blob: 746be56b1b705e9a88819868e2fe01f44527c8fc [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/include/asm-arm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_CACHEFLUSH_H
11#define _ASMARM_CACHEFLUSH_H
12
13#include <linux/config.h>
14#include <linux/sched.h>
15#include <linux/mm.h>
16
Linus Torvalds1da177e2005-04-16 15:20:36 -070017#include <asm/glue.h>
Russell Kingb8a9b662005-06-20 11:31:09 +010018#include <asm/shmparam.h>
19
20#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
Linus Torvalds1da177e2005-04-16 15:20:36 -070021
22/*
23 * Cache Model
24 * ===========
25 */
26#undef _CACHE
27#undef MULTI_CACHE
28
29#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
30# ifdef _CACHE
31# define MULTI_CACHE 1
32# else
33# define _CACHE v3
34# endif
35#endif
36
37#if defined(CONFIG_CPU_ARM720T)
38# ifdef _CACHE
39# define MULTI_CACHE 1
40# else
41# define _CACHE v4
42# endif
43#endif
44
45#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
46 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
47# define MULTI_CACHE 1
48#endif
49
50#if defined(CONFIG_CPU_ARM926T)
51# ifdef _CACHE
52# define MULTI_CACHE 1
53# else
54# define _CACHE arm926
55# endif
56#endif
57
58#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100)
59# ifdef _CACHE
60# define MULTI_CACHE 1
61# else
62# define _CACHE v4wb
63# endif
64#endif
65
66#if defined(CONFIG_CPU_XSCALE)
67# ifdef _CACHE
68# define MULTI_CACHE 1
69# else
70# define _CACHE xscale
71# endif
72#endif
73
Lennert Buytenhek23bdf862006-03-28 21:00:40 +010074#if defined(CONFIG_CPU_XSC3)
75# ifdef _CACHE
76# define MULTI_CACHE 1
77# else
78# define _CACHE xsc3
79# endif
80#endif
81
Linus Torvalds1da177e2005-04-16 15:20:36 -070082#if defined(CONFIG_CPU_V6)
83//# ifdef _CACHE
84# define MULTI_CACHE 1
85//# else
86//# define _CACHE v6
87//# endif
88#endif
89
90#if !defined(_CACHE) && !defined(MULTI_CACHE)
91#error Unknown cache maintainence model
92#endif
93
94/*
95 * This flag is used to indicate that the page pointed to by a pte
96 * is dirty and requires cleaning before returning it to the user.
97 */
98#define PG_dcache_dirty PG_arch_1
99
100/*
101 * MM Cache Management
102 * ===================
103 *
104 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
105 * implement these methods.
106 *
107 * Start addresses are inclusive and end addresses are exclusive;
108 * start addresses should be rounded down, end addresses up.
109 *
110 * See Documentation/cachetlb.txt for more information.
111 * Please note that the implementation of these, and the required
112 * effects are cache-type (VIVT/VIPT/PIPT) specific.
113 *
114 * flush_cache_kern_all()
115 *
116 * Unconditionally clean and invalidate the entire cache.
117 *
118 * flush_cache_user_mm(mm)
119 *
120 * Clean and invalidate all user space cache entries
121 * before a change of page tables.
122 *
123 * flush_cache_user_range(start, end, flags)
124 *
125 * Clean and invalidate a range of cache entries in the
126 * specified address space before a change of page tables.
127 * - start - user start address (inclusive, page aligned)
128 * - end - user end address (exclusive, page aligned)
129 * - flags - vma->vm_flags field
130 *
131 * coherent_kern_range(start, end)
132 *
133 * Ensure coherency between the Icache and the Dcache in the
134 * region described by start, end. If you have non-snooping
135 * Harvard caches, you need to implement this function.
136 * - start - virtual start address
137 * - end - virtual end address
138 *
139 * DMA Cache Coherency
140 * ===================
141 *
142 * dma_inv_range(start, end)
143 *
144 * Invalidate (discard) the specified virtual address range.
145 * May not write back any entries. If 'start' or 'end'
146 * are not cache line aligned, those lines must be written
147 * back.
148 * - start - virtual start address
149 * - end - virtual end address
150 *
151 * dma_clean_range(start, end)
152 *
153 * Clean (write back) the specified virtual address range.
154 * - start - virtual start address
155 * - end - virtual end address
156 *
157 * dma_flush_range(start, end)
158 *
159 * Clean and invalidate the specified virtual address range.
160 * - start - virtual start address
161 * - end - virtual end address
162 */
163
164struct cpu_cache_fns {
165 void (*flush_kern_all)(void);
166 void (*flush_user_all)(void);
167 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
168
169 void (*coherent_kern_range)(unsigned long, unsigned long);
170 void (*coherent_user_range)(unsigned long, unsigned long);
171 void (*flush_kern_dcache_page)(void *);
172
173 void (*dma_inv_range)(unsigned long, unsigned long);
174 void (*dma_clean_range)(unsigned long, unsigned long);
175 void (*dma_flush_range)(unsigned long, unsigned long);
176};
177
178/*
179 * Select the calling method
180 */
181#ifdef MULTI_CACHE
182
183extern struct cpu_cache_fns cpu_cache;
184
185#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
186#define __cpuc_flush_user_all cpu_cache.flush_user_all
187#define __cpuc_flush_user_range cpu_cache.flush_user_range
188#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
189#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
190#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
191
192/*
193 * These are private to the dma-mapping API. Do not use directly.
194 * Their sole purpose is to ensure that data held in the cache
195 * is visible to DMA, or data written by DMA to system memory is
196 * visible to the CPU.
197 */
198#define dmac_inv_range cpu_cache.dma_inv_range
199#define dmac_clean_range cpu_cache.dma_clean_range
200#define dmac_flush_range cpu_cache.dma_flush_range
201
202#else
203
204#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
205#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
206#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
207#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
208#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
209#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
210
211extern void __cpuc_flush_kern_all(void);
212extern void __cpuc_flush_user_all(void);
213extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
214extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
215extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
216extern void __cpuc_flush_dcache_page(void *);
217
218/*
219 * These are private to the dma-mapping API. Do not use directly.
220 * Their sole purpose is to ensure that data held in the cache
221 * is visible to DMA, or data written by DMA to system memory is
222 * visible to the CPU.
223 */
224#define dmac_inv_range __glue(_CACHE,_dma_inv_range)
225#define dmac_clean_range __glue(_CACHE,_dma_clean_range)
226#define dmac_flush_range __glue(_CACHE,_dma_flush_range)
227
228extern void dmac_inv_range(unsigned long, unsigned long);
229extern void dmac_clean_range(unsigned long, unsigned long);
230extern void dmac_flush_range(unsigned long, unsigned long);
231
232#endif
233
234/*
235 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
236 * vmalloc, ioremap etc) in kernel space for pages. Since the
237 * direct-mappings of these pages may contain cached data, we need
238 * to do a full cache flush to ensure that writebacks don't corrupt
239 * data placed into these pages via the new mappings.
240 */
241#define flush_cache_vmap(start, end) flush_cache_all()
242#define flush_cache_vunmap(start, end) flush_cache_all()
243
244/*
245 * Copy user data from/to a page which is mapped into a different
246 * processes address space. Really, we want to allow our "user
247 * space" model to handle this.
248 */
249#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
250 do { \
251 flush_cache_page(vma, vaddr, page_to_pfn(page));\
252 memcpy(dst, src, len); \
253 flush_dcache_page(page); \
254 } while (0)
255
256#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
257 do { \
258 flush_cache_page(vma, vaddr, page_to_pfn(page));\
259 memcpy(dst, src, len); \
260 } while (0)
261
262/*
263 * Convert calls to our calling convention.
264 */
265#define flush_cache_all() __cpuc_flush_kern_all()
Russell Kingd7b6b352005-09-08 15:32:23 +0100266#ifndef CONFIG_CPU_CACHE_VIPT
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267static inline void flush_cache_mm(struct mm_struct *mm)
268{
269 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
270 __cpuc_flush_user_all();
271}
272
273static inline void
274flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
275{
276 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
277 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
278 vma->vm_flags);
279}
280
281static inline void
282flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
283{
284 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
285 unsigned long addr = user_addr & PAGE_MASK;
286 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
287 }
288}
Russell Kingd7b6b352005-09-08 15:32:23 +0100289#else
290extern void flush_cache_mm(struct mm_struct *mm);
291extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
292extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
293#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294
295/*
296 * flush_cache_user_range is used when we want to ensure that the
297 * Harvard caches are synchronised for the user space address range.
298 * This is used for the ARM private sys_cacheflush system call.
299 */
300#define flush_cache_user_range(vma,start,end) \
301 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
302
303/*
304 * Perform necessary cache operations to ensure that data previously
305 * stored within this range of addresses can be executed by the CPU.
306 */
307#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
308
309/*
310 * Perform necessary cache operations to ensure that the TLB will
311 * see data written in the specified area.
312 */
313#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
314
315/*
316 * flush_dcache_page is used when the kernel has written to the page
317 * cache page at virtual address page->virtual.
318 *
319 * If this page isn't mapped (ie, page_mapping == NULL), or it might
320 * have userspace mappings, then we _must_ always clean + invalidate
321 * the dcache entries associated with the kernel mapping.
322 *
323 * Otherwise we can defer the operation, and clean the cache when we are
324 * about to change to user space. This is the same method as used on SPARC64.
325 * See update_mmu_cache for the user space part.
326 */
327extern void flush_dcache_page(struct page *);
328
329#define flush_dcache_mmap_lock(mapping) \
330 write_lock_irq(&(mapping)->tree_lock)
331#define flush_dcache_mmap_unlock(mapping) \
332 write_unlock_irq(&(mapping)->tree_lock)
333
334#define flush_icache_user_range(vma,page,addr,len) \
335 flush_dcache_page(page)
336
337/*
338 * We don't appear to need to do anything here. In fact, if we did, we'd
339 * duplicate cache flushing elsewhere performed by flush_dcache_page().
340 */
341#define flush_icache_page(vma,page) do { } while (0)
342
343#define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
344#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
345#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
346#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
347#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
348
349#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
350
351#define cache_is_vivt() 1
352#define cache_is_vipt() 0
353#define cache_is_vipt_nonaliasing() 0
354#define cache_is_vipt_aliasing() 0
355
356#elif defined(CONFIG_CPU_CACHE_VIPT)
357
358#define cache_is_vivt() 0
359#define cache_is_vipt() 1
360#define cache_is_vipt_nonaliasing() \
361 ({ \
362 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
363 __cacheid_vipt_nonaliasing(__val); \
364 })
365
366#define cache_is_vipt_aliasing() \
367 ({ \
368 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
369 __cacheid_vipt_aliasing(__val); \
370 })
371
372#else
373
374#define cache_is_vivt() \
375 ({ \
376 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
377 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
378 })
379
380#define cache_is_vipt() \
381 ({ \
382 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
383 __cacheid_present(__val) && __cacheid_vipt(__val); \
384 })
385
386#define cache_is_vipt_nonaliasing() \
387 ({ \
388 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
389 __cacheid_present(__val) && \
390 __cacheid_vipt_nonaliasing(__val); \
391 })
392
393#define cache_is_vipt_aliasing() \
394 ({ \
395 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
396 __cacheid_present(__val) && \
397 __cacheid_vipt_aliasing(__val); \
398 })
399
400#endif
401
402#endif