* A list of all slab caches on the system */
182static DECLARE_RWSEM(slub_lock);
183LIST_HEAD(slab_caches);
184
185#ifdef CONFIG_SYSFS
186static int sysfs_slab_add(struct kmem_cache *);
187static int sysfs_slab_alias(struct kmem_cache *, const char *);
188static void sysfs_slab_remove(struct kmem_cache *);
189#else
190static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
191static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
192static void sysfs_slab_remove(struct kmem_cache *s) {}
193#endif
194
195/********************************************************************
196 * Core slab cache functions
197 *******************************************************************/
198
199int slab_is_available(void)
200{
201 return slab_state >= UP;
202}
203
204static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
205{
206#ifdef CONFIG_NUMA
207 return s->node[node];
208#else
209 return &s->local_node;
210#endif
211}
212
213/*
214 * Object debugging
215 */
216static void print_section(char *text, u8 *addr, unsigned int length)
217{
218 int i, offset;
219 int newline = 1;
220 char ascii[17];
221
222 ascii[16] = 0;
223
224 for (i = 0; i < length; i++) {
225 if (newline) {
226 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
227 newline = 0;
228 }
229 printk(" %02x", addr[i]);
230 offset = i % 16;
231 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
232 if (offset == 15) {
233 printk(" %s\n",ascii);
234 newline = 1;
235 }
236 }
237 if (!newline) {
238 i %= 16;
239 while (i < 16) {
240 printk(" ");
241 ascii[i] = ' ';
242 i++;
243 }
244 printk(" %s\n", ascii);
245 }
246}
247
248/*
249 * Slow version of get and set free pointer.
250 *
251 * This requires touching the cache lines of kmem_cache.
252 * The offset can also be obtained from the page. In that
253 * case it is in the cacheline that we already need to touch.
254 */
255static void *get_freepointer(struct kmem_cache *s, void *object)
256{
257 return *(void **)(object + s->offset);
258}
259
260static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
261{
262 *(void **)(object + s->offset) = fp;
263}
264
265/*
266 * Tracking user of a slab.
267 */
268struct track {
269 void *addr; /* Called from address */
270 int cpu; /* Was running on cpu */
271 int pid; /* Pid context */
272 unsigned long when; /* When did the operation occur */
273};
274
275enum track_item { TRACK_ALLOC, TRACK_FREE };
276
277static struct track *get_track(struct kmem_cache *s, void *object,
278 enum track_item alloc)
279{
280 struct track *p;
281
282 if (s->offset)
283 p = object + s->offset + sizeof(void *);
284 else
285 p = object + s->inuse;
286
287 return p + alloc;
288}
289
290static void set_track(struct kmem_cache *s, void *object,
291 enum track_item alloc, void *addr)
292{
293 struct track *p;
294
295 if (s->offset)
296 p = object + s->offset + sizeof(void *);
297 else
298 p = object + s->inuse;
299
300 p += alloc;
301 if (addr) {
302 p->addr = addr;
303 p->cpu = smp_processor_id();
304 p->pid = current ? current->pid : -1;
305 p->when = jiffies;
306 } else
307 memset(p, 0, sizeof(struct track));
308}
309
Christoph Lameter81819f02007-05-06 14:49:36 -0700310static void init_tracking(struct kmem_cache *s, void *object)
311{
312 if (s->flags & SLAB_STORE_USER) {
313 set_track(s, object, TRACK_FREE, NULL);
314 set_track(s, object, TRACK_ALLOC, NULL);
315 }
316}
317
318static void print_track(const char *s, struct track *t)
319{
320 if (!t->addr)
321 return;
322
323 printk(KERN_ERR "%s: ", s);
324 __print_symbol("%s", (unsigned long)t->addr);
325 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
326}
327
328static void print_trailer(struct kmem_cache *s, u8 *p)
329{
330 unsigned int off; /* Offset of last byte */
331
332 if (s->flags & SLAB_RED_ZONE)
333 print_section("Redzone", p + s->objsize,
334 s->inuse - s->objsize);
335
336 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
337 p + s->offset,
338 get_freepointer(s, p));
339
340 if (s->offset)
341 off = s->offset + sizeof(void *);
342 else
343 off = s->inuse;
344
345 if (s->flags & SLAB_STORE_USER) {
346 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
347 print_track("Last free ", get_track(s, p, TRACK_FREE));
348 off += 2 * sizeof(struct track);
349 }
350
351 if (off != s->size)
352 /* Beginning of the filler is the free pointer */
353 print_section("Filler", p + off, s->size - off);
354}
355
356static void object_err(struct kmem_cache *s, struct page *page,
357 u8 *object, char *reason)
358{
359 u8 *addr = page_address(page);
360
361 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
362 s->name, reason, object, page);
363 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
364 object - addr, page->flags, page->inuse, page->freelist);
365 if (object > addr + 16)
366 print_section("Bytes b4", object - 16, 16);
367 print_section("Object", object, min(s->objsize, 128));
368 print_trailer(s, object);
369 dump_stack();
370}
371
372static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
373{
374 va_list args;
375 char buf[100];
376
377 va_start(args, reason);
378 vsnprintf(buf, sizeof(buf), reason, args);
379 va_end(args);
380 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
381 page);
382 dump_stack();
383}
384
385static void init_object(struct kmem_cache *s, void *object, int active)
386{
387 u8 *p = object;
388
389 if (s->flags & __OBJECT_POISON) {
390 memset(p, POISON_FREE, s->objsize - 1);
391 p[s->objsize -1] = POISON_END;
392 }
393
394 if (s->flags & SLAB_RED_ZONE)
395 memset(p + s->objsize,
396 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
397 s->inuse - s->objsize);
398}
399
400static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
401{
402 while (bytes) {
403 if (*start != (u8)value)
404 return 0;
405 start++;
406 bytes--;
407 }
408 return 1;
409}
410
411
412static int check_valid_pointer(struct kmem_cache *s, struct page *page,
413 void *object)
414{
415 void *base;
416
417 if (!object)
418 return 1;
419
420 base = page_address(page);
421 if (object < base || object >= base + s->objects * s->size ||
422 (object - base) % s->size) {
423 return 0;
424 }
425
426 return 1;
427}
428
429/*
430 * Object layout:
431 *
432 * object address
433 * Bytes of the object to be managed.
434 * If the freepointer may overlay the object then the free
435 * pointer is the first word of the object.
436 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
437 * 0xa5 (POISON_END)
438 *
439 * object + s->objsize
440 * Padding to reach word boundary. This is also used for Redzoning.
441 * Padding is extended to word size if Redzoning is enabled
442 * and objsize == inuse.
443 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
444 * 0xcc (RED_ACTIVE) for objects in use.
445 *
446 * object + s->inuse
447 * A. Free pointer (if we cannot overwrite object on free)
448 * B. Tracking data for SLAB_STORE_USER
449 * C. Padding to reach required alignment boundary
450 * Padding is done using 0x5a (POISON_INUSE)
451 *
452 * object + s->size
453 *
454 * If slabcaches are merged then the objsize and inuse boundaries are to
455 * be ignored. And therefore no slab options that rely on these boundaries
456 * may be used with merged slabcaches.
457 */
458
459static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
460 void *from, void *to)
461{
462 printk(KERN_ERR "@@@ SLUB: %s Restoring %s (0x%x) from 0x%p-0x%p\n",
463 s->name, message, data, from, to - 1);
464 memset(from, data, to - from);
465}
466
467static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
468{
469 unsigned long off = s->inuse; /* The end of info */
470
471 if (s->offset)
472 /* Freepointer is placed after the object. */
473 off += sizeof(void *);
474
475 if (s->flags & SLAB_STORE_USER)
476 /* We also have user information there */
477 off += 2 * sizeof(struct track);
478
479 if (s->size == off)
480 return 1;
481
482 if (check_bytes(p + off, POISON_INUSE, s->size - off))
483 return 1;
484
485 object_err(s, page, p, "Object padding check fails");
486
487 /*
488 * Restore padding
489 */
490 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
491 return 0;
492}
493
494static int slab_pad_check(struct kmem_cache *s, struct page *page)
495{
496 u8 *p;
497 int length, remainder;
498
499 if (!(s->flags & SLAB_POISON))
500 return 1;
501
502 p = page_address(page);
503 length = s->objects * s->size;
504 remainder = (PAGE_SIZE << s->order) - length;
505 if (!remainder)
506 return 1;
507
508 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
509 printk(KERN_ERR "SLUB: %s slab 0x%p: Padding fails check\n",
510 s->name, p);
511 dump_stack();
512 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
513 p + length + remainder);
514 return 0;
515 }
516 return 1;
517}
518
519static int check_object(struct kmem_cache *s, struct page *page,
520 void *object, int active)
521{
522 u8 *p = object;
523 u8 *endobject = object + s->objsize;
524
525 if (s->flags & SLAB_RED_ZONE) {
526 unsigned int red =
527 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
528
529 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
530 object_err(s, page, object,
531 active ? "Redzone Active" : "Redzone Inactive");
532 restore_bytes(s, "redzone", red,
533 endobject, object + s->inuse);
534 return 0;
535 }
536 } else {
537 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
538 !check_bytes(endobject, POISON_INUSE,
539 s->inuse - s->objsize)) {
540 object_err(s, page, p, "Alignment padding check fails");
541 /*
542 * Fix it so that there will not be another report.
543 *
544 * Hmmm... We may be corrupting an object that now expects
545 * to be longer than allowed.
546 */
547 restore_bytes(s, "alignment padding", POISON_INUSE,
548 endobject, object + s->inuse);
549 }
550 }
551
552 if (s->flags & SLAB_POISON) {
553 if (!active && (s->flags & __OBJECT_POISON) &&
554 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
555 p[s->objsize - 1] != POISON_END)) {
556
557 object_err(s, page, p, "Poison check failed");
558 restore_bytes(s, "Poison", POISON_FREE,
559 p, p + s->objsize -1);
560 restore_bytes(s, "Poison", POISON_END,
561 p + s->objsize - 1, p + s->objsize);
562 return 0;
563 }
564 /*
565 * check_pad_bytes cleans up on its own.
566 */
567 check_pad_bytes(s, page, p);
568 }
569
570 if (!s->offset && active)
571 /*
572 * Object and freepointer overlap. Cannot check
573 * freepointer while object is allocated.
574 */
575 return 1;
576
577 /* Check free pointer validity */
578 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
579 object_err(s, page, p, "Freepointer corrupt");
580 /*
581 * No choice but to zap it and thus loose the remainder
582 * of the free objects in this slab. May cause
583 * another error because the object count maybe
584 * wrong now.
585 */
586 set_freepointer(s, p, NULL);
587 return 0;
588 }
589 return 1;
590}
591
592static int check_slab(struct kmem_cache *s, struct page *page)
593{
594 VM_BUG_ON(!irqs_disabled());
595
596 if (!PageSlab(page)) {
597 printk(KERN_ERR "SLUB: %s Not a valid slab page @0x%p "
598 "flags=%lx mapping=0x%p count=%d \n",
599 s->name, page, page->flags, page->mapping,
600 page_count(page));
601 return 0;
602 }
603 if (page->offset * sizeof(void *) != s->offset) {
604 printk(KERN_ERR "SLUB: %s Corrupted offset %lu in slab @0x%p"
605 " flags=0x%lx mapping=0x%p count=%d\n",
606 s->name,
607 (unsigned long)(page->offset * sizeof(void *)),
608 page,
609 page->flags,
610 page->mapping,
611 page_count(page));
612 dump_stack();
613 return 0;
614 }
615 if (page->inuse > s->objects) {
616 printk(KERN_ERR "SLUB: %s Inuse %u > max %u in slab "
617 "page @0x%p flags=%lx mapping=0x%p count=%d\n",
618 s->name, page->inuse, s->objects, page, page->flags,
619 page->mapping, page_count(page));
620 dump_stack();
621 return 0;
622 }
623 /* Slab_pad_check fixes things up after itself */
624 slab_pad_check(s, page);
625 return 1;
626}
627
628/*
629 * Determine if a certain object on a page is on the freelist and
630 * therefore free. Must hold the slab lock for cpu slabs to
631 * guarantee that the chains are consistent.
632 */
633static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
634{
635 int nr = 0;
636 void *fp = page->freelist;
637 void *object = NULL;
638
639 while (fp && nr <= s->objects) {
640 if (fp == search)
641 return 1;
642 if (!check_valid_pointer(s, page, fp)) {
643 if (object) {
644 object_err(s, page, object,
645 "Freechain corrupt");
646 set_freepointer(s, object, NULL);
647 break;
648 } else {
649 printk(KERN_ERR "SLUB: %s slab 0x%p "
650 "freepointer 0x%p corrupted.\n",
651 s->name, page, fp);
652 dump_stack();
653 page->freelist = NULL;
654 page->inuse = s->objects;
655 return 0;
656 }
657 break;
658 }
659 object = fp;
660 fp = get_freepointer(s, object);
661 nr++;
662 }
663
664 if (page->inuse != s->objects - nr) {
665 printk(KERN_ERR "slab %s: page 0x%p wrong object count."
666 " counter is %d but counted were %d\n",
667 s->name, page, page->inuse,
668 s->objects - nr);
669 page->inuse = s->objects - nr;
670 }
671 return search == NULL;
672}
673
Christoph Lameter643b1132007-05-06 14:49:42 -0700674/*
675 * Tracking of fully allocated slabs for debugging
676 */
Christoph Lametere95eed52007-05-06 14:49:44 -0700677static void add_full(struct kmem_cache_node *n, struct page *page)
Christoph Lameter643b1132007-05-06 14:49:42 -0700678{
Christoph Lameter643b1132007-05-06 14:49:42 -0700679 spin_lock(&n->list_lock);
680 list_add(&page->lru, &n->full);
681 spin_unlock(&n->list_lock);
682}
683
684static void remove_full(struct kmem_cache *s, struct page *page)
685{
686 struct kmem_cache_node *n;
687
688 if (!(s->flags & SLAB_STORE_USER))
689 return;
690
691 n = get_node(s, page_to_nid(page));
692
693 spin_lock(&n->list_lock);
694 list_del(&page->lru);
695 spin_unlock(&n->list_lock);
696}
697
Christoph Lameter81819f02007-05-06 14:49:36 -0700698static int alloc_object_checks(struct kmem_cache *s, struct page *page,
699 void *object)
700{
701 if (!check_slab(s, page))
702 goto bad;
703
704 if (object && !on_freelist(s, page, object)) {
705 printk(KERN_ERR "SLUB: %s Object 0x%p@0x%p "
706 "already allocated.\n",
707 s->name, object, page);
708 goto dump;
709 }
710
711 if (!check_valid_pointer(s, page, object)) {
712 object_err(s, page, object, "Freelist Pointer check fails");
713 goto dump;
714 }
715
716 if (!object)
717 return 1;
718
719 if (!check_object(s, page, object, 0))
720 goto bad;
721 init_object(s, object, 1);
722
723 if (s->flags & SLAB_TRACE) {
724 printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
725 s->name, object, page->inuse,
726 page->freelist);
727 dump_stack();
728 }
729 return 1;
730dump:
731 dump_stack();
732bad:
733 if (PageSlab(page)) {
734 /*
735 * If this is a slab page then lets do the best we can
736 * to avoid issues in the future. Marking all objects
737 * as used avoids touching the remainder.
738 */
739 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
740 s->name, page);
741 page->inuse = s->objects;
742 page->freelist = NULL;
743 /* Fix up fields that may be corrupted */
744 page->offset = s->offset / sizeof(void *);
745 }
746 return 0;
747}
748
749static int free_object_checks(struct kmem_cache *s, struct page *page,
750 void *object)
751{
752 if (!check_slab(s, page))
753 goto fail;
754
755 if (!check_valid_pointer(s, page, object)) {
756 printk(KERN_ERR "SLUB: %s slab 0x%p invalid "
757 "object pointer 0x%p\n",
758 s->name, page, object);
759 goto fail;
760 }
761
762 if (on_freelist(s, page, object)) {
763 printk(KERN_ERR "SLUB: %s slab 0x%p object "
764 "0x%p already free.\n", s->name, page, object);
765 goto fail;
766 }
767
768 if (!check_object(s, page, object, 1))
769 return 0;
770
771 if (unlikely(s != page->slab)) {
772 if (!PageSlab(page))
773 printk(KERN_ERR "slab_free %s size %d: attempt to"
774 "free object(0x%p) outside of slab.\n",
775 s->name, s->size, object);
776 else
777 if (!page->slab)
778 printk(KERN_ERR
779 "slab_free : no slab(NULL) for object 0x%p.\n",
780 object);
781 else
782 printk(KERN_ERR "slab_free %s(%d): object at 0x%p"
783 " belongs to slab %s(%d)\n",
784 s->name, s->size, object,
785 page->slab->name, page->slab->size);
786 goto fail;
787 }
788 if (s->flags & SLAB_TRACE) {
789 printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
790 s->name, object, page->inuse,
791 page->freelist);
792 print_section("Object", object, s->objsize);
793 dump_stack();
794 }
795 init_object(s, object, 0);
796 return 1;
797fail:
798 dump_stack();
799 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
800 s->name, page, object);
801 return 0;
802}
803
804/*
805 * Slab allocation and freeing
806 */
807static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
808{
809 struct page * page;
810 int pages = 1 << s->order;
811
812 if (s->order)
813 flags |= __GFP_COMP;
814
815 if (s->flags & SLAB_CACHE_DMA)
816 flags |= SLUB_DMA;
817
818 if (node == -1)
819 page = alloc_pages(flags, s->order);
820 else
821 page = alloc_pages_node(node, flags, s->order);
822
823 if (!page)
824 return NULL;
825
826 mod_zone_page_state(page_zone(page),
827 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
828 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
829 pages);
830
831 return page;
832}
833
834static void setup_object(struct kmem_cache *s, struct page *page,
835 void *object)
836{
837 if (PageError(page)) {
838 init_object(s, object, 0);
839 init_tracking(s, object);
840 }
841
842 if (unlikely(s->ctor)) {
843 int mode = SLAB_CTOR_CONSTRUCTOR;
844
845 if (!(s->flags & __GFP_WAIT))
846 mode |= SLAB_CTOR_ATOMIC;
847
848 s->ctor(object, s, mode);
849 }
850}
851
852static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
853{
854 struct page *page;
855 struct kmem_cache_node *n;
856 void *start;
857 void *end;
858 void *last;
859 void *p;
860
861 if (flags & __GFP_NO_GROW)
862 return NULL;
863
864 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
865
866 if (flags & __GFP_WAIT)
867 local_irq_enable();
868
869 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
870 if (!page)
871 goto out;
872
873 n = get_node(s, page_to_nid(page));
874 if (n)
875 atomic_long_inc(&n->nr_slabs);
876 page->offset = s->offset / sizeof(void *);
877 page->slab = s;
878 page->flags |= 1 << PG_slab;
879 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
880 SLAB_STORE_USER | SLAB_TRACE))
881 page->flags |= 1 << PG_error;
882
883 start = page_address(page);
884 end = start + s->objects * s->size;
885
886 if (unlikely(s->flags & SLAB_POISON))
887 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
888
889 last = start;
890 for (p = start + s->size; p < end; p += s->size) {
891 setup_object(s, page, last);
892 set_freepointer(s, last, p);
893 last = p;
894 }
895 setup_object(s, page, last);
896 set_freepointer(s, last, NULL);
897
898 page->freelist = start;
899 page->inuse = 0;
900out:
901 if (flags & __GFP_WAIT)
902 local_irq_disable();
903 return page;
904}
905
906static void __free_slab(struct kmem_cache *s, struct page *page)
907{
908 int pages = 1 << s->order;
909
910 if (unlikely(PageError(page) || s->dtor)) {
911 void *start = page_address(page);
912 void *end = start + (pages << PAGE_SHIFT);
913 void *p;
914
915 slab_pad_check(s, page);
916 for (p = start; p <= end - s->size; p += s->size) {
917 if (s->dtor)
918 s->dtor(p, s, 0);
919 check_object(s, page, p, 0);
920 }
921 }
922
923 mod_zone_page_state(page_zone(page),
924 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
925 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
926 - pages);
927
928 page->mapping = NULL;
929 __free_pages(page, s->order);
930}
931
932static void rcu_free_slab(struct rcu_head *h)
933{
934 struct page *page;
935
936 page = container_of((struct list_head *)h, struct page, lru);
937 __free_slab(page->slab, page);
938}
939
940static void free_slab(struct kmem_cache *s, struct page *page)
941{
942 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
943 /*
944 * RCU free overloads the RCU head over the LRU
945 */
946 struct rcu_head *head = (void *)&page->lru;
947
948 call_rcu(head, rcu_free_slab);
949 } else
950 __free_slab(s, page);
951}
952
953static void discard_slab(struct kmem_cache *s, struct page *page)
954{
955 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
956
957 atomic_long_dec(&n->nr_slabs);
958 reset_page_mapcount(page);
959 page->flags &= ~(1 << PG_slab | 1 << PG_error);
960 free_slab(s, page);
961}
962
963/*
964 * Per slab locking using the pagelock
965 */
966static __always_inline void slab_lock(struct page *page)
967{
968 bit_spin_lock(PG_locked, &page->flags);
969}
970
971static __always_inline void slab_unlock(struct page *page)
972{
973 bit_spin_unlock(PG_locked, &page->flags);
974}
975
976static __always_inline int slab_trylock(struct page *page)
977{
978 int rc = 1;
979
980 rc = bit_spin_trylock(PG_locked, &page->flags);
981 return rc;
982}
983
984/*
985 * Management of partially allocated slabs
986 */
Christoph Lametere95eed52007-05-06 14:49:44 -0700987static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
Christoph Lameter81819f02007-05-06 14:49:36 -0700988{
Christoph Lametere95eed52007-05-06 14:49:44 -0700989 spin_lock(&n->list_lock);
990 n->nr_partial++;
991 list_add_tail(&page->lru, &n->partial);
992 spin_unlock(&n->list_lock);
993}
Christoph Lameter81819f02007-05-06 14:49:36 -0700994
Christoph Lametere95eed52007-05-06 14:49:44 -0700995static void add_partial(struct kmem_cache_node *n, struct page *page)
996{
Christoph Lameter81819f02007-05-06 14:49:36 -0700997 spin_lock(&n->list_lock);
998 n->nr_partial++;
999 list_add(&page->lru, &n->partial);
1000 spin_unlock(&n->list_lock);
1001}
1002
1003static void remove_partial(struct kmem_cache *s,
1004 struct page *page)
1005{
1006 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1007
1008 spin_lock(&n->list_lock);
1009 list_del(&page->lru);
1010 n->nr_partial--;
1011 spin_unlock(&n->list_lock);
1012}
1013
1014/*
1015 * Lock page and remove it from the partial list
1016 *
1017 * Must hold list_lock
1018 */
1019static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
1020{
1021 if (slab_trylock(page)) {
1022 list_del(&page->lru);
1023 n->nr_partial--;
1024 return 1;
1025 }
1026 return 0;
1027}
1028
1029/*
1030 * Try to get a partial slab from a specific node
1031 */
1032static struct page *get_partial_node(struct kmem_cache_node *n)
1033{
1034 struct page *page;
1035
1036 /*
1037 * Racy check. If we mistakenly see no partial slabs then we
1038 * just allocate an empty slab. If we mistakenly try to get a
1039 * partial slab then get_partials() will return NULL.
1040 */
1041 if (!n || !n->nr_partial)
1042 return NULL;
1043
1044 spin_lock(&n->list_lock);
1045 list_for_each_entry(page, &n->partial, lru)
1046 if (lock_and_del_slab(n, page))
1047 goto out;
1048 page = NULL;
1049out:
1050 spin_unlock(&n->list_lock);
1051 return page;
1052}
1053
1054/*
1055 * Get a page from somewhere. Search in increasing NUMA
1056 * distances.
1057 */
1058static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1059{
1060#ifdef CONFIG_NUMA
1061 struct zonelist *zonelist;
1062 struct zone **z;
1063 struct page *page;
1064
1065 /*
1066 * The defrag ratio allows to configure the tradeoffs between
1067 * inter node defragmentation and node local allocations.
1068 * A lower defrag_ratio increases the tendency to do local
1069 * allocations instead of scanning throught the partial
1070 * lists on other nodes.
1071 *
1072 * If defrag_ratio is set to 0 then kmalloc() always
1073 * returns node local objects. If its higher then kmalloc()
1074 * may return off node objects in order to avoid fragmentation.
1075 *
1076 * A higher ratio means slabs may be taken from other nodes
1077 * thus reducing the number of partial slabs on those nodes.
1078 *
1079 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1080 * defrag_ratio = 1000) then every (well almost) allocation
1081 * will first attempt to defrag slab caches on other nodes. This
1082 * means scanning over all nodes to look for partial slabs which
1083 * may be a bit expensive to do on every slab allocation.
1084 */
1085 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1086 return NULL;
1087
1088 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1089 ->node_zonelists[gfp_zone(flags)];
1090 for (z = zonelist->zones; *z; z++) {
1091 struct kmem_cache_node *n;
1092
1093 n = get_node(s, zone_to_nid(*z));
1094
1095 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lametere95eed52007-05-06 14:49:44 -07001096 n->nr_partial > MIN_PARTIAL) {
Christoph Lameter81819f02007-05-06 14:49:36 -07001097 page = get_partial_node(n);
1098 if (page)
1099 return page;
1100 }
1101 }
1102#endif
1103 return NULL;
1104}
1105
1106/*
1107 * Get a partial page, lock it and return it.
1108 */
1109static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1110{
1111 struct page *page;
1112 int searchnode = (node == -1) ? numa_node_id() : node;
1113
1114 page = get_partial_node(get_node(s, searchnode));
1115 if (page || (flags & __GFP_THISNODE))
1116 return page;
1117
1118 return get_any_partial(s, flags);
1119}
1120
1121/*
1122 * Move a page back to the lists.
1123 *
1124 * Must be called with the slab lock held.
1125 *
1126 * On exit the slab lock will have been dropped.
1127 */
1128static void putback_slab(struct kmem_cache *s, struct page *page)
1129{
Christoph Lametere95eed52007-05-06 14:49:44 -07001130 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1131
Christoph Lameter81819f02007-05-06 14:49:36 -07001132 if (page->inuse) {
Christoph Lametere95eed52007-05-06 14:49:44 -07001133
Christoph Lameter81819f02007-05-06 14:49:36 -07001134 if (page->freelist)
Christoph Lametere95eed52007-05-06 14:49:44 -07001135 add_partial(n, page);
1136 else if (PageError(page) && (s->flags & SLAB_STORE_USER))
1137 add_full(n, page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001138 slab_unlock(page);
Christoph Lametere95eed52007-05-06 14:49:44 -07001139
Christoph Lameter81819f02007-05-06 14:49:36 -07001140 } else {
Christoph Lametere95eed52007-05-06 14:49:44 -07001141 if (n->nr_partial < MIN_PARTIAL) {
1142 /*
1143 * Adding an empty page to the partial slabs in order
1144 * to avoid page allocator overhead. This page needs to
1145 * come after all the others that are not fully empty
1146 * in order to make sure that we do maximum
1147 * defragmentation.
1148 */
1149 add_partial_tail(n, page);
1150 slab_unlock(page);
1151 } else {
1152 slab_unlock(page);
1153 discard_slab(s, page);
1154 }
Christoph Lameter81819f02007-05-06 14:49:36 -07001155 }
1156}
1157
1158/*
1159 * Remove the cpu slab
1160 */
1161static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1162{
1163 s->cpu_slab[cpu] = NULL;
1164 ClearPageActive(page);
1165
1166 putback_slab(s, page);
1167}
1168
1169static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1170{
1171 slab_lock(page);
1172 deactivate_slab(s, page, cpu);
1173}
1174
1175/*
1176 * Flush cpu slab.
1177 * Called from IPI handler with interrupts disabled.
1178 */
1179static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1180{
1181 struct page *page = s->cpu_slab[cpu];
1182
1183 if (likely(page))
1184 flush_slab(s, page, cpu);
1185}
1186
1187static void flush_cpu_slab(void *d)
1188{
1189 struct kmem_cache *s = d;
1190 int cpu = smp_processor_id();
1191
1192 __flush_cpu_slab(s, cpu);
1193}
1194
1195static void flush_all(struct kmem_cache *s)
1196{
1197#ifdef CONFIG_SMP
1198 on_each_cpu(flush_cpu_slab, s, 1, 1);
1199#else
1200 unsigned long flags;
1201
1202 local_irq_save(flags);
1203 flush_cpu_slab(s);
1204 local_irq_restore(flags);
1205#endif
1206}
1207
1208/*
1209 * slab_alloc is optimized to only modify two cachelines on the fast path
1210 * (aside from the stack):
1211 *
1212 * 1. The page struct
1213 * 2. The first cacheline of the object to be allocated.
1214 *
1215 * The only cache lines that are read (apart from code) is the
1216 * per cpu array in the kmem_cache struct.
1217 *
1218 * Fastpath is not possible if we need to get a new slab or have
1219 * debugging enabled (which means all slabs are marked with PageError)
1220 */
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001221static void *slab_alloc(struct kmem_cache *s,
1222 gfp_t gfpflags, int node, void *addr)
Christoph Lameter81819f02007-05-06 14:49:36 -07001223{
1224 struct page *page;
1225 void **object;
1226 unsigned long flags;
1227 int cpu;
1228
1229 local_irq_save(flags);
1230 cpu = smp_processor_id();
1231 page = s->cpu_slab[cpu];
1232 if (!page)
1233 goto new_slab;
1234
1235 slab_lock(page);
1236 if (unlikely(node != -1 && page_to_nid(page) != node))
1237 goto another_slab;
1238redo:
1239 object = page->freelist;
1240 if (unlikely(!object))
1241 goto another_slab;
1242 if (unlikely(PageError(page)))
1243 goto debug;
1244
1245have_object:
1246 page->inuse++;
1247 page->freelist = object[page->offset];
1248 slab_unlock(page);
1249 local_irq_restore(flags);
1250 return object;
1251
1252another_slab:
1253 deactivate_slab(s, page, cpu);
1254
1255new_slab:
1256 page = get_partial(s, gfpflags, node);
1257 if (likely(page)) {
1258have_slab:
1259 s->cpu_slab[cpu] = page;
1260 SetPageActive(page);
1261 goto redo;
1262 }
1263
1264 page = new_slab(s, gfpflags, node);
1265 if (page) {
1266 cpu = smp_processor_id();
1267 if (s->cpu_slab[cpu]) {
1268 /*
1269 * Someone else populated the cpu_slab while we enabled
1270 * interrupts, or we have got scheduled on another cpu.
1271 * The page may not be on the requested node.
1272 */
1273 if (node == -1 ||
1274 page_to_nid(s->cpu_slab[cpu]) == node) {
1275 /*
1276 * Current cpuslab is acceptable and we
1277 * want the current one since its cache hot
1278 */
1279 discard_slab(s, page);
1280 page = s->cpu_slab[cpu];
1281 slab_lock(page);
1282 goto redo;
1283 }
1284 /* Dump the current slab */
1285 flush_slab(s, s->cpu_slab[cpu], cpu);
1286 }
1287 slab_lock(page);
1288 goto have_slab;
1289 }
1290 local_irq_restore(flags);
1291 return NULL;
1292debug:
1293 if (!alloc_object_checks(s, page, object))
1294 goto another_slab;
1295 if (s->flags & SLAB_STORE_USER)
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001296 set_track(s, object, TRACK_ALLOC, addr);
Christoph Lameter81819f02007-05-06 14:49:36 -07001297 goto have_object;
1298}
1299
1300void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1301{
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001302 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001303}
1304EXPORT_SYMBOL(kmem_cache_alloc);
1305
1306#ifdef CONFIG_NUMA
1307void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1308{
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001309 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001310}
1311EXPORT_SYMBOL(kmem_cache_alloc_node);
1312#endif
1313
1314/*
1315 * The fastpath only writes the cacheline of the page struct and the first
1316 * cacheline of the object.
1317 *
1318 * No special cachelines need to be read
1319 */
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001320static void slab_free(struct kmem_cache *s, struct page *page,
1321 void *x, void *addr)
Christoph Lameter81819f02007-05-06 14:49:36 -07001322{
1323 void *prior;
1324 void **object = (void *)x;
1325 unsigned long flags;
1326
1327 local_irq_save(flags);
1328 slab_lock(page);
1329
1330 if (unlikely(PageError(page)))
1331 goto debug;
1332checks_ok:
1333 prior = object[page->offset] = page->freelist;
1334 page->freelist = object;
1335 page->inuse--;
1336
1337 if (unlikely(PageActive(page)))
1338 /*
1339 * Cpu slabs are never on partial lists and are
1340 * never freed.
1341 */
1342 goto out_unlock;
1343
1344 if (unlikely(!page->inuse))
1345 goto slab_empty;
1346
1347 /*
1348 * Objects left in the slab. If it
1349 * was not on the partial list before
1350 * then add it.
1351 */
1352 if (unlikely(!prior))
Christoph Lametere95eed52007-05-06 14:49:44 -07001353 add_partial(get_node(s, page_to_nid(page)), page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001354
1355out_unlock:
1356 slab_unlock(page);
1357 local_irq_restore(flags);
1358 return;
1359
1360slab_empty:
1361 if (prior)
1362 /*
Christoph Lameter643b1132007-05-06 14:49:42 -07001363 * Slab on the partial list.
Christoph Lameter81819f02007-05-06 14:49:36 -07001364 */
1365 remove_partial(s, page);
1366
1367 slab_unlock(page);
1368 discard_slab(s, page);
1369 local_irq_restore(flags);
1370 return;
1371
1372debug:
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001373 if (!free_object_checks(s, page, x))
1374 goto out_unlock;
Christoph Lameter643b1132007-05-06 14:49:42 -07001375 if (!PageActive(page) && !page->freelist)
1376 remove_full(s, page);
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001377 if (s->flags & SLAB_STORE_USER)
1378 set_track(s, x, TRACK_FREE, addr);
1379 goto checks_ok;
Christoph Lameter81819f02007-05-06 14:49:36 -07001380}
1381
1382void kmem_cache_free(struct kmem_cache *s, void *x)
1383{
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001384 struct page *page;
Christoph Lameter81819f02007-05-06 14:49:36 -07001385
Christoph Lameterb49af682007-05-06 14:49:41 -07001386 page = virt_to_head_page(x);
Christoph Lameter81819f02007-05-06 14:49:36 -07001387
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07001388 slab_free(s, page, x, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07001389}
1390EXPORT_SYMBOL(kmem_cache_free);
1391
1392/* Figure out on which slab object the object resides */
1393static struct page *get_object_page(const void *x)
1394{
Christoph Lameterb49af682007-05-06 14:49:41 -07001395 struct page *page = virt_to_head_page(x);
Christoph Lameter81819f02007-05-06 14:49:36 -07001396
1397 if (!PageSlab(page))
1398 return NULL;
1399
1400 return page;
1401}
1402
1403/*
1404 * kmem_cache_open produces objects aligned at "size" and the first object
1405 * is placed at offset 0 in the slab (We have no metainformation on the
1406 * slab, all slabs are in essence "off slab").
1407 *
1408 * In order to get the desired alignment one just needs to align the
1409 * size.
1410 *
1411 * Notice that the allocation order determines the sizes of the per cpu
1412 * caches. Each processor has always one slab available for allocations.
1413 * Increasing the allocation order reduces the number of times that slabs
1414 * must be moved on and off the partial lists and therefore may influence
1415 * locking overhead.
1416 *
1417 * The offset is used to relocate the free list link in each object. It is
1418 * therefore possible to move the free list link behind the object. This
1419 * is necessary for RCU to work properly and also useful for debugging.
1420 */
1421
1422/*
1423 * Mininum / Maximum order of slab pages. This influences locking overhead
1424 * and slab fragmentation. A higher order reduces the number of partial slabs
1425 * and increases the number of allocations possible without having to
1426 * take the list_lock.
1427 */
1428static int slub_min_order;
1429static int slub_max_order = DEFAULT_MAX_ORDER;
1430
1431/*
1432 * Minimum number of objects per slab. This is necessary in order to
1433 * reduce locking overhead. Similar to the queue size in SLAB.
1434 */
1435static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1436
1437/*
1438 * Merge control. If this is set then no merging of slab caches will occur.
1439 */
1440static int slub_nomerge;
1441
1442/*
1443 * Debug settings:
1444 */
1445static int slub_debug;
1446
1447static char *slub_debug_slabs;
1448
1449/*
1450 * Calculate the order of allocation given an slab object size.
1451 *
1452 * The order of allocation has significant impact on other elements
1453 * of the system. Generally order 0 allocations should be preferred
1454 * since they do not cause fragmentation in the page allocator. Larger
1455 * objects may have problems with order 0 because there may be too much
1456 * space left unused in a slab. We go to a higher order if more than 1/8th
1457 * of the slab would be wasted.
1458 *
1459 * In order to reach satisfactory performance we must ensure that
1460 * a minimum number of objects is in one slab. Otherwise we may
1461 * generate too much activity on the partial lists. This is less a
1462 * concern for large slabs though. slub_max_order specifies the order
1463 * where we begin to stop considering the number of objects in a slab.
1464 *
1465 * Higher order allocations also allow the placement of more objects
1466 * in a slab and thereby reduce object handling overhead. If the user
1467 * has requested a higher mininum order then we start with that one
1468 * instead of zero.
1469 */
1470static int calculate_order(int size)
1471{
1472 int order;
1473 int rem;
1474
1475 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1476 order < MAX_ORDER; order++) {
1477 unsigned long slab_size = PAGE_SIZE << order;
1478
1479 if (slub_max_order > order &&
1480 slab_size < slub_min_objects * size)
1481 continue;
1482
1483 if (slab_size < size)
1484 continue;
1485
1486 rem = slab_size % size;
1487
1488 if (rem <= (PAGE_SIZE << order) / 8)
1489 break;
1490
1491 }
1492 if (order >= MAX_ORDER)
1493 return -E2BIG;
1494 return order;
1495}
1496
1497/*
1498 * Function to figure out which alignment to use from the
1499 * various ways of specifying it.
1500 */
1501static unsigned long calculate_alignment(unsigned long flags,
1502 unsigned long align, unsigned long size)
1503{
1504 /*
1505 * If the user wants hardware cache aligned objects then
1506 * follow that suggestion if the object is sufficiently
1507 * large.
1508 *
1509 * The hardware cache alignment cannot override the
1510 * specified alignment though. If that is greater
1511 * then use it.
1512 */
1513 if ((flags & (SLAB_MUST_HWCACHE_ALIGN | SLAB_HWCACHE_ALIGN)) &&
1514 size > L1_CACHE_BYTES / 2)
1515 return max_t(unsigned long, align, L1_CACHE_BYTES);
1516
1517 if (align < ARCH_SLAB_MINALIGN)
1518 return ARCH_SLAB_MINALIGN;
1519
1520 return ALIGN(align, sizeof(void *));
1521}
1522
1523static void init_kmem_cache_node(struct kmem_cache_node *n)
1524{
1525 n->nr_partial = 0;
1526 atomic_long_set(&n->nr_slabs, 0);
1527 spin_lock_init(&n->list_lock);
1528 INIT_LIST_HEAD(&n->partial);
Christoph Lameter643b1132007-05-06 14:49:42 -07001529 INIT_LIST_HEAD(&n->full);
Christoph Lameter81819f02007-05-06 14:49:36 -07001530}
1531
1532#ifdef CONFIG_NUMA
1533/*
1534 * No kmalloc_node yet so do it by hand. We know that this is the first
1535 * slab on the node for this slabcache. There are no concurrent accesses
1536 * possible.
1537 *
1538 * Note that this function only works on the kmalloc_node_cache
1539 * when allocating for the kmalloc_node_cache.
1540 */
1541static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1542 int node)
1543{
1544 struct page *page;
1545 struct kmem_cache_node *n;
1546
1547 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1548
1549 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1550 /* new_slab() disables interupts */
1551 local_irq_enable();
1552
1553 BUG_ON(!page);
1554 n = page->freelist;
1555 BUG_ON(!n);
1556 page->freelist = get_freepointer(kmalloc_caches, n);
1557 page->inuse++;
1558 kmalloc_caches->node[node] = n;
1559 init_object(kmalloc_caches, n, 1);
1560 init_kmem_cache_node(n);
1561 atomic_long_inc(&n->nr_slabs);
Christoph Lametere95eed52007-05-06 14:49:44 -07001562 add_partial(n, page);
Christoph Lameter81819f02007-05-06 14:49:36 -07001563 return n;
1564}
1565
1566static void free_kmem_cache_nodes(struct kmem_cache *s)
1567{
1568 int node;
1569
1570 for_each_online_node(node) {
1571 struct kmem_cache_node *n = s->node[node];
1572 if (n && n != &s->local_node)
1573 kmem_cache_free(kmalloc_caches, n);
1574 s->node[node] = NULL;
1575 }
1576}
1577
1578static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1579{
1580 int node;
1581 int local_node;
1582
1583 if (slab_state >= UP)
1584 local_node = page_to_nid(virt_to_page(s));
1585 else
1586 local_node = 0;
1587
1588 for_each_online_node(node) {
1589 struct kmem_cache_node *n;
1590
1591 if (local_node == node)
1592 n = &s->local_node;
1593 else {
1594 if (slab_state == DOWN) {
1595 n = early_kmem_cache_node_alloc(gfpflags,
1596 node);
1597 continue;
1598 }
1599 n = kmem_cache_alloc_node(kmalloc_caches,
1600 gfpflags, node);
1601
1602 if (!n) {
1603 free_kmem_cache_nodes(s);
1604 return 0;
1605 }
1606
1607 }
1608 s->node[node] = n;
1609 init_kmem_cache_node(n);
1610 }
1611 return 1;
1612}
1613#else
1614static void free_kmem_cache_nodes(struct kmem_cache *s)
1615{
1616}
1617
1618static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1619{
1620 init_kmem_cache_node(&s->local_node);
1621 return 1;
1622}
1623#endif
1624
1625/*
1626 * calculate_sizes() determines the order and the distribution of data within
1627 * a slab object.
1628 */
1629static int calculate_sizes(struct kmem_cache *s)
1630{
1631 unsigned long flags = s->flags;
1632 unsigned long size = s->objsize;
1633 unsigned long align = s->align;
1634
1635 /*
1636 * Determine if we can poison the object itself. If the user of
1637 * the slab may touch the object after free or before allocation
1638 * then we should never poison the object itself.
1639 */
1640 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1641 !s->ctor && !s->dtor)
1642 s->flags |= __OBJECT_POISON;
1643 else
1644 s->flags &= ~__OBJECT_POISON;
1645
1646 /*
1647 * Round up object size to the next word boundary. We can only
1648 * place the free pointer at word boundaries and this determines
1649 * the possible location of the free pointer.
1650 */
1651 size = ALIGN(size, sizeof(void *));
1652
1653 /*
1654 * If we are redzoning then check if there is some space between the
1655 * end of the object and the free pointer. If not then add an
1656 * additional word, so that we can establish a redzone between
1657 * the object and the freepointer to be able to check for overwrites.
1658 */
1659 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1660 size += sizeof(void *);
1661
1662 /*
1663 * With that we have determined how much of the slab is in actual
1664 * use by the object. This is the potential offset to the free
1665 * pointer.
1666 */
1667 s->inuse = size;
1668
1669 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1670 s->ctor || s->dtor)) {
1671 /*
1672 * Relocate free pointer after the object if it is not
1673 * permitted to overwrite the first word of the object on
1674 * kmem_cache_free.
1675 *
1676 * This is the case if we do RCU, have a constructor or
1677 * destructor or are poisoning the objects.
1678 */
1679 s->offset = size;
1680 size += sizeof(void *);
1681 }
1682
1683 if (flags & SLAB_STORE_USER)
1684 /*
1685 * Need to store information about allocs and frees after
1686 * the object.
1687 */
1688 size += 2 * sizeof(struct track);
1689
1690 if (flags & DEBUG_DEFAULT_FLAGS)
1691 /*
1692 * Add some empty padding so that we can catch
1693 * overwrites from earlier objects rather than let
1694 * tracking information or the free pointer be
1695 * corrupted if an user writes before the start
1696 * of the object.
1697 */
1698 size += sizeof(void *);
1699 /*
1700 * Determine the alignment based on various parameters that the
1701 * user specified (this is unecessarily complex due to the attempt
1702 * to be compatible with SLAB. Should be cleaned up some day).
1703 */
1704 align = calculate_alignment(flags, align, s->objsize);
1705
1706 /*
1707 * SLUB stores one object immediately after another beginning from
1708 * offset 0. In order to align the objects we have to simply size
1709 * each object to conform to the alignment.
1710 */
1711 size = ALIGN(size, align);
1712 s->size = size;
1713
1714 s->order = calculate_order(size);
1715 if (s->order < 0)
1716 return 0;
1717
1718 /*
1719 * Determine the number of objects per slab
1720 */
1721 s->objects = (PAGE_SIZE << s->order) / size;
1722
1723 /*
1724 * Verify that the number of objects is within permitted limits.
1725 * The page->inuse field is only 16 bit wide! So we cannot have
1726 * more than 64k objects per slab.
1727 */
1728 if (!s->objects || s->objects > 65535)
1729 return 0;
1730 return 1;
1731
1732}
1733
1734static int __init finish_bootstrap(void)
1735{
1736 struct list_head *h;
1737 int err;
1738
1739 slab_state = SYSFS;
1740
1741 list_for_each(h, &slab_caches) {
1742 struct kmem_cache *s =
1743 container_of(h, struct kmem_cache, list);
1744
1745 err = sysfs_slab_add(s);
1746 BUG_ON(err);
1747 }
1748 return 0;
1749}
1750
1751static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1752 const char *name, size_t size,
1753 size_t align, unsigned long flags,
1754 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1755 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1756{
1757 memset(s, 0, kmem_size);
1758 s->name = name;
1759 s->ctor = ctor;
1760 s->dtor = dtor;
1761 s->objsize = size;
1762 s->flags = flags;
1763 s->align = align;
1764
1765 BUG_ON(flags & SLUB_UNIMPLEMENTED);
1766
1767 /*
1768 * The page->offset field is only 16 bit wide. This is an offset
1769 * in units of words from the beginning of an object. If the slab
1770 * size is bigger then we cannot move the free pointer behind the
1771 * object anymore.
1772 *
1773 * On 32 bit platforms the limit is 256k. On 64bit platforms
1774 * the limit is 512k.
1775 *
1776 * Debugging or ctor/dtors may create a need to move the free
1777 * pointer. Fail if this happens.
1778 */
1779 if (s->size >= 65535 * sizeof(void *)) {
1780 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1781 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1782 BUG_ON(ctor || dtor);
1783 }
1784 else
1785 /*
1786 * Enable debugging if selected on the kernel commandline.
1787 */
1788 if (slub_debug && (!slub_debug_slabs ||
1789 strncmp(slub_debug_slabs, name,
1790 strlen(slub_debug_slabs)) == 0))
1791 s->flags |= slub_debug;
1792
1793 if (!calculate_sizes(s))
1794 goto error;
1795
1796 s->refcount = 1;
1797#ifdef CONFIG_NUMA
1798 s->defrag_ratio = 100;
1799#endif
1800
1801 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1802 return 1;
1803error:
1804 if (flags & SLAB_PANIC)
1805 panic("Cannot create slab %s size=%lu realsize=%u "
1806 "order=%u offset=%u flags=%lx\n",
1807 s->name, (unsigned long)size, s->size, s->order,
1808 s->offset, flags);
1809 return 0;
1810}
1811EXPORT_SYMBOL(kmem_cache_open);
1812
1813/*
1814 * Check if a given pointer is valid
1815 */
1816int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1817{
1818 struct page * page;
1819 void *addr;
1820
1821 page = get_object_page(object);
1822
1823 if (!page || s != page->slab)
1824 /* No slab or wrong slab */
1825 return 0;
1826
1827 addr = page_address(page);
1828 if (object < addr || object >= addr + s->objects * s->size)
1829 /* Out of bounds */
1830 return 0;
1831
1832 if ((object - addr) % s->size)
1833 /* Improperly aligned */
1834 return 0;
1835
1836 /*
1837 * We could also check if the object is on the slabs freelist.
1838 * But this would be too expensive and it seems that the main
1839 * purpose of kmem_ptr_valid is to check if the object belongs
1840 * to a certain slab.
1841 */
1842 return 1;
1843}
1844EXPORT_SYMBOL(kmem_ptr_validate);
1845
1846/*
1847 * Determine the size of a slab object
1848 */
1849unsigned int kmem_cache_size(struct kmem_cache *s)
1850{
1851 return s->objsize;
1852}
1853EXPORT_SYMBOL(kmem_cache_size);
1854
1855const char *kmem_cache_name(struct kmem_cache *s)
1856{
1857 return s->name;
1858}
1859EXPORT_SYMBOL(kmem_cache_name);
1860
1861/*
1862 * Attempt to free all slabs on a node
1863 */
1864static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1865 struct list_head *list)
1866{
1867 int slabs_inuse = 0;
1868 unsigned long flags;
1869 struct page *page, *h;
1870
1871 spin_lock_irqsave(&n->list_lock, flags);
1872 list_for_each_entry_safe(page, h, list, lru)
1873 if (!page->inuse) {
1874 list_del(&page->lru);
1875 discard_slab(s, page);
1876 } else
1877 slabs_inuse++;
1878 spin_unlock_irqrestore(&n->list_lock, flags);
1879 return slabs_inuse;
1880}
1881
1882/*
1883 * Release all resources used by slab cache
1884 */
1885static int kmem_cache_close(struct kmem_cache *s)
1886{
1887 int node;
1888
1889 flush_all(s);
1890
1891 /* Attempt to free all objects */
1892 for_each_online_node(node) {
1893 struct kmem_cache_node *n = get_node(s, node);
1894
Christoph Lameter2086d262007-05-06 14:49:46 -07001895 n->nr_partial -= free_list(s, n, &n->partial);
Christoph Lameter81819f02007-05-06 14:49:36 -07001896 if (atomic_long_read(&n->nr_slabs))
1897 return 1;
1898 }
1899 free_kmem_cache_nodes(s);
1900 return 0;
1901}
1902
1903/*
1904 * Close a cache and release the kmem_cache structure
1905 * (must be used for caches created using kmem_cache_create)
1906 */
1907void kmem_cache_destroy(struct kmem_cache *s)
1908{
1909 down_write(&slub_lock);
1910 s->refcount--;
1911 if (!s->refcount) {
1912 list_del(&s->list);
1913 if (kmem_cache_close(s))
1914 WARN_ON(1);
1915 sysfs_slab_remove(s);
1916 kfree(s);
1917 }
1918 up_write(&slub_lock);
1919}
1920EXPORT_SYMBOL(kmem_cache_destroy);
1921
1922/********************************************************************
1923 * Kmalloc subsystem
1924 *******************************************************************/
1925
1926struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1927EXPORT_SYMBOL(kmalloc_caches);
1928
1929#ifdef CONFIG_ZONE_DMA
1930static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1931#endif
1932
1933static int __init setup_slub_min_order(char *str)
1934{
1935 get_option (&str, &slub_min_order);
1936
1937 return 1;
1938}
1939
1940__setup("slub_min_order=", setup_slub_min_order);
1941
1942static int __init setup_slub_max_order(char *str)
1943{
1944 get_option (&str, &slub_max_order);
1945
1946 return 1;
1947}
1948
1949__setup("slub_max_order=", setup_slub_max_order);
1950
1951static int __init setup_slub_min_objects(char *str)
1952{
1953 get_option (&str, &slub_min_objects);
1954
1955 return 1;
1956}
1957
1958__setup("slub_min_objects=", setup_slub_min_objects);
1959
1960static int __init setup_slub_nomerge(char *str)
1961{
1962 slub_nomerge = 1;
1963 return 1;
1964}
1965
1966__setup("slub_nomerge", setup_slub_nomerge);
1967
1968static int __init setup_slub_debug(char *str)
1969{
1970 if (!str || *str != '=')
1971 slub_debug = DEBUG_DEFAULT_FLAGS;
1972 else {
1973 str++;
1974 if (*str == 0 || *str == ',')
1975 slub_debug = DEBUG_DEFAULT_FLAGS;
1976 else
1977 for( ;*str && *str != ','; str++)
1978 switch (*str) {
1979 case 'f' : case 'F' :
1980 slub_debug |= SLAB_DEBUG_FREE;
1981 break;
1982 case 'z' : case 'Z' :
1983 slub_debug |= SLAB_RED_ZONE;
1984 break;
1985 case 'p' : case 'P' :
1986 slub_debug |= SLAB_POISON;
1987 break;
1988 case 'u' : case 'U' :
1989 slub_debug |= SLAB_STORE_USER;
1990 break;
1991 case 't' : case 'T' :
1992 slub_debug |= SLAB_TRACE;
1993 break;
1994 default:
1995 printk(KERN_ERR "slub_debug option '%c' "
1996 "unknown. skipped\n",*str);
1997 }
1998 }
1999
2000 if (*str == ',')
2001 slub_debug_slabs = str + 1;
2002 return 1;
2003}
2004
2005__setup("slub_debug", setup_slub_debug);
2006
2007static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2008 const char *name, int size, gfp_t gfp_flags)
2009{
2010 unsigned int flags = 0;
2011
2012 if (gfp_flags & SLUB_DMA)
2013 flags = SLAB_CACHE_DMA;
2014
2015 down_write(&slub_lock);
2016 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2017 flags, NULL, NULL))
2018 goto panic;
2019
2020 list_add(&s->list, &slab_caches);
2021 up_write(&slub_lock);
2022 if (sysfs_slab_add(s))
2023 goto panic;
2024 return s;
2025
2026panic:
2027 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2028}
2029
2030static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2031{
2032 int index = kmalloc_index(size);
2033
Christoph Lameter614410d2007-05-06 14:49:38 -07002034 if (!index)
Christoph Lameter81819f02007-05-06 14:49:36 -07002035 return NULL;
2036
2037 /* Allocation too large? */
2038 BUG_ON(index < 0);
2039
2040#ifdef CONFIG_ZONE_DMA
2041 if ((flags & SLUB_DMA)) {
2042 struct kmem_cache *s;
2043 struct kmem_cache *x;
2044 char *text;
2045 size_t realsize;
2046
2047 s = kmalloc_caches_dma[index];
2048 if (s)
2049 return s;
2050
2051 /* Dynamically create dma cache */
2052 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2053 if (!x)
2054 panic("Unable to allocate memory for dma cache\n");
2055
2056 if (index <= KMALLOC_SHIFT_HIGH)
2057 realsize = 1 << index;
2058 else {
2059 if (index == 1)
2060 realsize = 96;
2061 else
2062 realsize = 192;
2063 }
2064
2065 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2066 (unsigned int)realsize);
2067 s = create_kmalloc_cache(x, text, realsize, flags);
2068 kmalloc_caches_dma[index] = s;
2069 return s;
2070 }
2071#endif
2072 return &kmalloc_caches[index];
2073}
2074
2075void *__kmalloc(size_t size, gfp_t flags)
2076{
2077 struct kmem_cache *s = get_slab(size, flags);
2078
2079 if (s)
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07002080 return slab_alloc(s, flags, -1, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002081 return NULL;
2082}
2083EXPORT_SYMBOL(__kmalloc);
2084
2085#ifdef CONFIG_NUMA
2086void *__kmalloc_node(size_t size, gfp_t flags, int node)
2087{
2088 struct kmem_cache *s = get_slab(size, flags);
2089
2090 if (s)
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07002091 return slab_alloc(s, flags, node, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002092 return NULL;
2093}
2094EXPORT_SYMBOL(__kmalloc_node);
2095#endif
2096
2097size_t ksize(const void *object)
2098{
2099 struct page *page = get_object_page(object);
2100 struct kmem_cache *s;
2101
2102 BUG_ON(!page);
2103 s = page->slab;
2104 BUG_ON(!s);
2105
2106 /*
2107 * Debugging requires use of the padding between object
2108 * and whatever may come after it.
2109 */
2110 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2111 return s->objsize;
2112
2113 /*
2114 * If we have the need to store the freelist pointer
2115 * back there or track user information then we can
2116 * only use the space before that information.
2117 */
2118 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2119 return s->inuse;
2120
2121 /*
2122 * Else we can use all the padding etc for the allocation
2123 */
2124 return s->size;
2125}
2126EXPORT_SYMBOL(ksize);
2127
2128void kfree(const void *x)
2129{
2130 struct kmem_cache *s;
2131 struct page *page;
2132
2133 if (!x)
2134 return;
2135
Christoph Lameterb49af682007-05-06 14:49:41 -07002136 page = virt_to_head_page(x);
Christoph Lameter81819f02007-05-06 14:49:36 -07002137 s = page->slab;
2138
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07002139 slab_free(s, page, (void *)x, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002140}
2141EXPORT_SYMBOL(kfree);
2142
Christoph Lameter2086d262007-05-06 14:49:46 -07002143/*
2144 * kmem_cache_shrink removes empty slabs from the partial lists
2145 * and then sorts the partially allocated slabs by the number
2146 * of items in use. The slabs with the most items in use
2147 * come first. New allocations will remove these from the
2148 * partial list because they are full. The slabs with the
2149 * least items are placed last. If it happens that the objects
2150 * are freed then the page can be returned to the page allocator.
2151 */
2152int kmem_cache_shrink(struct kmem_cache *s)
2153{
2154 int node;
2155 int i;
2156 struct kmem_cache_node *n;
2157 struct page *page;
2158 struct page *t;
2159 struct list_head *slabs_by_inuse =
2160 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2161 unsigned long flags;
2162
2163 if (!slabs_by_inuse)
2164 return -ENOMEM;
2165
2166 flush_all(s);
2167 for_each_online_node(node) {
2168 n = get_node(s, node);
2169
2170 if (!n->nr_partial)
2171 continue;
2172
2173 for (i = 0; i < s->objects; i++)
2174 INIT_LIST_HEAD(slabs_by_inuse + i);
2175
2176 spin_lock_irqsave(&n->list_lock, flags);
2177
2178 /*
2179 * Build lists indexed by the items in use in
2180 * each slab or free slabs if empty.
2181 *
2182 * Note that concurrent frees may occur while
2183 * we hold the list_lock. page->inuse here is
2184 * the upper limit.
2185 */
2186 list_for_each_entry_safe(page, t, &n->partial, lru) {
2187 if (!page->inuse && slab_trylock(page)) {
2188 /*
2189 * Must hold slab lock here because slab_free
2190 * may have freed the last object and be
2191 * waiting to release the slab.
2192 */
2193 list_del(&page->lru);
2194 n->nr_partial--;
2195 slab_unlock(page);
2196 discard_slab(s, page);
2197 } else {
2198 if (n->nr_partial > MAX_PARTIAL)
2199 list_move(&page->lru,
2200 slabs_by_inuse + page->inuse);
2201 }
2202 }
2203
2204 if (n->nr_partial <= MAX_PARTIAL)
2205 goto out;
2206
2207 /*
2208 * Rebuild the partial list with the slabs filled up
2209 * most first and the least used slabs at the end.
2210 */
2211 for (i = s->objects - 1; i >= 0; i--)
2212 list_splice(slabs_by_inuse + i, n->partial.prev);
2213
2214 out:
2215 spin_unlock_irqrestore(&n->list_lock, flags);
2216 }
2217
2218 kfree(slabs_by_inuse);
2219 return 0;
2220}
2221EXPORT_SYMBOL(kmem_cache_shrink);
2222
Christoph Lameter81819f02007-05-06 14:49:36 -07002223/**
2224 * krealloc - reallocate memory. The contents will remain unchanged.
2225 *
2226 * @p: object to reallocate memory for.
2227 * @new_size: how many bytes of memory are required.
2228 * @flags: the type of memory to allocate.
2229 *
2230 * The contents of the object pointed to are preserved up to the
2231 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2232 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2233 * %NULL pointer, the object pointed to is freed.
2234 */
2235void *krealloc(const void *p, size_t new_size, gfp_t flags)
2236{
2237 struct kmem_cache *new_cache;
2238 void *ret;
2239 struct page *page;
2240
2241 if (unlikely(!p))
2242 return kmalloc(new_size, flags);
2243
2244 if (unlikely(!new_size)) {
2245 kfree(p);
2246 return NULL;
2247 }
2248
Christoph Lameterb49af682007-05-06 14:49:41 -07002249 page = virt_to_head_page(p);
Christoph Lameter81819f02007-05-06 14:49:36 -07002250
2251 new_cache = get_slab(new_size, flags);
2252
2253 /*
2254 * If new size fits in the current cache, bail out.
2255 */
2256 if (likely(page->slab == new_cache))
2257 return (void *)p;
2258
2259 ret = kmalloc(new_size, flags);
2260 if (ret) {
2261 memcpy(ret, p, min(new_size, ksize(p)));
2262 kfree(p);
2263 }
2264 return ret;
2265}
2266EXPORT_SYMBOL(krealloc);
2267
2268/********************************************************************
2269 * Basic setup of slabs
2270 *******************************************************************/
2271
2272void __init kmem_cache_init(void)
2273{
2274 int i;
2275
2276#ifdef CONFIG_NUMA
2277 /*
2278 * Must first have the slab cache available for the allocations of the
2279 * struct kmalloc_cache_node's. There is special bootstrap code in
2280 * kmem_cache_open for slab_state == DOWN.
2281 */
2282 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2283 sizeof(struct kmem_cache_node), GFP_KERNEL);
2284#endif
2285
2286 /* Able to allocate the per node structures */
2287 slab_state = PARTIAL;
2288
2289 /* Caches that are not of the two-to-the-power-of size */
2290 create_kmalloc_cache(&kmalloc_caches[1],
2291 "kmalloc-96", 96, GFP_KERNEL);
2292 create_kmalloc_cache(&kmalloc_caches[2],
2293 "kmalloc-192", 192, GFP_KERNEL);
2294
2295 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2296 create_kmalloc_cache(&kmalloc_caches[i],
2297 "kmalloc", 1 << i, GFP_KERNEL);
2298
2299 slab_state = UP;
2300
2301 /* Provide the correct kmalloc names now that the caches are up */
2302 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2303 kmalloc_caches[i]. name =
2304 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2305
2306#ifdef CONFIG_SMP
2307 register_cpu_notifier(&slab_notifier);
2308#endif
2309
2310 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2311 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2312 + nr_cpu_ids * sizeof(struct page *);
2313
2314 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2315 " Processors=%d, Nodes=%d\n",
2316 KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES,
2317 slub_min_order, slub_max_order, slub_min_objects,
2318 nr_cpu_ids, nr_node_ids);
2319}
2320
2321/*
2322 * Find a mergeable slab cache
2323 */
2324static int slab_unmergeable(struct kmem_cache *s)
2325{
2326 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2327 return 1;
2328
2329 if (s->ctor || s->dtor)
2330 return 1;
2331
2332 return 0;
2333}
2334
2335static struct kmem_cache *find_mergeable(size_t size,
2336 size_t align, unsigned long flags,
2337 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2338 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2339{
2340 struct list_head *h;
2341
2342 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2343 return NULL;
2344
2345 if (ctor || dtor)
2346 return NULL;
2347
2348 size = ALIGN(size, sizeof(void *));
2349 align = calculate_alignment(flags, align, size);
2350 size = ALIGN(size, align);
2351
2352 list_for_each(h, &slab_caches) {
2353 struct kmem_cache *s =
2354 container_of(h, struct kmem_cache, list);
2355
2356 if (slab_unmergeable(s))
2357 continue;
2358
2359 if (size > s->size)
2360 continue;
2361
2362 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2363 (s->flags & SLUB_MERGE_SAME))
2364 continue;
2365 /*
2366 * Check if alignment is compatible.
2367 * Courtesy of Adrian Drzewiecki
2368 */
2369 if ((s->size & ~(align -1)) != s->size)
2370 continue;
2371
2372 if (s->size - size >= sizeof(void *))
2373 continue;
2374
2375 return s;
2376 }
2377 return NULL;
2378}
2379
2380struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2381 size_t align, unsigned long flags,
2382 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2383 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2384{
2385 struct kmem_cache *s;
2386
2387 down_write(&slub_lock);
2388 s = find_mergeable(size, align, flags, dtor, ctor);
2389 if (s) {
2390 s->refcount++;
2391 /*
2392 * Adjust the object sizes so that we clear
2393 * the complete object on kzalloc.
2394 */
2395 s->objsize = max(s->objsize, (int)size);
2396 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2397 if (sysfs_slab_alias(s, name))
2398 goto err;
2399 } else {
2400 s = kmalloc(kmem_size, GFP_KERNEL);
2401 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2402 size, align, flags, ctor, dtor)) {
2403 if (sysfs_slab_add(s)) {
2404 kfree(s);
2405 goto err;
2406 }
2407 list_add(&s->list, &slab_caches);
2408 } else
2409 kfree(s);
2410 }
2411 up_write(&slub_lock);
2412 return s;
2413
2414err:
2415 up_write(&slub_lock);
2416 if (flags & SLAB_PANIC)
2417 panic("Cannot create slabcache %s\n", name);
2418 else
2419 s = NULL;
2420 return s;
2421}
2422EXPORT_SYMBOL(kmem_cache_create);
2423
2424void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2425{
2426 void *x;
2427
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07002428 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
Christoph Lameter81819f02007-05-06 14:49:36 -07002429 if (x)
2430 memset(x, 0, s->objsize);
2431 return x;
2432}
2433EXPORT_SYMBOL(kmem_cache_zalloc);
2434
2435#ifdef CONFIG_SMP
2436static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2437{
2438 struct list_head *h;
2439
2440 down_read(&slub_lock);
2441 list_for_each(h, &slab_caches) {
2442 struct kmem_cache *s =
2443 container_of(h, struct kmem_cache, list);
2444
2445 func(s, cpu);
2446 }
2447 up_read(&slub_lock);
2448}
2449
2450/*
2451 * Use the cpu notifier to insure that the slab are flushed
2452 * when necessary.
2453 */
2454static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2455 unsigned long action, void *hcpu)
2456{
2457 long cpu = (long)hcpu;
2458
2459 switch (action) {
2460 case CPU_UP_CANCELED:
2461 case CPU_DEAD:
2462 for_all_slabs(__flush_cpu_slab, cpu);
2463 break;
2464 default:
2465 break;
2466 }
2467 return NOTIFY_OK;
2468}
2469
2470static struct notifier_block __cpuinitdata slab_notifier =
2471 { &slab_cpuup_callback, NULL, 0 };
2472
2473#endif
2474
Christoph Lameter81819f02007-05-06 14:49:36 -07002475#ifdef CONFIG_NUMA
2476
2477/*****************************************************************
2478 * Generic reaper used to support the page allocator
2479 * (the cpu slabs are reaped by a per slab workqueue).
2480 *
2481 * Maybe move this to the page allocator?
2482 ****************************************************************/
2483
2484static DEFINE_PER_CPU(unsigned long, reap_node);
2485
2486static void init_reap_node(int cpu)
2487{
2488 int node;
2489
2490 node = next_node(cpu_to_node(cpu), node_online_map);
2491 if (node == MAX_NUMNODES)
2492 node = first_node(node_online_map);
2493
2494 __get_cpu_var(reap_node) = node;
2495}
2496
2497static void next_reap_node(void)
2498{
2499 int node = __get_cpu_var(reap_node);
2500
2501 /*
2502 * Also drain per cpu pages on remote zones
2503 */
2504 if (node != numa_node_id())
2505 drain_node_pages(node);
2506
2507 node = next_node(node, node_online_map);
2508 if (unlikely(node >= MAX_NUMNODES))
2509 node = first_node(node_online_map);
2510 __get_cpu_var(reap_node) = node;
2511}
2512#else
2513#define init_reap_node(cpu) do { } while (0)
2514#define next_reap_node(void) do { } while (0)
2515#endif
2516
2517#define REAPTIMEOUT_CPUC (2*HZ)
2518
2519#ifdef CONFIG_SMP
2520static DEFINE_PER_CPU(struct delayed_work, reap_work);
2521
2522static void cache_reap(struct work_struct *unused)
2523{
2524 next_reap_node();
2525 refresh_cpu_vm_stats(smp_processor_id());
2526 schedule_delayed_work(&__get_cpu_var(reap_work),
2527 REAPTIMEOUT_CPUC);
2528}
2529
2530static void __devinit start_cpu_timer(int cpu)
2531{
2532 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2533
2534 /*
2535 * When this gets called from do_initcalls via cpucache_init(),
2536 * init_workqueues() has already run, so keventd will be setup
2537 * at that time.
2538 */
2539 if (keventd_up() && reap_work->work.func == NULL) {
2540 init_reap_node(cpu);
2541 INIT_DELAYED_WORK(reap_work, cache_reap);
2542 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2543 }
2544}
2545
2546static int __init cpucache_init(void)
2547{
2548 int cpu;
2549
2550 /*
2551 * Register the timers that drain pcp pages and update vm statistics
2552 */
2553 for_each_online_cpu(cpu)
2554 start_cpu_timer(cpu);
2555 return 0;
2556}
2557__initcall(cpucache_init);
2558#endif
2559
2560#ifdef SLUB_RESILIENCY_TEST
2561static unsigned long validate_slab_cache(struct kmem_cache *s);
2562
2563static void resiliency_test(void)
2564{
2565 u8 *p;
2566
2567 printk(KERN_ERR "SLUB resiliency testing\n");
2568 printk(KERN_ERR "-----------------------\n");
2569 printk(KERN_ERR "A. Corruption after allocation\n");
2570
2571 p = kzalloc(16, GFP_KERNEL);
2572 p[16] = 0x12;
2573 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2574 " 0x12->0x%p\n\n", p + 16);
2575
2576 validate_slab_cache(kmalloc_caches + 4);
2577
2578 /* Hmmm... The next two are dangerous */
2579 p = kzalloc(32, GFP_KERNEL);
2580 p[32 + sizeof(void *)] = 0x34;
2581 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2582 " 0x34 -> -0x%p\n", p);
2583 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2584
2585 validate_slab_cache(kmalloc_caches + 5);
2586 p = kzalloc(64, GFP_KERNEL);
2587 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2588 *p = 0x56;
2589 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2590 p);
2591 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2592 validate_slab_cache(kmalloc_caches + 6);
2593
2594 printk(KERN_ERR "\nB. Corruption after free\n");
2595 p = kzalloc(128, GFP_KERNEL);
2596 kfree(p);
2597 *p = 0x78;
2598 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2599 validate_slab_cache(kmalloc_caches + 7);
2600
2601 p = kzalloc(256, GFP_KERNEL);
2602 kfree(p);
2603 p[50] = 0x9a;
2604 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2605 validate_slab_cache(kmalloc_caches + 8);
2606
2607 p = kzalloc(512, GFP_KERNEL);
2608 kfree(p);
2609 p[512] = 0xab;
2610 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2611 validate_slab_cache(kmalloc_caches + 9);
2612}
2613#else
2614static void resiliency_test(void) {};
2615#endif
2616
2617/*
2618 * These are not as efficient as kmalloc for the non debug case.
2619 * We do not have the page struct available so we have to touch one
2620 * cacheline in struct kmem_cache to check slab flags.
2621 */
2622void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2623{
2624 struct kmem_cache *s = get_slab(size, gfpflags);
Christoph Lameter81819f02007-05-06 14:49:36 -07002625
2626 if (!s)
2627 return NULL;
2628
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07002629 return slab_alloc(s, gfpflags, -1, caller);
Christoph Lameter81819f02007-05-06 14:49:36 -07002630}
2631
2632void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2633 int node, void *caller)
2634{
2635 struct kmem_cache *s = get_slab(size, gfpflags);
Christoph Lameter81819f02007-05-06 14:49:36 -07002636
2637 if (!s)
2638 return NULL;
2639
Christoph Lameter77c5e2d2007-05-06 14:49:42 -07002640 return slab_alloc(s, gfpflags, node, caller);
Christoph Lameter81819f02007-05-06 14:49:36 -07002641}
2642
2643#ifdef CONFIG_SYSFS
2644
Christoph Lameter53e15af2007-05-06 14:49:43 -07002645static int validate_slab(struct kmem_cache *s, struct page *page)
2646{
2647 void *p;
2648 void *addr = page_address(page);
2649 unsigned long map[BITS_TO_LONGS(s->objects)];
2650
2651 if (!check_slab(s, page) ||
2652 !on_freelist(s, page, NULL))
2653 return 0;
2654
2655 /* Now we know that a valid freelist exists */
2656 bitmap_zero(map, s->objects);
2657
2658 for(p = page->freelist; p; p = get_freepointer(s, p)) {
2659 set_bit((p - addr) / s->size, map);
2660 if (!check_object(s, page, p, 0))
2661 return 0;
2662 }
2663
2664 for(p = addr; p < addr + s->objects * s->size; p += s->size)
2665 if (!test_bit((p - addr) / s->size, map))
2666 if (!check_object(s, page, p, 1))
2667 return 0;
2668 return 1;
2669}
2670
2671static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2672{
2673 if (slab_trylock(page)) {
2674 validate_slab(s, page);
2675 slab_unlock(page);
2676 } else
2677 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2678 s->name, page);
2679
2680 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2681 if (!PageError(page))
2682 printk(KERN_ERR "SLUB %s: PageError not set "
2683 "on slab 0x%p\n", s->name, page);
2684 } else {
2685 if (PageError(page))
2686 printk(KERN_ERR "SLUB %s: PageError set on "
2687 "slab 0x%p\n", s->name, page);
2688 }
2689}
2690
2691static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2692{
2693 unsigned long count = 0;
2694 struct page *page;
2695 unsigned long flags;
2696
2697 spin_lock_irqsave(&n->list_lock, flags);
2698
2699 list_for_each_entry(page, &n->partial, lru) {
2700 validate_slab_slab(s, page);
2701 count++;
2702 }
2703 if (count != n->nr_partial)
2704 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2705 "counter=%ld\n", s->name, count, n->nr_partial);
2706
2707 if (!(s->flags & SLAB_STORE_USER))
2708 goto out;
2709
2710 list_for_each_entry(page, &n->full, lru) {
2711 validate_slab_slab(s, page);
2712 count++;
2713 }
2714 if (count != atomic_long_read(&n->nr_slabs))
2715 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2716 "counter=%ld\n", s->name, count,
2717 atomic_long_read(&n->nr_slabs));
2718
2719out:
2720 spin_unlock_irqrestore(&n->list_lock, flags);
2721 return count;
2722}
2723
2724static unsigned long validate_slab_cache(struct kmem_cache *s)
2725{
2726 int node;
2727 unsigned long count = 0;
2728
2729 flush_all(s);
2730 for_each_online_node(node) {
2731 struct kmem_cache_node *n = get_node(s, node);
2732
2733 count += validate_slab_node(s, n);
2734 }
2735 return count;
2736}
2737
Christoph Lameter88a420e2007-05-06 14:49:45 -07002738/*
2739 * Generate lists of locations where slabcache objects are allocated
2740 * and freed.
2741 */
2742
2743struct location {
2744 unsigned long count;
2745 void *addr;
2746};
2747
2748struct loc_track {
2749 unsigned long max;
2750 unsigned long count;
2751 struct location *loc;
2752};
2753
2754static void free_loc_track(struct loc_track *t)
2755{
2756 if (t->max)
2757 free_pages((unsigned long)t->loc,
2758 get_order(sizeof(struct location) * t->max));
2759}
2760
2761static int alloc_loc_track(struct loc_track *t, unsigned long max)
2762{
2763 struct location *l;
2764 int order;
2765
2766 if (!max)
2767 max = PAGE_SIZE / sizeof(struct location);
2768
2769 order = get_order(sizeof(struct location) * max);
2770
2771 l = (void *)__get_free_pages(GFP_KERNEL, order);
2772
2773 if (!l)
2774 return 0;
2775
2776 if (t->count) {
2777 memcpy(l, t->loc, sizeof(struct location) * t->count);
2778 free_loc_track(t);
2779 }
2780 t->max = max;
2781 t->loc = l;
2782 return 1;
2783}
2784
2785static int add_location(struct loc_track *t, struct kmem_cache *s,
2786 void *addr)
2787{
2788 long start, end, pos;
2789 struct location *l;
2790 void *caddr;
2791
2792 start = -1;
2793 end = t->count;
2794
2795 for ( ; ; ) {
2796 pos = start + (end - start + 1) / 2;
2797
2798 /*
2799 * There is nothing at "end". If we end up there
2800 * we need to add something to before end.
2801 */
2802 if (pos == end)
2803 break;
2804
2805 caddr = t->loc[pos].addr;
2806 if (addr == caddr) {
2807 t->loc[pos].count++;
2808 return 1;
2809 }
2810
2811 if (addr < caddr)
2812 end = pos;
2813 else
2814 start = pos;
2815 }
2816
2817 /*
2818 * Not found. Insert new tracking element
2819 */
2820 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2821 return 0;
2822
2823 l = t->loc + pos;
2824 if (pos < t->count)
2825 memmove(l + 1, l,
2826 (t->count - pos) * sizeof(struct location));
2827 t->count++;
2828 l->count = 1;
2829 l->addr = addr;
2830 return 1;
2831}
2832
2833static void process_slab(struct loc_track *t, struct kmem_cache *s,
2834 struct page *page, enum track_item alloc)
2835{
2836 void *addr = page_address(page);
2837 unsigned long map[BITS_TO_LONGS(s->objects)];
2838 void *p;
2839
2840 bitmap_zero(map, s->objects);
2841 for (p = page->freelist; p; p = get_freepointer(s, p))
2842 set_bit((p - addr) / s->size, map);
2843
2844 for (p = addr; p < addr + s->objects * s->size; p += s->size)
2845 if (!test_bit((p - addr) / s->size, map)) {
2846 void *addr = get_track(s, p, alloc)->addr;
2847
2848 add_location(t, s, addr);
2849 }
2850}
2851
2852static int list_locations(struct kmem_cache *s, char *buf,
2853 enum track_item alloc)
2854{
2855 int n = 0;
2856 unsigned long i;
2857 struct loc_track t;
2858 int node;
2859
2860 t.count = 0;
2861 t.max = 0;
2862
2863 /* Push back cpu slabs */
2864 flush_all(s);
2865
2866 for_each_online_node(node) {
2867 struct kmem_cache_node *n = get_node(s, node);
2868 unsigned long flags;
2869 struct page *page;
2870
2871 if (!atomic_read(&n->nr_slabs))
2872 continue;
2873
2874 spin_lock_irqsave(&n->list_lock, flags);
2875 list_for_each_entry(page, &n->partial, lru)
2876 process_slab(&t, s, page, alloc);
2877 list_for_each_entry(page, &n->full, lru)
2878 process_slab(&t, s, page, alloc);
2879 spin_unlock_irqrestore(&n->list_lock, flags);
2880 }
2881
2882 for (i = 0; i < t.count; i++) {
2883 void *addr = t.loc[i].addr;
2884
2885 if (n > PAGE_SIZE - 100)
2886 break;
2887 n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2888 if (addr)
2889 n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2890 else
2891 n += sprintf(buf + n, "<not-available>");
2892 n += sprintf(buf + n, "\n");
2893 }
2894
2895 free_loc_track(&t);
2896 if (!t.count)
2897 n += sprintf(buf, "No data\n");
2898 return n;
2899}
2900
Christoph Lameter81819f02007-05-06 14:49:36 -07002901static unsigned long count_partial(struct kmem_cache_node *n)
2902{
2903 unsigned long flags;
2904 unsigned long x = 0;
2905 struct page *page;
2906
2907 spin_lock_irqsave(&n->list_lock, flags);
2908 list_for_each_entry(page, &n->partial, lru)
2909 x += page->inuse;
2910 spin_unlock_irqrestore(&n->list_lock, flags);
2911 return x;
2912}
2913
2914enum slab_stat_type {
2915 SL_FULL,
2916 SL_PARTIAL,
2917 SL_CPU,
2918 SL_OBJECTS
2919};
2920
2921#define SO_FULL (1 << SL_FULL)
2922#define SO_PARTIAL (1 << SL_PARTIAL)
2923#define SO_CPU (1 << SL_CPU)
2924#define SO_OBJECTS (1 << SL_OBJECTS)
2925
2926static unsigned long slab_objects(struct kmem_cache *s,
2927 char *buf, unsigned long flags)
2928{
2929 unsigned long total = 0;
2930 int cpu;
2931 int node;
2932 int x;
2933 unsigned long *nodes;
2934 unsigned long *per_cpu;
2935
2936 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2937 per_cpu = nodes + nr_node_ids;
2938
2939 for_each_possible_cpu(cpu) {
2940 struct page *page = s->cpu_slab[cpu];
2941 int node;
2942
2943 if (page) {
2944 node = page_to_nid(page);
2945 if (flags & SO_CPU) {
2946 int x = 0;
2947
2948 if (flags & SO_OBJECTS)
2949 x = page->inuse;
2950 else
2951 x = 1;
2952 total += x;
2953 nodes[node] += x;
2954 }
2955 per_cpu[node]++;
2956 }
2957 }
2958
2959 for_each_online_node(node) {
2960 struct kmem_cache_node *n = get_node(s, node);
2961
2962 if (flags & SO_PARTIAL) {
2963 if (flags & SO_OBJECTS)
2964 x = count_partial(n);
2965 else
2966 x = n->nr_partial;
2967 total += x;
2968 nodes[node] += x;
2969 }
2970
2971 if (flags & SO_FULL) {
2972 int full_slabs = atomic_read(&n->nr_slabs)
2973 - per_cpu[node]
2974 - n->nr_partial;
2975
2976 if (flags & SO_OBJECTS)
2977 x = full_slabs * s->objects;
2978 else
2979 x = full_slabs;
2980 total += x;
2981 nodes[node] += x;
2982 }
2983 }
2984
2985 x = sprintf(buf, "%lu", total);
2986#ifdef CONFIG_NUMA
2987 for_each_online_node(node)
2988 if (nodes[node])
2989 x += sprintf(buf + x, " N%d=%lu",
2990 node, nodes[node]);
2991#endif
2992 kfree(nodes);
2993 return x + sprintf(buf + x, "\n");
2994}
2995
2996static int any_slab_objects(struct kmem_cache *s)
2997{
2998 int node;
2999 int cpu;
3000
3001 for_each_possible_cpu(cpu)
3002 if (s->cpu_slab[cpu])
3003 return 1;
3004
3005 for_each_node(node) {
3006 struct kmem_cache_node *n = get_node(s, node);
3007
3008 if (n->nr_partial || atomic_read(&n->nr_slabs))
3009 return 1;
3010 }
3011 return 0;
3012}
3013
3014#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3015#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3016
3017struct slab_attribute {
3018 struct attribute attr;
3019 ssize_t (*show)(struct kmem_cache *s, char *buf);
3020 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3021};
3022
3023#define SLAB_ATTR_RO(_name) \
3024 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3025
3026#define SLAB_ATTR(_name) \
3027 static struct slab_attribute _name##_attr = \
3028 __ATTR(_name, 0644, _name##_show, _name##_store)
3029
Christoph Lameter81819f02007-05-06 14:49:36 -07003030static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3031{
3032 return sprintf(buf, "%d\n", s->size);
3033}
3034SLAB_ATTR_RO(slab_size);
3035
3036static ssize_t align_show(struct kmem_cache *s, char *buf)
3037{
3038 return sprintf(buf, "%d\n", s->align);
3039}
3040SLAB_ATTR_RO(align);
3041
3042static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3043{
3044 return sprintf(buf, "%d\n", s->objsize);
3045}
3046SLAB_ATTR_RO(object_size);
3047
3048static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3049{
3050 return sprintf(buf, "%d\n", s->objects);
3051}
3052SLAB_ATTR_RO(objs_per_slab);
3053
3054static ssize_t order_show(struct kmem_cache *s, char *buf)
3055{
3056 return sprintf(buf, "%d\n", s->order);
3057}
3058SLAB_ATTR_RO(order);
3059
3060static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3061{
3062 if (s->ctor) {
3063 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3064
3065 return n + sprintf(buf + n, "\n");
3066 }
3067 return 0;
3068}
3069SLAB_ATTR_RO(ctor);
3070
3071static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3072{
3073 if (s->dtor) {
3074 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3075
3076 return n + sprintf(buf + n, "\n");
3077 }
3078 return 0;
3079}
3080SLAB_ATTR_RO(dtor);
3081
3082static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3083{
3084 return sprintf(buf, "%d\n", s->refcount - 1);
3085}
3086SLAB_ATTR_RO(aliases);
3087
3088static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3089{
3090 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3091}
3092SLAB_ATTR_RO(slabs);
3093
3094static ssize_t partial_show(struct kmem_cache *s, char *buf)
3095{
3096 return slab_objects(s, buf, SO_PARTIAL);
3097}
3098SLAB_ATTR_RO(partial);
3099
3100static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3101{
3102 return slab_objects(s, buf, SO_CPU);
3103}
3104SLAB_ATTR_RO(cpu_slabs);
3105
3106static ssize_t objects_show(struct kmem_cache *s, char *buf)
3107{
3108 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3109}
3110SLAB_ATTR_RO(objects);
3111
3112static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3113{
3114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3115}
3116
3117static ssize_t sanity_checks_store(struct kmem_cache *s,
3118 const char *buf, size_t length)
3119{
3120 s->flags &= ~SLAB_DEBUG_FREE;
3121 if (buf[0] == '1')
3122 s->flags |= SLAB_DEBUG_FREE;
3123 return length;
3124}
3125SLAB_ATTR(sanity_checks);
3126
3127static ssize_t trace_show(struct kmem_cache *s, char *buf)
3128{
3129 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3130}
3131
3132static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3133 size_t length)
3134{
3135 s->flags &= ~SLAB_TRACE;
3136 if (buf[0] == '1')
3137 s->flags |= SLAB_TRACE;
3138 return length;
3139}
3140SLAB_ATTR(trace);
3141
3142static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3143{
3144 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3145}
3146
3147static ssize_t reclaim_account_store(struct kmem_cache *s,
3148 const char *buf, size_t length)
3149{
3150 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3151 if (buf[0] == '1')
3152 s->flags |= SLAB_RECLAIM_ACCOUNT;
3153 return length;
3154}
3155SLAB_ATTR(reclaim_account);
3156
3157static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3158{
3159 return sprintf(buf, "%d\n", !!(s->flags &
3160 (SLAB_HWCACHE_ALIGN|SLAB_MUST_HWCACHE_ALIGN)));
3161}
3162SLAB_ATTR_RO(hwcache_align);
3163
3164#ifdef CONFIG_ZONE_DMA
3165static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3166{
3167 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3168}
3169SLAB_ATTR_RO(cache_dma);
3170#endif
3171
3172static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3173{
3174 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3175}
3176SLAB_ATTR_RO(destroy_by_rcu);
3177
3178static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3179{
3180 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3181}
3182
3183static ssize_t red_zone_store(struct kmem_cache *s,
3184 const char *buf, size_t length)
3185{
3186 if (any_slab_objects(s))
3187 return -EBUSY;
3188
3189 s->flags &= ~SLAB_RED_ZONE;
3190 if (buf[0] == '1')
3191 s->flags |= SLAB_RED_ZONE;
3192 calculate_sizes(s);
3193 return length;
3194}
3195SLAB_ATTR(red_zone);
3196
3197static ssize_t poison_show(struct kmem_cache *s, char *buf)
3198{
3199 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3200}
3201
3202static ssize_t poison_store(struct kmem_cache *s,
3203 const char *buf, size_t length)
3204{
3205 if (any_slab_objects(s))
3206 return -EBUSY;
3207
3208 s->flags &= ~SLAB_POISON;
3209 if (buf[0] == '1')
3210 s->flags |= SLAB_POISON;
3211 calculate_sizes(s);
3212 return length;
3213}
3214SLAB_ATTR(poison);
3215
3216static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3217{
3218 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3219}
3220
3221static ssize_t store_user_store(struct kmem_cache *s,
3222 const char *buf, size_t length)
3223{
3224 if (any_slab_objects(s))
3225 return -EBUSY;
3226
3227 s->flags &= ~SLAB_STORE_USER;
3228 if (buf[0] == '1')
3229 s->flags |= SLAB_STORE_USER;
3230 calculate_sizes(s);
3231 return length;
3232}
3233SLAB_ATTR(store_user);
3234
Christoph Lameter53e15af2007-05-06 14:49:43 -07003235static ssize_t validate_show(struct kmem_cache *s, char *buf)
3236{
3237 return 0;
3238}
3239
3240static ssize_t validate_store(struct kmem_cache *s,
3241 const char *buf, size_t length)
3242{
3243 if (buf[0] == '1')
3244 validate_slab_cache(s);
3245 else
3246 return -EINVAL;
3247 return length;
3248}
3249SLAB_ATTR(validate);
3250
Christoph Lameter2086d262007-05-06 14:49:46 -07003251static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3252{
3253 return 0;
3254}
3255
3256static ssize_t shrink_store(struct kmem_cache *s,
3257 const char *buf, size_t length)
3258{
3259 if (buf[0] == '1') {
3260 int rc = kmem_cache_shrink(s);
3261
3262 if (rc)
3263 return rc;
3264 } else
3265 return -EINVAL;
3266 return length;
3267}
3268SLAB_ATTR(shrink);
3269
Christoph Lameter88a420e2007-05-06 14:49:45 -07003270static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3271{
3272 if (!(s->flags & SLAB_STORE_USER))
3273 return -ENOSYS;
3274 return list_locations(s, buf, TRACK_ALLOC);
3275}
3276SLAB_ATTR_RO(alloc_calls);
3277
3278static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3279{
3280 if (!(s->flags & SLAB_STORE_USER))
3281 return -ENOSYS;
3282 return list_locations(s, buf, TRACK_FREE);
3283}
3284SLAB_ATTR_RO(free_calls);
3285
Christoph Lameter81819f02007-05-06 14:49:36 -07003286#ifdef CONFIG_NUMA
3287static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3288{
3289 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3290}
3291
3292static ssize_t defrag_ratio_store(struct kmem_cache *s,
3293 const char *buf, size_t length)
3294{
3295 int n = simple_strtoul(buf, NULL, 10);
3296
3297 if (n < 100)
3298 s->defrag_ratio = n * 10;
3299 return length;
3300}
3301SLAB_ATTR(defrag_ratio);
3302#endif
3303
3304static struct attribute * slab_attrs[] = {
3305 &slab_size_attr.attr,
3306 &object_size_attr.attr,
3307 &objs_per_slab_attr.attr,
3308 &order_attr.attr,
3309 &objects_attr.attr,
3310 &slabs_attr.attr,
3311 &partial_attr.attr,
3312 &cpu_slabs_attr.attr,
3313 &ctor_attr.attr,
3314 &dtor_attr.attr,
3315 &aliases_attr.attr,
3316 &align_attr.attr,
3317 &sanity_checks_attr.attr,
3318 &trace_attr.attr,
3319 &hwcache_align_attr.attr,
3320 &reclaim_account_attr.attr,
3321 &destroy_by_rcu_attr.attr,
3322 &red_zone_attr.attr,
3323 &poison_attr.attr,
3324 &store_user_attr.attr,
Christoph Lameter53e15af2007-05-06 14:49:43 -07003325 &validate_attr.attr,
Christoph Lameter2086d262007-05-06 14:49:46 -07003326 &shrink_attr.attr,
Christoph Lameter88a420e2007-05-06 14:49:45 -07003327 &alloc_calls_attr.attr,
3328 &free_calls_attr.attr,
Christoph Lameter81819f02007-05-06 14:49:36 -07003329#ifdef CONFIG_ZONE_DMA
3330 &cache_dma_attr.attr,
3331#endif
3332#ifdef CONFIG_NUMA
3333 &defrag_ratio_attr.attr,
3334#endif
3335 NULL
3336};
3337
3338static struct attribute_group slab_attr_group = {
3339 .attrs = slab_attrs,
3340};
3341
3342static ssize_t slab_attr_show(struct kobject *kobj,
3343 struct attribute *attr,
3344 char *buf)
3345{
3346 struct slab_attribute *attribute;
3347 struct kmem_cache *s;
3348 int err;
3349
3350 attribute = to_slab_attr(attr);
3351 s = to_slab(kobj);
3352
3353 if (!attribute->show)
3354 return -EIO;
3355
3356 err = attribute->show(s, buf);
3357
3358 return err;
3359}
3360
3361static ssize_t slab_attr_store(struct kobject *kobj,
3362 struct attribute *attr,
3363 const char *buf, size_t len)
3364{
3365 struct slab_attribute *attribute;
3366 struct kmem_cache *s;
3367 int err;
3368
3369 attribute = to_slab_attr(attr);
3370 s = to_slab(kobj);
3371
3372 if (!attribute->store)
3373 return -EIO;
3374
3375 err = attribute->store(s, buf, len);
3376
3377 return err;
3378}
3379
3380static struct sysfs_ops slab_sysfs_ops = {
3381 .show = slab_attr_show,
3382 .store = slab_attr_store,
3383};
3384
3385static struct kobj_type slab_ktype = {
3386 .sysfs_ops = &slab_sysfs_ops,
3387};
3388
3389static int uevent_filter(struct kset *kset, struct kobject *kobj)
3390{
3391 struct kobj_type *ktype = get_ktype(kobj);
3392
3393 if (ktype == &slab_ktype)
3394 return 1;
3395 return 0;
3396}
3397
3398static struct kset_uevent_ops slab_uevent_ops = {
3399 .filter = uevent_filter,
3400};
3401
3402decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3403
3404#define ID_STR_LENGTH 64
3405
3406/* Create a unique string id for a slab cache:
3407 * format
3408 * :[flags-]size:[memory address of kmemcache]
3409 */
3410static char *create_unique_id(struct kmem_cache *s)
3411{
3412 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3413 char *p = name;
3414
3415 BUG_ON(!name);
3416
3417 *p++ = ':';
3418 /*
3419 * First flags affecting slabcache operations. We will only
3420 * get here for aliasable slabs so we do not need to support
3421 * too many flags. The flags here must cover all flags that
3422 * are matched during merging to guarantee that the id is
3423 * unique.
3424 */
3425 if (s->flags & SLAB_CACHE_DMA)
3426 *p++ = 'd';
3427 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3428 *p++ = 'a';
3429 if (s->flags & SLAB_DEBUG_FREE)
3430 *p++ = 'F';
3431 if (p != name + 1)
3432 *p++ = '-';
3433 p += sprintf(p, "%07d", s->size);
3434 BUG_ON(p > name + ID_STR_LENGTH - 1);
3435 return name;
3436}
3437
3438static int sysfs_slab_add(struct kmem_cache *s)
3439{
3440 int err;
3441 const char *name;
3442 int unmergeable;
3443
3444 if (slab_state < SYSFS)
3445 /* Defer until later */
3446 return 0;
3447
3448 unmergeable = slab_unmergeable(s);
3449 if (unmergeable) {
3450 /*
3451 * Slabcache can never be merged so we can use the name proper.
3452 * This is typically the case for debug situations. In that
3453 * case we can catch duplicate names easily.
3454 */
3455 sysfs_remove_link(&slab_subsys.kset.kobj, s->name);
3456 name = s->name;
3457 } else {
3458 /*
3459 * Create a unique name for the slab as a target
3460 * for the symlinks.
3461 */
3462 name = create_unique_id(s);
3463 }
3464
3465 kobj_set_kset_s(s, slab_subsys);
3466 kobject_set_name(&s->kobj, name);
3467 kobject_init(&s->kobj);
3468 err = kobject_add(&s->kobj);
3469 if (err)
3470 return err;
3471
3472 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3473 if (err)
3474 return err;
3475 kobject_uevent(&s->kobj, KOBJ_ADD);
3476 if (!unmergeable) {
3477 /* Setup first alias */
3478 sysfs_slab_alias(s, s->name);
3479 kfree(name);
3480 }
3481 return 0;
3482}
3483
3484static void sysfs_slab_remove(struct kmem_cache *s)
3485{
3486 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3487 kobject_del(&s->kobj);
3488}
3489
3490/*
3491 * Need to buffer aliases during bootup until sysfs becomes
3492 * available lest we loose that information.
3493 */
3494struct saved_alias {
3495 struct kmem_cache *s;
3496 const char *name;
3497 struct saved_alias *next;
3498};
3499
3500struct saved_alias *alias_list;
3501
3502static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3503{
3504 struct saved_alias *al;
3505
3506 if (slab_state == SYSFS) {
3507 /*
3508 * If we have a leftover link then remove it.
3509 */
3510 sysfs_remove_link(&slab_subsys.kset.kobj, name);
3511 return sysfs_create_link(&slab_subsys.kset.kobj,
3512 &s->kobj, name);
3513 }
3514
3515 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3516 if (!al)
3517 return -ENOMEM;
3518
3519 al->s = s;
3520 al->name = name;
3521 al->next = alias_list;
3522 alias_list = al;
3523 return 0;
3524}
3525
3526static int __init slab_sysfs_init(void)
3527{
3528 int err;
3529
3530 err = subsystem_register(&slab_subsys);
3531 if (err) {
3532 printk(KERN_ERR "Cannot register slab subsystem.\n");
3533 return -ENOSYS;
3534 }
3535
3536 finish_bootstrap();
3537
3538 while (alias_list) {
3539 struct saved_alias *al = alias_list;
3540
3541 alias_list = alias_list->next;
3542 err = sysfs_slab_alias(al->s, al->name);
3543 BUG_ON(err);
3544 kfree(al);
3545 }
3546
3547 resiliency_test();
3548 return 0;
3549}
3550
3551__initcall(slab_sysfs_init);
3552#else
3553__initcall(finish_bootstrap);
3554#endif