blob: d1c3b182c6914282b860d4b4d4a855dfb27f5d5d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* pgtable.h: FR-V page table mangling
2 *
3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Derived from:
12 * include/asm-m68knommu/pgtable.h
13 * include/asm-i386/pgtable.h
14 */
15
16#ifndef _ASM_PGTABLE_H
17#define _ASM_PGTABLE_H
18
19#include <linux/config.h>
20#include <asm/mem-layout.h>
21#include <asm/setup.h>
22#include <asm/processor.h>
23
24#ifndef __ASSEMBLY__
25#include <linux/threads.h>
26#include <linux/slab.h>
27#include <linux/list.h>
28#include <linux/spinlock.h>
Tim Schmielau8c65b4a2005-11-07 00:59:43 -080029struct mm_struct;
30struct vm_area_struct;
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#endif
32
33#ifndef __ASSEMBLY__
34#if defined(CONFIG_HIGHPTE)
35typedef unsigned long pte_addr_t;
36#else
37typedef pte_t *pte_addr_t;
38#endif
39#endif
40
41/*****************************************************************************/
42/*
43 * MMU-less operation case first
44 */
45#ifndef CONFIG_MMU
46
47#define pgd_present(pgd) (1) /* pages are always present on NO_MM */
48#define pgd_none(pgd) (0)
49#define pgd_bad(pgd) (0)
50#define pgd_clear(pgdp)
51#define kern_addr_valid(addr) (1)
52#define pmd_offset(a, b) ((void *) 0)
53
54#define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */
55#define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */
56#define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */
57#define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */
58#define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */
59
60#define __swp_type(x) (0)
61#define __swp_offset(x) (0)
62#define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
63#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
64#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
65
66#ifndef __ASSEMBLY__
67static inline int pte_file(pte_t pte) { return 0; }
68#endif
69
70#define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
71
72#define swapper_pg_dir ((pgd_t *) NULL)
73
74#define pgtable_cache_init() do {} while(0)
75
76#else /* !CONFIG_MMU */
77/*****************************************************************************/
78/*
79 * then MMU operation
80 */
81
82/*
83 * ZERO_PAGE is a global shared page that is always zero: used
84 * for zero-mapped memory areas etc..
85 */
86#ifndef __ASSEMBLY__
87extern unsigned long empty_zero_page;
88#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
89#endif
90
91/*
92 * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
93 * [see Documentation/fujitsu/frv/mmu-layout.txt]
94 *
95 * Page Directory:
96 * - Size: 16KB
97 * - 64 PGEs per PGD
98 * - Each PGE holds 1 PUD and covers 64MB
99 *
100 * Page Upper Directory:
101 * - Size: 256B
102 * - 1 PUE per PUD
103 * - Each PUE holds 1 PMD and covers 64MB
104 *
105 * Page Mid-Level Directory
106 * - Size: 256B
107 * - 1 PME per PMD
108 * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
109 * - All STEs are instantiated at the same time
110 *
111 * Page Table
112 * - Size: 16KB
113 * - 4096 PTEs per PT
114 * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
115 *
116 * Pages
117 * - Size: 4KB
118 *
119 * total PTEs
120 * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
121 * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
122 * = 262144 (or 256 * 1024)
123 */
124#define PGDIR_SHIFT 26
125#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
126#define PGDIR_MASK (~(PGDIR_SIZE - 1))
127#define PTRS_PER_PGD 64
128
129#define PUD_SHIFT 26
130#define PTRS_PER_PUD 1
131#define PUD_SIZE (1UL << PUD_SHIFT)
132#define PUD_MASK (~(PUD_SIZE - 1))
133#define PUE_SIZE 256
134
135#define PMD_SHIFT 26
136#define PMD_SIZE (1UL << PMD_SHIFT)
137#define PMD_MASK (~(PMD_SIZE - 1))
138#define PTRS_PER_PMD 1
139#define PME_SIZE 256
140
141#define __frv_PT_SIZE 256
142
143#define PTRS_PER_PTE 4096
144
145#define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE)
Hugh Dickinsd455a362005-04-19 13:29:23 -0700146#define FIRST_USER_ADDRESS 0
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147
148#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
149#define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
150
151#define TWOLEVEL_PGDIR_SHIFT 26
152#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
153#define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
154
155#ifndef __ASSEMBLY__
156
157extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
158
159#define pte_ERROR(e) \
160 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
161#define pmd_ERROR(e) \
162 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
163#define pud_ERROR(e) \
164 printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
165#define pgd_ERROR(e) \
166 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
167
168/*
169 * Certain architectures need to do special things when PTEs
170 * within a page table are directly modified. Thus, the following
171 * hook is made available.
172 */
173#define set_pte(pteptr, pteval) \
174do { \
175 *(pteptr) = (pteval); \
176 asm volatile("dcf %M0" :: "U"(*pteptr)); \
177} while(0)
178#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
179
180#define set_pte_atomic(pteptr, pteval) set_pte((pteptr), (pteval))
181
182/*
183 * pgd_offset() returns a (pgd_t *)
184 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
185 */
186#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
187
188/*
189 * a shortcut which implies the use of the kernel's pgd, instead
190 * of a process's
191 */
192#define pgd_offset_k(address) pgd_offset(&init_mm, address)
193
194/*
195 * The "pgd_xxx()" functions here are trivial for a folded two-level
196 * setup: the pud is never bad, and a pud always exists (as it's folded
197 * into the pgd entry)
198 */
199static inline int pgd_none(pgd_t pgd) { return 0; }
200static inline int pgd_bad(pgd_t pgd) { return 0; }
201static inline int pgd_present(pgd_t pgd) { return 1; }
202static inline void pgd_clear(pgd_t *pgd) { }
203
204#define pgd_populate(mm, pgd, pud) do { } while (0)
205/*
206 * (puds are folded into pgds so this doesn't get actually called,
207 * but the define is needed for a generic inline function.)
208 */
209#define set_pgd(pgdptr, pgdval) \
210do { \
211 memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \
212 asm volatile("dcf %M0" :: "U"(*(pgdptr))); \
213} while(0)
214
215static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
216{
217 return (pud_t *) pgd;
218}
219
220#define pgd_page(pgd) (pud_page((pud_t){ pgd }))
221#define pgd_page_kernel(pgd) (pud_page_kernel((pud_t){ pgd }))
222
223/*
224 * allocating and freeing a pud is trivial: the 1-entry pud is
225 * inside the pgd, so has no extra memory associated with it.
226 */
227#define pud_alloc_one(mm, address) NULL
228#define pud_free(x) do { } while (0)
229#define __pud_free_tlb(tlb, x) do { } while (0)
230
231/*
232 * The "pud_xxx()" functions here are trivial for a folded two-level
233 * setup: the pmd is never bad, and a pmd always exists (as it's folded
234 * into the pud entry)
235 */
236static inline int pud_none(pud_t pud) { return 0; }
237static inline int pud_bad(pud_t pud) { return 0; }
238static inline int pud_present(pud_t pud) { return 1; }
239static inline void pud_clear(pud_t *pud) { }
240
241#define pud_populate(mm, pmd, pte) do { } while (0)
242
243/*
244 * (pmds are folded into puds so this doesn't get actually called,
245 * but the define is needed for a generic inline function.)
246 */
247#define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
248
249#define pud_page(pud) (pmd_page((pmd_t){ pud }))
250#define pud_page_kernel(pud) (pmd_page_kernel((pmd_t){ pud }))
251
252/*
253 * (pmds are folded into pgds so this doesn't get actually called,
254 * but the define is needed for a generic inline function.)
255 */
256extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd);
257
258#define set_pmd(pmdptr, pmdval) \
259do { \
260 __set_pmd((pmdptr), (pmdval).ste[0]); \
261} while(0)
262
263#define __pmd_index(address) 0
264
265static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address)
266{
267 return (pmd_t *) dir + __pmd_index(address);
268}
269
270#define pte_same(a, b) ((a).pte == (b).pte)
271#define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
272#define pte_none(x) (!(x).pte)
273#define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT)))
274#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
275#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
276
277#define VMALLOC_VMADDR(x) ((unsigned long) (x))
278
279#endif /* !__ASSEMBLY__ */
280
281/*
282 * control flags in AMPR registers and TLB entries
283 */
284#define _PAGE_BIT_PRESENT xAMPRx_V_BIT
285#define _PAGE_BIT_WP DAMPRx_WP_BIT
286#define _PAGE_BIT_NOCACHE xAMPRx_C_BIT
287#define _PAGE_BIT_SUPER xAMPRx_S_BIT
288#define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT
289#define _PAGE_BIT_DIRTY xAMPRx_M_BIT
290#define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT
291
292#define _PAGE_PRESENT xAMPRx_V
293#define _PAGE_WP DAMPRx_WP
294#define _PAGE_NOCACHE xAMPRx_C
295#define _PAGE_SUPER xAMPRx_S
296#define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */
297#define _PAGE_DIRTY xAMPRx_M
298#define _PAGE_NOTGLOBAL xAMPRx_NG
299
300#define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
301
302#define _PAGE_FILE 0x002 /* set:pagecache unset:swap */
303#define _PAGE_PROTNONE 0x000 /* If not present */
304
305#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
306
307#define __PGPROT_BASE \
308 (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
309
310#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
311#define PAGE_SHARED __pgprot(__PGPROT_BASE)
312#define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP)
313#define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP)
314
315#define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
316#define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
317#define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
318
319#define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
320
321#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
322#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
323#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
324
325#define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb)
326
327#ifndef __ASSEMBLY__
328
329/*
330 * The FR451 can do execute protection by virtue of having separate TLB miss handlers for
331 * instruction access and for data access. However, we don't have enough reserved bits to say
332 * "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
333 */
334#define __P000 PAGE_NONE
335#define __P001 PAGE_READONLY
336#define __P010 PAGE_COPY
337#define __P011 PAGE_COPY
338#define __P100 PAGE_READONLY
339#define __P101 PAGE_READONLY
340#define __P110 PAGE_COPY
341#define __P111 PAGE_COPY
342
343#define __S000 PAGE_NONE
344#define __S001 PAGE_READONLY
345#define __S010 PAGE_SHARED
346#define __S011 PAGE_SHARED
347#define __S100 PAGE_READONLY
348#define __S101 PAGE_READONLY
349#define __S110 PAGE_SHARED
350#define __S111 PAGE_SHARED
351
352/*
353 * Define this to warn about kernel memory accesses that are
Jesper Juhle49332b2005-05-01 08:59:08 -0700354 * done without a 'access_ok(VERIFY_WRITE,..)'
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355 */
Jesper Juhle49332b2005-05-01 08:59:08 -0700356#undef TEST_ACCESS_OK
Linus Torvalds1da177e2005-04-16 15:20:36 -0700357
358#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
359#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
360
361#define pmd_none(x) (!pmd_val(x))
362#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
363#define pmd_bad(x) (pmd_val(x) & xAMPRx_SS)
364#define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0)
365
366#define pmd_page_kernel(pmd) \
367 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
368
369#ifndef CONFIG_DISCONTIGMEM
370#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
371#endif
372
373#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
374
375/*
376 * The following only work if pte_present() is true.
377 * Undefined behaviour if not..
378 */
379static inline int pte_read(pte_t pte) { return !((pte).pte & _PAGE_SUPER); }
380static inline int pte_exec(pte_t pte) { return !((pte).pte & _PAGE_SUPER); }
381static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; }
382static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; }
383static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); }
384
385static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte |= _PAGE_SUPER; return pte; }
386static inline pte_t pte_exprotect(pte_t pte) { (pte).pte |= _PAGE_SUPER; return pte; }
387static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; }
388static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; }
389static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; }
390static inline pte_t pte_mkread(pte_t pte) { (pte).pte &= ~_PAGE_SUPER; return pte; }
391static inline pte_t pte_mkexec(pte_t pte) { (pte).pte &= ~_PAGE_SUPER; return pte; }
392static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; }
393static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; }
394static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; }
395
396static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
397{
398 int i = test_and_clear_bit(_PAGE_BIT_DIRTY, ptep);
399 asm volatile("dcf %M0" :: "U"(*ptep));
400 return i;
401}
402
403static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
404{
405 int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
406 asm volatile("dcf %M0" :: "U"(*ptep));
407 return i;
408}
409
410static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
411{
412 unsigned long x = xchg(&ptep->pte, 0);
413 asm volatile("dcf %M0" :: "U"(*ptep));
414 return __pte(x);
415}
416
417static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
418{
419 set_bit(_PAGE_BIT_WP, ptep);
420 asm volatile("dcf %M0" :: "U"(*ptep));
421}
422
423/*
David Howells41be6ae2006-01-08 01:01:25 -0800424 * Macro to mark a page protection value as "uncacheable"
425 */
426#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
427
428/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700429 * Conversion functions: convert a page and protection to a page entry,
430 * and a page entry and page directory to the page they refer to.
431 */
432
433#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
434#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
435
436/* This takes a physical page address that is used by the remapping functions */
437#define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
438
439static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
440{
441 pte.pte &= _PAGE_CHG_MASK;
442 pte.pte |= pgprot_val(newprot);
443 return pte;
444}
445
Linus Torvalds1da177e2005-04-16 15:20:36 -0700446/* to find an entry in a page-table-directory. */
447#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
448#define pgd_index_k(addr) pgd_index(addr)
449
450/* Find an entry in the bottom-level page table.. */
451#define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
452
453/*
454 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
455 *
456 * this macro returns the index of the entry in the pte page which would
457 * control the given virtual address
458 */
459#define pte_index(address) \
460 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
461#define pte_offset_kernel(dir, address) \
462 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
463
464#if defined(CONFIG_HIGHPTE)
465#define pte_offset_map(dir, address) \
466 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
467#define pte_offset_map_nested(dir, address) \
468 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
469#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
470#define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1)
471#else
472#define pte_offset_map(dir, address) \
473 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
474#define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address))
475#define pte_unmap(pte) do { } while (0)
476#define pte_unmap_nested(pte) do { } while (0)
477#endif
478
479/*
480 * Handle swap and file entries
481 * - the PTE is encoded in the following format:
482 * bit 0: Must be 0 (!_PAGE_PRESENT)
483 * bit 1: Type: 0 for swap, 1 for file (_PAGE_FILE)
484 * bits 2-7: Swap type
485 * bits 8-31: Swap offset
486 * bits 2-31: File pgoff
487 */
488#define __swp_type(x) (((x).val >> 2) & 0x1f)
489#define __swp_offset(x) ((x).val >> 8)
490#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
491#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte })
492#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
493
494static inline int pte_file(pte_t pte)
495{
496 return pte.pte & _PAGE_FILE;
497}
498
499#define PTE_FILE_MAX_BITS 29
500
501#define pte_to_pgoff(PTE) ((PTE).pte >> 2)
502#define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE)
503
504/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
505#define PageSkip(page) (0)
506#define kern_addr_valid(addr) (1)
507
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
509 remap_pfn_range(vma, vaddr, pfn, size, prot)
510
511#define MK_IOSPACE_PFN(space, pfn) (pfn)
512#define GET_IOSPACE(pfn) 0
513#define GET_PFN(pfn) (pfn)
514
515#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
516#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
517#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
518#define __HAVE_ARCH_PTEP_SET_WRPROTECT
519#define __HAVE_ARCH_PTE_SAME
520#include <asm-generic/pgtable.h>
521
522/*
523 * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
524 */
525static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
526{
527 unsigned long ampr;
528 pgd_t *pge = pgd_offset(current->mm, address);
529 pud_t *pue = pud_offset(pge, address);
530 pmd_t *pme = pmd_offset(pue, address);
531
532 ampr = pme->ste[0] & 0xffffff00;
533 ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C | xAMPRx_V;
534
535 asm volatile("movgs %0,scr0\n"
536 "movgs %0,scr1\n"
537 "movgs %1,dampr4\n"
538 "movgs %1,dampr5\n"
539 :
540 : "r"(address), "r"(ampr)
541 );
542}
543
544#ifdef CONFIG_PROC_FS
545extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer);
546#endif
547
548extern void __init pgtable_cache_init(void);
549
550#endif /* !__ASSEMBLY__ */
551#endif /* !CONFIG_MMU */
552
553#ifndef __ASSEMBLY__
554extern void __init paging_init(void);
555#endif /* !__ASSEMBLY__ */
556
557#endif /* _ASM_PGTABLE_H */