blob: 454227d4f895296a04414fe60d966d9b232f60a9 [file] [log] [blame]
Xiubo Li2529c3a2014-05-23 10:12:04 +02001/*
2 * Freescale FlexTimer Module (FTM) timer driver.
3 *
4 * Copyright 2014 Freescale Semiconductor, Inc.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 */
11
12#include <linux/clk.h>
13#include <linux/clockchips.h>
14#include <linux/clocksource.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
18#include <linux/of_address.h>
19#include <linux/of_irq.h>
20#include <linux/sched_clock.h>
21#include <linux/slab.h>
22
23#define FTM_SC 0x00
24#define FTM_SC_CLK_SHIFT 3
25#define FTM_SC_CLK_MASK (0x3 << FTM_SC_CLK_SHIFT)
26#define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_SHIFT)
27#define FTM_SC_PS_MASK 0x7
28#define FTM_SC_TOIE BIT(6)
29#define FTM_SC_TOF BIT(7)
30
31#define FTM_CNT 0x04
32#define FTM_MOD 0x08
33#define FTM_CNTIN 0x4C
34
35#define FTM_PS_MAX 7
36
37struct ftm_clock_device {
38 void __iomem *clksrc_base;
39 void __iomem *clkevt_base;
40 unsigned long periodic_cyc;
41 unsigned long ps;
42 bool big_endian;
43};
44
45static struct ftm_clock_device *priv;
46
47static inline u32 ftm_readl(void __iomem *addr)
48{
49 if (priv->big_endian)
50 return ioread32be(addr);
51 else
52 return ioread32(addr);
53}
54
55static inline void ftm_writel(u32 val, void __iomem *addr)
56{
57 if (priv->big_endian)
58 iowrite32be(val, addr);
59 else
60 iowrite32(val, addr);
61}
62
63static inline void ftm_counter_enable(void __iomem *base)
64{
65 u32 val;
66
67 /* select and enable counter clock source */
68 val = ftm_readl(base + FTM_SC);
69 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
70 val |= priv->ps | FTM_SC_CLK(1);
71 ftm_writel(val, base + FTM_SC);
72}
73
74static inline void ftm_counter_disable(void __iomem *base)
75{
76 u32 val;
77
78 /* disable counter clock source */
79 val = ftm_readl(base + FTM_SC);
80 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
81 ftm_writel(val, base + FTM_SC);
82}
83
84static inline void ftm_irq_acknowledge(void __iomem *base)
85{
86 u32 val;
87
88 val = ftm_readl(base + FTM_SC);
89 val &= ~FTM_SC_TOF;
90 ftm_writel(val, base + FTM_SC);
91}
92
93static inline void ftm_irq_enable(void __iomem *base)
94{
95 u32 val;
96
97 val = ftm_readl(base + FTM_SC);
98 val |= FTM_SC_TOIE;
99 ftm_writel(val, base + FTM_SC);
100}
101
102static inline void ftm_irq_disable(void __iomem *base)
103{
104 u32 val;
105
106 val = ftm_readl(base + FTM_SC);
107 val &= ~FTM_SC_TOIE;
108 ftm_writel(val, base + FTM_SC);
109}
110
111static inline void ftm_reset_counter(void __iomem *base)
112{
113 /*
114 * The CNT register contains the FTM counter value.
115 * Reset clears the CNT register. Writing any value to COUNT
116 * updates the counter with its initial value, CNTIN.
117 */
118 ftm_writel(0x00, base + FTM_CNT);
119}
120
121static u64 ftm_read_sched_clock(void)
122{
123 return ftm_readl(priv->clksrc_base + FTM_CNT);
124}
125
126static int ftm_set_next_event(unsigned long delta,
127 struct clock_event_device *unused)
128{
129 /*
130 * The CNNIN and MOD are all double buffer registers, writing
131 * to the MOD register latches the value into a buffer. The MOD
132 * register is updated with the value of its write buffer with
133 * the following scenario:
134 * a, the counter source clock is diabled.
135 */
136 ftm_counter_disable(priv->clkevt_base);
137
138 /* Force the value of CNTIN to be loaded into the FTM counter */
139 ftm_reset_counter(priv->clkevt_base);
140
141 /*
142 * The counter increments until the value of MOD is reached,
143 * at which point the counter is reloaded with the value of CNTIN.
144 * The TOF (the overflow flag) bit is set when the FTM counter
145 * changes from MOD to CNTIN. So we should using the delta - 1.
146 */
147 ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD);
148
149 ftm_counter_enable(priv->clkevt_base);
150
151 ftm_irq_enable(priv->clkevt_base);
152
153 return 0;
154}
155
156static void ftm_set_mode(enum clock_event_mode mode,
157 struct clock_event_device *evt)
158{
159 switch (mode) {
160 case CLOCK_EVT_MODE_PERIODIC:
161 ftm_set_next_event(priv->periodic_cyc, evt);
162 break;
163 case CLOCK_EVT_MODE_ONESHOT:
164 ftm_counter_disable(priv->clkevt_base);
165 break;
166 default:
167 return;
168 }
169}
170
171static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
172{
173 struct clock_event_device *evt = dev_id;
174
175 ftm_irq_acknowledge(priv->clkevt_base);
176
177 if (likely(evt->mode == CLOCK_EVT_MODE_ONESHOT)) {
178 ftm_irq_disable(priv->clkevt_base);
179 ftm_counter_disable(priv->clkevt_base);
180 }
181
182 evt->event_handler(evt);
183
184 return IRQ_HANDLED;
185}
186
187static struct clock_event_device ftm_clockevent = {
188 .name = "Freescale ftm timer",
189 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
190 .set_mode = ftm_set_mode,
191 .set_next_event = ftm_set_next_event,
192 .rating = 300,
193};
194
195static struct irqaction ftm_timer_irq = {
196 .name = "Freescale ftm timer",
197 .flags = IRQF_TIMER | IRQF_IRQPOLL,
198 .handler = ftm_evt_interrupt,
199 .dev_id = &ftm_clockevent,
200};
201
202static int __init ftm_clockevent_init(unsigned long freq, int irq)
203{
204 int err;
205
206 ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN);
207 ftm_writel(~0UL, priv->clkevt_base + FTM_MOD);
208
209 ftm_reset_counter(priv->clkevt_base);
210
211 err = setup_irq(irq, &ftm_timer_irq);
212 if (err) {
213 pr_err("ftm: setup irq failed: %d\n", err);
214 return err;
215 }
216
217 ftm_clockevent.cpumask = cpumask_of(0);
218 ftm_clockevent.irq = irq;
219
220 clockevents_config_and_register(&ftm_clockevent,
221 freq / (1 << priv->ps),
222 1, 0xffff);
223
224 ftm_counter_enable(priv->clkevt_base);
225
226 return 0;
227}
228
229static int __init ftm_clocksource_init(unsigned long freq)
230{
231 int err;
232
233 ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN);
234 ftm_writel(~0UL, priv->clksrc_base + FTM_MOD);
235
236 ftm_reset_counter(priv->clksrc_base);
237
238 sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps));
239 err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
240 freq / (1 << priv->ps), 300, 16,
241 clocksource_mmio_readl_up);
242 if (err) {
243 pr_err("ftm: init clock source mmio failed: %d\n", err);
244 return err;
245 }
246
247 ftm_counter_enable(priv->clksrc_base);
248
249 return 0;
250}
251
252static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
253 char *ftm_name)
254{
255 struct clk *clk;
256 int err;
257
258 clk = of_clk_get_by_name(np, cnt_name);
259 if (IS_ERR(clk)) {
260 pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
261 return PTR_ERR(clk);
262 }
263 err = clk_prepare_enable(clk);
264 if (err) {
265 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
266 cnt_name, err);
267 return err;
268 }
269
270 clk = of_clk_get_by_name(np, ftm_name);
271 if (IS_ERR(clk)) {
272 pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
273 return PTR_ERR(clk);
274 }
275 err = clk_prepare_enable(clk);
276 if (err)
277 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
278 ftm_name, err);
279
280 return clk_get_rate(clk);
281}
282
283static unsigned long __init ftm_clk_init(struct device_node *np)
284{
285 unsigned long freq;
286
287 freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt");
288 if (freq <= 0)
289 return 0;
290
291 freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src");
292 if (freq <= 0)
293 return 0;
294
295 return freq;
296}
297
298static int __init ftm_calc_closest_round_cyc(unsigned long freq)
299{
300 priv->ps = 0;
301
302 /* The counter register is only using the lower 16 bits, and
303 * if the 'freq' value is to big here, then the periodic_cyc
304 * may exceed 0xFFFF.
305 */
306 do {
307 priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
308 HZ * (1 << priv->ps++));
309 } while (priv->periodic_cyc > 0xFFFF);
310
311 if (priv->ps > FTM_PS_MAX) {
312 pr_err("ftm: the prescaler is %lu > %d\n",
313 priv->ps, FTM_PS_MAX);
314 return -EINVAL;
315 }
316
317 return 0;
318}
319
320static void __init ftm_timer_init(struct device_node *np)
321{
322 unsigned long freq;
323 int irq;
324
325 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
326 if (!priv)
327 return;
328
329 priv->clkevt_base = of_iomap(np, 0);
330 if (!priv->clkevt_base) {
331 pr_err("ftm: unable to map event timer registers\n");
332 goto err;
333 }
334
335 priv->clksrc_base = of_iomap(np, 1);
336 if (!priv->clksrc_base) {
337 pr_err("ftm: unable to map source timer registers\n");
338 goto err;
339 }
340
341 irq = irq_of_parse_and_map(np, 0);
342 if (irq <= 0) {
343 pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
344 goto err;
345 }
346
347 priv->big_endian = of_property_read_bool(np, "big-endian");
348
349 freq = ftm_clk_init(np);
350 if (!freq)
351 goto err;
352
353 if (ftm_calc_closest_round_cyc(freq))
354 goto err;
355
356 if (ftm_clocksource_init(freq))
357 goto err;
358
359 if (ftm_clockevent_init(freq, irq))
360 goto err;
361
362 return;
363
364err:
365 kfree(priv);
366}
367CLOCKSOURCE_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);