Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * mm/prio_tree.c - priority search tree for mapping->i_mmap |
| 3 | * |
| 4 | * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> |
| 5 | * |
| 6 | * This file is released under the GPL v2. |
| 7 | * |
| 8 | * Based on the radix priority search tree proposed by Edward M. McCreight |
| 9 | * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 |
| 10 | * |
| 11 | * 02Feb2004 Initial version |
| 12 | */ |
| 13 | |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/prio_tree.h> |
| 16 | |
| 17 | /* |
| 18 | * See lib/prio_tree.c for details on the general radix priority search tree |
| 19 | * code. |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * The following #defines are mirrored from lib/prio_tree.c. They're only used |
| 24 | * for debugging, and should be removed (along with the debugging code using |
| 25 | * them) when switching also VMAs to the regular prio_tree code. |
| 26 | */ |
| 27 | |
| 28 | #define RADIX_INDEX(vma) ((vma)->vm_pgoff) |
| 29 | #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) |
| 30 | /* avoid overflow */ |
| 31 | #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) |
| 32 | |
| 33 | /* |
| 34 | * Radix priority search tree for address_space->i_mmap |
| 35 | * |
| 36 | * For each vma that map a unique set of file pages i.e., unique [radix_index, |
| 37 | * heap_index] value, we have a corresponing priority search tree node. If |
| 38 | * multiple vmas have identical [radix_index, heap_index] value, then one of |
| 39 | * them is used as a tree node and others are stored in a vm_set list. The tree |
| 40 | * node points to the first vma (head) of the list using vm_set.head. |
| 41 | * |
| 42 | * prio_tree_root |
| 43 | * | |
| 44 | * A vm_set.head |
| 45 | * / \ / |
| 46 | * L R -> H-I-J-K-M-N-O-P-Q-S |
| 47 | * ^ ^ <-- vm_set.list --> |
| 48 | * tree nodes |
| 49 | * |
| 50 | * We need some way to identify whether a vma is a tree node, head of a vm_set |
| 51 | * list, or just a member of a vm_set list. We cannot use vm_flags to store |
| 52 | * such information. The reason is, in the above figure, it is possible that |
| 53 | * vm_flags' of R and H are covered by the different mmap_sems. When R is |
| 54 | * removed under R->mmap_sem, H replaces R as a tree node. Since we do not hold |
| 55 | * H->mmap_sem, we cannot use H->vm_flags for marking that H is a tree node now. |
| 56 | * That's why some trick involving shared.vm_set.parent is used for identifying |
| 57 | * tree nodes and list head nodes. |
| 58 | * |
| 59 | * vma radix priority search tree node rules: |
| 60 | * |
| 61 | * vma->shared.vm_set.parent != NULL ==> a tree node |
| 62 | * vma->shared.vm_set.head != NULL ==> list of others mapping same range |
| 63 | * vma->shared.vm_set.head == NULL ==> no others map the same range |
| 64 | * |
| 65 | * vma->shared.vm_set.parent == NULL |
| 66 | * vma->shared.vm_set.head != NULL ==> list head of vmas mapping same range |
| 67 | * vma->shared.vm_set.head == NULL ==> a list node |
| 68 | */ |
| 69 | |
| 70 | /* |
| 71 | * Add a new vma known to map the same set of pages as the old vma: |
| 72 | * useful for fork's dup_mmap as well as vma_prio_tree_insert below. |
| 73 | * Note that it just happens to work correctly on i_mmap_nonlinear too. |
| 74 | */ |
| 75 | void vma_prio_tree_add(struct vm_area_struct *vma, struct vm_area_struct *old) |
| 76 | { |
| 77 | /* Leave these BUG_ONs till prio_tree patch stabilizes */ |
| 78 | BUG_ON(RADIX_INDEX(vma) != RADIX_INDEX(old)); |
| 79 | BUG_ON(HEAP_INDEX(vma) != HEAP_INDEX(old)); |
| 80 | |
| 81 | vma->shared.vm_set.head = NULL; |
| 82 | vma->shared.vm_set.parent = NULL; |
| 83 | |
| 84 | if (!old->shared.vm_set.parent) |
| 85 | list_add(&vma->shared.vm_set.list, |
| 86 | &old->shared.vm_set.list); |
| 87 | else if (old->shared.vm_set.head) |
| 88 | list_add_tail(&vma->shared.vm_set.list, |
| 89 | &old->shared.vm_set.head->shared.vm_set.list); |
| 90 | else { |
| 91 | INIT_LIST_HEAD(&vma->shared.vm_set.list); |
| 92 | vma->shared.vm_set.head = old; |
| 93 | old->shared.vm_set.head = vma; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | void vma_prio_tree_insert(struct vm_area_struct *vma, |
| 98 | struct prio_tree_root *root) |
| 99 | { |
| 100 | struct prio_tree_node *ptr; |
| 101 | struct vm_area_struct *old; |
| 102 | |
| 103 | vma->shared.vm_set.head = NULL; |
| 104 | |
| 105 | ptr = raw_prio_tree_insert(root, &vma->shared.prio_tree_node); |
| 106 | if (ptr != (struct prio_tree_node *) &vma->shared.prio_tree_node) { |
| 107 | old = prio_tree_entry(ptr, struct vm_area_struct, |
| 108 | shared.prio_tree_node); |
| 109 | vma_prio_tree_add(vma, old); |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | void vma_prio_tree_remove(struct vm_area_struct *vma, |
| 114 | struct prio_tree_root *root) |
| 115 | { |
| 116 | struct vm_area_struct *node, *head, *new_head; |
| 117 | |
| 118 | if (!vma->shared.vm_set.head) { |
| 119 | if (!vma->shared.vm_set.parent) |
| 120 | list_del_init(&vma->shared.vm_set.list); |
| 121 | else |
| 122 | raw_prio_tree_remove(root, &vma->shared.prio_tree_node); |
| 123 | } else { |
| 124 | /* Leave this BUG_ON till prio_tree patch stabilizes */ |
| 125 | BUG_ON(vma->shared.vm_set.head->shared.vm_set.head != vma); |
| 126 | if (vma->shared.vm_set.parent) { |
| 127 | head = vma->shared.vm_set.head; |
| 128 | if (!list_empty(&head->shared.vm_set.list)) { |
| 129 | new_head = list_entry( |
| 130 | head->shared.vm_set.list.next, |
| 131 | struct vm_area_struct, |
| 132 | shared.vm_set.list); |
| 133 | list_del_init(&head->shared.vm_set.list); |
| 134 | } else |
| 135 | new_head = NULL; |
| 136 | |
| 137 | raw_prio_tree_replace(root, &vma->shared.prio_tree_node, |
| 138 | &head->shared.prio_tree_node); |
| 139 | head->shared.vm_set.head = new_head; |
| 140 | if (new_head) |
| 141 | new_head->shared.vm_set.head = head; |
| 142 | |
| 143 | } else { |
| 144 | node = vma->shared.vm_set.head; |
| 145 | if (!list_empty(&vma->shared.vm_set.list)) { |
| 146 | new_head = list_entry( |
| 147 | vma->shared.vm_set.list.next, |
| 148 | struct vm_area_struct, |
| 149 | shared.vm_set.list); |
| 150 | list_del_init(&vma->shared.vm_set.list); |
| 151 | node->shared.vm_set.head = new_head; |
| 152 | new_head->shared.vm_set.head = node; |
| 153 | } else |
| 154 | node->shared.vm_set.head = NULL; |
| 155 | } |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * Helper function to enumerate vmas that map a given file page or a set of |
| 161 | * contiguous file pages. The function returns vmas that at least map a single |
| 162 | * page in the given range of contiguous file pages. |
| 163 | */ |
| 164 | struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, |
| 165 | struct prio_tree_iter *iter) |
| 166 | { |
| 167 | struct prio_tree_node *ptr; |
| 168 | struct vm_area_struct *next; |
| 169 | |
| 170 | if (!vma) { |
| 171 | /* |
| 172 | * First call is with NULL vma |
| 173 | */ |
| 174 | ptr = prio_tree_next(iter); |
| 175 | if (ptr) { |
| 176 | next = prio_tree_entry(ptr, struct vm_area_struct, |
| 177 | shared.prio_tree_node); |
| 178 | prefetch(next->shared.vm_set.head); |
| 179 | return next; |
| 180 | } else |
| 181 | return NULL; |
| 182 | } |
| 183 | |
| 184 | if (vma->shared.vm_set.parent) { |
| 185 | if (vma->shared.vm_set.head) { |
| 186 | next = vma->shared.vm_set.head; |
| 187 | prefetch(next->shared.vm_set.list.next); |
| 188 | return next; |
| 189 | } |
| 190 | } else { |
| 191 | next = list_entry(vma->shared.vm_set.list.next, |
| 192 | struct vm_area_struct, shared.vm_set.list); |
| 193 | if (!next->shared.vm_set.head) { |
| 194 | prefetch(next->shared.vm_set.list.next); |
| 195 | return next; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | ptr = prio_tree_next(iter); |
| 200 | if (ptr) { |
| 201 | next = prio_tree_entry(ptr, struct vm_area_struct, |
| 202 | shared.prio_tree_node); |
| 203 | prefetch(next->shared.vm_set.head); |
| 204 | return next; |
| 205 | } else |
| 206 | return NULL; |
| 207 | } |